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Abstract
In this work, we introduce new direct-search schemes for the solution of bilevel opti-
mization (BO) problems. Our methods rely on a fixed accuracy blackbox oracle for
the lower-level problem, and deal both with smooth and potentially nonsmooth true
objectives. We thus analyze for the first time in the literature direct-search schemes
in these settings, giving convergence guarantees to approximate stationary points, as
well as complexity bounds in the smooth case. We also propose the first adaptation
of mesh adaptive direct-search schemes for BO. Some preliminary numerical results
on a standard set of bilevel optimization problems show the effectiveness of our new
approaches.

Keywords Bilevel optimization · Direct search · Convergence analysis

1 Introduction

Bilevel optimization (see, e.g., [6, 9, 12, 13, 25] and references therein for a complete
overview on the topic) has been subject of increasing interest, thanks to its application
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to hyperparameter tuning formachine learning algorithms andmeta-learning (see, e.g.,
[17] and references therein). In this work, we are interested in the following bilevel
optimization problem

min
(x,y)∈Rnx×ny

f (x, y), s.t. y ∈ argmin
z∈Z g(x, z). (1)

whereinwe assume that the upper-level function f (x, y) : Rnx×ny → R is continuous,
and g(x, z) : Rnx×ny → R is such that the lower-level problem minz∈Z g(x, z) has
a unique solution y(x) for every x ∈ R

nx , and Z ⊂ R
ny . Uniqueness of the lower-

level problem solution, also known as the Low-Level Singleton (LLS) assumption, is
a quite common assumption in many real world applications, such as hyperparameter
optimization, meta-learning, pruning, semi-supervised learning on multilayer graphs
(see, e.g., [17, 21, 42, 45]). While for simplicity we focus on the setting described
above, it is important to point out that our analysis still holds, for a specific class of
BO problems, even when dropping the LLS assumption (see Remark 2.1).

The algorithms we study here are derivative free optimization (DFO) methods,
which do not use derivatives of the upper-level objective function, but rather only the
objective value itself. Importantly, in this setting we also assume the availability of
some blackbox oracle generating an approximation ỹ(x) of y(x) for any given x ∈ R

n
x .

Among DFO methods, we are interested in particular in direct-search methods (see,
e.g., [2, 27]), which sample the objective in suitably chosen tentative points without
building a model for it. These algorithmic schemes allow us to prove convergence
guarantees under very mild assumptions on our bilevel optimization problem.

1.1 Previous work

Several gradient-based methods have been proposed in the literature to tackle bilevel
optimization problems. Those methods usually require the computation of the true
objective gradient, called “hypergradient”, and rely on the LLS and suitable smooth-
ness assumptions (see, e.g., [17, 18, 20, 24, 29] and references therein). In another
line of research, some asymptotic results based on relaxations of the LLS assump-
tion were also analyzed (see, e.g., [30–32] and references therein). Calculating the
hypergradients can be however a notoriously challenging and time consuming task.
It indeed requires the handling of ∇x y(x), which in turns involves the calculation of
the Hessian matrix related to the g function via the implicit differentiation theorem.
In some contexts, the hypergradients might not be available at all due to the blackbox
nature of the functions describing the problem. These are the reasons why the devel-
opment of new and efficient zeroth-order/derivative-free approaches is crucial in the
BO context.

As for derivative free approaches, classic direct-search (see, e.g., [2, 10, 27]) and
trust-region methods (see, e.g., [10, 27]) have been applied to BO in [11, 15, 37, 44].
In [37], a direct-search method for BO assuming the availability of the true objective is
described. More specifically, their analysis does not allow for approximation errors in
the solution of the lower-level problem, and relies on suitable assumptions making the
true objective directionally differentiable. In [44], the analysis from [37] is extended
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considering lower-level inexact solutions with a stepsize-based adaptive error. In [11],
an algorithm applying trust-region methods both in the inner level and on the true
objective is described, with an adaptive estimation error for the true objective depend-
ing on the trust-region radius; in that work, a strategy to recycle function evaluations
for the lower-level problem is described as well. In [15], the analysis of another trust-
region method with adaptive error for bilevel optimization is carried out. The authors
report worst-case complexity estimates both in terms of upper-level iterations and
computational work from the lower-level problem, when considering a strongly con-
vex lower-level problem solved by a suitable gradient descent approach. In the more
recent works [8, 35], zeroth-order methods based on smoothing strategies [39] are
analyzed. These studies, drawing inspiration from the complexity results provided in
[22] for zeroth-order methods that handle nonsmooth and non-convex objectives, offer
complexity estimates tailored for the BO setting. They rely on the assumptions that
the lower-level problem can be solved with fixed precision, and that gradient descent
on the lower level converges either polinomially or exponentially, respectively.

