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ABSTRACT
Mapping landscape change at fine scales (e.g. <1.0 m resolution) using airborne LiDAR data from 
manned aircraft is a significant challenge. This challenge is magnified in disaster response contexts. 
A combination of collection and processing factors contributes to horizontal and vertical errors (and 
resulting uncertainty) in each pre- and post-LiDAR derived digital elevation model (DEM). 
Subsequently, the errors in the change surface from the two (or more) DEMs are an accumulation 
of the errors in the individual DEMs. Thus, reliable mapping erosion/deposition changes at sub-meter 
precision in change detection studies using LiDAR data is largely the domain of terrestrial LiDAR or 
sUAS with LiDAR scanners rather than manned aircraft. Unfortunately, terrestrial and sUAS LiDAR 
scanners are not well suited for mapping large areas and sUAS collections are subject to additional 
airspace constraints compared to manned aircraft. In this study, we probed one of the significant 
issues in airborne LiDAR change projects – vertical height errors from sequential flight lines. 
A simplified solution for determining flight line vertical biases in areas of low topographic relief 
with natural cover types was developed and tested for normalizing point clouds. The approach was 
tested in a fine-scale erosion/deposition study from an extreme rainfall event that eroded and 
deposited sand at depths of about 1.0 m. Airborne LiDAR had been collected prior to the rainfall 
event, and another airborne LiDAR collection was made 1 month after the event. Eleven field 
campaigns to collect reference data and visit anomalies in the change surface were conducted in 
a 15-month period after the event, beginning 25 February 2016 and ending 8 May 2017. The 
validation results indicate accuracies for the pre-event and post-event LiDAR derived DEMs were 
7.8 cm and 13.0 cm RMSE, respectively. After modeling vertical errors and corrections applied to the 
post-event point clouds, the RMSE for the post-event DEM was 8.3 cm. In the depositional use case, 
27 locations were sampled with auger boreholes/sand pits and compared with LiDAR-based change. 
The LiDAR-based change detection analysis resulted in predicted sand depth accuracies of 94% with 
a mean error of 4.7 cm.
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1. Introduction

Mapping landscape change at fine scales (e.g. <1.0 m 
resolution) using airborne LiDAR data from manned 
aircraft is a significant challenge, as compared to 
sUAS-based systems, as the collection heights are 
typically above 1000 m and at higher velocities. 
A combination of collection and processing factors 
contributes to horizontal and vertical errors (and 
resulting uncertainty) in each pre- and post-LiDAR 
derived DEM. Subsequently, the errors in the change 
surface from the two (or more) digital elevation mod
els (DEMs1) are an accumulation of the errors in the 
individual DEMs. Thus, reliable mapping erosion/ 

deposition changes at sub-meter precision in change 
detection studies using LiDAR data is largely the 
domain of terrestrial LiDAR or sUAS with LiDAR scan
ners rather than manned aircraft. Unfortunately, ter
restrial and sUAS LiDAR scanners are not well suited 
for mapping large areas and are subject to additional 
airspace constraints compared to manned aircraft.

Sources of horizontal and vertical error in LiDAR 
point clouds can originate from sensor/collection 
(e.g. bore-sight, global navigation satellite system 
(GNSS) control, INS interpolation and atmospheric 
stability, etc.), pointing angles to surfaces (e.g. surface 
cover types, topographic orientation angles, etc.), and 
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post-processing approaches (e.g. waveform-to-return 
classification, return labeling into land cover types, 
interpolation to a DEM, etc.). The observable errors 
in LiDAR-derived positions are derived from multiple 
error sources, some correlated and some indepen
dent. For most applications, the sources of errors 
and their interdependencies are unknown although 
attempts at modeling the errors in error-budget mod
eling have been made (Hodgson and Bresnahan  
2004). Considerable research in the application of 
LiDAR-derived data to a specific domain has 
attempted to remove or minimize dominant error 
sources, ignoring the lesser important or at least the 
unknown errors, prior to the application problem. 
Some dominant error sources can be visually noticed, 
and sources inferred, such as the bore-sight problem 
and GNSS bias. Of these composite error sources, the 
most notable is from horizontal and/or vertical differ
ences from overlapping LiDAR flightlines (often called 
“strips”). Vendor solutions have ranged from simply 
removing LiDAR points from only one flightline so the 
consumer does not notice the differences 
(Schuckman, Earth Data, pers. comm., 1999) to 
attempts at minimizing measurable errors prior to 
distribution of a product. For the notable horizontal 
and height anomalies, many researchers utilizing the 
data for applications focus attention on notable and 
perhaps, dominant causal factors associated with dif
ferences between flight lines; thus, attempting from 
simple to somewhat intensive approaches in what is 
referred to as strip-adjustment solutions.

Some have categorized strip adjustment 
approaches as either system-driven or data-driven 
(Chen, Li, and Yang 2021). System-driven approaches 
focus on correcting errors in the sensor, mounting, 
GNSS trajectory, etc. and are typically only conducted 
by the vendor or data collector as they have access to 
all parameter/values. Data-driven approaches are 
often the focus by the application user community 
who typically only have access to the point-cloud or 
subsequent data products. Data-driven approaches 
can also be categorized based on reference or corre
late data, such as ground reference observations 
(“marker-based”) identified by the analyst versus 
automated approaches using natural features (“mar
ker-free”) alone (Fekry et al., 2021). Reference data, 
such as building corners (Rentsch and Krzystek 2012; 
Zhang et al., 2015) or pavement lines (Toth and 
Grejner-Brzezinska 2009), can be identified by the 

analyst. Natural features for automated strip adjust
ment can be terrain features (Chen, Li, and Yang 2021; 
Favalli, Fornaciai, and Pareschi 2009; Glira et al., 2015) 
or forest canopy (Fekry et al., 2021). Methods based 
on terrain features assume that airborne LiDAR point 
cloud has been adequately classified into “bare earth” 
points versus non-bare earth points or for satellite 
imagery over unvegetated areas, such as glacial land
scapes (Nuth and Kääb 2011).

To place our study area application and strip 
adjustment approach in context, we present a few 
previous research examples to illuminate the differ
ences in reference data, terrain type, and the con
straints. Toth and Grejner-Brzezinska (2009) provided 
a novel approach for identifying reflective “targets,” 
such as pavement markings, along roadways to use as 
ground control in a strip adjustment. Unfortunately, 
for a heavily vegetated area with only sand roads, the 
nicely paved roadways for reference targets are non- 
existent.

Chen, Li, and Yang (2021) developed a “DEM- 
Iterative Closest Point” approach for strip adjustment 
of UAV-borne LiDAR data in mountainous terrain that 
uses terrain features rather than anthropogenic fea
tures. Differences between adjacent strips were 
reduced from about 1.5 m to 0.35 m meters. 
However, as noted by the authors, their method 
would not work well in areas of low local relief 
(Chen, Li, and Yang 2021). Favalli, Fornaciai, and 
Pareschi (2009) also developed a strip adjustment 
approach based on natural features in the terrain for 
a change detection study of Mt. Etna. Their method 
determined both horizontal and vertical differences in 
overlapping strips. The problem context of flat areas 
with strip adjustment methods was also noted by the 
authors.

