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A B S T R A C T

This study uses high-frequency principal component analysis (HF PCA) to extract information from stock
prices to monitor and measure systemic risk in the financial system. The empirical analysis carried out in
this study using one-minute returns of stocks included in the Russel 3000 index from 2003 to 2021 shows a
clear relationship between the size of the realized eigenvalues and systemic increases in financial stress. We
also found that realized eigenvectors can trace the role of firms/sectors as potential sources of financial stress
in different periods. We measured the transmission of shocks from (to) the financial sector to (from) other
sectors and the real economy. This provides a tool for analyzing the spread of this financial instability that
could affect the functioning of the financial system to the extent that the real economy is seriously damaged. HF
PCA is a risk identification framework that allows policymakers and central banks to detect risks in real-time
and address potential threats to financial stability with the most appropriate policy tools.
1. Introduction

Systemic risk arises when widespread financial instability materi-
alizes. This instability is characterized by a fragile financial system1

incapable of efficiently channeling savings to investments (financial in-
termediation). When this fragility becomes systemic, economic growth
and overall well-being suffer substantially (De Bandt and Hartmann,
2000; De Bandt, Hartmann, and Peydró, 2012; ECB, 2009). Systemic
crises often erupt from initial adverse shocks that propagate and am-
plify throughout the financial system. A prime example is the August
2007 event where BNP Paribas halted redemptions on funds heavily
exposed to illiquid subprime mortgage-backed securities. This localized
issue in a single asset class triggered a true ‘‘systemic event’’ across the
global financial system. The severity of such crises hinges on the inter-
connectedness of financial institutions and markets. Stronger links can
amplify shocks and their spillovers throughout the system, as witnessed
during the Great Financial Crisis. The complex interplay of large shocks,
their propagation, feedback loops, and amplification makes financial
crisis modeling and risk forecasting a significant challenge.

In this paper, we use one-minute market prices to identify systemic
risks stemming from the codependent behaviors and chain reactions of
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E-mail addresses: massimiliano.caporin@unipd.it (M. Caporin), Laura.Garcia@uclm.es (L. Garcia-Jorcano), juanangel@ccee.ucm.es (J.-A. Jimenez-Martin).

1 According to the ESA 2010, European system of accounts, (Eurostat, 2013), the financial system comprises monetary financial institutions (central banks,
commercial banks, savings banks, and credit unions), non-money market investment funds (investment pools of assets like stocks, bonds, and real estate),
insurance corporations and pension funds and other financial institutions (financial leasing companies, venture capital firms, financial brokers, and captive
financial institutions) [(Eurostat, 2013), European system of accounts 2010, Luxembourg].

financial institutions. Our view is grounded in the widespread percep-
tion that market prices embed all publicly available information about
financial institutions’ assets and liabilities and their risks, as well as
the implications deriving from institutions’ interconnections (leading
to common exposures to extreme stress events). When analyzing the
level of stress in the financial system it would be challenging to deal
with the whole system, which in the real world is a very complex
and complicated network of financial markets, financial intermediaries,
and financial infrastructures with all playing a crucial role for the
stability properties of the system. Our dataset focuses on U.S. financial
institutions by comprising stocks from the Russell 3000 index across
three key industry groups: banks, financial services, and insurance.
These groups, categorized within the Russell 3000’s Monetary Financial
Institutions, Other Financial Institutions, and Insurance Corporations
and Pension Funds sectors, represent a critical segment of the financial
system, historically playing a central role during events like the Great
Recession.

The recent financial crisis has fueled the literature on systemic
risk, which, according to Cerutti, Claessens, and McGuire (2012), is
often divided into three broad categories. The first strand of research
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focuses on how balance sheet linkages amplify shocks (De Haas and
Van Horen, 2011). A second part of the literature has traditionally
focused on taking advantage of market prices (see two recent surveys
by Benoit, Colliard, Hurlin, & Pérignon, 2017; Silva, Kimura, & So-
breiro, 2017) for systemic risk measurement. Finally, a third group of
research takes a forward-looking perspective that relies on simulations
(e.g., Espinosa-Vega and Solé, 2011). Our article is more closely related
to the empirical literature that uses information on market prices
to measure systemic risk, such as Acharya, Pedersen, Philippon, and
Richardson (2017), Adrian and Brunnermeier (2016), Bisias, Flood, Lo,
and Valavanis (2012), Brownlees and Engle (2017), Caporin, Garcia-
Jorcano, and Jimenez-Martin (2021), Cerchiello and Giudici (2016),
and Dabrowski, Beyers, and de Villiers (2016). We complement this
literature, which relies mainly on daily or lower frequency returns,
using high-frequency (HF) prices of stocks. Our generalization leads to
more accurately capturing the multiple dimensions of systemic risk.

The systemic risk has multiple dimensions. It shows a time-varying
pattern, which follows the build-up of financial imbalances over time,
and a cross-sectional structure, which determines the degree of fragility
of the system and governs its resilience to shocks. Financial shocks are
endogenously driven, as they are derived from the codependent behav-
iors and chain reactions of the financial institutions themselves. The
time-varying and cross-sectional dimensions of risk are compounded
during the run-up to a crisis. On the one hand, systemic risk is
correlated with the procyclicality of the agent’s behavior; it is dy-
namic in nature, and it can be detected only through observation
over long time spans. This is the time-varying dimension of sys-
temic risk (Borio, 2013; Borio and Lowe, 2002a, 2002b; Borio and
Drehmann, 2009; Brunnermeier, 2001; Kiyotaki and Moore, 1997). On
the other hand, systemic risk is also correlated with the structure of
interlinkages within the system. In this sense, an accurate assessment
of systemic risk requires not only adequately capturing the time-varying
dimension of financial aggregates, but also a description of the specific
structure of the banking/financial interconnection at each point in
time, which is the cross-sectional dimension of systemic risk.

The availability of HF data provides the opportunity to analyze
short periods independently and identify the time-varying nature and
strength (vulnerability) of direct and indirect links within a financial
network with much less statistical uncertainty. Our study contributes
to the literature that uses new econometric techniques to predict sys-
temic risk using HF data. Interest in HF observations emerged largely
from Andersen and Bollerslev (1998)’s study, which showed that asset
price can be assumed to follow a continuous-time diffusion process
and that it is common to use HF data to accurately forecast asset
price volatility (see, for example, Degiannakis and Floros, 2016; Ca-
porin and Velo, 2015; Liu, Patton, and Sheppard, 2015; Kotkatvuori-
Örnberg, 2016). However, there are not many studies that analyze
systemic risk using HF data. Jain, Jain, and McInish (2016) focused on
how HF quoting (HFQ) affects systemic risk. Although HFQ can increase
volatility, it is not clear if it affects the severity of losses from episodic
illiquidity, and in a cascade setting, it leads to an increase in systemic
risk. A relevant event analyzed in multiple studies is the Flash Crash of
May 2010 in the United States (Cartea and Penalva, 2012; Easley, De
Prado, and O’Hara, 2011; Jarrow and Protter, 2011). Sánchez Serrano
(2021) indicated that the increased use of technology has contributed
to the rapid growth of trading in stock markets in recent decades,
increasing the number of participants and a sharp decline in the price
of information. HF trading (HFT) can be seen as a manifestation of this
development. The article highlights that systemic vulnerabilities related
to HFT, such as adverse selection in orders that can potentially crowd
out non-HFT market makers in times of stress, could create systemic
risk, and several scholars have discussed the introduction of a limit in
the speed of trading to address this phenomenon.

By analyzing both dimensions, this study contributes to the identi-
fication of systemic stress and the channels through which it spreads in
2

its early stages to facilitate the avoidance of the adverse consequences
of internal shocks that are magnified within the network. Here, the
measurement challenge is to identify when a financial network is
potentially vulnerable and the nature of disruptions that can trigger
a problem. To do so, this study considered two key elements simulta-
neously combining the two fields of high-frequency (HF) econometrics
and large-dimensional factor analysis. These tools allow for time vari-
ation in the factor structure that explains the internal interconnection
of a large-dimensional panel dataset.

We worked directly on a large cross-section of individual stocks, and
principal component analysis (PCA) turned out to be one of the most
popular techniques when analyzing large datasets. Fundamentally, this
approach aims to compress as much data content as possible into a
small number of principal components (PCs) that summarize a large
part of the variation of the data. Bai (2003) developed an inferential
theory for factor models for a large cross-section and a long horizon
based on PCA. It is also widely accepted in the financial literature
that financial markets can be described by a small number of factors
derived from PCA. For example, Litterman and Scheinkman (1991)
used PCA to identify a three-factor structure in the term structure of
bond yields, labeled as the level, slope, and curvature factors. Egloff,
Leippold, and Wu (2010) identified two volatility factors on the PCA
of variance swaps. Several authors have also introduced PCA to sum-
marize the informative content of different systemic risk measures
(see Caporin, Costola, Garibal, and Maillet, 2022; Fang, Xiao, Yu,
and You, 2018; Giglio, Kelly, and Pruitt, 2016; Nucera, Schwaab,
Koopman, and Lucas, 2016). Rodríguez-Moreno and Peña (2013) also
used classical PCA to compare monthly macro- and micro-market-based
systemic risk measures, highlighting that measures based on credit de-
fault swaps outperform others based on interbank rates of stock prices.
Although we shall not build on these directly, other important papers
on PCA and systemic risk, including Billio, Getmansky, Lo, and Pelizzon
(2012) and Carlson, Lewis, and Nelson (2014), employ correlation-
based PCA to construct some measures of financial connectedness and
stress, respectively. Other studies (Hakkio & Keeton, 2009; Hatzius,
Hooper, Mishkin, Schoenholtz, & Watson, 2010; Hollo, Kremer, & Lo
Duca, 2012; Illing & Liu, 2006; Louzis & Vouldis, 2012; Morales &
Estrada, 2010) proposed factor analysis using PCA to emphasize the
selection of variables in the development of systemic stress indicators,
which is driven primarily by the need to reflect stress conditions in all
dimensions related to the functioning of the financial system.

The classic PCA approach to the statistical inference of eigenvalues
suffers from the curse of dimensionality. The number of parameters
increases much faster than the cross-sectional size, requiring years of
time-series data for estimation, raising issues of survivorship bias, po-
tential non-stationarity, and parameter constancy. HF PCA is expected
to improve the classic approach in several dimensions. In fact, HF
PCA is capable of (1) dealing with the growing number of parameters
when the cross-sectional dimension increases, (2) eliminating station-
ary conditions, allowing both time-varying volatility (Ait-Sahalia and
Xiu, 2017) and jumps in the log-price processes (Pelger, 2019, 2020),
and (3) capturing potentially nonlinear relationships thanks to the local
estimation of the PC.

This article faces issues that are similar to other papers using HF
data, which have unique characteristics that are absent in the data
measured at lower frequencies. Analysis of these data poses interesting
and unique challenges to econometric modeling and statistical analysis.
Specifically, several authors (Ponta, Trinh, Raberto, Scalas, and Cin-
cotti, 2019, Zhang, 2016, among others) identify the difficulties in mod-
eling high-frequency data from a statistical perspective. In this sense,
in this paper, we do not adhere to strong parametric assumptions that
are required in a low-frequency setting. The high-frequency asymptotic
framework allows for a nonparametric analysis of general stochastic
processes. Our research is based on Aït-Sahalia and Xiu (2017, 2019)
that, extending the PCA to the high-frequency continuous-time frame-

work, provides asymptotic properties for the realized eigenvalues and
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eigenvectors assuming a general Ito semimartingale for modeling the
stock returns.