Finally, min-max DFO problems (which can be seen as a particular instance of
BO) are also recently tackled in the literature [1, 36]. Relevant to our work are also
direct-search methods under the presence of noise. While previous works analyze
direct-search methods with adaptive deterministic [34] and stochastic noise [1, 4, 41],
we are not aware of previous analyses of direct-search methods with bounded but non
adaptive noise.

1.2 Contributions

Our contributions can be summarized as follows.

• Wedefine and analyze the first inexact direct-search schemes forBOproblemswith
general potentially nonsmooth true objectives. Thosemethods indeed never require
exact lower-level problem solutions, but instead assume access to approximate
solutions with fixed accuracy, a reasonable assumption in practice. We therefore
operate in a different setting than the one considered in previous works on direct-
search for BO, where true objectives are directionally differentiable [37, 44] and
lower-level solutions are exact [37] or require an adaptive precision [44].

• We analyze mesh based direct-search schemes for BO, extending in particular
the classic mesh adaptive direct-search (MADS) scheme from [3]. This is, to
the best of our knowledge, the first analysis of this scheme that considers both
inexact objective evaluation and the simple decrease condition for new iterates
used originally in [3].

• We give the first convergence results for direct-search schemes with bounded and
non-adaptive noise on the objective.

• We give the first convergence guarantees to (δ, ε)-Goldstein stationary points for
direct-search schemes applied to general nonsmooth objectives. With respect to
classic analyses considering Clarke stationary points (see, e.g., [5]), these are
the first results for direct-search scheme involving some quantitative measure of
approximate nonsmooth stationarity.
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2 Background and preliminaries

We now introduce the main assumptions considered in the paper, along with a set
of helpful preliminary results that will support the subsequent convergence theory.
As anticipated in the introduction, we will always assume the existence of a unique
minimizer y(x) for the lower-level problem, i.e., that the LLS assumption holds.

Assumption 2.1 For any x ∈ R
nx , we have that argminz∈Z g(x, z) = {y(x)}.

Under Assumption 2.1, the bilevel optimization problem (1) can then be rewritten
as

min
x∈Rnx

F(x) := f (x, y(x)) . (2)

However, in practical applications, it is usually necessary to employ an iterative
method to compute y(x). Therefore, one cannot expect to obtain an exact value of y(x),
but rather some approximation. We will hence make use of the following assumption.

Assumption 2.2 For all x ∈ R
nx we can compute an approximation ỹ(x) of y(x) such

that:

‖ỹ(x) − y(x)‖ ≤ ε. (3)

While the remaining assumptions introduced in this section are not always needed, in
the rest of this manuscript we always assume that Assumptions 2.1 and 2.2 hold.

Remark 2.1 Our analysis extends to the case where argminz∈Z g(x, z) is not a single-
ton, but an approximate solution ỹ(x) of the simple bilevel problem

min
y∈Rny

f (x, y), s.t. y ∈ argmin
z∈Z g(x, z). (4)

is available for every x ∈ R
nx . In fact our convergence proofs rely on (3) rather than

the singleton assumption, where y(x) can be any solution of problem (4). We refer the
reader to the recent work [8] for a detailed discussion on the complexity and regularity
properties of the simple bilevel problem (4).

In the next proposition, we show how condition (3) can be satisfied, by applying
gradient descent to g(x, ·), under a suitable error bound condition on∇yg(x, y) gener-
alizing strong convexity (see, e.g, [23] for a detailed comparisonwith other conditions).
We also give an explicit bound on the number of iterations needed to satisfy (3).

Proposition 2.1 Assume that there exists cg > 0 such that for all y ∈ Z,

cg‖y − y(x)‖ ≤ ‖∇yg(x, y)‖. (5)

Furthermore, let∇yg be Lg Lipschitz continuous in y, uniformly in x. Define y0(x)
to be any arbitrary initialization mapping onto the domain of g(x, ·). Then consider
the sequence,
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yk+1(x) = yk(x) − 1

Lg
∇yg(x, yk(x)). (6)

Define the solution estimate to be:

ỹ(x) = argmink∈[0:K (x)] ‖∇yg(x, yk(x))‖ (7)

It holds that ỹ(x) satisfies (3), for

K (x) =
⌈
2Lg(g(x, y0(x)) − g(x, y(x)))

ε2c2g

⌉
. (8)

Proof This follows from the well known iteration complexity of gradient descent for
smooth non convex objectives. �	

We introduce now some technical assumptions on the objective function needed in
our analysis.