The present study is the development and applica
tion of a change detection approach that requires 
strip adjustment and geographic/geomorphic inter
pretation of anomalies, anomalies for which we have 
no automated method of correction. The study area is 
of low topographic relief with gradually changing 
slopes on an almost exclusive natural environment 
with sand roads. Moreover, the topographic changes 
we are interested in are less than 1.0 m. It is useful to 
note that the technology typically implemented with 
manned aircraft LIDAR sensors is considerably more 
precise and accurate than UAV-borne LiDAR sensors. 
However, manned aircraft typically fly at much higher 
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altitudes (e.g. 1000 m and above), while UAV LiDAR 
missions are generally restricted to altitudes lower 
than 120 m. Such low altitudes typically result in 
much higher accuracies in both the vertical and hor
izontal domain and much denser point clouds. 
However, UAV-borne sensors are typically controlled 
by much less precise and accurate inertial measure
ment units (IMUs), inertial navigation system (INS), 
lower-powered lasers, etc. It is also important to 
note that these technologies have evolved over the 
last 25 years (and continue to evolve, particularly with 
UAV-borne LiDAR). For example, the update fre
quency of GNSS sensors used to determine the air
craft position (and sensor) and orientation has 
increased dramatically. The INSs used for the typical 
manned airborne LiDAR units are often ten times the 
cost of a complete UAV system alone. The IMUs are 
export controlled. Thus, a systematic review of the 
strip adjustment literature must consider the evolving 
nature of the entire technology (e.g. platform, GNSS, 
IMU, INS, laser), the collection environment (e.g. topo
graphy, land cover, contract requirements/disaster 
response), and the post-processing approaches (e.g. 
waveform and return determination, return labeling). 
Such an exhaustive and comparative review is beyond 
the scope of this paper.

In this paper, we focus on a relatively simple data- 
driven strip-adjustment approach, supported by refer
ence observations in the field, to map fine-scale topo
graphic changes from a historic rainfall event using 
manned airborne LiDAR missions. The study area con
text is an area of low to modest local relief, almost 
completely covered by evergreen/mixed forests with 
a few open fields, interspersed by sand roads and 
firebreaks. The change event was a “500-year rainfall 
event.” The post-event collection was a rapidly orga
nized manned airborne flyover 41 days after the rain
fall event. The LiDAR data collections were unique to 
the interests of the U.S. Army and South Carolina 
National Guard and, moreover, were unique because 
of a catastrophic flood event. These LiDAR collections 
should not be confused with the nationwide efforts of 
the USGS and FEMA for their interests, such as flood 
plain mapping, and do not adhere to the well-known 
“Q*” collection/processing requirements (e.g. Q level 
1, Q level 2, etc.) stipulated in the USGS guidelines for 
LiDAR collections and post-processing (USGS 2022). 
However, the LiDAR collections in this study are sym
bolic of the rapidly organized and executed disaster 

response applications of airborne LiDAR data. The 
nature of and management of sand roads on 
a military reservation is a different challenge than 
the road management in public spaces. First, the 
roads are meant to be passable by four-wheel drive 
vehicles but not necessarily two-wheel drive vehicles. 
Second, the sand roads on a military reservation are 
designed to be functional for military day/night train
ing but are not expected to be in perfect condition.

The unprecedented rainfall event of October 2015 
resulted in widespread damage to the sand roads on 
the McCrady Training Center (MTC) in South Carolina. 
In 2 days (October 3rd and 4th), over 55 cm (21.6  
inches) of rainfall was recorded at the meteorological 
station on the MTC. In the meteorological context, 
this October 2015 rainfall event was considered a 500- 
year rainfall event. The sand roads were heavily 
eroded and the material displaced and moved onto 
both parts of the road and nearby landscape. The 
same rainfall event impacted the central portion of 
South Carolina causing over 50 small earthen dams to 
fail. In the context of understanding what/why the 
large magnitude erosion/deposition occurred and 
how to plan for mitigating before a future possible 
large storm event, the applicative research questions 
posed immediately after this catastrophic rainfall 
event were:

● Where were the erosive and depositional areas?
● What magnitude of erosion/deposition 

occurred?
● How confident are the mapped erosion/deposi

tion areas?
● What factors influence the confidence in map

ping erosion/deposition?

To answer these questions we utilized pre- and post- 
LiDAR from manned airborne data collections to map 
erosion/depositional areas. However, to map vertical 
surface changes at precisions less than 1.0 m 
a common, but often ignored, bias in LiDAR data 
caused by multiple flightlines was probed and mini
mized. An approach was developed to detect and 
quantify vertical biases by flightline. Additionally, five 
unique anomalies associated with fine-scale surface 
changes were identified from field visits and presented.

Related to our applicative research questions, in 
this paper we focus on two important methodological 
questions:
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● How well will a simplistic data-driven strip- 
adjustment approach work for a modest local 
relief natural landscape?

● What level of confidence can be obtained using 
this approach for a change detection?

Numerous studies have employed remote sensing 
approaches, particularly airborne or terrestrial LiDAR, 
to monitor continual soil erosion or even episodic 
events like landslides or volcanic events (Brasington, 
Langham, and Rumsby 2003; Challis et al., 2011; 
Eagleston and Marion 2020; James et al., 2012; 
Nourbakhshbeidokhti et al., 2019; Tseng et al., 2013). 
However, few studies using manned airborne LiDAR 
remote sensing methods have been applied to large 
areas at a fine detection resolution (i.e. 20 to 100 cm) 
(Pelletier and Orem 2014). This study presents both 
the findings and unique issues experienced with this 
unusual change detection event using manned air
borne LiDAR missions. Attempting to detect and map 
fine vertical changes from LiDAR missions at higher 
altitudes requires careful examination of systematic 
horizontal and vertical biases in the point clouds that 
may be corrected. In this paper, we provide a practical 
solution for detecting systematic vertical biases by 

flight line and correct for the biases. Using in situ 
reference data, both unchanged and changed surface 
locations, we validated the resulting changed detec
tion maps illustrating sediment erosion depositions.

We also include observations and discussion of five 
false erosion/depositional artifacts (less than 1 m) that 
may be present in other LiDAR-based change detec
tion studies of major precipitation events. We are 
unaware of three of these artifacts ever being pre
sented in the science literature.

2. Study area

Roads on the South Carolina Army National Guard’s 
MTC are almost exclusively sand. The MTC (Figure 1), 
co-located on the Fort Jackson Military Reservation, is 
6,036 ha of rolling topography with small perennial 
and intermittent creeks incised into 1 to 2 m of sandy 
topsoil. Military buildings and housing are concen
trated in the southeastern portion of the MTC and, 
with the exception of a 4 mile section of paved road 
just outside the east boundary and most southern 
boundary around operational buildings, all other 
roads are composed of sandy soils. The bulk of the 
training site is a former agricultural landscape where 

Figure 1. McCrady Study area for research project showing DEM and major hydrography. The three case studies mentioned in the text 
are also shown.
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the products were primarily turpentine, logging, and 
subsistence agriculture with a few moonshine stills. 
The only expansive crop was cotton farming. The 
remains of terraces abound throughout the low 
slopes and present in historic imagery as well as 
noticed in the DEMs produced from LiDAR data. 
Today the landscape is dominated by evergreen for
ests with scattered hardwood trees.

