
DATA NETWORK MODELS OF BURSTINESS

BERNARDO D’AURIA AND SIDNEY I. RESNICK

Abstract. We review characteristics of data traffic which we term stylized facts: burstiness, long range

dependence, heavy tails, bursty behavior determined by high bandwidth users, dependence determined by

users without high transmission rates. We propose an infinite source Poisson input model which supplies
traffic in adjacent time slots. We study properties of the model as slot width decreases and traffic intensity

increases. This model has the ability to account for many of the stylized facts.

1. Introduction

Measurements on data networks often show empirical features that are surprising by the standards of
classical queueing and telephone network models. Measurements often consist of data giving bit-rate or
packet rates. This means that a window resolution is selected (for example, 10 seconds, 1 second, 10
milliseconds, 1 millisecond, . . . ) and the number of bits or packets in adjacent windows or slots is recorded.
Significant examples include Duffy et al. (1993), Leland et al. (1993), Willinger et al. (1995, 1997).

Despite the fact that collected data is for time slots of modest size, many of the theoretical attempts to
create models to explain the empirical observations concentrate on large time scales and cumulative traffic
over large time intervals. See, for example, Heath et al. (1998), Kaj and Taqqu (2004), Konstantopoulos and
Lin (1998), Levy and Taqqu (2000), Maulik and Resnick (2003), Mikosch et al. (2002), Taqqu et al. (1997).
For such models, it is difficult to find agreement with many existing data sets (Guerin et al. (2003)).

Many network data sets exhibit distinctive properties, which in analogy with empirical finance, we will
term stylized facts:

• Heavy tails abound (Leland et al. (1994), Willinger et al. (1998), Willinger and Paxson (1998),
Willinger (1998)) for such things as file sizes (Arlitt and Williamson (1996), Resnick and Rootzén
(2000)), transmission rates, transmission durations (Maulik et al. (2002), Resnick (2003)).

• The number of bits or packets per slot exhibits long range dependence across time slots (eg, Leland
et al. (1993), Willinger et al. (1995). There is also a perception of self-similarity as the width of the
time slot varies across a range of time scales exceeding a typical round trip time.

• Network traffic is bursty with rare but influential periods of very high transmission rates punctuating
typical periods of modest activity.

Burstiness, a somewhat vague concept, is an important feature of traffic because of the sudden peak
loads it introduces to the network. Attempts to understand this phenomenon empirically (Sarvotham et al.
(2005)) use the α/β decomposition of users where the α-users transmit large files at very high rate and
β-users transmit the rest. Alternative language creates a dichotomy between mice and elephants (Azzouna
et al. (2004)) depending on whether a file is typical or very large. Some stylized facts suggested by the
stimulating empirical study (Sarvotham et al. (2005)) include:
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• Large files over fast links contribute to α-traffic. The α-component consitutes a small fraction of total
workload but is entirely responsible for burstiness. Often a single dominant high-rate connection
causes a burst.

• Most of the dependence structure across time slots is carried by the β-traffic. The long range
dependence structure of the β-traffic approximates that of the complete traffic.

• The quantity of traffic in a time window is distributionally approximated by the normal distribution
when there is high levels of aggregation across users and heavy loading. β-traffic is much more likely
to appear Gaussian than α-traffic.

Owing to measurements being taken for fixed time slots, we begin our attempt to provide models explaining
the empirically observed stylized facts by modeling the quantity of data in adjacent time slots of length δ.
Then to get approximations and to provide a clarified asymptotic picture of behavior, we let δ → 0 and see
what limits exits. In particular we seek a model that explains the origins of burstiness.

2. Model Description

The model for data traffic generation is a slight modification of the M/G/∞ input or infinite source
Poisson model as we assume that also the transmission rates are random. (See also, Maulik et al. (2002).) We
assume that a homogeneous Poisson process on R with points {Γk} activates data transmission sessions. The
parameter or rate of the Poisson process is λ = λ(δ), and each transmission activation time Γk, has associated
three additional quantities (Rk, Lk, Fk). These three quantities have the following physical interpretations:

• R - Rate of the transmission,
• L - Duration of the transmission,
• F - Size of the transmitted file.

Obviously these three quantities are related by the following relation

F = R · L.

We assume the marks {(Rk, Lk, Fk),−∞ < k < ∞} are iid and independent of {Γk}. The univariate
marginal distributions of the triple are

G(x) = P [F1 ≤ x], FR(x) = P [R1 ≤ x], FL(x) = P [L1 ≤ x].

We suppose that all three distributions are heavy tailed

Ḡ(x) = x−αFLF (x), F̄R(x) = x−αRLR(x), F̄L(x) = x−αLL(x),

where LF , LR, L are all slowly varying and we assume all three tail parameters satisfy

1 < αF , αR, αL < 2.

There is empirical evidence justifying these assumptions. See Azzouna et al. (2004), Campos et al. (2005),
Guerin et al. (2003), Heffernan and Resnick (2005), Leland et al. (1994), Maulik et al. (2002), Park and
Willinger (2000), Resnick (2003, 2004), Riedi and Willinger (2000), Sarvotham et al. (2005), Willinger et al.
(1995).

With these assumptions, the counting function of the points {(Γk, Rk, Lk, Fk)}

(2.1) N =
∑
k

ϵ(Γk,Rk,Lk,Fk)

on R× [0,∞)3 is a Poisson random measure with mean measure

(2.2) λdsP [(R1, L1, F1) ∈ (dr, dl, du)] =: µ#(ds, dr, dl, du).

See, for example, Kallenberg (1983), Neveu (1977), Resnick (1987, 1992).
For a time window of length δ, we will consider weak limits of the process

(2.3) A(δ) := {A(kδ, (k + 1)δ],−∞ < k < ∞}
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as δ ↓ 0. Here A(kδ, (k + 1)δ] represents the total mount of work inputted to the system in the k-th time
slot (kδ, (k+1)δ]. We will define this precisely for k = 0 and the definitions for the other values of k will be
obvious by analogy.

Distinguish 4 disjoint regions in R× [0,∞)3:

R>0,1 ={(s, r, l, u) : 0 < s ≤ δ, 0 < s+ l ≤ δ},
R>0,2 ={(s, r, l, u) : 0 < s ≤ δ, s+ l > δ},
R<0,1 ={(s, r, l, u) : s < 0, 0 < s+ l ≤ δ},
R<0,2 ={(s, r, l, u) : s < 0, s+ l > δ}.

Region R>0,1 corresponds to sessions which start and end in (0, δ] while the region R>0,2 describes sessions
starting in (0, δ] but ending subsequent to δ. Region R<0,1 has sessions starting prior to time 0 and ending
in (0, δ] while R<0,2 has sessions initiated prior to 0 and ending subsequent to δ. See Figure 1.

Figure 1. Four regions.

Corresponding to this decomposition of regions, if we restrict the Poisson random measure to the 4 regions,
we get 4 independent Poisson processes:

(2.4) N(·
⋂

R>0,1), N(·
⋂

R>0,2), N(·
⋂

R<0,1), N(·
⋂

R<0,2),

and we use these to express A(0, δ) =: A(δ) as the sum of 4 independent contributions:

A(δ) = A>0,1(δ) +A>0,2(δ) +A<0,1(δ) +A<0,2(δ),

where

A>0,1(δ) =
∑
k

RkLk1[(Γk,Rk,Lk,Fk)∈R>0,1)],

A>0,2(δ) =
∑
k

Rk(δ − Γk)1[(Γk,Rk,Lk,Fk)∈R>0,2)],

A<0,1(δ) =
∑
k

Rk(Lk + Γk)1[(Γk,Rk,Lk,Fk)∈R<0,1)],

A<0,2(δ) =
∑
k

Rkδ1[(Γk,Rk,Lk,Fk)∈R<0,2)].
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As a further notational device, we will adopt the convention that for a region R of the (s, r, l, u)-space,
AR(t1, t2] will denote the cumulative work inputted to the system in times (t1, t2] from points (Γk, Rk, Lk, Fk)
in region R.