Assumption 2.3 The function f is lower bounded by flow.

Assumption 2.4 The function f is Lipschitz continuous with respect to y with Lips-
chitz constant L f (independent of x).

We remark that these assumptions are an adaptation to our bilevel setting of standard
assumptions made in the analysis of direct-search methods [10, 34]. Assumption 2.2
together with Assumption 2.4 imply that F̃(x) := f (x, ỹ(x)) is an approximation of
F(x) with accuracy L f ε. Indeed,

|F̃(x) − F(x)| = | f (x, ỹ(x)) − f (x, y(x))| ≤ L f ‖ỹ(x) − y(x)‖ ≤ L f ε. (9)

Some regularity on the true objective F(x) will always be necessary for our analy-
ses. We consider both the differentiable and the potentially non differentiable setting.

Assumption 2.5 F(x) is Lipschitz continuous with constant LF .

Assumption 2.6 The function F is continuously differentiable with Lipschitz contin-
uous gradient, of Lipschitz constant L .

Note that if f is Lipschitz with respect to x , and y(x) is Lipschitz continuous with
respect to x , then Assumption 2.5 is satisfied. Furthermore, in the strongly convex
lower-level setting there is an explicit expression for∇F (see, e.g., [8, Equation (3)]),
implying that its Lipschitz continuity follows from that of y(x) together with suitable
regularity assumptions on f and g.
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2.1 Algorithm

In this section, we introduce a general direct-search algorithm for bilevel optimization
that embeds both directional direct-search methods with sufficient decrease and mesh
adaptive direct-search methods with simple decrease, as defined in [10]. The methods
in the first class sample tentative points along a suitable set of search directions and
then select as the new iterate a point satisfying a sufficient decrease condition. The
methods in the second class sample the points in a suitably defined mesh, and then
select the new iterate according to a simple decrease condition. A tentative point t is
hence accepted if the decrease condition

f (t, ỹ(t)) < f (xk, yk) − ρ(αk) (10)

is satisfied, for ρ nonnegative function. We have a sufficient decrease when ρ(t) > 0
with limt→0+ ρ(t)/t = 0, and a simple decrease in case ρ(t) = 0. These two classes
of decrease conditions lead to significant differences in convergence properties and
consequently require different choices in the algorithmparameters. Theywill therefore
be analyzed separately in Sects. 3 and 4 respectively.

Algorithm 1 DS for bilevel optimization
1: Initialization: Choose x0 ∈ R

nx , α0 initial stepsize, ρ : R>0 → R≥0. Let y0 = ỹ(x0) be
an approximate minimizer for the lower-level problem in x0. Optional: Let �0 = α0
be the initial frame size parameter.

2: for k = 0, 1, 2, . . . do
3: Let Mk ⊂ R

nx be a mesh depending on αk and xk . Let Sk be a finite subset of Mk .
4: if f (t, ỹ(t)) < f (xk , yk ) − ρ(αk ) for some t ∈ Sk then
5: Set xk+1 = t , declare the iteration successful, and go to step 13.
6: end if
7: Choose a set of search directions Dk , possibly depending on�k and such that {xk +αkd | d ∈ Dk } ⊂

Mk . For a given d ∈ Dk , compute the approximate minimizer y
αkd
k = ỹ(xk + αkdk ) for the lower

problem. Evaluate f at the poll points belonging

to {(xk + αkd, y
αkd
k ) : d ∈ Dk }.

8: if there exists dk ∈ Dk such that f (xk + αkdk , y
αkdk
k ) < f (xk , yk ) − ρ(αk ) then

9: Declare the iteration as successful. Set xk+1 = xk + αkdk and yk+1 = y
αkdk
k .

10: else
11: Declare the iteration as unsuccessful. Set xk+1 = xk and yk+1 = yk .
12: end if
13: Update the frame size parameter �k and the stepsize αk .
14: Optional: If some approximate stationarity condition is satisfied, terminate the algorithm.
15: end for

The detailed scheme (see Algorithm 1) follows the lines of the general schemes
proposed in [10] and [27], with the addition of calls to the lower-level oracle ỹ(x),
and an explicit reference to the mesh used in mesh-based schemes. At steps 3–6, the
algorithm searches for a new iterate by testing the upper level objective in (t, ỹ(t))
for t in Sk subset of the mesh Mk . In case the search is not successful, the method
generates a new iterate by selecting a set of search directions Dk and testing the upper
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level objective in (t, ỹ(t)) for t chosen along the search directions using a stepsize
αk (see steps 7–12). Steps 9, 11 and 13 perform updates on the algorithm iterate and
parameters based on the search step and computed function evaluations. For the set of
directions Dk , we require in some cases a positive cosine measure, that is

cm(Dk)
d= min

v �=0Rnx
max
d∈Dk

d�v

‖d‖‖v‖ ≥ κ, (11)

for some κ > 0.