The typical ditches paralleling roads are common 
but never with protection strategies such as guard
rails. A series of firebreak roads run east-west across 
the MTC, spaced approximately 180 m apart. The goal 
is to manage the sand roads in a manner to make 
them sustainable and operational for military training 
exercises.

2. Background

2.1 Airborne lidar-based change detection issues

There are numerous sources that limit the precision or 
introduce error in the airborne LiDAR collection/pro
cessing/terrain modeling approach. Foremost among 
these sources are the flying altitude, resulting spatial 
density of emitted pulses, GNSS control of sensor 
position and orientation, return classification into 
ground/non-ground, and interpolation algorithm for 
DEM construction. Except for the GNSS control in the 
actual sensor position/orientation, most other inter
nal procedures conducted by the aeroservice vendor 
are rarely presented even to the funding client. The 
vendor will typically conduct an accuracy assessment 
using ground reference data and other methods for 
assessing consistency, depending on the contract and 
collection/processing specifications. Few of these lim
iting sources have been addressed in the literature.

The challenge in mapping changes in 
a topographic surface is determining what is an actual 
surface change from the apparent change caused by 
errors in the measurement methods. Mapping eleva
tional changes using airborne LiDAR typically involves 
creation of a pre- and post-DEM and then subtracting 
the two DEMs (e.g. subtracting the pre-DEM from the 
post-DEM) to determine positive and negative eleva
tional changes. However, the approach for collecting, 
post-processing, and analysis of such DEMs has lim
ited precision and accuracy; thus, there are always 
elevational differences of some magnitude at each 
cell in the DEM. Simply stated, precision is the level 

of detail, such as the number of significant digits, in 
the measurement. Rounding elevation values to the 
whole meter would only provide a precision of 
1 m while rounding to the nearest cm provides cm 
level precision. However, fine precision does not 
imply that the measurement is accurate. Thus, accu
racy metrics, such as root mean squared error (RMSE), 
are often used to describe the accuracy of a dataset. 
Given an understanding of the precision and accuracy 
of each elevation surface model, the problematic 
question is what magnitude of elevational difference 
is a real surface change rather than an artifact of the 
LiDAR-based approach? This is a historic problem with 
the use of digital approaches in geomorphology.

Several authors have proposed methods for 
detecting or minimizing false changes, such as the 
classical approach expressed elegantly from geomor
phology applications by Lane, Westaway, and Murray 
Hicks (2003). These methods include a threshold of 
confidence, expressed as a t-statistic or more com
monly simply using the common 95% threshold 
(Wheaton et al., 2009), fuzzy logic (Wheaton et al. 
Cavalli et al., 2017; Wheaton et al., 2009), and auto
correlation (Vaaja et al., 2011). The threshold of con
fidence is typically derived from the theory of error 
propagation and has been widely used in cartography 
in both vertical and horizontal dimensions (Maling  
1989). Although rarely substantiated, the statistical 
assumption in combining error sources with the 
Bayesian method assumes the error sources (e.g. spa
tial errors in two DEMs) are uncorrelated (Brasington, 
Langham, and Rumsby 2003; Hodgson and Bresnahan  
2004, Wheaton et al. 2010; Milan et al., 2011; James 
et al., 2012). More recent work demonstrates the use 
of thresholds in assessing “real” changes is proble
matic with low magnitude but highly correlated 
errors (Anderson 2019), while others have demon
strated that thresholding can improve confidence in 
a change detection application where the errors (e.g. 
over prediction in elevation for each DEM) are corre
lated (Hodgson and Morgan 2021). These recent stu
dies demonstrate the need for an improved 
assessment of not simply magnitude but direction 
and correlation in errors of each terrain surface.

Others have derived volume estimates or even 
mapped changes in terrain surfaces from rainfall trig
gered events. For example, Tseng et al., (2013) esti
mated the volume of landslides (over 100 m2) using 
multi-date airborne LiDAR data. Tseng et al.’s (Tseng 
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et al., 2013) LiDAR data had point densities for their 
pre- and post-event LiDAR data of 0.25 points per m2 

and ~1 point per m2, respectively. Estimated terrain 
surface accuracies were not reported in RMSE or 
Accuracyz but stated as “< 0.3 m in flat areas” with 
substantial errors (up to 8.3 m in steep, densely 
forested areas). Kim, Sohn, and Kim (2020) estimated 
landslide-induced volumetric changes from multi- 
date airborne LiDAR collections over a forested area 
but urbanized area.

Grove, Croke, and Thompson (2013) used multi- 
date airborne LiDAR to map bank erosion after 
a large rainfall event. Point densities (presumably all 
points rather than ground points) for the pre- and 
post-LiDAR collections were reported as 2 and 4 
points per m2, respectively. Elevation accuracies for 
the data used by Grove, Croke, and Thompson (2013) 
were estimated at 8-cm RMSE for each LiDAR collec
tion (Croke et al., 2013). Manned airborne LiDAR data 
may not be sensitive enough to detect and quantify 
erosional features that are either too narrow or exhibit 
small vertical changes, such as attempting to map trail 
erosion (Eagleston and Marion 2020). sUAS-based 
LiDAR data may offer considerably lower altitudes 
and much improved precision and likely improved 
accuracy but are limited in terms of aerial coverage 
and for other legal/safety restrictions.

2.2 Normalizing the surfaces

Using remote sensing derived datasets for change 
detection studies typically proceeds along one of 
the two approaches when establishing an initial con
trol surface: 1) reference both dates to a local datum 
(e.g. a defined horizontal/vertical datum and map 
projection) and compute the differences in DEMs 
or 2) treat one DEM date as the control surface, cor
egistering the second DEM to unchanged parts of the 
first DEM and difference the two DEMs. Where a more 
reliable initial terrain surface is available, it is possible 
to suggest a third approach where both the pre- and 
post-event LiDAR point clouds are registered to the 
third most reliable surface. The advantage of the first 
method is that other ancillary and validation data can 
be easily integrated in subsequent analysis using the 
same local datum. However, it is often noted that 
both remote sensing-derived DEM(s) are systemati
cally biased in some collections. For example, Perroy 
et al., (2010) found both airborne and terrestrial LiDAR 

observations of elevations over-predicted elevations. 
Hodgson and Morgan (2021) also found that DEMs 
from sUAS image-based structure-from-motion (sFM) 
methods may systematically over-predict elevations. 
Nuth and Kääb (2011) also found a systematic bias in 
satellite imagery-derived terrain surfaces. Thus, 
the second method of designating one of the DEMs 
as the control surface is typically used for fine resolu
tion topographic studies as it is common for each (i.e. 
pre and post event) LiDAR-derived DEM to over- 
predict elevations, particularly under vegetated 
canopy.