Therefore, we combined HF econometrics and large-dimensional
factor analysis using PCA to approximate the informative content of an
HF dataset. We first track and measure systemic stress by estimating
and analyzing the dynamic behavior of realized eigenvalues and eigen-
vectors using (Ait-Sahalia & Xiu, 2017) large-dimensional HF factor
model. We also want to trace how the rich set of information that stock
prices contain propagates other markets and to understand whether
the information embedded in the comovement among stock prices
could help predict future financial instability and crises. Therefore,
an additional challenge is to measure the transmission of shocks from
(to) the financial sector to (from) other sectors and the real economy
through a selection of systemic risk indicators using the Diebold–Yilmaz
methodology. Diebold and Yılmaz (2009, 2012, 2014) evaluated the
volatility spillover within the financial market by focusing on the real-
ized volatility sequences. Their proposal is now among the most studied
tools for the analysis of systemic risk and risk spillover among assets
or, in general, financial markets and instruments. Their contribution
provides us with a methodology to analyze the spread of financial
instability that could affect the functioning of the financial system. In
turn, this instability could reach the point where the real economy is
seriously impacted, which is notably one of the definitions of systemic
risk (ECB, 2010; De Bandt and Hartmann, 2000; De Bandt et al., 2012).
In the first step, we pointed to understanding the informative content
of the realized quantities, while in the second step, we determined the
relationship between these quantities and systemic risk.

The analyses we developed contribute to the scarce literature that
focuses on the use of HF factors to capture systemic stress in the
financial market. Although this framework has been widely used to
estimate and interpret the factor structure of stock prices, this work
is pioneering in using one-minute data to analyze systemic risk. For
example, Alexeev, Dungey, and Yao (2017), and Bollerslev, Li, and
Todorov (2016) estimated the betas of a continuous and jump market
factor, while Pelger (2019) identified an unknown factor structure for
the S&P 500 firms. This study went further and used an HF PCA
approach to continuously capture the time-varying relationship that
might exist in the financial system. In turn, this allowed for a precise
estimate of the financial distress of the system and its transmission
to other markets. HF information extracted from available data would
allow regulators and policy authorities to act in time and monitor the
effectiveness of implemented policies and reactions, taking advantage
of diagnostic tools that, in addition to being reliable, must be available
within a useful time span.

The empirical analysis makes use of one-minute returns for the
financial stocks included in the Russel 3000 index and available from
January 2003 to February 2021. Due to the delisting of a few companies
after the Lehman default, we separately analyzed two subsamples,
setting the split at September 16, 2008. We evaluated the realized
eigenvalues and eigenvectors on a weekly basis, following Ait-Sahalia
and Xiu (2017). We found evidence supporting the relevance of the first
three PCs, whose patterns can be related to known events: the Lehman
collapse, the Brexit referendum, US and EU monetary policy announce-
ments, and the surge of the COVID-19 pandemic. Increased relevance
of dominant PCs indicates a higher level of comovement among stocks
and an increase in the degree of fragility of the system. Therefore, there
is a clear relationship between eigenvalues and systemic increases in
financial stress. We also found that realized eigenvectors can trace the
role of firms/sectors as potential sources of financial stress in different
periods of time. This occurs when the composition of the eigenvectors
is considered and attributed, for instance, to economic sectors or to
single companies. The loading biplots show the leading performance
of AIG (American Insurance Group), FRE (Freddie Mac), FNM (Fannie
Mae), and LEH (Lehman Brothers) during the 2008 financial crisis and
provide further insight into the informative content of realized PCA.
3

Finally, when moving to the evaluation of the spillover, our analyses w
show that severe financial crises are preceded by high volatility levels
– that is, higher financial stress – suggesting the potential role of HF
PCA for the construction of early warning indicators of systemic risk.

The remainder of the paper is organized as follows. Section 2 briefly
summarizes the methodology. Section 3 describes the data, reviews
the estimation of realized eigenvalues and eigenvectors, and shows the
empirical eigenvalues and eigenvectors. Section 4 focuses on loading
plots and their interpretation. Section 5 moves to the evaluation of
the spillover effect between realized PCs, and Section 6 concludes the
paper.

2. Methodology

In Section 2.1, we describe briefly the methodology proposed by Aït-
Sahalia and Xiu (2017, 2019) on PCA for continuous-time stochas-
tic processes using one-minute data that we used to combine high-
frequency analysis and systemic risk, and in Section 2.2, we summa-
rize the well-known methodology introduced by Diebold and Yılmaz
(2009, 2012, 2014) that we employed to track spillovers to other sec-
tors and the real economy through information extracted from financial
markets by adopting PCA on high-frequency data.

2.1. Principal components with high-frequency data

HF data allow for the precise construction of time-varying eigen-
values, eigenvectors, and PCs. HF PCA using spectral functions is well
documented by Aït-Sahalia and Xiu (2017, 2019), to whom we refer
for a detailed description of the complete methodology. Although this
research is based solely on Aït-Sahalia and Xiu (2017, 2019), other
important papers on HF PCA and factor analysis are (Kong, 2017)
and Pelger (2019, 2020). In this section, we briefly review Aït-Sahalia
and Xiu’s methodology — which is the pillar upon which we build the
empirical analysis carried out in the remainder of this paper.

2.1.1. Realized principal components
We assume that the vector 𝑋𝑗 includes the logarithmic prices at

time 𝑗 of 𝑑 quoted companies; time is measured within the interval
[0, 𝑡], and equidistant observations (over time) are separated by a time
interval 𝛥𝑛. Returns are calculated as 𝛥𝑛

𝑙𝑋 = 𝑋𝑙𝛥𝑛 − 𝑋(𝑙−1)𝛥𝑛 samples
ach minute on a one-week horizon. Note that [0, 𝑡] is the time interval

considered in our sample, with 𝑡 = 1950∕(390 ⋅ 252) = 0.0198 years in
a week, where 1950 are the minutes in a week, 390 are the minutes
in a day, and 252 are days in a year. Furthermore, 𝛥𝑛 is the time
interval in years in which the data are separated into [0, 𝑡], in our
case 𝛥𝑛 = 1∕(390 ⋅ 252) = 0.000010175 years in 1 min. To avoid the
adverse effects of microstructure noise (bid–ask bounces, discreteness
of prices, information asymmetries or transaction costs) and asyn-
chronicity we follow (Aït-Sahalia & Xiu, 2019) and use a one-minute
sampling frequency (relatively sparse), instead of tick-by-tick ultrahigh
frequency data. (The market microstructure noise of one-minute data
is not a serious problem for liquid stocks, which typically trade on
the infra-second time scale). Aït-Sahalia and Xiu (2019) show both in
simulation and empirically that HF PCA works relatively well using
one-minute returns. In addition, given the returns observed within a
week, we form non-overlapping blocks of length 𝑘𝑛𝛥𝑛, each containing
𝑘𝑛 = 325 observations to mitigate the possible effect of microstructure.2
We obtained a suitable block length considering the trade-off between
mitigating microstructure noise and reducing dimensionality (ratio of
the cross-sectional dimension against the number of observations). To
conclude, we also note that the use of companies with large market
value, which are highly traded, reduces the impact of asynchronicity

2 Following Aït-Sahalia and Xiu (2017, 2019), we fixed 𝑘𝑛 to be closest
divisors of [𝑡∕𝛥𝑛] to 𝜃𝛥−1∕2

𝑛
√

𝑙𝑜𝑔(𝑑), with 𝜃 = 0.5 and 𝑑 is the dimension of 𝑋,
hich is the number of quoted companies.
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and, at the same time, further mitigates the impact of microstructure
noise.3 At each 𝑖𝑘𝑛𝛥𝑛, for 𝑖 = 1,… , 𝑚, with 𝑚 being the number of blocks
n a week, following (Aït-Sahalia & Xiu, 2019), we estimate the realized
ovariance 𝑐𝑖𝑘𝑛𝛥𝑛 by

𝑖̂𝑘𝑛𝛥𝑛 = 1
𝑘𝑛𝛥𝑛

𝑘𝑛
∑

𝑗=1
(𝛥𝑛

𝑖𝑘𝑛+𝑗
𝑋)(𝛥𝑛

𝑖𝑘𝑛+𝑗
𝑋)𝑇 . (1)

here the hat identifies an estimated quantity.
From the block-specific spot realized covariance, 𝑐𝑖 ≡ 𝑐𝑖𝑘𝑛𝛥𝑛 in

Eq. (1), with 𝑖 = 1,… , 𝑚, we estimated the eigenvalues 𝜆𝑔,𝑖 and the
eigenvectors, 𝛾𝑔,𝑖, which allowed us to construct the corresponding PCs.
If 𝛾𝑔,𝑖 is the eigenvector that corresponds to the eigenvalue of 𝜆𝑔,𝑖, the
𝑔th PC for a given week is equal to
[𝑡∕(𝑘𝑛𝛥𝑛)]−1

∑

𝑖=1
𝛾𝑇𝑔,(𝑖−1)𝑘𝑛𝛥𝑛 (𝑋(𝑖+1)𝑘𝑛𝛥𝑛 −𝑋𝑖𝑘𝑛𝛥𝑛 ) (2)

where 𝑡∕(𝑘𝑛𝛥𝑛) = 𝑚 is the number of blocks in a week (time interval
considered), in our case 6 blocks. We stress that the last equation is
based on the log-price and not on the log-return.

2.1.2. Realized eigenvalues
We estimated the eigenvalues of 𝑐𝑖𝑘𝑛𝛥𝑛 by solving for the roots of

|𝑐𝑖𝑘𝑛𝛥𝑛 − 𝜆I| = 0. We have 𝜆(𝑐𝑖𝑘𝑛𝛥𝑛 ) = 𝜆̂𝑖𝑘𝑛𝛥𝑛 . The eigenvalues stacked in
𝜆̂𝑖𝑘𝑛𝛥𝑛 are almost surely distinct, so we have 𝜆1,𝑖𝑘𝑛𝛥𝑛 > 𝜆2,𝑖𝑘𝑛𝛥𝑛 > ⋯ >
𝜆𝑑,𝑖𝑘𝑛𝛥𝑛 . The estimator of the integrated eigenvalues vector is given by

𝑉 (𝛥𝑛, 𝑋, 𝜆) = 𝑘𝑛𝛥𝑛

[𝑡∕𝑘𝑛𝛥𝑛]
∑

𝑖=0
𝜆(𝑐𝑖𝑘𝑛𝛥𝑛 ) (3)

which is consistent.4
Since there is a second-order asymptotic bias associated with the

estimator shown in Eq. (3), obtaining a central limit theorem for that
is more involved. From the characterization of the bias, Aït-Sahalia and
Xiu (2019) suggested a bias-corrected estimator as follows5

𝑉 (𝛥𝑛, 𝑋;𝐹 𝜆
𝑝 ) =

𝑘𝑛𝛥𝑛

𝑔𝑝 − 𝑔𝑝−1

×
𝑡∕(𝑘𝑛𝛥𝑛)
∑

𝑖=0

𝑔𝑝
∑

ℎ=𝑔𝑝−1+1

{

𝜆̂ℎ,𝑖𝑘𝑛𝛥𝑛
− 1

𝑘𝑛
𝑇 𝑟

(

(𝜆̂ℎ,𝑖𝑘𝑛𝛥𝑛
I − 𝑐𝑖𝑘𝑛𝛥𝑛

)+𝑐𝑖𝑘𝑛𝛥𝑛

)

𝜆̂ℎ,𝑖𝑘𝑛𝛥𝑛

}

(4)

here 𝐹 𝜆
𝑝 (𝐴) denotes the 𝑝th entry of the corresponding spectral func-

ion 𝐹 𝜆 for any matrix 𝐴 ∈ +
𝑔 defined by (𝑓◦𝜆) = 1

𝑔𝑙−𝑔𝑙−1

∑𝑔𝑙
𝑗=𝑔𝑙−1+1

𝜆𝑗
(𝐴) for 1 ≤ 𝑔𝑙−1 < 𝑔𝑙 ≤ 𝑑, and 𝑇 𝑟(𝐴) = (𝑓1◦𝜆)(𝐴) is the trace for any

atrix 𝐴 ∈ +
𝑔 , where 𝑓1(𝑥) =

∑𝑑
𝑗=1 𝑥𝑗 is its associated symmetric

function for any 𝑥 ∈ R+
𝑑 . The superscript + denotes the Moore–Penrose

inverse of a real matrix.