3 Sufficient decrease condition

In this section,we analyze directional direct-searchmethods using a sufficient decrease
condition with ρ(t) = c

2 t
2. We first focus on potentially nonsmooth objectives, and

then on smooth ones. In both cases we consider the scheme presented in Algorithm 2,
which can be viewed as an adaption to BO of classic generating set of search directions
(GSS) schemes (see, e.g., [26, Algorithm 3.2]). In order to handle the error introduced
by the approximate solution in the lower level, we lower bound the stepsize with
a constant αmin. We further notice that, thanks to the sufficient decrease condition,
maintaining a mesh is not necessary, and therefore we simply set Mk = R

nx .

Algorithm 2 Inexact directional DS for bilevel optimization
1: Initialization: Choose starting point x0 ∈ R

nx , stepsize lower bound αmin ≥ 0, initial stepsize α0 ≥
αmin, coefficient for stepsize contraction 0 < θ < 1, coefficient for stepsize expansion γ ≥ 1, sufficient
decrease condition coefficient c. Let y0 = ỹ(x0) be an approximate minimizer for the lower-level
problem at x0.

2: for k = 0, 1, 2, . . . do
3: Let Sk ⊂ R

nx with |Sk | < +∞.
4: if f (t, ỹ(t)) < f (xk , yk ) − c

2α2k for some t ∈ Sk then
5: Set xk+1 = t , declare the iteration successful, and go to step 13.
6: end if
7: Choose a set of search directions Dk . For a given d ∈ Dk , compute the approximate minimizer

y
αkd
k = ỹ(xk + αkdk ) for the lower problem. Evaluate f at the poll points belonging to {(xk +

αkd, y
αkd
k ) : d ∈ Dk }.

8: if for some dk ∈ Dk , f (xk + αkdk , y
αkdk
k ) < f (xk , yk ) − c

2α2k then
9: Declare the iteration as successful. Set xk+1 = xk + αkdk for dk satisfying the condition and

yk+1 = y
αkdk
k .

10: else
11: Declare the iteration as unsuccessful. Set xk+1 = xk and yk+1 = yk .
12: end if
13: If the iteration was successful then maintain or increase the corresponding stepsize parameter – set

αk+1 ∈ [αk , γ αk ]. Else decrease the stepsize parameter, by choosing αk+1 = max{αmin, θαk }.
14: [Optional] If some approximate stationarity condition is satisfied, terminate the algorithm.
15: end for
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3.1 Nonsmooth objectives

First, we present convergence guarantees and proofs thereof for a variant of Algo-
rithm 2 designed for the case of Lipschitz continuous true objectives, i.e., under
Assumption 2.5. With respect to the general scheme presented as Algorithm 2, here
Dk = {gk} with gk generated in the unit sphere. We remark that this is a stan-
dard choice for direct-search algorithms applied to nonsmooth objectives (see, e.g.,
[16, Algorithm DFNsimple]). The stepsize lower bound here must be strictly positive
(i.e. αmin > 0).This together with the sufficient decrease conditions ensures that the
sequence generated by the algorithm is eventually constant, as proved in Lemma 3.1.
We then use a novel argument to prove that the limit point of the sequence is a (δ, ε)-
Goldstein stationary point. Although such a notion of stationarity has recently gained
attention in the analysis of zeroth-order smoothing-based approaches [22, 28, 40],
including extensions to BO [8, 35], to the best of our knowledge, it has never been
used for the analysis of direct-searchmethods. It is further important to notice that con-
vergence of directional direct-search methods to (δ, ε)−Goldstein stationary points in
the nonsmooth case is a novel result also for classic optimization problems. We now
recall some useful definitions. If Bδ(x) is the ball of radius δ centered in x , then the
δ-Goldstein subdifferential (see, e.g., [28]) is defined as

∂δF(x) = conv

⎧⎨
⎩

⋃
y∈Bδ(x)

∂F(y)

⎫⎬
⎭ , (12)

and x is an (δ, ε)-Goldstein stationary point for the function F if, for some g ∈ ∂δF(x),
we have ‖g‖ ≤ ε.

We can now proceed with our convergence analysis. As anticipated, we start by
proving that the sequence of iterates generated by our method is eventually constant.

Lemma 3.1 Let Assumptions 2.3 and 2.4 hold. Then there exists k̄ ∈ N0 such that the
sequence {xk} generated by Algorithm 2 is constant for k ≥ k̄.