2.3 Confidence threshold

The conventional approach for defining an eleva
tional change threshold is to estimate cumulative 
uncertainty from all measurement sources and to 
declare an actual change based on a threshold cer
tainty level (e.g. 95% probability level). In effect, the 
user has high confidence in measured changes 
greater than their threshold level. Such uncertainty 
modeling from cumulative sources is referred to as 
error budget modeling in the remote sensing com
munity (Hodgson and Bresnahan 2004) or DEM of 
Difference (DoD) uncertainty in the simple change 
detection models of the geomorphology community 
(Brasington, Langham, and Rumsby 2003; James et al.,  
2012; Kim, Sohn, and Kim 2020). Often the practical 
use of the uncertainty model assumes the error 
sources (e.g. for a single surface) or the two surfaces 
in a change detection study include independent 
error sources. As noted earlier with recent efforts at 
establishing approaches for assessing correlation in 
error sources, it is possible to, with adequate field 
data, effectively remove or at least minimize the 
uncertainty with correlated error sources (Anderson  
2019; Hodgson and Morgan 2021).

Simply subtracting elevation of the historic DEM 
from the elevation of the most recent DEM is the 
common method for accessing the amount of change 
at each cell in the DEM. In theory, this approach can be 
used for estimating volumes at individual locations and 
for larger areas, such as a watershed or land parcel. 
However, it is well known that the elevation accuracy 
of each DEM should be taken into consideration if the 
investigator is interested in substantiating small 
changes. The accuracy of airborne LiDAR varies by 
altitude, pulse density, and other factors noted earlier, 
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but is typically regarded as ~ 5 to 10 cm RMSE for 
missions (about 4000’ AGL) in the last 10 years. For 
example, if we assume that each DEM has an 8 cm 
RMSE error, the error is spatially invariant but random 
and follows a normal distribution, we can be 68% 
confident that any elevation change of 11.3 cm is 
a real elevation change rather a “false” change within 
the error bounds of the two differenced DEMs. 
Elevation changes smaller than 11.3 cm of course 
could be present but in the analysis should be consid
ered of low confidence, and presumably below our 
comfortable detection limit. We emphasize again that 
the assumption is a spatially random distribution of 
errors following a normal distribution. One could 
argue that spatially clustered elevation differences of 
low magnitude (e.g. less than 11.3 cm) would provide 
a higher confidence that the low magnitude change is 
real. However, one could also argue that a spatially 
clustered set of elevation differences could also result 
from collection/vegetative differences, such as differ
ent look angles through the side and top of dense 
vegetation, or ponding water (as will be presented 
later). In this example, this 11.3 cm change threshold 
at the 68% confidence level is derived from equation 1: 

RMSEdiff ð68%Þ ¼ sqrt ðRMSEDEM� 1
2þRMSEDEM� 2

2Þ

(1) 

Where,
RMSEdiff = confidence threshold of the elevation 

difference of two DEMs, 

RMSEDEM-1 = accuracy of DEM−1,
RMSEDEM-2 = accuracy of DEM−2 

And the 68% confidence limit converted to the 95% 
confidence level would be 22.6 cm as: 

Accuracydiffð95%Þ ¼ RMSEdiff� 1:96 (2) 

For this example, any elevational difference (e.g. 22.6  
cm) greater than the Accuracydiff (a 95% confidence 
level) is typically considered an actual change; how
ever, the user’s application may suggest a different 
confidence threshold. Volume estimates of erosion/ 
deposition are derived from only those differences 
greater than the desired confidence threshold. 
However, as Lane, Westaway, and Murray Hicks 
(2003) argued and Anderson (2019) demonstrated 
net volumetric change can be unreliable based on 
thresholds if the errors are spatially correlated.

A project-specific approach could derive the 95% 
confidence threshold using ground reference data of 
locations that were known to have not changed 
(Hodgson and Morgan 2021). Using this empirical 
approach with validation data, the 95% confidence 
threshold includes over- or under-estimation biases 
since the errors are with respect to a local vertical 
datum (e.g. NAVD88).

2.4 Horizontal error

Determining the true changes in elevation differences is 
also related to the horizontal error in the surfaces. 
Horizontal error of airborne LiDAR collections today is 
greater than vertical errors but is typically noted as 
below 100 cm (with lower horizontal errors with lower 
flying altitudes). Assessing horizontal error is very chal
lenging. In practice, users of LiDAR data assume that the 
errors are negligible. The impact of horizontal error in 
LiDAR data is greater on steeper slopes than low slopes 
(Hodgson and Bresnahan 2004). In fact, for very low 
slopes, horizontal error has no affect on vertical error. 
However, for very steep slopes, such as road cuts or 
gulleys, the horizontal error is typically noticeable and 
has implications for volume estimates (Figure 2A-2B). It 
should also be noted that elevation errors can also result 
from the surface materials and incidence angles within 
each LiDAR footprint. Classical remote sensing research 
with single imagery registered one image to another to 
minimize the effect of horizontal error (Singh 1989). 
However, since LiDAR data are collected by a scanner 
in a moving aircraft, the horizontal and vertical error may 
vary spatially, as the estimated GNSS-derived position of 
the sensor position/pointing direction varies with the 
satellites observed and such satellites are constantly 
moving. Such variation is known to vary by flight line 
as the LiDAR pulses within a flight line are collected at 
a very similar time (within minutes of each other), while 
the differences in time between flight lines are much 
greater. As stated earlier, this fact is largely unrecognized 
by the user community.

2.5 Spatial variation of horizontal and vertical 
error

To adequately model elevation change uncertainty, 
a complete understanding of the sources of error and 
their relative independence must be understood. For 
example, in large area change analysis, where 
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multiple flight lines of LiDAR data are used, the spatial 
variation in elevation error for a single DEM can result 
from errors in the data collection process – IMU, GNNS 
baselines, GNNS constellations, atmospheric turbu
lence, etc. Such causal factors may be well under
stood, measured, and modeled (e.g. GNNS 
baselines), while others are well understood but not 
measured (e.g. atmospheric turbulence). For most 
scientists using airborne LiDAR data, the process for 
georegistration and calibration is simply unknown 
and the scientist simply discounts these possible 
sources of error. As will be demonstrated in this 
research, the spatial variation by flight line in vertical 
error has a profound, but measurable, impact on 
mapped elevation changes.

It is also well known in the remote sensing commu
nity the influence of vegetation and other land covers 
may affect return density from the ground and thus, 
a sparser set of ground points to construct a DEM. Lower 
density of observations on the ground typically results in 
less accurate DEMs. This has been so well known that 
FEMA and USGS stated guidelines of accuracy expecta
tions include different requirements based on land 
cover categories (Heidemann 2018; USGS 2022).

Attempts to estimate and subsequently minimize 
horizontal errors include horizontal bias estimation and 
an iterative striping reduction method (Schaffrath, 
Belmont, and Wheaton 2015). Schaffrath, Belmont, and 
Wheaton (2015) referred to the differences they 
observed as “vertical bias attributed to different geoid 
models” and “poor coregistration of the flight lines.” 