We can represent the restrictions of N to each of the 4 regions as given in (2.4) as empirical measures of
a Poisson number of iid points whose joint distributions are the mean measure µ# restricted to that region
and normalized to be a probability measure. (See, for instance, Resnick (1992, page 341).) For example

N(·
⋂

R>0,1) =

P>0,1(δ)∑
k=1

ϵ(Γ>0,1
k ,R>0,1

k ,L>0,1
k ,F>0,1

k )

where P>0,1(δ) is Poisson with parameter

µ#(R>0,1) =

∫
R>0,1

λdsP [(R1, L1, F1) ∈ (dr, dl, du)]

=

∫ δ

0

λdsP [L1 + s < δ] =

∫ δ

0

λFL(δ − s)ds = δF̂L(δ),

(where F̂L(x) =
∫ x

0
FL(y)dy) and {(Γ>0,1

k , R>0,1
k , L>0,1

k , F>0,1
k )} are iid with joint distribution

µ#(·
⋂

R>0,1)

µ#(R>0,1)
.

In what follows, we sometimes use the convention that PA(δ) is Poisson distributed with parameter equal
to the mean measure of the region A.

2.1. Specifying dependence structure for (R,L, F ). Depending on the dependence structure of the
triple (R,L, F ), it is possible to have different limit behavior for A(δ) in (2.3). We distinguish two cases
that we denote by RL and RF:

• RL - the r.v.s R and L are independent (cf, Maulik et al. (2002));
• RF - the r.v.s R and F are independent.

Standing assumption for this paper: We focus here on the RF model which assumes that R and F
are independent. This choice has statistical justification (see the evidence in Campos et al. (2005), Heffernan
and Resnick (2005)) and generates a high degree of comfort with network engineers who argue that network
rates are assigned without knowledge of the size of the file to be transmitted. The model seems natural since
it assumes file size distributions are unaffected by network state, but even if transmission rates are functions
of the network state, we would still get the assumed independence property of the RF model. The RL model
is also of interest and undoubtedly leads to different conclusions but its analysis is not straightforward and
certainly not analogous to the RF model. We hope to consider it elsewhere.

Undoubtedly in practice, it is not true that R and F are actually independent but rather satisfy some
form of asymptotic independence. However, assuming asymptotic independence rather than full dependence
would lead to unacceptable complications in the analysis and proofs without changing conclusions and thus
we feel that choosing full independence of F and R is an appropriate modeling assumption.

2.2. The model RF. We assume that the rates of transmissions are independent of the file sizes. Durations
of transmission are computed by the relation L = F/R. From Breiman’s theorem (Breiman (1965)), this
means that the distribution tail of the random variable L is given by

(2.5) F̄L(l) ∼ E(1/R)αF Ḡ(l),

provided we assume

(2.6) E(1/R)αF+η < ∞,

for some η > 0.
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By using the property that the random variables R and F are heavy-tailed, we can easily derive the tail
behavior of the random variables AR(δ) with R ∈ {< 0, 1 ; < 0, 2 ; > 0, 1 ; > 0, 2}; that is, R is one of the 4
regions shown in Figure 1. The tails are given by

P
[
AR(δ) > x

]
∼ λCR δαR+1

αF + αR
Ḡ(x)F̄R(x)

with

C>0,1 =
αF

αR + 1
; C<0,2 =

αR

αF − 1
and C>0,2 = C<0,1 =

αR

αR + 1
.

Therefore for finite values of δ > 0, the tails of all the regions are regularly varying with index −(αF + αR).
In the sequel, we will note that this will be not the case in the limit as δ → 0.

Since our limiting procedure will shrink the observation window (0, δ], there is no hope to get a weak limit
in (2.3) unless we increase the arrival rate λ = λ(δ) of sessions. Thus we adopt a heavy traffic limit theorem
philosophy and imagine moving through a family of models indexed by δ as δ ↓ 0. A convenient and effective
choice of λ is defined in the following way

(2.7) λ(δ) =
1

δF̄R(δ−1)
.

Note that since 1 < αR < 2, this choice of λ guarantees that as δ → 0, both

λ(δ) =
1

δαR+1LR(δ−1)
→ ∞ and δλ(δ) =

1

δαRLR(δ−1)
→ ∞.

Using assumption (2.7), the behavior of the rv’s A(·)(δ) is as follows:

• A<0,1(δ) is equal in distribution to A>0,2(δ);
• A<0,2(δ) does not converge weakly without scaling and with centering and scaling converges to a
Gaussian rv;

• A>0,1(δ) converges in distribution to a compound poisson random variable;
• A>0,2(δ), suitably centered, converges weakly to an infinitely divisible rv with finite variance and
whose Lévy measure has a regularly varying tail with index −(αF + αR), where αF + αR > 2.

3. Limits for cumulative input A(δ)

We now present the details of the limiting arguments yielding distributional approximations for inputs
from each of the four regions.

3.1. Region R>0,2. Recall this is the region contributing input in (0, δ] from sessions initiated in (0, δ] but
terminating after δ.

3.1.1. Characteristic function. For θ ∈ R, we compute

E
(
eiθA

>0,2(δ)
)
=E exp{iθ

P>0,2(δ)∑
i=1

R>0,2
i (δ − Γ>0,2

i )}

=exp{E
(
P>0,2(δ)

)[
EeiθR

>0,2
1 (δ−Γ>0,2

1 ) − 1
]
}

=exp
{∫∫∫

0<s<δ
s+l>δ
r>0

(
eiθr(δ−s) − 1

)
λdsFL,R(dl, dr)

}
(3.1)

= exp
{∫ δ

0

∫
r>0

(eiθr(δ−s) − 1)P [
F

R
> δ − s,R ∈ dr]λds

}
=exp

{∫ δ

s=0

∫ ∞

r=0

(eiθrs − 1)Ḡ(rs)FR(dr)λds
}

=exp
{
λ

∫ ∞

r=0

∫ rδ

s=0

(eiθs − 1)Ḡ(s)r−1FR(δ
−1dr)ds

}
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=exp
{∫ ∞

r=0

(∫ r

s=0

(eiθs − 1)Ḡ(s)ds

)
r−1FR(δ

−1dr)

F̄R(δ−1)

}
where we used the definition of λ in (2.7). Interchanging the order of integration, we get

= exp
{∫ ∞

s=0

(eiθs − 1)Ḡ(s)

(∫ ∞

r=s

r−1µδ(dr)

)
ds
}

(3.2)

where

µδ(dr) :=
FR(δ

−1dr)

F̄R(δ−1)
.

Write

(3.3) ν>0,2
δ (ds) = (ν>0,2

δ )′(s)ds = Ḡ(s)
(∫ ∞

r=s

r−1µδ(dr)
)
ds

and we obtain

(3.4) E
(
eiθA

>0,2(δ)
)
= exp

{∫ ∞

s=0

(eiθs − 1)ν>0,2
δ (ds)

}
.

3.1.2. Properties of ν>0,2
δ .

Proposition 1. As δ → 0,

ν>0,2
δ

v→ ν>0,2
0 ,

on (0,∞]; that is, we have vague convergence to a limit. Further, the limit measure ν>0,2
0 is a Lévy measure

with density
αR

1 + αR
Ḡ(x)x−αR−1.

The tail of the Lévy measure is regularly varying with index −(αF + αR).

Proof. Observe that for s ≥ 1,

(ν>0,2
δ )′(s) =Ḡ(s)

∫ ∞

r=s

r−1µδ(dr) ≤ Ḡ(s)µδ(s,∞]s−1

and by Potter’s bounds, for some small η, all s ≥ 1, and for all sufficiently small δ, we have the upper bound

≤cḠ(s)s−(αR−η)−1

which is integrable with respect to Lebesgue measure on any neighborhood of ∞. Hence, by dominated
convergence, for x > 0,

ν>0,2
δ (x,∞] =

∫ ∞

x

(ν>0,2
δ )′(s)ds →

∫ ∞

x

Ḡ(s)
(∫ ∞

s

r−1αRr
−αR−1dr

)
ds

=ν>0,2
0 (x,∞] =

αR

1 + αR

∫ ∞

x

Ḡ(s)s−αR−1ds.(3.5)

Regular variation of ν>0,2
0 (x,∞] follows from the regular variation of the integrand in (3.5) and Karamata’s

theorem. In fact, as x → ∞,

(3.6) ν>0,2
0 (x,∞] ∼ αR

(αR + 1)(αF + αR)
x−αRḠ(x).