3 Another procedure for noise-robust estimates of the instantaneous eigen-
alues and eigenvectors is based on the instantaneous version of the smoothed
wo-scales realized volatility (S-TSRV) developed by Mykland, Zhang, and
hen (2019). S-TSRV combines the Two Scales Realized Volatility (TSRV)
y Zhang, Mykland, and Aït-Sahalia (2005) and pre-averaging constructions
take weighted local averages of the data (log prices) before taking squares
eveloped by Jacod, Li, Mykland, Podolskij, and Vetter, 2009, to derive a
olution to controlling edge effects for handling asynchronously observed
ultivariate data.) to derive a solution to controlling edge effects for handling

synchronously observed multivariate data.
4 See Aït-Sahalia and Xiu (2019) for more details, especially about

symptotic theory.
5 Aït-Sahalia and Xiu (2019) proposed another version of the bias-corrected

stimator in the event that we are only interested in the spectral function that
epends on one simple eigenvalue. They introduced an additional assumption
or this scenario, which is weaker than the scenario described in this paper,
erhaps the most relevant scenario in practice, which is for spectral functions
hat depend on all eigenvalues. For more details, see Aït-Sahalia and Xiu
2019).
4

t

2.1.3. Realized eigenvectors
As Aït-Sahalia and Xiu (2019) noted, when eigenvalues are simple,

the corresponding eigenvectors are uniquely determined. Once we con-
structed the PC and estimated the realized eigenvalues, we proceeded
with the evaluation of the loadings of each entry of 𝑋 on each PC. We
determined the sign and, hence, identified the eigenvector by requiring,
a priori, a certain entry of the eigenvector to be positive, for example,
the first nonzero entry.

Notice that 𝛾𝑔,𝑠 is a vector-valued function that corresponds to the
eigenvector of 𝑐𝑠 with respect to a simple root 𝜆𝑔,𝑠, for each 𝑠 ∈ [0, 𝑡],
and using the results in Aït-Sahalia and Xiu (2019), it follows that the
bias-corrected eigenvector estimator corresponds to

𝑘𝑛𝛥𝑛

[𝑡∕(𝑘𝑛𝛥𝑛)]
∑

𝑖=0

(

𝛾̂𝑔,𝑖𝑘𝑛𝛥𝑛 +
1
2𝑘𝑛

∑

𝑝≠𝑔

𝜆̂𝑔,𝑖𝑘𝑛𝛥𝑛 𝜆̂𝑝,𝑖𝑘𝑛𝛥𝑛
(𝜆̂𝑔,𝑖𝑘𝑛𝛥𝑛 − 𝜆̂𝑝,𝑖𝑘𝑛𝛥𝑛 )

2
𝛾̂𝑔,𝑖𝑘𝑛𝛥𝑛

)

(5)

.2. Financial stress spillovers

Following the methodology introduced by Diebold and Yilmaz
2012), we studied the transmission of shocks from (to) stocks of
he financial sector to (from) other nonfinancial sectors and the real
conomy. In what follows, we describe the empirical framework we
ollowed to identify spillover effects between volatility in the stock
rices of the US financial sector and the commonly used macrofinance
ncertainty indicators.

We used a vector autoregressive framework in which the forecast
rror variance decomposition is invariant to the variable ordering
Koop, Pesaran, and Potter, 1996; Pesaran and Shin, 1998), and we
xplicitly included directional volatility spillovers between the realized
igenvalues and the previously described stress and risk indicators,
sing the methodology proposed by Diebold and Yilmaz (2012).

Consider a covariance stationary 𝑁-variable VAR(p), with an as-
ociated infinite moving average representation, 𝑥𝑡 = 𝛩(𝐿)𝜀𝑡, with
(𝐿) = 𝐼 +

∑∞
𝑗=1 𝛩𝑗𝐿𝑗 , and 𝐸(𝜀𝑡𝜀′𝑡) = 𝛴. The forecast error variance

ecomposition allowed us to decompose the forecast error variances of
ach variable as follows:

𝑖𝑗 =
𝜎−1𝑗𝑗

∑𝐻−1
ℎ=0

(

𝑒′𝑖𝛩ℎ𝛴𝑒𝑗
)2

∑𝐻−1
ℎ=0

(

𝑒′𝑖𝛩ℎ𝛴𝛩′
ℎ𝑒𝑖

)

where 𝜎𝑗𝑗 is the 𝑗−th element of the diagonal of the 𝛴 matrix and
𝑗 is a selection vector, with one in the 𝑗th position and zeros oth-
rwise. Because shocks in the variance decomposition framework are
ot orthogonal, the sum of variance contributions of the forecast error
s not necessarily equal to one, that is, ∑𝑁

𝑗=1 𝛿𝑖𝑗 ≠ 1. Therefore, in
he calculation of the spillover index, we normalized the variance
ecomposition matrix on a row basis by setting

𝑖̃𝑗 =
𝛿𝑖𝑗

∑𝑁
𝑗=1 𝛿𝑖𝑗

.

By construction, ∑𝑁
𝑗=1 𝛿𝑖𝑗 = 1, and ∑𝑁

𝑖,𝑗=1 𝛿𝑖𝑗 = 𝑁 .
The variance decomposition allowed us to assess the fraction of the

H-step-ahead error variance that is due to shocks to the other variables
included in the system. As Diebold and Yilmaz (2012), we fixed a priori
the order of the VAR model and chose 𝑝 = 4; this leads to a lag structure
that lasts about a month. Moreover, we focus on predictions for up to
two weeks and thus set 𝐻 = 2.6

We define 𝑆𝑖←𝑗 = 𝛿𝑖𝑗 as the cross-variance shares of spillovers, that
is, the fraction of the error variance of the H step ahead in the forecast
𝑥𝑖 that is due to shocks to 𝑥𝑗 , for 𝑖, 𝑗 = 1, 2,… , 𝑁 , such that 𝑖 ≠ 𝑗. Note

6 We perform a robustness check for the sensitivity of the results to the
hoice of the order of the VAR or of the forecast horizon. We calculate the
pillovers for orders from 2 to 7 and for forecast horizons varying from 1 to 4
eeks. We find that spillovers are not sensitive to the choice of the order of

he VAR or to the choice of the forecast horizon.
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Table 1
Summary statistics for 1-min returns on 5 trading-day blocks of the different industry groups – banks, financial services, and insurance firms
– all of the financial institutions for the period before LEH bankruptcy: January 10, 2003–September 16, 2008, and after the LEH bankruptcy:
September 23, 2008–February 23, 2021. Each statistic is calculated as the average of the statistics obtained for each stock’s market returns
using returns sampled every 𝛥𝑛 = 1 min over a 5 consecutive trading days horizon. In parentheses, in bold, is the number of companies in each
period and each sector.

1-min returns on 5-trading day blocks

Mean Median St. Deviation Skewness Kurtosis Max Min

BANKS

Before (47) 0.0210 0.0451 3.9322 0.5833 10.3177 21.3012 −16.4071
After (45) −0.1567 0.0070 4.7791 −0.6776 14.4749 26.4818 −32.5370

FINANCIAL SERVICES

Before (26) 0.0739 0.2158 4.5204 −0.6583 10.0025 16.6038 −22.7001
After (22) 0.0813 0.2096 4.6101 −0.5938 12.8714 24.1082 −31.7237

INSURANCE

Before (28) −0.0999 −0.0295 3.5371 −0.2993 9.8814 14.6609 −17.3181
After (26) −0.0257 0.1375 4.5592 −0.7814 17.1419 26.6179 −33.8664

ALL

Before (101) 0.0011 0.0684 3.9741 0.0190 10.1156 18.2511 −18.2796
After (93) −0.0638 0.0914 4.6776 −0.6868 14.8412 25.9584 −32.7163
K

that, in general, 𝑆𝑖←𝑗 ≠ 𝑆𝑗←𝑖. Therefore, there are 𝑁2−𝑁 spillovers (in
ur case, 20).

We defined the gross directional volatility spillover received by 𝑥𝑖
rom all other 𝑥𝑗 for 𝑖 ≠ 𝑗, 𝑗 = 1, 2,… , 𝑁 , as

𝑖←⋅ =
𝑁
∑

𝑗=1
𝑗≠𝑖

𝛿𝑖𝑗 ,

and the gross directional volatility spillovers transmitted by 𝑥𝑖 to all
other 𝑥𝑗 for 𝑖 ≠ 𝑗, 𝑗 = 1, 2,… , 𝑁 , as

𝑆⋅←𝑗 =
𝑁
∑

𝑖=1
𝑖≠𝑗

𝛿𝑖𝑗 .

Hence, there are 2𝑁 directional volatility spillovers, 𝑁 ‘From Others’
and 𝑁 ‘To Others’.

We obtained the net volatility spillover from 𝑥𝑖 to all other 𝑥𝑗 for
𝑖 ≠ 𝑗, 𝑗 = 1, 2,… , 𝑁 as the difference between the gross volatility shocks
transmitted to and those received from all other variables,

𝑆𝑖 = 𝑆⋅←𝑖 − 𝑆𝑖←⋅.

There are 𝑁 net volatility spillovers (in our case, 5).
Finally, we calculated the total volatility spillover index which

measures the average contribution of volatility shock spillovers across
the 𝑁 variables to the total forecast error variance,

𝑆 = 1
𝑁

𝑁
∑

𝑖,𝑗=1
𝑖≠𝑗

𝛿𝑖𝑗 .

We refer the reader to Diebold and Yilmaz (2012) for additional
details on the spillover index construction.