Proof Notice that {F̃(xk)} is non-increasing, with F̃(xk) = F̃(xk+1) after an unsuc-
cessful step, and

F̃(xk+1) < F̃(xk) − c

2
α2
k ≤ F̃(xk) − c

2
α2
min (13)

after a successful step. Thus there can be at most

2
(
F̃(x0) − infx∈Rn F̃(x)

)
cα2

min

≤
2

(
F̃(x0) − flow + L f ε

)
cα2

min

(14)

successful steps, where we used F̃(x) ≥ F(x)− L f ε ≥ flow − L f ε in the inequality.
Since this quantity is finite, this implies that {xk} is eventually constant. �	
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We now prove convergence of our algorithm to (δ, ε)-Goldstein stationary points.
In order to get our convergence result, we need to assume that the sequence {gk} is
dense in the unit sphere. We remark that such a dense sequence can be generated using
a suitable quasirandom sequence (see, e.g., [19, 33]).

Theorem 3.1 Let Assumptions 2.3, 2.4 and 2.5 hold. Assume that {gk} is dense in the
unite sphere. Then the sequence {xk} generated by Algorithm 2 is eventually constant,
with the unique limit point (δ, ε)-Goldstein stationary, for

ε = 4L f ε

αmin
+ cαmin and δ = αmin. (15)

Proof First, {xk} is eventually constant as seen in Lemma 3.1. Let x̄ be the unique limit
point. By the stepsize updating rule, we have that every iteration must be unsuccessful
with αk = αmin for k large enough. Then, there exists k̄ ∈ N large enough such that
for every k ≥ k̄

F̃(x̄) < F̃(x̄ + αkgk) + c

2
α2
min = F̃(x̄ + αmingk) + c

2
α2
min (16)

implying

F(x̄) < F(x̄ + αmingk) + c

2
α2
min + 2L f ε. (17)

By the density of {gk} it follows

F(x̄) < F(x̄ + d) + c

2
α2
min + 2L f ε (18)

for every d such that ‖d‖ = αmin.
We now define the function F̄x̄ (d) := F(x̄ + d) + ( c2 + 2L f ε

α2
min

)‖d‖2. Since

F̄x̄ (0) < F̄x̄ (d) (19)

for every d such that ‖d‖ = αmin by (18), there must be a d̃ ∈ argmin‖d‖≤αmin
F̄x̄ (d)

with ‖d̃‖ < αmin. We can conclude

0 ∈ ∂ F̄x̄ (d̃) = ∂F(x̄ + d̃) −
(
c + 4L f ε

α2
min

)
d̃ (20)

Equivalently, g = (c + 4L f ε

α2
min

)d̃ ∈ ∂F(x + d̃) and since ∂F(x + d̃) ⊂ ∂αminF(x̄) we

have g ∈ ∂αminF(x̄). To conclude, observe ‖g‖ < cαmin + 4L f ε

αmin
. �	

As a corollary of Theorem 3.1, for αmin ∝ √
ε we are able to get a

(O(
√

ε),O(
√

ε))−Goldstein stationary point. Interestingly, the order of magnitude
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O(
√

ε) of the approximation error coincides with that of typical gradient approxima-
tion methods [7], as well as with that of direct-search in the smooth setting, as we
shall see in the next section.

Corollary 3.1 Let Assumptions 2.3, 2.4 and 2.5 hold. Assume that {gk} is dense in the
unite sphere. Then the sequence {xk} generated by Algorithm 2 with αmin = 2

√
L f ε

c
is eventually constant, with the unique limit point (δ, ε)-Goldstein stationary, for

ε = 4
√
L f εc and δ = 2

√
L f ε

c
. (21)

3.2 Smooth objectives

Wenow focus on the casewhere the objective F is smooth, in particular underAssump-
tion 2.6. We consider here a variant of Algorithm 2 with Dk a positive spanning set.
When the stepsize lower bound is strictly positive we set as termination criterion in
step 14

αk = αk+1 = αmin. (22)

Our scheme can hence be seen as a variant of classic direct-search methods for smooth
objectives [10, 26]. It is important to highlight that this is the first analysis of direct-
search methods for smooth objectives under bounded noise. The only analysis of
direct-search methods we are aware of in the smooth case is the one given in [14]
under stochastic noise,where, however, the author only focuses on classic optimization
problems.

We first extend to our bounded error setting a standard result that allows to get an
upper bound on the gradient norm for unsuccessful iterations (see, e.g., [26, Theorem
3.3]).