To check ν>0,2
0 is a Lévy measure, note∫ 1

0

s2Ḡ(s)s−αR−1ds ≤
∫ 1

0

s2s−αR−1ds < ∞

since 1 < αR < 2. □
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3.1.3. Weak limit for A>0,2(δ). Now we use (3.4) and write

(3.7) E exp{iθ(A>0,2(δ)−
∫ 1

0

sν>0,2
δ (ds))} = exp

{∫ ∞

1

(eiθs − 1)ν>0,2
δ (ds) +

∫ 1

0

(eiθs − 1− iθs)ν>0,2
δ (ds)

}
.

The two integrals on the right in (3.7) each converge when δ → 0.

Proposition 2. As δ → 0:∫ ∞

1

(eiθs − 1)ν>0,2
δ (ds) →

∫ ∞

1

(eiθs − 1)ν>0,2
0 (ds)(3.8) ∫ 1

0

(eiθs − 1− iθs)ν>0,2
δ (ds) →

∫ 1

0

(eiθs − 1− iθs)ν>0,2
0 (ds).(3.9)

Therefore, as δ → 0

A>0,2(δ)−
∫ 1

0

sν>0,2
δ (ds) ⇒ X>0,2,

where the limit random variable is infinitely divisible with Lévy measure ν>0,2
0 and characteristic function

given by the right side of (3.7) with ν>0,2
δ replaced by ν>0,2

0 .

Proof. The convergence in (3.8) follows from standard weak convergence since the integrand is bounded and
continuous and

ν>0,2
δ (·)

ν>0,2
δ (1,∞]

⇒ ν>0,2
0 (·)

ν>0,2
0 (1,∞]

weakly as probability measures on (1,∞].
For the proof of (3.9), observe that

|eiθs − 1− iθs|(ν>0,2
δ )′(s) ≤θ2s2

2
Ḡ(s)s−1µδ(s,∞]

≤cs
F̄R(δ

−1s)

F̄R(δ−1)
= c

V (δ−1s)

V (δ−1)

where V (s) = sF̄R(s) is regularly varying with index −αR + 1. Now as δ → 0,

|eiθs − 1− iθs|(ν>0,2
δ )′(s) → |eiθs − 1− iθs|(ν>0,2

0 )′(s)

and

V (δ−1s)

V (δ−1)
→ s−αR+1.

Furthermore, by Karamata’s theorem,∫ 1

0

V (δ−1s)

V (δ−1)
ds →

∫ 1

0

s−αR+1ds =
1

2− αR
.

The desired result now follows from Pratt’s lemma (Pratt (1960) or Resnick (1998, page 164)) since Pratt’s
lemma may be applied to both the real and imaginary parts of(

eiθs − 1− iθs
)
(ν>0,2

δ )′(s)

to get convergence to the limit after integrating on [0, 1]. □
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3.2. Region R>0,1. Corresponding to this region, the traffic contribution is

(3.10) A>0,1(δ) =

P>0,1(δ)∑
i=1

F>0,1
i .

Now

E(P>0,1(δ)) =

∫∫∫
0<s<δ

r>0,u>0
0<s+u/r<δ

λdsG(du)FR(dr)

=λ

∫ δ

s=0

P [F/R ≤ s]ds = λ

∫ δ

s=0

P [R/F ≥ s−1]ds

=λ

∫ ∞

δ−1

P [R/F ≥ s]
ds

s2
.

Apply Beiman’s theorem (Breiman (1965)) after assuming that E(F−(αR+η)) < ∞. For some η > 0, as
δ → 0, the above is asymptotic to

∼λ

∫ ∞

δ−1

P [R > s]
ds

s2
E(F−αR)

and from Karamata’s theorem, this is

∼ λδ

1 + αR
P [R > δ−1]E(F−αR)

∼E(F−αR)

1 + αR
.

Thus as δ → 0,

E(P>0,1(δ)) → E(F−αR)

1 + αR
.

This means

P>0,1(δ) ⇒ P>0,1(0)

where P>0,1(0) is Poisson with parameter E(F−αR )
1+αR

.

Now we observe that the distribution of F>0,1
1 converges as δ → 0. We have for x > 0,

E(P>0,1(δ))P [F>0,1
1 ≤ x] =

∫∫
0<s<δ
r>0

s+u/r<δ
u≤x

λdsG(du)FR(dr)

=

∫ δ

s=0

P [FR−1 ≤ s, F ≤ x]λds

=λ

∫ δ

s=0

P [RF−1 ≥ s−1, F ≤ x]ds

=λ

∫ ∞

δ−1

P [RF−11[F≤x] ≥ s]
ds

s2

∼ λδ

1 + αR
P [R > δ−1]E(F−αR1[F≤x]).

We conclude, as δ → 0,

P [F>0,1
1 ≤ x] ⇒

E
(
F−αR1[F≤x]

)
E(F−αR)

.

This leads to the following result.
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Proposition 3. Assume that

(3.11) E(F )−(αR+η) < ∞
Then A>0,1(δ) given in (3.10) is a compound Poisson random variable which, as δ → 0 converges weakly to
a limiting compound Poisson random variable X>0,1,

(3.12) X>0,1 =

P>0,1(0)∑
i=1

R>0,1
i (0),

where P>0,1(0) is a Poisson random variable with parameter E(F−αR )
1+αR

, independent of the iid sequence

{R>0,1
i (0), i ≥ 1} which has common distribution function

E
(
F−αR1[F≤x]

)
E(F−αR)

.

The tail probabilities of this distribution, and hence of the limiting compound Poisson random variable, are
regularly varying with index −(αR + αF ) and in fact, as x → ∞,

E
(
F−αR1[F>x]

)
E(F−αR)

∼ αF

αR + αF
x−αRḠ(x).

3.3. The contribution of the region R<0,2. In the region R<0,2, we have contributions to traffic in (0, δ)
from sessions starting prior to 0 and ending after δ.

3.3.1. Characteristic function of A<0,2(δ). Since

(3.13) A<0,2(δ) =

P<0,2(δ)∑
i=1

R<0,2
i δ,

the characteristic function of A<0,2(δ) is computed as follows. For θ ∈ R,

EeiθA
<0,2(δ) =exp{E(P<0,2(δ))[EeiθR

<0,2
1 δ − 1]}

=exp{
∫∫∫

s<0,r>0
l>|s|+δ

(eiθrδ − 1)λdsFL,R(dl, dr)}

=exp{λ
∫ ∞

s=δ

∫ ∞

r=0

(eiθrδ − 1)Ḡ(rs)dsFR(dr)}

and reversing the order of integration and setting Ḡ0(x) =
∫∞
x

Ḡ(u)du/E(F ) we get the above equal to

= exp{λ
∫ ∞

r=0

(eiθrδ − 1)r−1Ḡ0(rδ)E(F )FR(dr)}

=exp{λδ
∫ ∞

r=0

(eiθr − 1)r−1Ḡ0(r)FR(δ
−1dr)E(F )}

=exp{
∫ ∞

r=0

(eiθr − 1)r−1Ḡ0(r)
FR(δ

−1dr)

F̄ (δ−1)
E(F )}.

Set, as before,

µδ(dr) =
FR(δ

−1dr)

F̄R(δ−1)

and define
ν<0,2
δ (dr) = E(F )r−1Ḡ0(r)µδ(dr).

We conclude

(3.14) EeiθA
<0,2(δ) = exp{

∫ ∞

0

(eiθr − 1)ν<0,2
δ (dr)}.
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3.3.2. Properties of ν<0,2
δ . The following properties of the measure ν<0,2

δ are evident.

(1) As δ → 0, the measures ν<0,2
δ converge vaguely on (0,∞]:

ν<0,2
δ

v→ ν<0,2
0 ,

where, for x > 0,

ν<0,2
0 (x,∞] = E(F )

∫ ∞

x

r−1Ḡ0(r)αRr
−αR−1dr.

(2) The tail of the measure, ν<0,2
0 (x,∞] is regularly varying with index −(αR + αF ) and in fact,

ν<0,2
0 (x,∞]

x−αR−1Ḡ0(x)
=E(F )

∫ ∞

1

r−1 Ḡ0(xr)

Ḡ0(x)
αRr

−αR−1dr

→E(F )

∫ ∞

1

r−1r−(αF−1)αRr
−αR−1dr

=E(F )
αR

αR + αF
.