3. High-frequency principal components in the finance sector

3.1. Data description

For the empirical analysis, we worked with intraday returns from
01/10/2003 to 02/23/2021, for a total of 4565 days. Returns are
computed as 𝛥𝑛

𝑙𝑋 = 𝑋𝑙𝛥𝑛 − 𝑋(𝑙−1)𝛥𝑛, and we recall that 𝑋 is the price
log, sampled every minute. Our dataset is made up of the financial
institutions’ stocks included in the Russell 3000 index, a broad-market
index tracking the US exchanges. The stocks we selected belong to
three industry groups: banks, financial services, and insurance firms.
Furthermore, for our empirical analysis, we divided our dataset into
5

two periods, before and after the LEH bankruptcy. The dataset is made t
up of intraday returns at one-minute frequency (𝛥𝑛 = 1 min), with 390
observations per day and with an horizon 𝑇 covering 5 trading days.
Only 93 of 101 financial institutions originally included in the dataset
remained available for the full sample, as eight financial institutions
were delisted after September 16, 2008 (LEH bankruptcy). This left us
with 101 financial institutions until September 16, 2008 (287 5-day
blocks). Of these institutions, 47 are banks, 26 are financial services
and 28 are insurance firms. After the LEH bankruptcy, we remain with
93 financial institutions, available for 913 trading blocks of five days
(i.e., for the full sample); this restricted dataset includes 45 banks,
22 financial services, and 26 insurance firms. We recovered all data,
company prices, and index levels from Kibot.com.7 Tables A.1–A.2 list
the names of the financial institutions in our sample, together with
their sector, the latter according to the Thomson Reuters Datastream
classification.

Table 1 reports the average of descriptive statistics (mean, median,
standard deviation, skewness, kurtosis, max, min) for one-minute re-
turns in the 5-day trading blocks (in %) of the three industries for the
period before LEH bankruptcy: January 10, 2003–September 16, 2008,
and after LEH bankruptcy: September 23, 2008–February 23, 2021. In
general, the returns exhibit stylized characteristics of the daily data:
mean and median close to zero, excess kurtosis, and a mild degree of
skewness. The three industries and the overall sector showed higher
volatility in the second part of the sample and high kurtosis, which
is much higher after the LEH bankruptcy. The range max–min is also
larger during the second part of the sample; banks (insurance firms)
show the largest range before (after) the LEH bankruptcy. Skewness
and kurtosis reported in Table 1 would imply distributions with thicker
tails than in the Gaussian case.

In rapidly evolving uncertain times (Global Financial Crisis, COVID-
19, Silicon Valley Bank collapse), the use of higher frequency data al-
lows rapid estimates and updates of financial stress and, consequently,
of systemic risk, mainly under unstable conditions. For example, Chen,
Mykland, and Zhang (2020) speculate that building portfolios with an
intraday weight update may be an advantage during crisis periods.
Many of the established well-known daily or lower frequency indicators
used to gauge systemic risk (Acharya et al., 2017; Adrian & Brunner-
meier, 2016; Bisias et al., 2012; Brownlees & Engle, 2017) or financial
instability cannot keep up with financial conditions that seem to change

7 Despite being less commonly used than TAQ, the HF data available from
ibot.com have a quality comparable to that of TAQ. A comparison between

he data recovered from Kibot and TAQ is available on request.

http://Kibot.com
http://Kibot.com
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Fig. 1. First three realized eigenvalues. See footnote 8 for the list of events.
Fig. 2. First three realized eigenvalues. Annual average.
overnight. These indicators usually lag one or more periods behind real-
time. HF PCA allows us to quickly identify interconnectedness within
a large system to control systemic risk and see how it changes over
short-term horizons. We can also analyze how continuous risk factors,
which capture the variation during ‘‘normal’’ times, differ from periods
of uncertainty.

Therefore, HF PCs provided a useful tool for data analysis that
allowed for the identification, in a short period of time, of the cross-
sectional interdependence of large multivariate databases. When the
evolution of HF PCs over time is analyzed, additional insights might
emerge. We started by focusing on the 913 weekly eigenvalues and
eigenvectors computed using the methodology described in
Sections 2.1.2 and 2.1.3. Traditionally, a higher percentage of the
variation explained by the first PCs can indicate an increased level of
comovement among firms. In turn, the degree of comovement deter-
mines the degree of fragility of the system and governs its resilience
to shocks, with a possible interpretation of the degree of comovement
in terms of the accumulation of systemic risk in the system. As stated
by Aït-Sahalia and Xiu (2019), idiosyncratic factors become relatively
less important and even more dominated by common factors during a
crisis. Proper analysis of eigenvectors provided further insight in this
6

direction, as it allowed the recovery of information about the role of
single firms as potential sources of systemic risk in different periods of
time.

3.2. Realized eigenvalues

Fig. 1 presents the percentage of the total variation, jointly ex-
plained by the first three components (top blue line) and the percentage
individually explained for each component, the first in red, the second
in yellow, and the third in violet. As in Ait-Sahalia and Xiu (2017), we
see that the percentage of variance explained by the first PC (red) has
fluctuated considerably during the period analyzed. Fig. 2 shows that
the annual average of the percentage of total variation explained by the
first three PCs for the entire period was around 40%. That percentage
increased considerably in 2008, to 46%, with a peak in the week of LEH
bankruptcy, September 15, 2008, of 65%. In 2016, we again found that
the first three PCs explained up to 47% of the total variation, with a
peak at 54% when the Brexit referendum occurred on June 22, 2016.
Finally, in 2020, the first three PCs explained, on average, 50% of the
total variation, reaching a peak of 66%, in the last week of February,
the beginning of the COVID-19 pandemic. To shed some light on the
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Fig. 3. Average annual percentage of each sector in PC1.
information content of stock prices, in Fig. 1, we highlight the weeks
in which there are important events associated with both US and EU
monetary policy announcements or other macro-events. Surprisingly,
we found that large peaks in the variation explained by the first three
PCs, indicating an increased level of comovement, which could be
interpreted as an increase in financial stress, coincide with macro-,
monetary- and global risk shocks,8 further confirming the presence of
market reactions to external shocks. Acemoglu, Ozdaglar, and Tahbaz-
Salehi (2015) found that greater interdependence in the banking and
insurance sectors increased the likelihood that a large negative idiosyn-
cratic shock could propagate through the financial system, affecting
overall risk-taking behavior. Consequently, the observed peaks in the
realized eigenvalues could be associated with periods in which the
interbank market acted as an amplifier of idiosyncratic shocks, antic-
ipating further financial distress. In general, these results emphasize
that information extracted from the price of financial company stock
through the realized eigenvalues can help policymakers and investors
monitor the state of the market, while the possibility of forecasting
periods of financial stress would reduce the cost of a financial crisis
in the future.9

8 List of events Date/Event/Type: 16 September 2008/Lehman Brothers Col-
lapse/Global risk; 26 November 2008/Large-Scale Asset Purchase (LSAP1)/US
monetary shock; 8 July 2010/Securities Markets Program announcement as
a consequence of European Sovereign Debt Crisis initiated with the EU-IMF
bailout for Greece/Euro Area (EA) monetary shock; 27 July 2012/Draghi
London Speech:‘‘Whatever it takes’’/EA monetary shock; 20 June 2013/Federal
Open Market Committee (FOMC) meeting - Fed taper tantrum/US monetary
shock; 23 January 2015/ECB asset purchase programs (APP) announce-
ment/EA monetary shock; 07 March 2016/APP expansion with carries a
stock market sell-off/EA monetary shock; 27 June 2016/Brexit referendum/EA
macro and global risk; 9 November 2016/US presidential elections/US macro
and global risk; 25 April 2017/French presidential elections/EA macro and
global risk; 25 February 2020/Intensification of COVID-19 crisis/Global risk.

9 In this respect, a dynamic model for the prediction of realized eigenvalues
and realized eigenvectors would be appropriate. We did not follow this
research line, leaving it as a possible future research.
7

3.3. Realized eigenvectors

Nguyen, Tran, and Nguyen (2018) linked 𝛾1,𝑖, the components of
the eigenvector associated with the largest eigenvalue, to the degree of
correlation 𝜔𝑖 of each firm, which is defined as:

𝜔𝑖 =
𝑁
∑

𝑗=1,𝑗≠𝑖
𝜌𝑖𝑗 , (6)

where 𝜌𝑖𝑗 is the correlation between the i-th and j-th companies. There-
fore, we can interpret the company’s eigenvector component as a
measure of the correlation of that firm with the other companies
included in the analysis. For example, if a firm has the largest com-
ponent in the eigenvector (i.e., that firm has the largest loading to
the first realized PC), it would be, on average, mostly correlated with
others, having high chance of being highly systemic. By examining the
eigenvectors, we can thus identify if each sector plays a major role
in the correlations and might be a significant contributor to systemic
behavior; in other words, the larger the sector component (the sum of
the components associated with companies belonging to that sector),
the stronger the influence of the sector.

Therefore, we studied the eigenvector associated with the largest
eigenvalue to identify whether the behavior of the financial market
is dominated by a sector. In this sense, Fig. 3 shows an area plot
that represents the annual average of the first normalized integrated
eigenvector by sector: banks (black), financial services (blue) and in-
surance firms (red). We can find three periods; (1) before the LEH
bankruptcy in September 2008, the contribution from the bank sector
increased, the contribution from the financial services sector decreased,
and the contribution from the insurance sector appeared to be constant;
(2) between the European sovereign debt crisis and the Federal Open
Market Committee (FOMC) in June 2013, when it was stated that
the Federal Reserve System (FED) would likely start slowing the pace
of its bond purchases (commonly called the ‘‘taper tantrum’’) later
in the year. During this period, the contribution of the bank sector
decreased, the role of the financial services sector remained stable, and
the role of the insurance sector drastically increased; and (3), during
the last part of the sample, the contribution of the bank and financial
services sectors increased and the insurance sector decreased until 2016
when the referendum on Brexit and the US presidential elections took
place. During the COVID pandemic, the contribution of the banking
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Fig. 4. Dispersion of sectorial percentage in PC1 by year.
sector decreased and that of the financial services and insurance sectors
increased. In general, the contribution of banks is well above 50%,
but for the period before 2008, in which financial services companies
played a leading role and for a short period between 2011 and 2013
when insurance firms took the lead.

More in-depth analysis shows that between late 2003 and 2004,
the financial services sector seemed to be the most systemic. In 2005,
again, there was no main contributor to the first PC. Several triggering
events of the Great Financial Crisis began with the bursting of the
US housing bubble in 2005–2006, which increased the uncertainty of
the financial markets in this period. However, from late 2006 to late
2007, the financial services sector seems to be the most systemic sector,
according to its contribution to the first eigenvector. It turned out that
in 2007, FNM and FRE, included in the financial services sector along
with LEH, began to experience large losses in their retained portfolios,
especially in their Alt-A10 and subprime investments, thus becoming
significant contributors to the general systemic risk. As we will see
later when analyzing individual contributions, the weight of these three
firms in the first PC increased steadily beginning in January 2008. The
bank sector was the main contributor to the first component in late
2007, when it became apparent that the financial markets could not
solve the subprime crisis and the interbank market that keeps money
moving around the world froze completely, largely due to fear of the
unknown. Northern Rock had to approach the Bank of England for
emergency funding due to a liquidity problem. In October 2007, the
Swiss bank UBS became the first major bank to announce losses, up to
$3.4 billion, from subprime-related investments. It should be noted that
before the LEH bankruptcy, the insurance sector seems to contribute the
least to the first PC; contrary to the bank sector, the insurance sector
has a much lower liquidity risk and maturity mismatch and is much
less directly interconnected, which is why the insurance sector is not
considered the main source of systemic risk. However, as we will see
later when analyzing individual firms, AIG played a key role during the
Global Financial Crisis, in which the three sectors showed a high level
of connection.