Differences between geoidal models can be resolved 
deterministically. The flight line “coregistration” issues 
are most likely from the varying GNSS observations 
noted above. In attempting to identify a systematic 
shift in horizontal error, Schaffrath, Belmont, and 
Wheaton (2015) estimated shifts ranging from 0.4 m to 
5.0 m but were effectively random across the study area. 
Attempts to resolve horizontal errors include local spatial 
correlation approaches using both slope and elevation 
(Besl and McKay 1992; Streutker, Glenn, and Shrestha  
2011). The success of these approaches is dependent on 
the point density and how correlated the displacements 
are over larger areas. Using an iterative method of trial- 
error, Schaffrath, Belmont, and Wheaton (2015) exam
ined elevation differences in randomly generated points 
from different correction surfaces.

Other research that include spatial variation in errors 
includes stratification into wet/dry areas (Lane, 
Westaway, and Murray Hicks 2003). Spatially explicit 
approaches used are correlation of vertical/horizontal 
LiDAR errors on sloping surfaces (Hodgson and 
Bresnahan 2004; Schaffrath, Belmont, and Wheaton  
2015) or estimates of spatial autocorrelation 
(Wheaton et al., 2010).

3. Methodology

3.1 LiDAR data collection and processing

The MTC is quite large and problematic to cover 
quickly in a field reconnaissance, while active 

Figure 2. A) Impacts on user’s computation of false erosion or deposition caused by horizontal error in LiDAR-derived DEMs, B) the 
concept applied on the field..
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restoration and ongoing training takes place. 
Fortunately, the Army National Guard had pre
viously collected airborne LiDAR data over the 
entire training base and all of Fort Jackson. In 
this study of a significant rainfall event, pre-event 
LiDAR data were collected on 17 December 2014 
for the Army between 8:54 am and 11:07 am EST 
using a LiDAR sensor flown at ~ 1460-m (4800’) 
altitude. LiDAR collection and processing 
approaches were not strictly based on the United 
States Geological Survey (USGS) LiDAR specifica
tions; however, the vendor used quality tests that 
were “analogous to the spatial distribution and 
void test as defined by the US Geological Survey 
(USGS) LiDAR Base Specification Version 1.0” 
(Quantum Spatial 2015). Scan angles were 
between ±22 degrees for the 19 flight lines of 
data collected over the MTC. The flight lines were 
oriented east-west for the collections. Overlap in 
flight lines varied from 20% to 50%. Up to five 
returns per pulse were recorded. In order to post- 
process the LiDAR data to meet task order specifi
cations, the aeroservice contractor (Quantum 
Spatial) established 30 ground control points 
throughout the Fort Jackson, SC project area that 
were used to validate the LIDAR data. Both natural 
color and color-infrared imagery were also col
lected on 17 December 2014. The horizontal pro
jection/datum was Universal Transverse Mercator 
Zone 17, NAD83 (2011), meters and vertical 
datum of NAVD1988 (GEOID12A), meters.

The LIDAR data were processed using automatic 
point classification routines with proprietary soft
ware. Subsequent review of the labeled returns 
was performed by experienced LiDAR analysts 
using localized automatic classification, manual 
editing, and peer-based quality control checks. Full 
dataset point density was an average of 3.2 points 
per m2. After return labeling, the ground return 
density was an average of 0.93 points per m2. We 
obtained the 2014 point-cloud data as tiles (not in 
organized flight line files), and unfortunately, LAS 
points did not include flight line numbers. Because 
of this limitation in flight line coding, we were 
unable to evaluate possible flight line-induced 
biases in the 2014 data.

Reference data for validation was collected by the 
aeroservice provider using GNNS and OPUS post- 
processing. Horizontal accuracy estimates by the 

contractor using building rooflines suggested hori
zontal errors of 10.4 to 18.0 cm RMSE for all flight 
lines with maximum errors of 94 cm. Vertical accuracy 
by the contractor using 30 check-points in open ter
rain and from non-overlapping data was reported as 
only .0215 cm (0.072 feet) RMSE or 4.3 cm (0.141 feet) 
Accuracyz at the 95% confidence interval.

Post-event LiDAR data were collected by the United 
States Army Corps of Engineers (USACOE) Army 
Geospatial Center on November 14, 15, 20 and 21 of 
2015 using an ALTM_10SEN273 sensor. Fifty-two flight 
lines, also oriented in the east–west direction, covered 
the MTC (Figure 3). There was a very small amount of 
rainfall on November 18 and 19; thus, no LiDAR collec
tion occurred on these days. Concurrent natural color 
aerial imagery was also collected and provided in 
a mosaic. The 2015 data were developed based on 
a horizontal projection/datum of Universal Transverse 
Mercator Zone 17, NAD83 and vertical datum of 
EGM2008, both in meters. The Earth Gravitational 
Model (EGM), such as the EGM2008, was developed by 
the National Geospatial Intelligence Agency (NGA) as 
a global vertical datum model. The difference between 
the Earth Gravitational Model (EGM) for 2008 and 
NAVD88 for this area of South Carolina is considered 
negligible (less than 1 cm).

Pre- and post-bare earth DEMs were created from the 
LiDAR data using first a TIN-based data model with all 
ground labeled LiDAR returns, and second, a linear- 
interpolation method for converting each TIN to a 1 ×  
1-m DEM. It has long been recognized that the accuracy 
of DEMs created from point observations is sensitive to 
the spatial interpolation method used and, in particular, 
to the terrain complexity and density of observations 
(Guo et al., 2010; Hodgson and Bresnahan 2004; 
MacEachren and Davidson 1987). Others have noted 
that differences in terrain models produced by different 
interpolation methods are negligible if the data density 
is high (Chaplot et al., 2006). The bare earth point density 
was 0.93 points per m2 and 1.5 points per m2 for the pre- 
and post-event DEMs, respectively, which is considered 
high for deriving a 1 × 1-m DEM. The terrain in our study 
area is of low to moderate slopes.

3.2 Systematic flight line biases

Assuming the LiDAR sensor unit has been properly 
boresighted, observed elevation differences between 
the two DEMs of the same unchanged surface area 
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are typically associated with the GNSS observational 
differences within/along a flight line. Again, the expla
nation is that the positional fixes (and errors) are 
highly correlated in time (i.e. during a flight line) and 
will typically be somewhat different than the adjacent 
flight line owing to the time for the aircraft to com
plete the flight line, reverse direction and begin 
another flight line. Thus, the positional errors within 
a flight line are more similar than the errors between 
flight lines. Still, because of the correlation of GNSS 
errors in time, the adjacent flight lines will exhibit 
similar differences than non-adjacent flight lines; 
thus, there will be greater spatial correlation in errors 
within a flightline than between flightlines. The spa
tial errors can be in the horizontal dimension, eleva
tion, or both, although the largest differences are 
typically in the elevation. Occasionally, when post- 
processing the LiDAR data, the vendor or contractor 
may require a re-flight for one or more flight lines, and 
thus, these flight lines may be collected at 
a considerably different time than nearby flight lines.