(3) The measure ν<0,2
0 is not a Lévy measure since∫ 1

0

r2ν<0,2
0 (dr) =αRE(F )

∫ 1

0

r−αRḠ0(r)dr

≥αRE(F )Ḡ0(1)

∫ 1

0

r−αRdr = ∞.

This means we will not get an infinitely divisible weak limit without Gaussian component for
A<0,2(δ).

3.3.3. Gaussian limit. Observe that the quantity

(3.15) m(δ) := E(F )

∫ 1

0

Ḡ0(r)µδ(dr)

is finite, since

m(δ) ≤ E(F )

∫ 1

0

1 µδ(dr) = E(F )
FR(δ

−1)

F̄R(δ−1)
< ∞.

Also, define

(3.16) a(δ) :=
(
E(F )

∫ 1

0

rḠ0(r)µδ(dr)
)1/2

.

Note that as δ → 0, we have a(δ) → ∞ since for any η > 0,

lim inf
δ→0

a2(δ) ≥ lim inf
δ→0

E(F )

∫ 1

η

rḠ0(r)µδ(dr) = E(F )

∫ 1

η

rḠ0(r)αRr
−αR−1dr

≥ E(F )

1− αR
Ḡ0(1)r

−αR+1
∣∣∣1
η
→ ∞,

as η ↓ 0.
Now we use (3.14) and write

E exp{iθ[A<0,2(δ)−m(δ)]/a(δ)}

=exp{
∫ ∞

0

(eia
−1(δ)θr − 1)ν<0,2

δ (dr)− iθ
E(F )

a(δ)

∫ 1

0

Ḡ0(r)µδ(dr)}

=exp{
∫ 1

0

(eia
−1(δ)θr − 1− i

θ

a(δ)
r)E(F )r−1Ḡ0(r)µδ(dr) +

∫ ∞

1

(eia
−1(δ)θr − 1)ν<0,2

δ (dr)}

=exp{A+B}.
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Now

|B| ≤E(F )

∫ ∞

1

|θ| r

a(δ)
r−1Ḡ0(r)µδ(dr)

≤O(
1

a(δ)
) → 0,

as δ → 0, since a(δ) → ∞. For A we have A → −θ2/2 since∣∣∣∫ 1

0

(eiθa
−1(δ)r − 1− i

θ

a(δ)
r)E(F )r−1Ḡ0(r)µδ(dr)+

θ2

2

∣∣∣
=
∣∣∣∫ 1

0

(
eiθa

−1(δ)r − 1− i
θ

a(δ)
r − 1

2

( iθr
a(δ)

)2)E(F )r−1Ḡ0(r)µδ(dr)
∣∣∣

≤ 1

a3(δ)

∫ 1

0

1

3!
|θ|3r3E(F )r−1Ḡ0(r)µδ(dr)

and

1

a3(δ)

∫ 1

0

r2Ḡ0(r)µδ(dr) ≤
1

a(δ)3

∫ 1

0

rḠ0(r)µδ(dr) =
1

a(δ)
→ 0.

We summarize.

Proposition 4. With m(δ) defined by (3.15) and a(δ) given by (3.16), we have

A<0,2(δ)−m(δ)

a(δ)
⇒ X<0,2 ∼ N(0, 1)

as δ → 0.

Remark 1. The centering may be changed from m(δ) to

(3.17) m#(δ) := E

(
P<0,2(δ)∑

i=1

R<0,2
i δ

)
= E

(
P<0,2(δ)

)
E
(
R<0,2δ

)
since

E
(
P<0,2(δ)

)
E
(
R<0,2δ

)
=

∫∫∫
s<0,r>0
l>δ+|s|

rδλdsFL(dl, dr)

=

∫ ∞

s=δ

∫ ∞

r=0

rδḠ(rs)FR(dr)λds

=λδ

∫ ∞

r=0

Ḡ0(rδ)FR(dr)E(F )

=

∫ ∞

r=0

Ḡ0(r)
FR(δ

−1dr)

F̄R(δ−1)
E(F )

=m(δ) + E(F )

∫ ∞

1

Ḡ0(r)µδ(dr)

=m(δ) + o(a(δ)).

Similarly, the scaling a(δ) may be changed to

(3.18) a#(δ) :=

√√√√Var

(
P<0,2(δ)∑

i=1

R<0,2
i δ

)
=
√

E
(
P<0,2(δ)

)
E ((R<0,2δ)2).

This follows from

E
(
P<0,2(δ)

)
E
(
(R<0,2δ)2

)
=

∫∫∫
s<0,r>0
l>|s|+δ

δ2r2λdsFL,R(dl, dr)
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=

∫ ∞

s=δ

∫
r>0

δ2r2λdsḠ(rs)FR(dr)

=λ

∫ ∞

r=0

δ2r2
∫ ∞

s=δ

Ḡ(rs)dsFR(dr)

=λδ

∫ ∞

r=0

δr

∫ ∞

s=rδ

Ḡ(s)dsFR(dr)

=λδ

∫ ∞

r=0

rḠ0(r)FR(δ
−1dr)E(F )

=

∫ ∞

r=0

rḠ0(r)µδ(dr)E(F ).

Note, as δ → 0, ∫ ∞

1

rḠ0(r)µδ(dr) →
∫ ∞

1

rḠ0(r)αRr
−αR−1dr < ∞,

since 1 < αR < 2. Therefore

(3.19) a2(δ) ∼
∫ ∞

0

rḠ0(r)µδ(dr)E(F ),

as claimed.

3.3.4. Further properties of scaling a(δ). The scaling function plays a significant role in understanding de-
pendence across time slots. Here are two properties we need in the next section.

Proposition 5. (a) For any t > 0,

(3.20) lim
δ→0

∫ 1

0
rḠ0(tr)µδ(dr)∫ 1

0
rµδ(dr)

= 1.

(b) The growth rate of a(δ) is given by

(3.21) a2(δ) = E(F )

∫ 1

0

rḠ0(r)µδ(dr) ∼ E(F )

∫ 1

0

rµδ(dr) ∼ E(F )E(R)
(δ−1)(αR−1)

LR(δ−1)
=

E(F )E(R)

δ−1F̄R(δ−1)
→ ∞.

Proof. (a) Since Ḡ0 ≤ 1, we see 1 is an upperbound of the ratio in (3.20). To get a lower bound, observe

that
∫ 1

0
rµδ(dr) → ∞ as δ → 0, since for any η > 0,∫ 1

0

rµδ(dr) ≥
∫ 1

η

rµδ(dr) →
∫ 1

η

rαRr
−αR−1dr

=
αR

αR − 1
[η−(αR−1) − 1] → ∞ (η ↓ 0),

since 1 < αR < 2. Therefore,∫ 1

0
rḠ0(tr)µδ(dr)∫ 1

0
rµδ(dr)

≥
∫ η

0
rḠ0(tr)µδ(dr)∫ 1

0
rµδ(dr)

≥
Ḡ0(tη)

∫ η

0
rµδ(dr)∫ 1

0
rµδ(dr)

=Ḡ0(tη)

∫ 1

0
rµδ(dr)∫ 1

0
rµδ(dr)

+ o(1)

→Ḡ0(tη) (δ → 0)

→1 (η → 0).

(b) To see the growth rate of a(δ), observe that∫ 1

0

rµδ(dr) =

∫ 1

r=0

(∫ r

v=0

dv
)
µδ(dr) =

∫ 1

v=0

∫ 1

r=v

µδ(dr)dv
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=

∫ 1

0

µδ(v,∞]dv − µδ(1,∞] =

∫ δ−1

0
F̄R(v)dv

δ−1F̄R(δ−1)
− 1.

We conclude

δ−1F̄R(δ
−1)[1 +

∫ 1

0

rµδ(dr)] → E(R).

This coupled with
∫ 1

0
rµδ(dr) → ∞ proves the result. □

3.4. Contribution of the region R<0,1. In this section, we prove that

(3.22) A<0,1(δ)
d
= A>0,2(δ).