Lemma 3.2 Let Assumptions 2.4 and 2.6 hold, together with (11). Let {xk} be a
sequence generated by Algorithm 2. If the iteration k is unsuccessful, then

‖∇F(xk)‖ ≤ 1

κ

(
(L + c)αk

2
+ 2L f ε

αk

)
. (23)

Proof Let d ∈ Dk be such that

− ∇F(xk)
�d ≥ κ‖∇F(xk)‖‖d‖. (24)

We have

καk‖∇F(xk)‖‖d‖ − α2
k
L

2
‖d‖2

≤ −αk∇F(xk)
�d − α2

k
L

2
‖d‖2 ≤ F(xk) − F(xk + αkd)

≤ F̃(xk) − F̃(xk + αkd) + 2L f ε ≤ c

2
α2
k + 2L f ε, (25)

123



Inexact direct-search methods for bilevel… 479

where we used (24) in the first inequality, the standard descent lemma in the second
inequality, (9) in the third inequality, and that the step is unsuccessful in the last
inequality. Therefore, since by assumption ‖d‖ = 1

καk‖∇F(xk)‖ = καk‖∇F(xk)‖‖d‖ ≤ c

2
α2
k + 2L f εα

2
k
L

2
‖d‖2

= c

2
α2
k + 2L f ε + α2

k
L

2
, (26)

implying the thesis. �	
In [34], convergence of a linesearch scheme is analyzed in the noisy case (i.e.,

additive noise smaller than the stepsize), and a result analogous to Lemma 3.2 is
given.

We now prove convergence and complexity bounds when αmin > 0, extending
those given in [43] for the exact oracle case, and αmin = 0. We notice that in this
second case we lose finite convergence and our guarantees are thus somewhat weaker,
i.e., we are only able to prove that the stepsize converges to 0 and that at some point
the gradient norm is O(

√
ε).

Theorem 3.2 Let Assumptions 2.3, 2.4 and 2.6 hold, together with (11) for every
k ∈ N0. Let {xk} be a sequence generated by Algorithm 2.

1. If αmin > 0, then the algorithm satisfied the termination condition (22) after k̄
iterations, with

k̄ < 1 + 2

α2
minc

(F̃(x0) − flow + 2L f ε)

(
1 − ln γ

ln θ

)
+ ln αmin − ln α0

ln θ
, (27)

and its last iterate xk̄ is such that

‖∇F(xk̄)‖ ≤ 1

κ

(
(L + c)αmin

2
+ 2L f ε

αmin

)
. (28)

2. If, furthermore, it holds that αmin = 2
√

L f ε

L+c , then

‖∇F(xk̄)‖ ≤ 2

κ

√
(c + L)L f ε. (29)

3. If αmin = 0, then αk → 0, and if additionally α0 ≥ ᾱmin = 2
√

L f ε

L+c , for some

k̄ ∈ N0 we have

‖∇F(xk̄)‖ ≤ 1

θκ

(
(L + c)ᾱmin

2
+ 2L f ε

ᾱmin

)
, (30)

and

F(xk) ≤ F(xk̄) + 2L f ε for all k ≥ k̄. (31)
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Proof 1. Let ks and kns be the number of successful and unsuccessful steps, so that
ks + kns = k. Reasoning as in Lemma 3.1, we obtain by (14)

ks <
2

α2
minc

(F(x0) − flow + 2L f ε). (32)

Furthermore, since

αmin ≤ αk ≤ α0γ
ks θkns−1, (33)

we get

kns ≤ 1 − 1

ln(θ)
(ln(α0) − ln(αmin) + ks ln(γ ))

≤ 1 − 1

ln(θ)
(ln(α0) − ln(αmin) + 2

α2
minc

(F̃(x0) − flow + 2L f ε) ln(γ )),

(34)

where we applied (32) in the second inequality. Combining the bounds on the suc-
cessful and unsuccessful steps (32) and (34), we have

k = ks + kns < 1 + 2

α2
minc

(F̃(x0) − flow + 2L f ε)

(
1 − ln γ

ln θ

)
+ ln αmin − ln α0

ln θ
,

(35)

as desired.
2. Follows from a direct application of the first result.
3. Reasoning as in the first result, the number of successful steps with stepsize

above a certain threshold is bounded, hence αk → 0. Furthermore, for any k̄ ∈ N0, if
k ≥ k̄

F(xk) ≤ F̃(xk) + L f ε ≤ F̃(xk̄) + L f ε ≤ F(xk̄) + 2L f ε, (36)

which proves (31). Let ᾱmin = 2
√

L f ε

L+c . Sinceα0 ≥ ᾱmin, andαk → 0with contraction

factor θ , we must have αk̄ ∈ [θᾱmin, ᾱmin] for some k̄ ∈ N0. Then (30) follows
from (23) for αk = αk̄ . �	

Wenowextend to our setting theO(n2/ε2) complexity result given in [43, Corollary
2]. For a fixed precision ε, an approximation error ε = O(ε2) is required, as for classic
gradient approximation schemes [7].