The declining contribution of the financial services sector continued
immediately after the LEH bankruptcy. In early 2009 (when the federal
regulators had already put FNM and FRE into conservatorship, on

10 Classification of mortgages with a risk profile falling between prime and
ubprime.
8

September 6, 2008, and LEH had gone into bankruptcy on September
15, 2008), the bank sector’s contribution became larger, increasing
up to early 2010, when the insurance sector’s contribution drastically
increased. This last movement was started by the European sovereign
debt crisis, initiated by the EU-IMF bailout for Greece, and lasted until
late 2012, well after Draghi’s ‘‘whatever it takes’’ statement. At this
point, the average loading of the banking and financial services sectors
started to increase their contribution to the first PC. The insurance
sector weighed more than the other two sectors during the sovereign
debt crisis (European sovereign debt and the ‘‘taper tantrum’’ of 2013
in the United States). The reasons for this apparently systemic behavior
might be explained by the fact that government bonds, which are the
largest and typically least risky part of insurers’ investment portfolios,
were the sources of instability and risk. This factor could have pushed
the stress levels beyond the maximum risk tolerance of the insurers.

Overall, our analysis showed that the bank sector turned out to be
the largest contributor to the first PC after the LEH bankruptcy, and the
insurance sector might have had less systemic relevance than the other
two sectors, but for the sovereign debt crisis starting in mid-2012. The
business model and structure make the insurance sector a risk absorber
rather than a risk contributor. For policymakers, insurance firms can
generally be considered stable investors, except in periods of severe
financial stress.

The richness of the HF PCA also allowed us to study the average
contribution on a weekly basis. For each year, the box plots in Fig. 4
show the distribution of the weekly contribution to the first PC for each
sector.11 We can highlight several aspects. First, periods of severe crisis,
such as 2008 (Great Financial Crisis) and 2020 (COVID-19 pandemic),
showed high kurtosis, together with a concentration around the me-
dian. The positive skewness shown by the financial services sector in
2008 represents the large contribution of FRE, FNM, and LEH this year.
Second, there is great variation in sector contributions during periods
of milder crisis, such as in 2012–2013 (European sovereign debt and
‘‘taper tantrum’’ of 2013 in the US) and 2015–2017 (in January 2015,
the ECB announced an expanded asset purchase program to address
the risks of a too-prolonged period of low inflation that triggered a

11 Each box displays the 25th, 50th (median), and 75th percentiles of the
weekly contributions to the first PC during a year. Whiskers along with red
+ symbols (extreme contribution) provide accurate information about the
behavior of the sector throughout the year.
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Fig. 5. Week 09/10/2008-09/16/2008. The first and second principal components (PCs) define the loading plot (LP) axes onto which the first and second eigenvectors are
rojected. The 𝑥𝑖 and 𝑦𝑖 coordinates of each point in the LP represent the i-th company loadings on the first and second PCs, the i-th element of the first and second eigenvectors.
ach pair of coordinates is drawn as a vector connected to the origin. Large loadings (positive or negative) indicate that a particular company has a strong relationship with a
articular PC. The sign of a loading indicates whether a variable and a PC are positively or negatively correlated. The top panel shows the biplot for the bank sector, the middle
or the financial services sector, and the bottom for the insurance sector.
Fig. 6. Week 09/10/2008-09/16/2008. Financial Services. See Note in Fig. 5.
tock market sell-off; in June 2016 the Brexit referendum took place,
nd in November 2016, there was the US presidential election). It
hould be noted that in the period 2012–2013, the largest variation
nd contribution came from banks and insurance firms. In 2016–2017,
he annual distribution of banks and financial services contributions to
he first PC is not only widely spread out, but is also positively skewed
or financial services and negatively skewed for banks. In general, the
ontribution of the bank sector was greater during these two years,
hough the financial services sector showed a stronger contribution
uring some weeks of that year. Finally, from 2009 to the end of the
ample, except for the 2012–2013 period (European sovereign debt
risis), the insurance sector showed a stable contribution during the
ntire year, high kurtosis, and weak negative skewness.

Therefore, the study of weekly contributions by sectors to the main
omponent is of great importance in understanding and tracking the
omplex behavior of the financial sector during different periods. Sim-
le visual analysis has shown that the distribution of the eigenvector
ight have a good deal of information to follow up and anticipate

inancial turbulence.
The first eigenvector was the linear combination of assets that

xplained the largest fraction of the total risk of the assets. As shown,
very company in our sample had a positive contribution to the first
C, according to the common interpretation of the first PC as a proxy
or the market factor. Therefore, the first eigenvector indicated what
he main contributors were for the market every week, which could be
een as the more systemic companies. The second eigenvector was a
9

linear combination of assets orthogonal to the first eigenvector, which
explained the greatest fraction of leftover asset variance, that is, the
risk not yet explained by the first eigenvector. The contributions to the
second PC are a little more interesting. On 16 September 2008, LEH
Brothers went bankrupt, and, during this week, four companies stood
out for their contribution to PC2: AIG, FRE, FNM, and LEH. This event
showed that most of the firms in the dataset were highly integrated, but
for these four, they tended to be segmented from other stocks because
the factors that influenced the movement of these stocks during this
week were dominated by internal factors rather than by the market.

To verify this interpretation, in the next section we will use a useful
tool called a loading plot, which plots the contribution of the original
variables to the first two components (Figs. 5–7).

4. Loading plots

Loading plots (LP) are linear projections of data in two-dimensional
planes that attempt to preserve the intersection structure present in
the original multidimensional space 𝑅𝑑 . In an LP, the axes are usually
represented by the first and second PCs, and each variable (a firm in our
case) is represented by its contributions to the first two PCs. The contri-
bution is recovered from the eigenvectors, and each pair of coordinates
is drawn as a vector connected to the origin. Firms that have little
contribution to a PC have almost zero weight in the associated loading.
The sign of the coordinates indicates whether a variable and a PC are
positively or negatively correlated. Strongly correlated companies will
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Fig. 7. Week 09/10/2008-09/16/2008. Insurance. See Note in Fig. 5.
have approximately the same vector direction. The length of the vectors
approximates the variance of the corresponding firms.

LPs are a powerful tool for capturing several features of multivariate
data and may be useful in systemic risk analysis, contributing to the
prevention of financial distress. An appropriate diagnosis of systemic
risk requires the evaluation of the structure of the financial system and
the measurement of internal interconnection at each period of time.
In this sense, LPs provide multivariate information between firms and
the relationship between them, allowing us to quickly locate similar
firms and investigate the cross-sectional structure of the market. Fur-
thermore, the internal structure of the financial system varies over time
and can itself be a major engine of financial instability. Compound
imbalances over time increase the fragility of the system, which makes
the procyclicality of agents, only detectable by observation over time,
highly correlated with systemic risk. This time-varying dimension of
systemic risk can be added to the LP projecting the contribution for
consecutive weeks onto the first two PCs. When all the points are
joined, the internal dynamics of the financial system can be followed.

4.1. Empirical loading plots

The two-dimensional projection LP display is based on the weekly
integrated eigenvectors obtained following the Aït-Sahalia and Xiu’s
methodology explained in Section 2. LPs allow us to identify within-
sector differences; for example, Figs. 5–7 show the components of the
eigenvectors 1 and 2 estimated for week 09/10/2008-09/16/2008, in
which the LEH bankruptcy occurred when the financial crisis entered a
turbulent phase marked by failures of prominent American and Euro-
pean banks. Fig. 5 shows the LPs for banks, Fig. 6 for financial services,
and Fig. 7 for insurance firms. These LPs show that contributions to PC1
were always positive.

According to Figs. 5–7, four firms stand out for their contributions to
PC1 and/or PC2 and played a decisive role during the Great Financial
Crisis in 2008: AIG, FRE, FNM and LEH. AIG (Insurers) and LEH
reported a strong positive contribution to both components, and FRE
and FNM showed a strong contribution to PC2. An in-depth analysis
of the contributions of the companies to the first three PCs is shown
in Fig. 8 through the factor loading of the first three eigenvectors.
Companies are classified according to sectors. The first and second
eigenvectors have only positive contributions. Apart from LEH, FNM,
and FRE, belonging to the financial services sector, there were three
insurance firms, MTG (Metlife), RDN (Radian Group) and MBI (MBIA),
with a fairly high contribution to PC2. Not surprisingly, these three
companies provide private mortgage insurance to protect lenders from
default-related losses. These results show that during this tumultuous
week, the second continuous PC tells us whether the company is closely
10

linked to mortgage activities or not.
Figs. 5–7 also illustrate dissimilarities between the corresponding
firms approximated by the Euclidean distance between two observa-
tions. Firms that are far away from each other have a high Euclidean
distance, and vice versa. For example, in the middle panel (financial
services), FRE and FNM were quite similar this week (the federal
regulators had put FNM and FRE into conservatorship on September
6, 2008). Overall, these findings show that the HF PCA really does a
good job summarizing the information in the 100-company dataset and
gives us a lot of information about the behavior of the system.

The internal structure of the financial system changes over time and
can itself be a major engine of financial instability. We can also use
LPs to identify intersectoral differences that vary over time. Figs. 9 and
10 show the path followed by the median company of each sector in
relation to the first two PCs in 2008 and 2020, respectively.12 Each
LP point represents the median contributions to PC1 and PC2 of firms
that belong to banks (left panel), financial services (middle panel), and
insurance firms (right panel) at time t. Every point is joined in the
right order. In Fig. 9, we have highlighted three weeks using a dashed
vector for the week of the LEH bankruptcy and a thick black vector
for the first and last week of the year (clockwise from the top left,
12/24/2008 and 01/07/2008). This plot illustrates that the dynamic
behavior of the median banks, financial services, and insurance firms
showed similar time-varying behavior, and it seems that there are
no notable intersectoral differences. The median company has erratic
trajectories in a cloud close to PC1; in this cloud, companies lie most
of the weeks of the year, but there is strong anticlockwise movement
in September along with the first week of July (on July 13 the US
Treasury and Federal Reserve effectively nationalize FNM and FRE) and
last week of the year. As seen above during the turbulent week of the
LEH bankruptcy, the median company’s contribution to PC2 increased.