In this study, systematic elevational biases may 
compromise the change detection analysis as we 
were looking for surface changes less than 1.0 m. 
Conducting an initial subtraction of the post-event 
DEM with the pre-event DEM revealed obvious eleva
tional biases oriented in the east–west direction – 
consistent with the flight paths (Figure 3). These 
obvious elevational biases may have resulted from 

error in the 2014 or 2015 data, or both. A robust and 
highly precise approach would involve establishing 
validation data within each flight line to determine 
a systematic vertical bias from an established and 
more accurate datum. This strip adjustment approach 
would also allow for the inclusion of other ancillary 
data. For the nineteen 2014 flight lines and fifty-one 
2015 flight lines, this level of effort would be substan
tial, such as collecting ten or more ground reference 
points per flight line. Moreover, we did not have 
access to 2014 LiDAR point clouds with flight line 
codes (they may no longer exist). The ground refer
ence problem is exacerbated as most of the landscape 
is covered by forests, requiring total-station-based 
survey methods, as survey grade GNNS would not 
be possible under the canopy.

We offer an alternative approach (approach two we 
suggested under section 2.2 Normalizing the Surface) 
using one LiDAR-derived surface as the control datum 
and identifying and removing systematic differences 
in the second LiDAR-derived surface. This second 
approach requires no ground reference data specifi
cally but does require the analyst to select compar
ison boundaries in areas known to have stable 
surfaces between the two collection dates. 
Numerous (11) field visits, with the initial broad scale 
visit on 25 February 2016, along sand roads and cross- 
country through the forests probing possible surface 
change areas and apparent false changes allowed us 

Figure 3. Numeric order of flightlines in the 2015 post-event collection mission shown geographically over the MTC.
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to select reliable “no-change boundaries”. Our final 
visits in May 2017 were to conduct many cross- 
country walks to clarify possible sand movement 
anomalies. We choose to use the pre-event DEM 
(2014) as the control as it was collected/processed/ 
validated under a more normal contracting mechan
ism with appropriate quality control. As noted earlier, 
the post-event LiDAR collection was a quick response 
to a disaster event and did not follow typical contract
ing and QA/QC controls. Of note, this problem con
text is very typical of disaster response using remote 
sensing with LiDAR or other imagery. In this study, all 
elevations in a 20-m-wide buffer around a transect 
running across all 51 flightlines, over a portion of the 
MTC for which virtually little erosion/deposition was 
observed, were used for the strip-adjustment calibra
tion. Both field verification and visual interpretation of 
the coincident aerial imagery were utilized to verify. 
Average elevation differences from the 2014 DEM for 
each flight line were computed (Figure 4). Almost all 
2015 (i.e. the post-event collection) flight lines indi
cated an under-prediction in elevation (as compared 
to the 2014 DEM as a control surface) with an increas
ing under-prediction for the northern flight lines. The 
average difference was −9.6 cm. Since the 2015 LiDAR 
data were originally processed by the vendor in 
a rapid manner for the disaster recovery effort, the 
assumption is the effort in processing the post-event 
data was less than the 2014 pre-event data, and pre
sumably less accurate with biases. Thus, the 2014 data 
were regarded as the control surface (i.e. the more 
correct surface) and the average difference applied as 
elevation shifts to all LiDAR elevations within each of 

the 2015 flight lines. After all shifts were completed, 
a new 2015 DEM was created and subsequently, 
a new elevation difference surface computed 
(Figure 5). Using the 20-m-wide buffer corridor 
around our established transect as the control area 
(i.e. the area where no surface change would have 
occurred), we noted that the average difference in 
elevations between the 2014 and 2015 DEMs was 
now only −1.7 cm, indicating a very slight overall 
negative difference in elevation for the shifted 2015 
data.

3.3 Reference data for LiDAR validation and 
topographic change
Field observation data were in the form of 1) high 
accuracy elevation data from GNSS and Total Station 
surveys and 2) manual borehole and pits. We collected 
high accuracy (~2.5 cm at the 95% level) elevation 
observations (n = 42) over areas of observed sediment 
flux and areas of no-change (n = 237). Sites for collect
ing field observations were guided by the MTC con
servation manager (also a coauthor of the manuscript). 
Field data were collected between 25 February 2016 (4 
months after the event) and 8 May 2017 (within 15  
months after the event). An initial visit to all candidate 
borehole locations was conducted on 
25 February 2016, guided by the on-site conservation 
manager. The conservation manager confirmed, in the 
field with us, the candidate locations for boreholes did 
not change in morphology. The open-canopy field 
observation positions were collected using a Topcon 
GRS-1 RTK receiver with 5 seconds or more occupations 
using the Real-Time Network in South Carolina 

Figure 4. Average elevation differences (in cm) between all locations in a 20 m buffered north-south transect across the MTC.
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(SCRTN). Performance tests of the SCRTN network by 
the South Carolina Geodetic Survey found accuracies 
(X-Y-Z) of approximately 2.5 cm at the 95% confidence 
level. Only FIX observations (referring to the integer 
wave positioning) were collected, averaged, and used 
to validate the LiDAR-derived DEMs. Eleven other GNSS 
observations with a FLOAT solution were used only to 
locate an auger hole or pit in moderate canopy situa
tions. Subsequent evaluation of the observed data 
found a few (3) observations with VDOP or PDOP 
values greater than 4.0. Only observations with VDOP/ 
PDOP values less than 4.0 were used for the DEM 
validation.

Observations (n = 33) under forest canopy at Bee 
Branch (Figure 1) were collected using a Sokkia Set 
530 R total station from GNSS/OPUS-derived monu
ment positions. Three monuments were established 
in open canopy conditions using 3-hour observa
tions with a static GNNS XR90 collecting at 15- 
second intervals. Subsequent post-processing of 
the observations using OPUS rapid static provided 
positions of the inserted monument estimated 
accuracies of 2 cm and 3 cm RMSE horizontal and 
vertical accuracies, respectively. These two monu
ments were used for the total station control (base 
and back-sight). A third monument was established 
using the GRS-1 and SCRTN to provide a check in 

the total station-derived measurements. Field data 
on sediment flows and no-change surfaces under 
forest canopy were collected with the total station. 
All observations were made at a distance of less 
than 60 m from the total station.
Manual boreholes or open pits (n = 27) were made in 
both the open-canopy and closed-canopy conditions 
over sediment flows as validation for the LiDAR- 
derived change detection using a custom Italian 
auger (courtesy of Bruno Piovan). The boreholes in 
the Free Maneuver Area and Bee Branch were con
ducted together with field investigation to validate 
the accuracy of the LiDAR data. These validations 
occurred between February 2016 and May 2017 so 
less than 1 year after the flood. In Lundy’s Lane, the 
field investigations were conducted in May 2017. No 
reconstruction activities were performed by the mili
tary staff in these periods of time at these locations, 
and we found no visible evidence that other events in 
this one- and one-half year field campaign caused 
changes in the deposits we investigated.

3.4 Field investigation to calibrate for true/false 
changes

Eleven field campaigns were conducted to verify loca
tions where no topographic changes occurred, to 

Figure 5. Mapped elevation differences (in cm) between 2014 and 2015 DEMs (a). Elevation differences after flight line bias analysis 
and compensation in (b).