Corollary 3.2 Let Assumptions 2.3, 2.4 and 2.6 hold, together with (11) for every
k ∈ N0. Let {xk} be a sequence generated by Algorithm 2. Assume also ε ≤ ε2κ2, that
at every iterations there are at most d1n function evaluations and that κ ≥ d2/

√
n,

for d1, d2 > 0. Then if αmin = 2
√

L f ε

L+c , the algorithm terminates after O(n2/ε2)
function evaluations with ‖∇F(xk̄)‖ ≤ d3ε, for d3 > 0 depending only on c, L and
L f .
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Proof Follows from point 1 and 2 of Theorem 3.2, plugging in the parameters specified
in the assumptions. �	

4 Simple decrease condition

In this section, we analyze two methods based on simple decrease condition (i.e., with
ρ(t) = 0, in (10)), one for potentially nonsmooth objectives and one for smooth
objectives. Both methods follow the scheme presented in Algorithm 3, which is an
adaptation to the BO setting of the mesh adaptive direct-search algorithm (MADS,
see [2] and references therein). Again we lower bound the stepsize by a constant αmin.
The stepsize updating rule we use to handle unsuccessful iterations depends on the
mesh size parameter �k and the contraction coefficient θ , and smoothness of the true
objective (i.e., update varies between the smooth and the nonsmooth case).

It is a standard assumption in the analysis of MADS that all the iterates lie in a
compact set (see, e.g., [3, Section 3]). In our framework, this can be ensured if the
following boundedness assumption is satisfied.

Assumption 4.1 The set

Lε = {x ∈ R
nx | F(x) ≤ F(x0) + 2L f ε} (37)

is bounded.

The mesh, as defined in the literature (see,e.g., [5, 10] and references therein for
further details), is a discrete set of points from which the algorithm selects candidate
trial points. Its coarseness is parameterised by the mesh size parameter δ. The goal of
each algorithm iteration is to get amesh point whose objective function value improves
with respect to the incumbent value. Given a positive spanning set D and a center x
the related mesh is formally defined as follows:

M = {x + δDy | y ∈ N
p}, (38)

where, with a slight abuse of notation, we use D also for the matrix D ∈ R
n×p with

columns corresponding to the elements of the set D. We notice that the mesh is just a
conceptual tool, and is never actually constructed.

4.1 Nonsmooth objectives

With respect to the general scheme presented in Algorithm 3, here the stepsize updat-
ing rule for unsuccessful iterations is given by αu(αk,�k, θ) = min(�k,�

2
k, θαk),

ensuring that αk → 0 and the mesh gets infinitely dense if the algorithm gets stuck in
a certain point. The set of search directions Dk must be such that

�k

αk
b1(αk) ≤ ‖d‖ ≤ �k

αk
b2(αk) (39)
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Algorithm 3 Inexact mesh based DS for bilevel optimization
1: Initialization:Choose starting point x0 ∈ R

nx , stepsize lower bound αmin ≥ 0, initial mesh size param-
eter α0 = αminθ

−μ0 , withμ0 ∈ N0, starting frame parameter�0 = α0, stepsize contraction/expansion
parameter θ ∈ (0, 1)∩Q,G ∈ R

n×n invertible and Z ∈ Z
n×p with columns forming a positive spanning

set. Let D = GZ . Let y0 = ỹ(x0)
be an approximate minimizer for the lower-level problem in x0.

2: for k = 0, 1, 2, . . . do
3: [Optional] Let Mk be the mesh with size parameter αk , positive spanning set D

and center xk . Select a finite subset Sk of Mk .
4: if f (t, ỹ(t)) < f (xk , yk ) for some t ∈ Sk then
5: Set xk+1 = t , declare the iteration successful, and go to step 7.
6: end if
7: Choose a positive spanning set Dk such that {xk + αkd | d ∈ Dk } ⊂ Mk . Compute

the approximate minimizer y
αkd
k = ỹ(xk + αkdk ) for the lower problem. Evaluate f

at the poll points belonging to {(xk + αkd, y
αkd
k ) : d ∈ Dk }.

8: if there exists dk ∈ Dk such that f (xk + αkdk , y
αkdk
k ) < f (xk , yk ) then

9: Declare the iteration as successful. Set xk+1 = xk + αkdk and yk+1 = y
αkdk
k .