Fig. 10 shows the trajectories followed by the median firms for each
sector in 2020. In this plot, two weeks are highlighted using a thick
black vector for the first and last weeks of the year (clockwise from
the top left, 01/06/2020, and 12/24/2020). Unlike 2008, early 2020
bears little resemblance to the rest of the year. The dynamic LP exhibits
a clockwise arc trajectory starting in January and February, showing
that the second PC, though responsible for the dynamic behavior during
those months, played a minor role during the rest of the year. The
median bank seems to contribute more (length of the vectors) to
the first two PCs than the other two median companies. An in-depth
analysis of the graph shows that at the outbreak of the COVID-19
pandemic in March 2020, while the median company in each sector
showed a large contribution to the first PC (vectors are parallel to

12 We thank J. Egido for providing the code for computing dynamic LPs.
See Egido and Galindo (2015).
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Fig. 8. Loadings of the first three PCs (week of LEH bankruptcy).
the horizontal axis), their contributions to the second PC were small,
reaching a negative value in the first three weeks of March for the
median average in financial services and insurance firms. The change in
the contribution from January 2020 to March 2020 is especially signif-
icant; the trajectory drastically shifted towards PC1. The cosine of the
angles between the markers and the axes (PCs) also approximates the
correlation between the two states. Therefore, the cosine of the angle
near 90◦ between the position at the beginning of the year and the one
in March approximates the low correlation between the two states of
the company. If PC1 were associated with an equally weighted market
portfolio, the position in March of the average company for the three
11
sectors in March shows how these sectors followed the market. Caporin
et al. (2021) found that the entire financial sector did not turn out to
be a systemic sector during this crisis.13

13 Although not reported, provided upon request, the projection onto the
first two PCs of the contribution for consecutive weeks of any individual
company reveals interesting issues about the behavior and the role played by
these companies during turbulent periods. For example, during high-volatility
periods, long-length markers and drastic shifts in the cosine of the angle with
the PC1 were observed. During calm periods, long-length markers were also
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Fig. 9. Dynamic LPs: trajectories followed by the median firm for each sector in 2008. Every biplot point represents the median of the contributions to PC1 and PC2 of the firms
that belong to banks (left plot), financial services (middle plot), and insurance firms (right plot) at time t. Every point is joined in the right order. Three weeks are highlighted
using a dashed vector for the week of LEH bankruptcy (09/16/08) and two thick black vectors for the first and last week of the year (clockwise from the top left, 24/12/08 and
01/07/08).
Fig. 10. Dynamic LPs: trajectories followed by median firms for each sector in 2020. Every LP’s point represents the median of the contributions to PC1 and PC2 of the firms
that belong to banks (left plot), financial services (middle plot), and insurance firms (right plot) at time t. Every point is joined in the right order. Two weeks are highlighted
using a thick black vector for the first and last week of the year (clockwise from the top left, 01/06/20 and 12/31/20).
It is already clear that financial crises always have key differences,
and paying attention to them helps to better understand the current
state of the market and to make predictions about its future develop-
ment. LPs allow us to draw out some lessons from the specific structure
and interconnection existing at different times between the three sec-
tors we analyzed. To do so, we focus on the median of contributions to

observed, however, no drastic changes were found in the correlation with PC1.
Therefore, these two dimensions, the high volatility of the company and the
drastic changes in correlation with PC1 and PC2 can be early warnings of
critical changes in the state of a company.
12
the first two PCs of companies belonging to the three sectors. We point
attention to those weeks in which there were important events associ-
ated, for instance, with announcements of monetary policy of both the
US and the EU, or other macro events (see footnote 5); we provided
a graphical representation of the medians in Fig. 11. Regarding the
sector contribution to the first and second PCs, LPs provide an intuitive
way to investigate how similar the different weeks of the sample are.
LPs convey information about the correlation among sectors and, by
using them dynamically, we can display several elements concisely but
accurately: changes in location, variation, and correlation structure of
the multivariate process data. For example, Fig. 11 shows that LEH
collapse in September 2008 (circles in black ellipsis) was different from
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Fig. 11. Loading Plot: The axes are represented by the first and second PCs and each sector is represented by the median of the contributions to the first two PCs, given by the
eigenvectors that are projected perpendicularly onto the axes. Every ellipsis refers to each week in which one of the events described in footnote 6 is produced.
the COVID-19 outbreak in March 2020 (hexagrams in red ellipsis).
The contribution to PC2 was higher during the LEH bankruptcy than
during the COVID-19 outbreak, somewhat closer to late January 2015
(diamonds in blue ellipsis), when the ECB announced an expanded asset
purchase programs to address the risks of a too-prolonged period of
low inflation that triggers a stock market sell-off. It should be noted
that while PC1 can be roughly associated with an equally weighted
market portfolio, as already confirmed in many studies, identifying PC2
is challenging, but it could be related to an index tracking the entire
financial market that deviates from the entire market during turbulent
periods. Therefore, the three financial sectors appear to have had a
particularly higher deviation from the full stock market in 2008 than
in 2020. Furthermore, during the LEH bankruptcy, the three sectors
appear to cluster as the angle between them is close to zero, indicating
a high level of correlation, which can be interpreted as the three sectors
being globally connected. The first and second PCs appear to have had
a particularly higher contribution from the median bank company. It is
interesting to note that the behavior of the financial system in response
to different shocks, endogenous in 2008 and exogenous in 2020, is very
distinct.

Summarizing our findings, we can state that dynamic LPs updated
weekly would allow policymakers to continuously monitor the mar-
ket structure in almost real-time and permit the design of a better
strategy to identify systemic states. Beyond understanding the financial
market structure, policymakers are also interested in identifying the
mechanisms through which the rich set of information contained in
the stock prices of financial companies propagates to other markets,
helping predict future financial instability. In this sense, the next sec-
tion, built upon the HF data used so far, will search for signals on the
market structure underlying the dynamics of the financial sector’s stress
condition and analyze the transmission to other sectors of the economy,
as summarized by market-wide stress indexes. In particular, we will link
realized eigenvalues to different systemic stress indexes by resorting to
the approach put forward by Diebold and Yilmaz (2012).

5. Measuring spillover effects

Monetary policymakers closely monitor fluctuations in stock prices
to seek signals on the underlying expected dynamics of the economy.
It is well established that stock prices contain a rich set of information
that propagates to other markets, but it is less understood whether
13
the information embedded in the comovement among stock prices
could help predict future financial instability and crisis. The dot-com
crisis, the widespread effects of the Global Financial Crisis, and the
recent significant impact of the COVID-19 pandemic renewed and
fueled interest in the measurement of financial stress14 that, although
not directly observable, manifests itself through increased uncertainty
and changes in expectations about the future of market participants.
Both aspects are reflected in the price of the shares. According to past
empirical evidence, severe financial stress is preceded by increased
market volatility, and the mechanisms through which volatility spills
over across economic sectors have important implications for investors,
regulators, and policymakers. This could also lead to the introduction
of regulatory and institutional rules to reduce the cross-market impact
of excessive price movements (Laborda and Olmo, 2021).

Motivated by such consideration, this section aims to offer an HF-
based assessment of the financial sector’s stress condition. Furthermore,
we analyzed the interdependence and spillover mechanism between HF
eigenvalues and other summary measures of financial stress. There have
been many attempts to measure financial stress and its spillover effects,
but to our knowledge, none of them have used HF eigenvalues. The
availability of HF data provides policymakers with the opportunity to
analyze short periods of time and identify with much less statistical
uncertainty the real-time reactions of stock prices to economic news;
market participants quickly react after a change in expectations that
could refer, for instance, to economic growth or inflation levels.

Following the methodology introduced by Diebold and Yilmaz
(2012) which is described in Section 2.2 briefly, we studied the trans-
mission of shocks from (to) stocks of the financial sector to (from) other
non-financial sectors and the real economy. We use the first realized
eigenvalue as a measure of the information content of the HF PCs. The
size of the eigenvalue is informative both in absolute terms and relative
to the entire collection of realized eigenvalues. This strategy builds on
the well-stated fact that the first PC shows a strong resemblance to the
market index. The idea that the first PC is close to the index has been
around for some time. Aït-Sahalia and Xiu (2019) and Pelger (2019),

14 Financial stress is defined as a ‘mix of market conditions, in which market
participants experience increased uncertainty or change their expectations
about future financial losses, the fundamental value of assets, and economic
activity’ (Kliesen, Owyang, and Vermann, 2012).
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using HF data of assets included in the S&P 500 Index, estimated four
factors and concluded that the first statistical factor appears to be an
equally weighted market portfolio. In this sense, the first eigenvalue is
a proxy for the level of volatility (risk) of the market and, therefore, a
proxy for the level of financial stress. Additionally, the first eigenvalue
reflects changes in the average correlation between stocks, making
the first eigenvalue a reliable high-frequency tool to measure systemic
stress. Plerou et al. (2002) supported the idea that during periods of
high volatility when the correlations among assets are increased, the
largest eigenvalue and its eigenvector reflect the collective response of
the entire market to shocks such as certain news breaks (e.g., central
bank interest rate hikes). Coronnello, Tumminello, Lillo, Micciche,
and Mantegna (2005) using five-minute data found that the largest
eigenvalue describes the common behavior of the stocks composing the
LSE stock index. The higher the eigenvalue in absolute terms, the large
the variance of the first PC and, in general, the higher the overall risk
in the system. The higher the eigenvalue in relative terms, the greater
the interconnectivity between firms, which determines the degree of
fragility of the system and governs its resilience to shocks. These
elements lead to a relevant interpretation in terms of the accumulation
of financial stress in the financial market. The system we considered
for our analyses includes one of the first three realized eigenvalues and
four additional indices commonly used as measures of market volatility,
systemic stress, and policy uncertainty: (i) the VIX volatility index, or
‘fear index’, introduced by the Chicago Board Options Exchange, which
measures the market expectation of 30-day forward-looking volatility
implied by at-the-money S&P 500 index options, (ii) the St. Louis Fed
Financial Stress Index (SLFSI), which measures the degree of financial
stress in the markets and is constructed from 18 weekly data series,
all of which are weekly averages of daily data series: seven interest
rates, six yield spreads, and five other indicators, developed by the
Federal Reserve Bank of St. Louis (see Kliesen and Smith, Kliesen and
Smith, for more details), (iii) the Economic Policy Uncertainty Index
(EPU) based on newspapers in the United States, also developed by the
Federal Reserve Bank of St. Louis (see Baker, Bloom, and Davis (2016),
for additional details), and (iv) the TrAffic LIght System for Systemic
Stress 𝑇𝐴𝐿𝐼𝑆3 (TALIS), developed by Caporin et al. (2021, 2022),
which combines the information contained in the 𝛥𝐶𝑜𝑉 𝑎𝑅 and the
financial institutions/sector shortfalls (the realized losses of an financial
institution/sector are larger than the expected VaR).

Although VIX captures the uncertainty of the equity market, cover-
ing publicly traded firms that account for about one-third of private
employment, the EPU index reflects policy uncertainty, not just re-
ferring to equity returns. The EPU measures the uncertainty about
US fiscal, regulatory, and monetary policies that could have a large
impact on economic decline and recovery. According to Baker et al.
(2016), an increase in policy uncertainty increases stock price volatility,
lowers investment rate, and employment growth rates in government-
exposed sectors (defense, healthcare, and construction), and therefore
could have a severe impact on aggregate investment, employment, and
output. Regarding the SLFSI index, it captures a broad perspective of
financial stress in the market as a whole, including both the stock and
bond markets. Finally, TALIS3 provides a measure of systemic stress.

We will thus exploit the information content of HF comovements
in equity prices and show that the information extracted from the HF
comovement at stock prices is carried over to policy- and financial-
uncertainty indicators.

Table 2 shows the volatility spillovers across the first eigenvalue
(EIGV1)15 and the four macro-financial variables, that is, VIX, SLFSI,

15 We used the square root of the realized eigenvalues to make the variation
ore uniform and of similar size to the other macro-financial variables. This

s consistent with the interpretation of realized eigenvalues as variances of
ealized PCs. Therefore, the square root of the realized eigenvalues has a scale
omparable to volatility.
14
Table 2
Volatility spillovers across the first eigenvalue (EIGV1) and the macro-financial
variables for the full sample period.