The idea behind this is as follows. Recall

A<0,1(δ) =
∑
k

Rk(Lk + Γk)1[(Γk,Rk,Lk,Fk)∈R<0,1).

It is well known that in the M/G/∞ model, the departure process has the same distribution as the arrival
process, namely it is Poisson with rate λ. The process A<0,1(δ) accumulates the contribution from 0 to
δ of those sessions ending in (0, δ) and starting before time 0. However, we may reindex Poisson points
by swapping the termination and starting times. Now the region A<0,1(δ) will correspond to the sessions
starting in (0, δ] and terminating outside it which is exactly the contribution of the region R>0,2, namely
A>0,2(δ). A more formal proof is given in the following proposition.

Proposition 6. We have

(3.23) A<0,1(δ)
d
= A>0,2(δ).

and therefore, as δ → 0,

A<0,1(δ)−
∫ 1

0

sν<0,1
δ (ds) ⇒ X<0,1,

where ν<0,1
δ = ν>0,2

δ and X<0,1 d
= X>0,2 with the quantities indexed by >0,2 defined as in Proposition 3.

Proof. We compute the characteristic function as follows. For θ ∈ R,

E
(
exp{iθ

P<0,1(δ)∑
i=1

R<0,1
i (Γ<0,1

i + L<0,1
i )}

)
=exp{E

(
P<0,1(δ)

)
[E(eiθR

<0,1
1 (Γ<0,1

1 +L<0,1
1 ))−1]}

=exp{
∫∫∫

s<0,r>0
|s|<l≤|s|+δ

(eiθr(s+l) − 1)λdsFL,R(dl, dr)}

and changing variables s′ = δ − (l + s) we get

= exp{
∫
0<s′<δ;r>0,s′+l>δ

(eiθ(δ−s′) − 1)λds′FL,R(dl, dr)}

=E(eiθA
>0,2(δ)).

For the last step we used (3.1) □

3.5. Discussion and summary. We summarize the contributions of the four regions to cumulative traffic
in (0, δ).

(1) For the region R>0,2, we have, as δ → 0,

X>0,2(δ) := A>0,2(δ)−
∫ 1

0

sν>0,2
δ (ds) ⇒ X>0,2,

a spectrally positive, infinitely divisible random variable with Lévy measure ν>0,2
0 with tail probabil-

ities which are regularly varying with index −(αF +αR). Observe αF +αR > 2 so E
(
X>0,2

)2
< ∞.
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(2) For the region R>0,1, we have

A>0,2(δ) ⇒ X>0,1,

a compound Poisson random variable with tail probabilities which are regularly varying with index
−(αF + αR). Note

P [X>0,1 > x] ∼ cP [X>0,2 > x], (x → ∞).

(3) For the region R<0,2, we have

X<0,2(δ) :=
A<0,2(δ)−m(δ)

a(δ)
⇒ X<0,2 ∼ N(0, 1).

(4) For the region R>0,2, we have

A<0,1(δ)
d
= A>0,2(δ),

so

X<0,1(δ) := A<0,1(δ)−
∫ 1

0

sν>0,2
δ (ds) ⇒ X<0,1 d

= X>0,2.

This means we may write

A(δ) = X>0,2(δ) +

∫ 1

0

sν>0,2
δ (ds) +A>0,1(δ) + a(δ)X<0,2(δ) +m(δ) +X<0,1(δ) +

∫ 1

0

sν>0,2
δ (ds).

We conclude

(3.24) A(δ)−m(δ)− 2

∫ 1

0

sν>0,2
δ (ds) = X>0,2(δ) +A>0,1(δ) + a(δ)X<0,2(δ),

where the summands on the right are independent and

X<0,1(δ)
d
= X>0,2(δ) ⇒ X>0,2 (infinitely divisible)

A>0,1(δ) ⇒ X>0,1, (compound Poisson)

X<0,2(δ) ⇒ X<0,2 (normal).

Also,

(3.25)
A(δ)−m(δ)− 2

∫ 1

0
sν>0,2

δ (ds)

a(δ)
⇒ X<0,2 ∼ N(0, 1).

Looking at the decomposition (3.24) and also at (3.25), the centered cumulative traffic inputted in the
time slot (0, δ] has an asymptotically normal component on spatial scale a(δ) plus a component which
asymptotically mixes an infinitely divisible and compound Poisson distribution. For traffic at fine time
scales with high degree of aggregation resulting in a large number of sessions, the Gaussian component will
thus obscure the more spikey, high rate transmissions represented in our model by the infinitely divisible
and compound Poisson components.

This helps to explain why measurements with very high traffic aggregation report a Gaussian distribution.
The normal component is due to the sessions that start before the time slot and end after the time slot. So
they will be also responsible for the dependence structure of the process. As we see in the next section, the
infinitely divisible and compound Poisson components contribute to the dependence across time slots in a
manner which is of lower order than the Gaussian components.
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4. Dependence structure across time slots.

We now analyze the weak limits of the stochastic process

A(δ) := {A(kδ, (k + 1)δ],−∞ < k < ∞}

defined in (2.3). We will see that the R∞ family indexed by δ converges to a limiting Gaussian sequence

X∞ = (X∞(k),−∞ < k < ∞}

with

Corr(X∞(0), X∞(k)) = 1.

The price paid for letting δ → 0 is thus a limit sequence with degenerate dependence structure. The
consequence of sampling at too high frequency (using economic terminology) is perfect correlation. However,
we will see that for fixed δ > 0, we have long range dependence across time slots.

We begin by considering convergence of finite dimensional distributions.

4.1. Convergence of finite dimensional distributions. In this section we prove the following result.

Proposition 7. For any non-negative integer k, as δ → 0, we have in Rk+1,

(4.1)
1

a(δ)


A(0, δ]− b(δ)
A(δ, 2δ]− b(δ)

...
A(kδ, (k + 1)δ]− b(δ)

⇒


X∞(0)
X∞(1)

...
X∞(k)


where

(4.2) b(δ) = 2

∫ 1

0

vḠ(v)

∫ ∞

r=v

r−1µδ(dr)dv −
∫ 1

0

E(F )Ḡ0(r,∞]µδ(dr),

and X∞(i) ∼ N(0, 1) for 0 ≤ i ≤ k with Corr(X∞(i), X∞(j)) = 1.

Proof . Along with the regions R<0,1,R<0,2,R>0,1,R>0,2 used to analyze the convergence in distribution
of A(0, δ], we need the analogously defined regions R<kδ,1,R<kδ,2,R>kδ,1,R>kδ,2, where for example

R<kδ,2 ={(s, r, l, u) : s < kδ, s+ l > (k + 1)δ}

R>kδ,2 ={(s, r, l, u) : kδ < s < (k + 1)δ, s+ l > (k + 1)δ}.

See Figure 2.

Figure 2. Four regions for analyzing contributions in k-th slot.
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Figure 3. Regions for dependence analysis.

Additionally, for analyzing dependence between A(0, δ] and A(kδ, (k + 1)δ], we will need the regions
R11,R12,R21,R22 which contain points (Γk, Rk, Lk, Fk) contributing to both A(0, δ] as well as A(kδ, (k+1)δ].
(See Figure 3.) In particular, points in R22 = R<0,2 ∩R<kδ,2 contribute

AR22 =
∑

k:(Γk,Rk,Lk,Fk)∈R22

Rkδ

to both A(0, δ] and A(kδ, (k + 1)δ].

4.1.1. Behavior of AR22 . By analogy with (3.13), AR22 is a Poissonized sum of iid rv’s and we compute its
characteristic function in a similar manner to achieve

E
(
eiθA

R22
)
=exp{

∫∫∫
s<0,r>0

l>(k+1)δ+|s|

(eiθrδ − 1)λdsFL,R(dl, dr)}

and repeating the calculation which led to (3.14), we get this equal to

= exp{
∫ ∞

0

(eiθr − 1)E(F )Ḡ0((k + 1)r)r−1µδ(dr).}(4.3)

Setting

a2k(δ) =:

∫ 1

0

E(F )Ḡ0((k + 1)r)rµδ(dr)(4.4)

mk(δ) =:

∫ 1

0

E(F )Ḡ0((k + 1)r)µδ(dr)(4.5)

we find

(4.6)
AR22 −mk(δ)

ak(δ)
⇒ XR22 ∼ N(0, 1),

in R, as δ → 0.
Note from Proposition 5, we have, as δ → 0,

(4.7) ak(δ) ∼ a(δ) ∼
(
E(F )

∫ 1

0

rµδ(dr)
)1/2

.
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Figure 4. Regions for dependence analysis.