12 S. E. PIOVAN ET AL.



identify/quantify depth of changes for other areas 
and to revisit numerous other locations to verify 
anomalies and causal agents for the sand change. To 
evaluate the absolute accuracy of each of the two 
DEMs, a set of reference points where no change in 
land cover had occurred (n = 230) since the first LiDAR 
collection in 2014. An additional set of reference 
points (n = 49) where surface elevation changes had 
occurred was collected to supplement the 230 refer
ence points in the validation of the 2015 DEM. 
Locations were identified during site visits and posi
tions determined in the field with RTK GNSS and total 
station methods. The location of each reference point 
was measured with the Topcon GNSS receiver in RTK 
mode. The elevation for each reference point was 
extracted from the 2014 and 2015 (after vertical shifts) 
DEMs and compared to the reference elevations.

4. Results

4.1 Validation

Mean signed error for the 2014 and 2015 DEMs was 
−3.9 cm and −3.62 cm, respectively (Table 1). Thus, 
a small under-prediction in elevations of about 4 cm 
was observed for the entire MTC. Statistical expres
sions of the 2014 and 2015 DEMs were 7.8 cm and 8.3  
cm RMSE, respectively.

Transformation to a 95% confidence threshold was 
15.3 and 16.3 cm, respectively. Interpretation of the 
customary error statistics should be used with con
sideration of the degree of non-normality of the error 
distribution. Elevation errors for both 2014 and 2015 
were not normal (Jacque-Bera test, p = 0.000) and 
somewhat skewed. Skewness and kurtosis for the 
2014 DEM errors were −0.4675 and 2.7131, respec
tively. Skewness and kurtosis for the 2015 DEM errors 
were −0.5077 and 1.7576, respectively. Thus, 
Equation 1 is used as a guide for establishing confi
dence thresholds with the knowledge that the 

normality assumption underlying equation 1 was 
violated.

A 95% confidence threshold of 22.8 cm was 
derived from the accuracy of the two dates of 
DEMs using equations (1) and (2). When using the 
22.8 cm threshold to screen the validation points 
(230) where no elevation change occurred 
between 2014 and 2015 only one point (−27.1 cm 
elevation error) would be incorrectly classified as 
an elevation change. Similarly, applying the same 
threshold to check the change/no-change accuracy 
of locations (n = 27) where we field-measured sand 
deposition, only five points would be incorrectly 
listed as no-change.

Elevation changes at the location of 27 auger 
holes/pits were compared to measure the depth of 
sand deposition. The range of errors was from an 
under-prediction of −14.1 to an over-prediction of 
+11.5 cm, with an average error of −2.11 cm, indi
cating a slight bias in under-predicting sand 
depths. Sands were probably water-saturated in 
the first days following the event, and their drai
nage in the subsequent time may have led to 
partial collapse of the pore due to lowering hydro
static pressure (“ripening” process). Thus, the sedi
ment may have loose volume, leading to lowering 
of the topographic surface. A regression analysis 
showed a high degree of correlation (R2 of 0.946) 
between LiDAR-derived sediment depths and field 
measured depths (Figure 6).

Landscape elevation changes were again mapped 
for the entire MTC using the 22.8 cm threshold to 
screen for elevation differences greater than our 
level of detection. We regarded any difference 
greater than 22.8 cm to have a high confidence 
this difference observed with the LiDAR-based 
approach to be an actual elevational change. 
Subsequently, we refer to elevation differences of 
greater than 22.8 cm to be “real” changes. As the 
area of changes greater than 22.8 cm is relatively 
small in comparison to the area of the study envir
onment, only dense areas of change that are parti
cularly notable as anomaly examples are shown. 
Anomalies are places where elevation differences 
are greater than the 22.8 cm detection limit but 
are, in fact, not actual elevation changes – the 
differences in observed elevations are due to other 
elevation modeling factors. In each case, the nature 
of the change – false or real (as verified by field 

Table 1. Error (in cm) for pre- and post-flood event DEMs based 
on field data.

Statistic 2014 2015

Number of observations 230 279
Largest Negative Error -35.27 -30.83
Largest Positive Error 18.46 25.05
Mean Error -3.93 -3.62
RMSE (68% confidence) 7.81 8.32
Accuracyz (95% confidence) 15.31 16.30
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observation) – erosion/deposition is presented and 
discussed.

4.2 Anomalies

The Davis Pond area (Figure 1) is a good example of 
false changes (Figure 7A) emanating from changes in 
LiDAR ground return distributions – not actual 

elevation changes observed in the LiDAR data. 
Airborne LiDAR systems typically operate with an 
infrared laser (e.g. 905 µm or 1550 µm) and water 
absorbs the laser pulse resulting in no LiDAR return. 
If the water is turbulent or has floating material, then 
some laser pulses are returned. The Davis Pond case 
provides an example of both issues. As noted from 
the pre- and post-event aerial optical imagery flown 
concurrently with the LiDAR collection missions, the 

Figure 6. Observed versus LiDAR-based measurements for 27 sand holes/pits. All values in centimetres.

Figure 7. Davis pond exhibiting considerable increase in elevation and decrease in elevation (in m) near dam on left and explanation 
of false deposition caused by missing LiDAR returns over water.
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water level in Davis Pond was higher in the post-event 
LiDAR collections (Figure 8). Thus, ground returns 
near the water line in the 2014 collection are absent 
in the post-event 2015 collection. Thus, the interpola
tion routines (TIN in this study) extrapolate “level” 
surfaces across the pond to suggest an elevated sur
face in the 2015 data (Figure 7B). However, the area 
near the dam contained considerable material on the 
water surface and a notable depositional area on the 
southeastern corner of the dam (Figure 9).

The erosional and depositional area at the Bee 
Branch (Figure 1) crossing contained the deepest 
sediment deposition – over 117 cm in depth for 
a large area (Figure 10). Sand was eroded off 
a downhill road and through an overturned tree, dis
placing the tree and creating a very deep erosional 
remnant. The sand then moved into the Bee Branch 
flood plain and ponded quickly because of the water 
present during the rainfall event. Four auger hole 
measurements were placed in the deep sand deposi
tion and compared to the LiDAR estimates of deposi
tion. Auger measured depths of 105, 90, 90, and 50 cm 
corresponded to LiDAR-derived changes of 117, 87, 
85, and 41 cm, respectively. Just uphill to the west, the 
LiDAR DoD indicated an apparent equally large 
depositional area. However, field visits indicated no 
sand deposition. An evaluation with the concurrent 
imagery sources indicated that this was also a false 
depositional area where water had collected during 
the post-event LiDAR acquisition and, similar to Davis 
Pond context, resulted in a false increase because of 
the absence of LiDAR returns.

The Free Maneuver Area (formerly called the Dudded 
Area), on the eastern side of MTC (Figure 1) was a former 
practice environment for munitions testing (Figures 11). 
Prior to the Army’s use of the landscape the area was 
under agricultural production with noticeable terraces 
shown in the LiDAR DEMs but not noticeable in the field. 
A large but somewhat shallow depositional area (25 to 
50 cm in depth) was visited in a broad field with a few 
native pines. The source of the sand in this depositional 
area was from the road, and likely largely from the 
eroded sides of the sand roads about 150–200 m away.