EIGV1 VIX SLFSI EPU TALIS From Others

EIGV1 57.137 31.855 1.895 1.585 7.528 42.863
VIX 13.994 67.080 0.878 1.590 16.458 32.920
SLFSI 10.955 10.173 75.307 1.252 2.313 24.693
EPU 4.631 4.998 0.018 88.604 1.749 11.396
TALIS 6.766 22.874 0.232 0.005 70.123 29.877

To others 36.345 69.900 3.023 4.433 28.047 Total Spillover Index

Net −6.518 36.981 −21.670 −6.963 −1.829 28.350

EPU, and TALIS for the entire sample period. Each entry 𝑖𝑗 is the
estimated contribution to the variance of the forecast error of variable
𝑖 originating from variable 𝑗. The row labeled ‘To Others’ is the off-
diagonal column sum and represents the directional volatility spillover
transmitted by the variable 𝑖 to all other variables 𝑗. The column labeled
‘From Others’ is the off-diagonal row sum and represents the directional
volatility spillovers received by the variable 𝑖 from all other variables
𝑗. The row labeled ‘NET’ is the difference between the gross volatility
shocks transmitted to and those received from all other variables. Fur-
thermore, the total spillover index appears in the bottom right corner of
Table 2, which represents the average percentage of the variance of the
forecast error of the five variables resulting from spillovers. It can be
calculated as the average value of the row ‘To Others’ or as the average
value of the column ‘From Others’.

The main diagonal of Table 2 shows that more than 50% of the
forecast error variance is self-explanatory for each variable. According
to the row ‘To Others’, shocks to the VIX largely spillover across
other indices (70%), in particular, the contribution to the volatility
of the EIGV1 forecast error was relatively large (32%) well above the
contribution to other indices as TALIS (23%), SLFSI (10%) and EPU
(5%). Shocks to EIGV1 ranked as the second contributor to the variance
of forecast errors of other indices (36%). Regarding the column ‘From
Others’ the volatility spillovers from others to EIGV1 were the largest
(42%), followed by VIX (33%) and TALIS (30%). Regarding the net
effect, in the bottom row of Table 2, the largest was from VIX to others
(70–33 = 37%) and from others to SLFSI (25–3 = 22%). It should be
noted that the net directional volatility spillovers from EIGV1 to SLFSI
(8%) and EPU (3%) were similar to that of VIX for both indices. The
net effect from the other to EIGV1 was 7%, similar to the EPU from the
other net effect. Surprisingly, the total volatility spillover index was
28%, which illustrates that, on average, the volatility of the forecast
error for the five indices came from spillovers. To put our results
into perspective, DY, analyzing the volatility data of the stock, bond,
exchange rate, and commodity market, found that the total spillover
index of volatility was equal to 13%. Our results indicate that the total
and directional spillovers over our sample are fairly large.

Although Table 2 provides a useful summary of the average volatil-
ity spillovers, a further extension to include the dynamic interaction
among the variables provides a much richer view. Fig. 12 addresses this
problem by reporting the dynamic net pairwise spillovers calculated
using a 200-week rolling window (approximately 4 years). Net pairwise
spillover between EIGV1 and other indices was the difference between
volatility spillovers from EIGV1 to another index and those transmitted
from another index to EIGV1. Therefore, a positive (negative) net
pairwise spillover indicates that the volatility spillover from EIGV1 to
the other asset is greater (lower) than the one to EIGV1 from the other
asset.

The upper left panel in Fig. 12 shows the net volatility spillover from
EIGV1 to VIX. Although very negative, above 15% in 2008, reaching
values greater than 25% between 2015 and 2019, the transmission
of volatility shows a time-varying pattern during the full period. This
result illustrates that the VIX was a net trigger of volatility, with
financial markets being net volatility receivers. The forward-looking
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Fig. 12. Net pairwise spillovers between the square root of EIGV1 and VIX (top left panel), SLFSI (top right panel), EPU (bottom left panel), and TALIS (bottom right panel).
Fig. 13. First eigenvalue vs % of variance explained by the first eigenvalue.

characteristics of VIX make it superior to information content over
other measures of volatility, such as EIGV1 based on historical informa-
tion. The top right panel shows that the EIGV1 was a net transmitter to
the SLFSI from mid-2008 to June 2013 (FED tapper tantrum). Apart
from the Great Financial Crisis, from May 2010 there is high stress
in financial markets because of the European sovereign debt crisis,
whose impact decreased after Draghi’s London speech in July 2012.
During this period, the world stock exchange stumbled on fears of
contagion of the European sovereign debt crisis, and the credit rating
was downgraded because of the debt ceiling crisis in the United States.
From mid-2013, the net volatility spillovers for the two indices were
very low, close to zero, until the outbreak of COVID-19, when financial
sectors again became volatility transmitters.

The bottom left panel in Fig. 12 shows a pattern similar to the
previous subplot, but we observed a negative net pairwise spillover
around 2012 and 2014, that is, the volatility spillovers from EPU to
EIGV1 were greater than those from EIGV1 to EPU. Although Fig. 1
shows that from Draghi’s speech in July 2012 to late 2015, uncertainty
in the financial markets seems to be relatively lower, several develop-
ments in Europe and the United States kept EPU largely fluctuating
around high levels during this period, namely sovereign debt and
banking crisis in the Eurozone (rescue package for Portugal in May
15
2012, bailout package for Greece in July 2011, large yield increase
on Spanish and Italian government bonds, etc.), intense battles over
fiscal and healthcare policies in the US (debt-ceiling fight in summer
2011, uncertainties surrounding the US healthcare policy from August
2011 to June 2012). Russia’s annexation of Crimea in 2014 also led to
international sanctions that increased the level of global uncertainty.
It should be noted that financial sectors seem to be transmitters of
volatility during periods of high financial stress, as was the case in the
GFC. These results shed new light on the literature that analyzes the
relationship between EPU and stock price risk, with EPU impacting in
a systematic way on equity risk, as stated by Luo and Zhang (2020)
and Pástor and Veronesi (2013).

Finally, the bottom right panel of Fig. 12 shows TALIS as a net
receiver of the volatility from EIGV1 until the outset of the COVID-19
pandemic in March 2020 when TALIS became a propagator of volatil-
ity. This behavior could be explained by the secondary role played by
banks, financial services, and insurance firms as systemic sectors in
the aftermath of the COVID-19 shock that hit a more resilient global
financial system, which has changed over the past decade as a result
of a wide set of monetary, fiscal, regulatory, and supervisory measures
put in place following the 2008 financial crisis. TALIS, which is based
on the full stock market, reported that market stress in March 2020 was
mainly driven by sectors other than the banking, financial services, and
insurance sectors. During the first months of 2020, economies faced
an unprecedented economic lockdown. Full stock markets around the
world experienced sharp drops that were comparable only to those
during the outbreak of the Global Financial Crisis (GFC) in October
2008. During the COVID-19 pandemic, global systemic risk indices
showed values even higher than during the GFC.

In Appendix B we show the previous volatility spillover analysis
changing EIGV1 to EIGV2 and EIGV3 in the 4-variable system. A similar
pattern is observed in Tables B.1 and B.2, showing the unconditional
full sample measure of volatility spillovers among the four indices and
EIVG2 and EIGV3, respectively. Volatility spillovers from/to the two
eigenvalues and the total spillover index (26% for EIGV2) are slightly
lower than when EIGV1 was included (28%). Again, results suggest
that VIX is a high net trigger of volatility, for example, when EIVG2 is
included, the impact To others is 66% with EIGV2 (27%), SLFSI (10%),
EPU (5%), and TALIS (24%) being net receivers.

Regarding the net pairwise spillovers, Figs. B.1 and B.2 in Ap-
pendix B show the net volatility spillovers from the second and third
eigenvalues to other indices. It should be noted that, as shown in

the upper left panel of Fig. B.1, EIGV2 is a net volatility propagator
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Fig. 14. Net volatility spillovers for the four assets and the square root of the first eigenvalue (EIGV1).
Table A.1
Names and classification of 101 US financial institutions. In bold, 8 US financial institutions that are only analyzed in the period before Lehman Brothers bankruptcy (January 10,
2003–September 16, 2008).

47 Banks

MNEM NAME IND MNEM NAME IND

1 ASB Associated Banc-Corp MB 25 MTB M&T Bank Corporation MB
2 BAC Bank of America Corporation MB 26 NTRS Northern Trust Corporation MB
3 BK Bank Of New York Mellon Corporation (The) MB 27 NYCB New York Community Bancorp, Inc. BA
4 BOH Bank of Hawaii Corporation MB 28 ONB Old National Bancorp MB
5 BPFH Boston Private Financial Holdings, Inc. MB 29 PB Prosperity Bancshares, Inc. MB
6 BPOP Popular, Inc. MB 30 PBCT People’s United Financial, Inc. BA
7 C Citigroup Inc. MB 31 PNC PNC Financial Services Group, Inc. (The) MB
8 CATY Cathay General Bancorp MB 32 RF Regions Financial Corporation MB
9 CBSH Commerce Bancshares, Inc. MB 33 SNV Synovus Financial Corp. MB
10 CFR Cullen/Frost Bankers, Inc. MB 34 SOV Sovereign Bancorp BA
11 CMA Comerica Incorporated MB 35 STL Sterling Bancorp MB
12 COF Capital One Financial Corporation MB 36 STT State Street Corporation MB
13 CVBF CVB Financial Corporation MB 37 TRMK Trustmark Corporation MB
14 EWBC East West Bancorp, Inc. MB 38 UCBI United Community Banks, Inc. MB
15 FBC Flagstar Bancorp, Inc. BA 39 UMBF UMB Financial Corporation MB
16 FBP First BanCorp. MB 40 UMPQ Umpqua Holdings Corporation BA
17 FITB Fifth Third Bancorp MB 41 USB U.S. Bancorp MB
18 FMBI First Midwest Bancorp, Inc. MB 42 VLY Valley National Bancorp MB
19 FULT Fulton Financial Corporation MB 43 WAFD Washington Federal, Inc. MB
20 GBCI Glacier Bancorp, Inc. MB 44 WBS Webster Financial Corporation MB
21 HBAN Huntington Bancshares Incorporated MB 45 WFC Wells Fargo & Company MB
22 JPM J P Morgan Chase & Co MB 46 WTFC Wintrust Financial Corporation MB
23 KEY KeyCorp MB 47 ZION Zions Bancorporation N.A. MB
24 MI Marshall & Ilsley Corp BA

Note: The abbreviations for the industry (IND) classification are as follows: BA = Banks, MB = Major Banks, AM = Asset Management, CF = Consumer Finance, IS = Investment
Bankers/Brokers/Service, SF = Specialty Finance, AH = Accident and Health Insurance, IB = Insurance Brokers, LI = Life Insurance, PC = Property and Casualty Insurance, SI =
Specialty Insurers.
during July–August 2008. As seen in the previous section, several
companies (LEH, FNM, FRE, MTG, RDN, and MBI) closely linked to
mortgage activities contributed largely to the second PC, which could
be approximated by a portfolio of companies belonging to the bank,
financial services, and insurance sectors facing a large exposure to the
real state market. We did not find any similar behavior for the other
two eigenvalues. After that short period of time, VIX again became a
net volatility spillover transmitter. TALIS turned out to be a volatility
spillover transmitter during the COVID-19 pandemic for the three
eigenvalues.