4.1.2. Contributions from other regions. Set

R<0,(δ,(k+1)δ] = {(s, r, l, u) : s < 0, δ < |s|+ l ≤ (k + 1)δ}
(see Figure 3) and write

A(0, δ] =A>0,1(0, δ] +A>0,2(0, δ] +A<0,1(0, δ] +A<0,2(0, δ]

=A>0,1(0, δ] +A>0,2(0, δ] +
[
A<0,1(0, δ] +AR<0,(δ,(k+1)δ]

(0, δ]
]
+AR22(0, δ].(4.8)

Now mimicking the calculation in Section 3.3.1, we find

(4.9) E
(
eiθA

<0,(δ,(k+1)δ](0,δ]
)
= exp{

∫ ∞

0

(eiθr − 1)E(F )r−1G0(r, (k + 1)r]µδ(dr)}

and

ν
<0,(δ,(k+1)δ]
δ (dr) := E(F )r−1G0(r, (k + 1)r]µδ(dr)

converges to a Lévy measure with density

(4.10) E(F )r−1G0(r, (k + 1)r]αRr
−αR−1dr.

This means that

AR<0,(δ,(k+1)δ]

(0, δ]−
∫ 1

0

E(F )G0(r, (k + 1)r]µδ(dr)

converges to an infinitely divisible random variable with Lévy measure whose density is given by (4.10) and

hence AR<0,(δ,(k+1)δ]

(0, δ]−
∫ 1

0
E(F )G0(r, (k + 1)r]µδ) is op(a(δ)).

We conclude that

A(0, δ]− 2

∫ 1

0

vḠ(v)

∫ ∞

r=v

r−1µδ(dr)dv −
∫ 1

0

E(F )G0(r, (k + 1)r]µδ(dr)−
∫ 1

0

E(F )Ḡ0((k + 1)r)µδ(dr)

=A(0, δ]− 2

∫ 1

0

vḠ(v)

∫ ∞

r=v

r−1µδ(dr)dv −
∫ 1

0

E(F )Ḡ0(r,∞]µδ(dr)(4.11)

=AR22(0, δ]−mk(δ) + op(a(δ)).(4.12)

Likewise, we consider A(iδ, (i+ 1)δ] for 1 ≤ i ≤ k. We set

R<0,((i+1)δ,(k+1)δ] ={(s, r, l, u) : s < 0, (i+ 1)δ < s+ l < (k + 1)δ}

R(0,iδ],((i+1)δ,∞] ={(s, r, l, u) : 0 < s ≤ iδ; s+ l > (i+ 1)δ}
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(see Figure 4) and write

A(iδ, (i+ 1)δ] =AR>iδ,1

(iδ, (i+ 1)δ] +AR>iδ,2

(iδ, (i+ 1)δ] +AR<iδ,1

(iδ, (i+ 1)δ]

+
[
AR<0,((i+1)δ,(k+1)δ]

(iδ, (i+ 1)δ] +AR22(iδ, (i+ 1)δ] +AR(0,iδ],((i+1)δ,∞]

(iδ, (i+ 1)δ]
]
.

Now

EeiθA
R<0,((i+1)δ,(k+1)δ]

(iδ,(i+1)δ] =exp{
∫ ∞

0

(eiθr − 1)E(F )r−1G0

(
(i+ 1)r, (k + 1)r

]
µδ(dr)}(4.13)

EeiθA
R(0,iδ],((i+1)δ,∞]

(iδ,(i+1)δ] =exp{
∫ ∞

0

(eiθr − 1)E(F )r−1G0

(
r, (i+ 1)r

]
µδ(dr)}.(4.14)

Therefore, keeping in mind that

AR22(kδ, (k + 1)δ] = AR22(iδ, (i+ 1)δ] = AR22(0, δ],

we have

A(iδ, (i+ 1)δ]−2

∫ 1

0

vḠ(v)

∫ ∞

v

r−1µδ(dr)dv −
∫ 1

0

E(F )Ḡ0(r)µδ(dr)

=A(iδ, (i+ 1)δ]− 2

∫ 1

0

vḠ(v)

∫ ∞

v

r−1µδ(dr)dv −
∫ 1

0

E(F )G0(r, (i+ 1)r]µδ(dr)

−
∫ 1

0

E(F )G0((i+ 1)r, (k + 1)r])µδ(dr)−mk(δ)

=AR22(0, δ]−mk(δ) + op(a(δ)).(4.15)

We thus have that
A(0, δ]− b(δ)
A(δ, 2δ]− b(δ)

...
A(kδ, (k + 1)δ]− b(δ)

 =


AR22(0, δ]−mk(δ)
AR22(0, δ]−mk(δ)

...
AR22(0, δ]−mk(δ)

+


op(a(δ))
op(a(δ))

...
op(a(δ))


and the conclusion of Proposition 7 follows. 2

4.2. Correlation structure. Despite the fact that when we go all the way to the limit as δ → 0 we get
a degenerate dependence structure, for fixed δ > 0, decay of correlations over time slots spaced by k, as
k → ∞ exhibits long range dependence. In this section we will prove the following result.

Proposition 8. For fixed δ > 0, as k → ∞,

Cov(A(0, δ], A(kδ, (k + 1)δ]) ∼ (constant)Ḡ0(k) ∼ (constant)k−(αF−1)LF (k)

and thus the stationary sequence {A(kδ, (k + 1)δ],−∞ < k < ∞} exhibits long range dependence.

Referring to Figure 3, we see we can write

A(0, δ] =AR11(0, δ] +AR12(0, δ] +AR22(0, δ] +AR21(0, δ] + I1

=
∑

k:(Γk,Lk,Rk,Fk)∈R11

Rk(δ − Γk) +
∑

k:(Γk,Lk,Rk,Fk)∈R12

Rk(δ − Γk)

+
∑

k:(Γk,Lk,Rk,Fk)∈R22

Rkδ +
∑

k:(Γk,Lk,Rk,Fk)∈R21

Rkδ + I1

and

A(kδ, (k + 1)δ] =AR11(kδ, (k + 1)δ] +AR12(kδ, (k + 1)δ] +AR22(kδ, (k + 1)δ] +AR21(kδ, (k + 1)δ] + I2

=
∑

k:(Γk,Lk,Rk,Fk)∈R11

Rk(Γk + Lk − δk) +
∑

k:(Γk,Lk,Rk,Fk)∈R12

Rkδ
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+
∑

k:(Γk,Lk,Rk,Fk)∈R22

Rkδ +
∑

k:(Γk,Lk,Rk,Fk)∈R21

Rk(Γk + Lk − kδ) + I2,

where I1 and I2 are independent of the other summands and of each other and do not affect covariance
calculations. We thus have

Cov(A(0, δ],A(kδ, (k + 1)δ])

=Cov(AR11(0, δ], AR11(kδ, (k + 1)δ]) + Cov(AR12(0, δ], AR12(kδ, (k + 1)δ]

+ Cov(AR22(0, δ], AR22(kδ, (k + 1)δ]) + Cov(AR21(0, δ], AR21(kδ, (k + 1)δ]).(4.16)

The dominant term comes from the region R22 as we now show.

4.2.1. Contribution to the covariance from R22. Since

AR22(0, δ] = AR22(kδ, (k + 1)δ],

we have
Cov(AR22(0, δ], AR22(kδ, (k + 1)δ]) = Var(AR22(0, δ]).

If P is a Poisson distributed random variable independent of summands {ξn, n ≥ 1}, then

Var(

P∑
i=1

ξi) = E(P ) · E(ξ21).

Therefore, we have

Var(AR22(0, δ]) =

∫∫∫
s<0,r>0

l>(k+1)δ+|s|

r2δ2λdsFL,R(dl, dr)

=

∫ ∞

s=(k+1)δ

λds

∫ ∞

r=0

r2δ2Ḡ(rs)FR(dr)

=λδ2
∫ ∞

r=0

rḠ0((k + 1)rδ)FR(dr)E(F )

=λδ

∫ ∞

0

rḠ0((k + 1)r)FR(δ
−1dr)E(F )

=

∫ ∞

0

rḠ0((k + 1)r)µδ(dr) =: (a#k (δ))
2.