Additionally, the parallel lines of “false” erosion and 
depositional areas along the sand road north of the 
Free Maneuver Area are easily seen. Field visits ver
ified that there was some erosion and deposition on 
the sides of the road, but the horizontal displacement 

Figure 8. Natural color imagery of Davis Pond during 2014 LiDAR collection (A) and 2015 LiDAR collection (B) showing changes in pool level.

Figure 9. Sand deposition (two small lacustrine deltas) on south
east corner of Davis Pond.
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in the two LiDAR collections greatly magnifies the 
apparent elevation changes (Figure 12). The sand 
roads are incised in the environment with very steep 
sides; thus, a horizontal displacement in the LiDAR 

returns would result in a false erosion or deposition. 
The 2015 LiDAR data for this flight line are displaced 
to the southeast of the 2014 LiDAR data. It is unknown 
which LiDAR dataset (2014 or 2015) is more correct 

Figure 10. Profiles across false deposition and actual depositions and location of validation points in yellow (A), transect across false 
deposition (B), transect across deposition piles (C), deposition area up to 1.17 m in thickness (D), and actual erosion (i.e. tree root hole) 
(E) in Bee Branch area.
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and no reliable ground reference data can be used to 
resolve the issue. It might be possible to spatially 
correlate the two surfaces, under the assumption 
there was no real elevational change to determine 
an adequate displacement.

5. Discussion

The results from comparing mean differences in sur
face elevations between 2015 and 2014 collections, in 
a narrow band (20 m) of terrain (along a transect 

Figure 11. A) Lidar change detection model of the Free Maneuver Area (south). Reference points used for validation are shown in 
yellow with erosion/deposition in m; B) sandy deposition in Free Maneuver Area (south).

Figure 12. A) Location of the two transects (B and C) along the eastern and western sand roads supplying sand to the road feeding the 
Free Maneuver Area showing horizontal error expressed as a mismatch between profiles.
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crossing all flightlines) that did not change between 
dates, indicate clear flight line biases. The elevation 
differences by flight line also indicate trends from one 
flight line to the next, strongly suggesting a causal 
factor of the quality of the GNSS observations.

As a note, the remaining discrepancies in eleva
tions between collection dates include any systematic 
flight line bias from the 2014 collection. The 2014 
collection likely contained somewhat similar, but 
expectedly lower, biases from the same causal factors 
as the level-of-effort for post-processing the data by 
the vendor were more substantial. As stated earlier, 
we did not have the point-cloud data partitioned into 
the original flight lines and thus, could not evaluate 
the possible biases in the 2014 data.

Correcting the elevation biases in the 2015 data 
using the 2014 data as the control surface is adequate 
for change-detection studies where only the pre-post 
LiDAR data are analyzed. If other ancillary data are 
also needed, such as flora or fauna surveys, for sub
sequent geospatial analysis with the topographic 
change surfaces then normalizing both the 2014 and 
2015 data to a standard known datum using ground 
reference points is ideal. In other words, rather than 
using the 2014 topographic surface as the “control” 
a better approach would be to transform both the 
2014 and 2015 DEMs to a surface with a higher con
fidence in elevations. Unfortunately, the number of 
ground reference points for normalizing all of the 
flight lines for two separate dates of collection is 
substantial and would be problematic to collect for 
an active military training base.

Several false change anomalies related to the impacts 
of water were noted in this research. Since airborne 
LiDAR almost always uses a near-infrared wavelength 
sensor, the result is an absence of a LiDAR return in areas 
of standing water. These absence of returns result in not 
only lower density of observations but spatially corre
lated absences around and within water bodies; thus, 
the resulting TIN and/or DEM is compromised around 
these features. These anomalies are unusual products 
but systemic of a large-scale rainfall event and will likely 
be present in other research efforts using airborne 
LiDAR for change detection work. These issues strongly 
suggest coincident or near coincident imagery (e.g. nat
ural color or false-color) with a LiDAR collection and, 
ideally, field observations at places where these anoma
lies may occur.

6. Conclusions

The use of manned airborne LiDAR for mapping ero
sion and sediment deposition at levels of over 22 cm 
change is possible with LiDAR collections as noted in 
this research. Conducting a change analysis from such 
airborne data, however, is highly dependent on the 
collection parameters that result in an accurate set of 
“ground” returns. These parameters are largely 
dependent on the flying altitude and LiDAR pulse 
rate that produce a dense set of LiDAR returns to 
begin stratifying for ground and non-ground. From 
our analysis of the LiDAR datasets, we found a vertical 
bias in the LiDAR data collected after the 2015 storm 
event. The bias varied by flight line and obviously 
correlated with the gradually changing GNSS constel
lations over time that are used for the onboard GNSS 
positional determinations. The adjustments that we 
made largely obviated the bias.

As noted earlier, other strip adjustment methods 
exist, many of which are more rigorous but require 
additional collection data/parameters but may be 
more appropriate for different study environments. 
Additionally, since version 1.1 of the USGS guidelines, 
accuracy requirements for within and between strips/ 
flightlines (referred to as overlap in flight swaths in the 
USGS terminology) for each quality level have been 
defined (USGS 2022). The LiDAR collections/processing 
methods available from the U.S. Army did not follow 
the USGS LiDAR base specification guidelines specifi
cally for QL0 through QL3 data. In concept, following 
and meeting such guidelines would provide empirical 
evidence of the need (or not) to perform subsequent 
strip adjustments depending on the detection limits 
desired. These guidelines require the assessment and 
reporting of consistency in elevations (reported as root 
mean squared difference) created from observations in 
different flightlines. For example, a QL1 dataset would 
require differences of less than 8 cm. However, and this 
is critical to note, the specifications in the USGS guide
lines specify that consistency assessments use observa
tions “in nonvegetated areas of only single returns and 
with slopes of less than 10 degrees.” For our study 
environment, most of the areas of mapped change 
has a vegetation overstory and some with slopes 
greater than 10 degrees. Thus, the consistency assess
ment following USGS guidelines would not be repre
sentative of appropriate thresholds. The second issue 
that must be considered for future applications is the 
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ponding of water on the landscape, the resulting miss
ing LiDAR returns in the wet areas, and the interpreta
tion of these areas as false depositional areas.

Airborne LiDAR data, with appropriate care and 
processing, are a useful broad area mapping method 
for topographic change – even for small changes (e.g. 
22 cm) in topography. With these pre- and post- 
airborne LiDAR collections, the ability to predict 
sand deposition (an elevation increase) could be per
formed with an average absolute error of 4.7 cm. In 
this study, we found the sources of erosional material 
from the 2015 rainfall event were almost exclusively 
associated with material from the sand roads or side 
of roads, often sharply cut through the terrain.

Note

1. We note the use of the terms digital elevation model 
(DEM) and digital terrain model (DTM) for describing 
a regular spaced raster of the bare-earth terrain surface 
in both the practice and literature. We use the acronym 
DEM exclusively, following USGS and the preponder
ance of literature.
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