In summary, our results suggest that there is a flow of volatility to
the three sectors, banks, financial services, and insurance firms, from
VIX. The volatility of PCs spread over to SLFSI and EPU with high
intensity during the GFC and the COVID-19 pandemic. TALIS was a
16
net transmitter of volatility to the three financial sectors during the
COVID-19 pandemic. But for the short period in 2008, no differences
were found in the graph of the volatility flow to and from the three
eigenvalues. Although the second and third eigenvalues determine
portfolios as less risky than the one defined by the first eigenvalue, it
seems that the three eigenvalues contained similar information in terms
of risk. These results show that the dimension of the impact of the shock
of volatility to and from the first three eigenvalues might be stable
for the whole sample. However, when we analyzed the percentage of
variance explained by the first PC, we found that when the volatility
of this factor was locally greater, it explained a higher portion of the
correlation (variance) in the data. Fig. 13 shows the scatter plot of
EIGV1 and the percentage of variance explained by it. The percentage
of variance explained for the first PC increased with its size. Volatility
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Table A.2
Names and classification of 101 US financial institutions. In bold, 8 US financial institutions that are only analyzed in the period before Lehman Brothers’ bankruptcy (January
10, 2003–September 16, 2008).

26 Financial Services 28 Insurers

MNEM NAME IND MNEM NAME IND

1 ABM ABM Industries Incorporated CF 1 ACE Ace Limited Common Stock PC
2 ACAS American Capital, Ltd. AM 2 ACGL Arch Capital Group Ltd. PC
3 AMG Affiliated Managers Group, Inc. AM 3 AFG American Financial Group, Inc. PC
4 AXP American Express Company CF 4 AFL Aflac Incorporated AH
5 BCOR Blucora, Inc. CF 5 AIG American International Group, Inc. PC
6 BEN Franklin Resources, Inc. AM 6 AJG Arthur J. Gallagher & Co. SI
7 BLK BlackRock, Inc. IS 7 ALL Allstate Corporation (The) PC
8 CME CME Group Inc. IS 8 AOC Aon Corp IB
9 EEFT Euronet Worldwide, Inc. IS 9 AON Aon plc SI
10 EFX Equifax, Inc. CF 10 BRO Brown & Brown, Inc. SI
11 EV Eaton Vance Corporation AM 11 CB Chubb Limited PC
12 FNM Federal National Mortgage Association Fannie Mae SF 12 CINF Cincinnati Financial Corporation PC
13 FRE Federal Home Loan Mortgage Corp SF 13 CNA CNA Financial Corporation PC
14 GS Goldman Sachs Group, Inc. (The) IS 14 HIG Hartford Financial Services Group, Inc. (The) PC
15 LEH Lehman Brothers Holdings Inc IS 15 LNC Lincoln National Corporation LI
16 MCO Moody’s Corporation CF 16 MBI MBIA, Inc. PC
17 OCN Ocwen Financial Corporation CF 17 MET MetLife, Inc. LI
18 PRAA PRA Group, Inc. CF 18 MKL Markel Corporation PC
19 RJF Raymond James Financial, Inc IS 19 MMC Marsh & McLennan Companies, Inc. SI
20 ROL Rollins, Inc. CF 20 MTG MGIC Investment Corporation PC
21 SCHW The Charles Schwab Corporation IS 21 ORI Old Republic International Corporation PC
22 SEIC SEI Investments Company IS 22 PFG Principal Financial Group Inc AH
23 SLM SLM Corporation CF 23 PGR Progressive Corporation (The) PC
24 TROW T. Rowe Price Group, Inc. IS 24 PRU Prudential Financial, Inc. LI
25 WDR Waddell & Reed Financial, Inc. IS 25 RDN Radian Group Inc. PC
26 WRLD World Acceptance Corporation CF 26 RE Everest Re Group, Ltd. PC

27 RNR RenaissanceRe Holdings Ltd. PC
28 UNM Unum Group AH

Note: The abbreviations for the industry (IND) classification are as follows: BA = Banks, MB = Major Banks, AM = Asset Management, CF = Consumer Finance, IS = Investment
Bankers/Brokers/Service, SF = Specialty Finance, AH = Accident and Health Insurance, IB = Insurance Brokers, LI = Life Insurance, PC = Property and Casualty Insurance, SI =
Specialty Insurers.
Fig. B.1. Net pairwise spillovers between the square root of the second eigenvalue (EIGV2) and CBOE Volatility Index (VIX), St. Louis Fed Financial Stress Index (SLFSI), Economic
Policy Uncertainty Index (EPU), and TrAffic LIght System for Systemic Stress (TALIS) variables.
spillover analysis neither detected nor explained the greater proportion
of variation explained by the first PC (commonality) during larger
periods of financial stress. The closer look at the eigenvectors shown
in Section 3 contributes substantially to explaining the component of
comovement in intraday stock returns that volatility spillover analysis
might neglect.

Finally, Fig. 14 reports a comparison between the net volatility
spillover of the four indices and that of EIGV1. Net volatility spillovers
indicated the difference between the gross volatility shocks transmitted
to and those received from all other variables. Shocks to the volatility
17
of the first PC, EIGV1, have a positive net impact (give more than
receive) until 2013 when it turned negative (give less than receive). We
observed that VIX was a strong volatility transmitter (large and positive
values) throughout the period. SLFSI received more than it gave to the
rest of the indices. The EPU index appeared only as a volatility spillover
transmitter between 2011 and 2014. Finally, TALIS received more than
it gave to the rest of the indices for almost the entire period considered,
except for the last part of the sample, that is, the COVID-19 period,
when the net volatility spillovers turned positive, reaching 20% at the
very beginning of the pandemic.
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Fig. B.2. Net pairwise spillovers between the square root of the third eigenvalue (EIGV3) and CBOE Volatility Index (VIX), St. Louis Fed Financial Stress Index (SLFSI), Economic
Policy Uncertainty Index (EPU), and TrAffic LIght System for Systemic Stress (TALIS) variables.
Table B.1
Volatility spillovers across the second eigenvalue (EIGV2) and the macro-financial
variables for the full sample period.

EIGV2 VIX SLFSI EPU TALIS From Others

EIGV2 61.666 27.129 3.082 1.814 6.309 38.334
VIX 8.864 70.657 0.943 1.535 18.002 29.343
SLFSI 11.187 10.053 75.318 0.984 2.458 24.682
EPU 5.491 4.969 0.100 87.562 1.879 12.438
TALIS 2.159 24.201 0.369 0.001 73.270 26.730

To others 27.701 66.352 4.494 4.334 28.647 Total Spillover Index

NET −10.633 37.009 −20.189 −8.105 1.917 26.306

6. Concluding remarks

In this paper, we combined HF econometrics and large-dimensional
factor analysis using PCA to approximate the informative content of an
HF dataset. The analyses we develop contribute to the scarce literature
that focuses on HF factors to capture the level of stress in the financial
market.

The empirical analysis carried out in this study using one-minute
returns of stocks included in the Russel 3000 index from 2003 until
2021 shows that largely realized eigenvalues overlap with important
events associated with both US and EU monetary policy announcements
or other macro events. There appears to be a clear relationship be-
tween eigenvalues and systemic increases in financial stress. We also
found that realized eigenvectors can trace the role of firms/sectors as
potential sources of financial stress in different periods of time.

The study of weekly realized eigenvectors is of great importance in
understanding and tracking the complex behavior of the financial sector
during different periods. Simple visual analysis has shown that the
distribution of the eigenvector might offer a good deal of information
on which to follow-up and anticipate financial turbulence. These results
will allow policymakers to continuously monitor the market structure
in almost real-time and allow the design of a better strategy to identify
systemic states.

Beyond understanding the structure of the financial market, poli-
cymakers are also interested in identifying the mechanisms through
which the rich set of information contained in the stock prices of
financial companies propagates to other markets, helping to predict
future financial instability. Using the Diebold–Yilmaz methodology to
identify spillover effects between volatility in the stock prices of the
US financial sector and the commonly used macro-finance uncertainty
18
indicators, we have shown that the information extracted from the
HF comovement at stock prices is carried over to policy and financial
uncertainty indicators.

In summary, using one-minute stock prices provides an effective
tool for supervisors and policymakers in rapidly evolving uncertain
times (Global Financial crisis, COVID-19, Silicon Valley Bank collapse)
that permits rapid estimates and updates of financial stress and, conse-
quently, of systemic risk mainly under unstable conditions. One of the
main is to help policymakers identify and monitor stress levels in the
financial system that may be of serious concern. The combination of HF
with PCA allows us to obtain instantaneous eigenvalues, eigenvectors,
and realized principal components over short windows of observation
and relatively large dimensions, without the need to impose strong
parametric assumptions on the distribution of the data. All this in-
formation has something important to say about the instantaneous
correlations among assets and the collective response of the entire
market to shocks such as certain news breaks (e.g., central bank interest
rate hikes). Therefore, the tools used in this paper can keep pace with
financial conditions that seem to change overnight. Such tools allow
policymakers to track how the rich set of information contained in
the stock prices of financial institutions propagates to other markets,
helping to detect financial instability and crisis.

The statistical tools are enhanced by static and dynamic loading
plots as an effective and intuitive procedure to visually understand in
two-dimensional planes how the internal structure of the financial sys-
tem changes over time. Loading plots are linear projections of the data
onto two-dimensional planes that attempt to preserve the inter-class
structure present in the original multidimensional space. In this sense,
policymakers and investors will have access to real-time, interactive
visualization toolboxes that will allow the user to compute different
individual or global, static or dynamic views of the entire financial
system.

This work will also be useful for investors, not only for tracking
the stability of the financial system, but also because instantaneous
eigenvalues and eigenvectors can be used to build portfolios with intra-
day updates of the weights, which as shown by Chen et al. (2020), can
be an advantage during turbulent periods.

This research represents a first step towards bringing HF PCA tools
to the vast literature of systemic risk analysis and bringing real-time
visualization toolboxes as a quick and intuitive way of tracking the
evolving structure of the financial market in real-time. One limitation

of this paper, which we hope to pursue in future extensions, is that it is
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Table B.2
Volatility spillovers across the third eigenvalue (EIGV3) and the macro-financial
variables for the full sample period.

EIGV3 VIX SLFSI EPU TALIS From Others

EIGV3 62.333 26.325 5.036 1.932 4.374 37.667
VIX 10.213 69.508 0.846 1.383 18.050 30.492
SLFSI 14.420 9.267 72.996 0.749 2.567 27.004
EPU 5.978 4.904 0.173 87.068 1.878 12.932
TALIS 2.460 24.167 0.381 0.002 72.990 27.010

To others 33.071 64.663 6.436 4.066 26.869 Total Spillover Index

NET −4.596 34.171 −20.568 −8.866 −0.141 27.021

based only on in-sample information. Out-of-sample forecasting would
provide an invaluable tool for using information extracted from high-
frequency comovement in financial asset prices to anticipate or smooth
the occurrence of financial and banking turbulence.

Thus, as further research, our work is open to implementing strate-
gies to make predictions of realized eigenvalues and eigenvectors from
HF data. One option to examine is to use parametric and semipara-
metric models to predict weekly spot-realized covariance matrices.
This would allow the construction of out-of-sample dynamic biplots to
provide a visual representation of the expected structure of the financial
system to identify in advance strong and spreading financial stress that
could become systemic. Ongoing research shows that measures based
on the distance between pairs of predicted eigenvectors at t+h and the
observed t weighted by the variance of these predictions appear to be
able to forecast financial turbulence in both the financial sector and
individual institutions.
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