Growth rate of (a#k (δ))
2. We now discuss the growth rate of (a#k (δ))

2 as a function of k, keeping
δ > 0 fixed.

Proposition 9. For any fixed δ > 0, as k → ∞,

(a#k (δ))
2 =

∫ ∞

0

rḠ0((k + 1)r)µδ(dr) ∼ Ḡ0(k)

∫ ∞

0

r2−αF µδ(dr)

where the constant on the right side is finite.

Proof. It is no loss of generality to suppose for convenience that δ = 1 and to neglect FR(1) in the denominator
of µδ. Then we must show

(4.17)

∫ ∞

0

r
Ḡ0(kr)

Ḡ0(k)
FR(dr) →

∫ ∞

0

r2−αFFR(dr).

By Fubini’s theorem, the left side is equal to∫ ∞

0

(∫ s

r=0

rFR(dr)
) Ḡ(ks)k

E(F )Ḡ0(k)
ds.

Since

Ḡ0(k) ∼
kḠ(k)

E(F )(αF − 1)
,
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it suffices to show that

(4.18)

∫ ∞

0

(∫ s

r=0

rFR(dr)
) Ḡ(ks)

Ḡ(k)
ds · (αF − 1)

converges to the right side of (4.17).
Break the integral in (4.18) into an integration on [0, 1] and one on (1,∞). For s > 1, we have by Potter’s

bounds, that for any small η > 0, for all sufficiently large k, and some constant c,

Ḡ(kr)

Ḡ(k)
≤ cr−αF+η.

On [1,∞), the integrand is bounded by

E(R)cr−αF+η,

which is integrable on [1,∞]. Thus, by dominated convergence we may integrate to the limit on [1,∞). On
[0, 1] the integrand in (4.18) is bounded (neglecting constants) by

s
Ḡ(ks)

Ḡ(k)
→ s1−αF .

Since Karamata’s theorem implies∫ 1

0

s
Ḡ(ks)

Ḡ(k)
ds →

∫ 1

0

s1−αF ds =
1

2− αF
,

the desired result follows from Pratt’s lemma (Pratt (1960) or Resnick (1998, page 164)). □

4.2.2. Contribution to the covariance from other terms. We now show the contribution to the covariance
from the other three terms in (4.16) is o(Ḡ0(k)). We use the following formula in our verifications: If P is a
Poisson distributed random variable independent of the iid sequence {(ξn, ηn), n ≥ 1}, then

(4.19) Cov(

P∑
i=1

ξi,

P∑
i=1

ηi) = E(P ) · E(ξ1η1).

Contribution from R11. Evaluating the expression on the right of (4.19) for the region R11 yields the
following formula:∫∫∫

0<s≤δ
r>0

kδ<l+s≤(k+1)δ

r2(δ − s)(s+ l − kδ)λdsFL,R(dl, dr) ≤ λδ2
∫ δ

s=0

∫
r>0

kδ−s<l≤kδ+δ−s

r2dsFL,R(dl, dr)

(since on the region of integration, both (δ − s) and (s+ l − kδ) are bounded by δ)

=λδ2
∫ kδ

s=(k−1)δ

∫
r>0

r2
∫
sr<u≤(δ+s)r

G(du)FR(dr)

=λδ2
∫ kδ

s=(k−1)δ

∫
r>0

r2G(sr, (δ + s)r]FR(dr)

≤λδ2
∫ kδ

s=(k−1)δ

∫
r>0

r2Ḡ(sr)FR(dr) = λδ2
∫
r>0

rG0((k − 1)rδ, krδ]E(F )FR(dr)

=

∫
r>0

rG0((k − 1)r, kr]E(F )µδ(dr) = o(Ḡ0(k)),

where the last assertion follows from the analysis of a#k (δ) as being of order Ḡ0(k).
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Contribution from R12. The expression on the right of (4.19) gives for the region R12 the following
formula: ∫∫∫

0<s≤δ
r>0

s+l>(k+1)δ

r2δ(δ − s)λdsFL,R(dl, dr) = λδ

∫ δ

s=0

∫
r>0

l>kδ+s

r2sdsFL,R(dl, dr)

≤λδ2
∫ δ

s=0

∫
r>0

l>kδ+s

r2dsFL,R(dl, dr) = λδ2
∫ (k+1)δ

s=kδ

∫
r>0

Ḡ(rs)dsr2FR(dr)

=

∫
r>0

rG0(kr, (k + 1)r]E(F )µδ(dr) = o(Ḡ0(k)).

In a similar way we show the contribution from the region R21 is o(Ḡ0(k)). This completes the verification
of Proposition 8. 2

5. Dependence structure on a different time scale.

The previous section discusses dependence over successive slots of length δ. The asymptotic normality
statement in Proposition 7 leads to a degenerate limit because δ ↓ 0 shrinks the distance between A(0, δ] and
A(kδ, (k + 1)δ]. Here we investigate (A(0, δ], A(t, t+ δ]) for t > δ and find that this vector is asymptotically
normal as δ ↓ 0 with a limiting correlation ρ(t). The function ρ(t) satisfies

ρ(t) ∼ cḠ0(t) → 0 (t → ∞)

which may be compared with the result of Proposition 8. This provides another interpretation of the long
range dependence in the model.

Proposition 10. Suppose t > 0. As δ ↓ 0,

(5.1) a−1(δ)

(
A(0, δ]− b(δ)

A(t, t+ δ]− b(δ)

)
⇒
(
N1 +N
N2 +N,

)
where b(δ) is given by (4.2) in Proposition 7, N1, N2, N are independent normal variables with

N1
d
=N2 ∼ N(0, σ2(t))

N ∼N(0, ρ(t)),

and

σ2(t) =

∫ ∞

0

rG0(tr)FR(dr)/E(R),

ρ(t) =

∫ ∞

0

rḠ0(tr)FR(dr)/E(R),

so that σ2(t) + ρ(t) = 1. Thus,

Cov(N1 +N,N2 +N) = Var(N) = ρ(t).

Furthermore, as t → ∞,

(5.2) ρ(t) ∼
∫∞
0

r2−αFFR(dr)

E(R)
Ḡ0(t).

Proof. As in the proof of Proposition 7 we decompose

A(0, δ] =A<0,(δ,t+δ](δ) +A<0,(t+δ,∞](δ) + op(a(δ)),

A(t, t+ δ] =A(0,t],(t+δ,∞](t, t+ δ] +A<0,(t+δ,∞](t, t+ δ] + op(a(δ)),

and keep in mind that

A<0,(t+δ,∞](δ) =A<0,(t+δ,∞](t, t+ δ]
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and

A<0,(δ,t+δ](δ)
d
=A(0,t],(t+δ,∞](t, t+ δ].

The characteristic functions are

E
(
eiθA

<0,(δ,t+δ](δ)
)
=exp{

∫ ∞

0

(eiθr − 1)r−1G0(r, r(1 + t/δ))µδ(dr)E(F )}

(see (4.3)) and

E
(
eiθA

<0,(t+δ,∞](t,t+δ](δ)
)
=exp{

∫ ∞

0

(eiθr − 1)r−1G0(
r

δ
(t+ δ))µδ(dr)E(F )}.

If we set

mt(δ) =

∫ 1

0

E(F )Ḡ0(
r

δ
(t+ δ))µδ(dr)

a2t (δ) =

∫ 1

0

E(F )Ḡ0(
r

δ
(t+ δ))rµδ(dr),

we get from the characteristic function

at(δ)
−1
(
A<0,(t+δ,∞](t,t+δ](δ)−mt(δ)

)
⇒ N(0, 1),

and from Proposition 5

a2t (δ)

a2(δ)
∼
∫ 1

0
Ḡ0(

r
δ (t+ δ))rµδ(dr)

E(R)/δ−1F̄R(δ−1)

=
δ
∫ δ−1

0
Ḡ0(r(t+ δ))rFR(dr)/F̄R(δ

−1)

E(R)/δ−1F̄R(δ−1)

→
∫∞
0

Ḡ0(rt)rFR(dr)

E(R)
=: ρ(t),

by dominated convergence, since E(R) < ∞.
Similarly, the appropriate scaling for A<0,(δ,t+δ](δ) to achieve asymptotic normality is ãt(δ) where

ãt(δ)
2 := E(F )

∫ 1

0

rG0(r, r(1 + t/δ))µδ(dr)

and as δ ↓ 0,

ãt(δ)
2 ∼

∫∞
0

E(F )rG0(rt)FR(dr)

δ−1F̄R(δ−1)

∼a2(δ)

∫∞
0

rG(rt)FR(dr)

E(R)

=a2(δ)σ2(t).

The asymptotic form of ρ(t) as t → ∞ is obtained as with (4.17). □

6. Concluding remarks.

As summarized in Table 1, our model does a sound job of explaining empirically observed facts we have
termed stylized facts. For a fixed time slot, there is observable Gaussian behavior for cumulative input as
the rate increases, and the slot width decreases. This Gaussian behavior is on a spatial scale a(δ) → ∞, and
is responsible for most of the traffic volume. Hence this component can model what Sarvotham et al. (2005)
call β-traffic. The spatial scaling obscures heavy tailed behavior approximated by infinitely divisible random
variables with heavy tails. This heavy-tailed component that disappears in the limit is what generates, for
finite scale δ, the bursty behaviour and seems to be the right candidate to model the α-traffic component.
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Stylized Facts Model

1. Presence of heavy tails 1. Built in

2. LRD across slots 2. Lag k coviance ∼ cḠ0(k); δ fixed, k → ∞

3. Burstiness 3. Traffic from regions R<0,1∪>0,2∪>0,1 is
infinitely divisible and has a heavy tail

4. Cumulative traffic per slot
is approximately normal

4.
(
A(0, δ]− b(δ)

)
/a(δ)

d
≈ N(0, 1)

5. Dependence carried by
β-traffic

5. Covariance from infinitely divisible pieces of
smaller order than from Gaussian piece.

Table 1. Summary: How the model incorporates the styalized facts.

Sarvotham et al. (2005)) point out that as the aggregation increases the traffic becomes more and more
Gaussian which implies the Gaussian character is dominant over the bursty character. In addition for a fixed
slot length, dependence across time slots exhibits long range dependence, and this dependance is carried
mostly by the Gaussian part, i.e. by the β-component.

As the slot length goes to 0, the centered and scaled sequence of inputs in successive slots converges to
a perfectly correlated limiting Gaussian sequence. This is a consequence of shrinking slot width and is not
surprising. The higher the frequency of sampling, the more correlation is to be expected. However, two slots
at a fixed width distance t are jointly asymptotically normal with a correlation ρ(t) which decays slowly
according to Proposition 10, giving another interpretation to the long range dependence in the model.

We intend to assume other dependence structures in our modeling in order to investigate how the conclu-
sions change. In particular the LR-model where (Lk, Rk) are assumed independent is on our radar. Perhaps
a mixture of the LR and FR-models is also worthwhile considering.

The model offers a reasonable match to what experimenters actually measure. Another virtue is that it is
relatively easy to simulate such a model. Figure 5 give 4 time series plots of length 2449 for the cumulative
input per slot while Figure 6 give 6 normal QQ-plots to assess graphically a normal fit to the simulated
data. Finally, Figure 7 gives an autocorrelation plot out to 700 lags to illustrate slow rate of decay of the
dependence as a function of lag.
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in the problems of modelling bursty traffic and led to an incubation of ideas. In particular, Professor Riedi’s
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our ideas. Also, a conversation with Professor Christian Houdré, School of Mathematics, Georgia Institute
of Technology was helpful in initiating the idea of letting slot length go to zero. A perceptive referee made
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N. Ben Azzouna, F. Clérot, C. Fricker, and F. Guillemin. A flow-based approach to modeling adsl traffic on an ip
backbone link. Annals of telecommunications, 59(11–12), 2004. Traffic engineering and routing.



24 B. D’AURIA AND S.I. RESNICK

delta=10

Time

inp
ut/
slo

t

0 500 1000 1500 2000 2500

0
5

10
15

20
25

30
delta=10^{−0.5}

Time

inp
ut/
slo

t

0 500 1000 1500 2000 2500

0
5

10
15

20

delta=10^{−0.75}

Time

inp
ut/
slo

t

0 500 1000 1500 2000 2500

10
20

30
40

50

delta=10^{−1.5}

Time

inp
ut/
slo

t

0 500 1000 1500 2000 2500

11
0

13
0

15
0

Figure 5. Four time series plots corresponding to δ = {10, 10−0.5, 10−0.75, 10−1.5} and
λ = {0.3372, 4.763, 17.90, 950.3}.

L. Breiman. On some limit theorems similar to the arc-sin law. Theory Probab. Appl., 10:323–331, 1965.
F. H. Campos, J.S. Marron, C. Park, S.I. Resnick, and K. Jaffay. Extremal dependence: Internet traffic applications.

Stochastic Models, 21(1):1–35, 2005.
D.E. Duffy, A.A. McIntosh, M. Rosenstein, and W. Willinger. Analyzing telecommunications traffic data from working

common channel signaling subnetworks. In M.E. Tarter and M.D. Lock, editors, Computing Science and Statistics
Interface, Proceedings of the 25th Symposium on the Interface, volume 25, pages 156– 165, San Diego, California,
1993.

C.A. Guerin, H. Nyberg, O. Perrin, S.I. Resnick, H. Rootzen, and C. Stărică. Empirical testing of the infinite source
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S.I. Resnick. Modeling data networks. In B. Finkenstadt and H. Rootzen, editors, SemStat: Seminaire Europeen de

Statistique, Exteme Values in Finance, Telecommunications, and the Environment, pages 287–372. Chapman-Hall,
London, 2003.

S.I. Resnick. On the foundations of multivariate heavy tail analysis. In J. Gani and E. Seneta, editors, Stochastic
Methods and their Applications, pages 191–212. Applied Probability Trust, 2004. J. Applied Probability Special
Volume 41A; Papers in honour of C.C. Heyde.

S.I. Resnick and H. Rootzén. Self-similar communication models and very heavy tails. Ann. Applied Probability, 10:
753–778, 2000.

R. H. Riedi and W. Willinger. Toward an improved understanding of network traffic dynamics. In Self-Similar
Network Traffic and Performance Evaluation. Wiley, 2000.

S. Sarvotham, R. Riedi, and R. Baraniuk. Network and user driven on-off source model for network traffic. Preprint.
Department of Electrical and Computer Engineering, Rice University, Houston, Texas. To appear: Special Issue
of the Computer Network Journal on ”Long-range Dependent Traffic”, 2005.

M.S. Taqqu, W. Willinger, and R. Sherman. Proof of a fundamental result in self-similar traffic modeling. Computer
Communications Review, 27:5–23, 1997.

W. Willinger. Data network traffic: heavy tails are here to stay. Presentation at Extremes–Risk and Safety,
Nordic School of Public Health, Gothenberg Sweden, August 1998.

W. Willinger and V. Paxson. Where mathematics meets the Internet. Notices of the American Mathematical Society,
45(8):961–970, 1998.

W. Willinger, M.S. Taqqu, M. Leland, and D. Wilson. Self–similarity in high–speed packet traffic: analysis and
modelling of ethernet traffic measurements. Statistical Science, 10:67–85, 1995.

W. Willinger, M.S. Taqqu, M. Leland, and D. Wilson. Self–similarity through high variability: statistical analysis of
ethernet lan traffic at the source level (extended version). IEEE/ACM Transactions on Networking, 5(1):71–96,
1997.

W. Willinger, V. Paxson, and M.S. Taqqu. Self-similarity and heavy tails: Structural modeling of network traffic.
In Adler, Robert J. (ed.) et al., A practical guide to heavy tails. Statistical techniques and applications. Boston:
Birkhauser. 27-53 . 1998.

Bernardo D’Auria, Eurandom, Laplace Gebouw 1.09, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

Email address: bdauria@eurandom.tue.nl

Sidney Resnick, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY
14853

Email address: sir1@cornell.edu