10: else
11: Declare the iteration as unsuccessful. Set xk+1 = xk and yk+1 = yk .
12: end if
13: If the iteration was successful then set �k+1 = θ−1�k and αk = min(�k ,�

2
k ).

Else set �k+1 = max{αmin, θ�k } and αk+1 = αu(αk , �k , θ).
14: [Optional] If some approximate stationarity condition is satisfied, terminate the algorithm.
15: end for

for all d ∈ Dk , with bi : R>0 → R>0 such that limt→0 bi (t) = 1 for i ∈ {1, 2}.
Thus with respect to the classic MADS scheme here the frame size �k defines also a
lower bound and not only an upper bound on the distance between the current iterate
and tentative points selected in the poll step. This adjustment is necessary due to the
error on the true objective evaluation. As shown in the next lemma, Condition (39)
ensures that as the stepsize converges to 0 the tentative steps get closer and closer to
the boundary of a ball of radius αmin.

Lemma 4.1 Assume that αmin > 0 and that (39) holds. Then if limk∈K αk = 0, the set
of limit points of {αk Dk}k∈K is contained in Snx−1(αmin).

Proof If limk∈K αk = 0 then it holds that, for k ∈ K large enough, �k = αmin.
Consider {dk} = Dk . It holds that, for all dk ,

lim sup
k∈K

‖αkdk‖ ≤ lim sup
k∈K

�kb2(αk) = αmin, (40)

where we applied (39) in the inequality. Analogously, we can prove lim infk∈K ‖αkdk‖
≥ �k , whence limk∈K ‖αkdk‖ = αmin, which implies the thesis. �	

We now extend to this scheme the (δ, ε)-Goldstein stationarity result proved under
the sufficient decrease condition in Sect. 3.1. Also in this case we are not aware of
any analogous result for the standard MADS scheme, which is instead known to
convergence to Clarke stationary points [3].

We start with a lemma that extends a well known property of MADS (see, e.g., [3,
Proposition 3.1]) to our bilevel setting.
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Lemma 4.2 Let Assumptions 2.4, 2.5 and 4.1 hold. Then the sequence {αk} generated
by Algorithm 3 is such that lim inf αk = 0.

Proof Since {F̃(xk)} is non-increasing (and strictly decreasing for successful itera-
tions), {xk} is contained in the set Lε, which is compact by Assumptions 2.5 and 4.1.
Thus lim inf αk = 0 follows from the finiteness of feasible points generated in Lε

when keeping the parameter αk lower bounded, which can be proved with the same
arguments used for MADS in [3, Proposition 3.1]. �	

We can now state our main result.

Theorem 4.1 Let Assumptions 2.4, 2.5 and 4.1 hold. Let K be a subset of unsuccessful
iteration indices related to Algorithm 3. Let us further assume that:

• limk∈K xk = x̄ ;
• limk∈K αk = 0;
• {D̂k}k∈K is dense in the unit sphere, with D̂k = { d

‖d‖ | d ∈ Dk};
• Condition (39) holds.

Then, the limit point x̄ of {xk}k∈K is (δ, ε)-Goldstein stationary, for

ε = 4L f ε

αmin
and δ = αmin. (41)

Proof Let d̄ ∈ R
n with ‖d̄‖ = 1, and let L ⊂ K be such that limk∈L dk‖dk‖ → d̄, with

dk ∈ Dk . Then αkdk → αmind̄ by Lemma 4.1. Now, for every k ∈ L

F(xk) − F(xk + αkdk) ≤ F̃(xk) − F̃(xk + αkdk) + 2L f ε ≤ 2L f ε, (42)

where the first inequality follows from (9), and we used that the step k is unsuccessful
in the second inequality. Passing to the limit, we obtain

F(x̄) ≤ F(x̄ + αmind̄) + 2L f ε. (43)

Now let F̄x̄ (d) = F(x̄ + d) + 2L f ε

α2
min

‖d‖2. By applying (42) we get

F̄x̄ (0) ≤ F̄x̄ (αmind̄),

and given that d̄ is arbitrary, this holds for any d such that ‖d‖ = αmin. The thesis
then follows as in the proof of Theorem 3.1. �	

As in Sect. 3.1, here we also have a corollary showing that for αmin ∝ √
ε we are

able to get a (O(
√

ε),O(
√

ε))-Goldstein stationary point.

Corollary 4.1 Under the assumptions of Theorem 4.1, the limit point x̄ of the sequence
{xk} generated by Algorithm 3 with αmin = 2

√
L f ε is (δ, ε)-Goldstein stationary,

for

ε = δ = 2
√
L f ε. (44)
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4.2 Smooth objectives

Now we consider the case where the true objective is smooth, i.e., Assump-
tion 2.6 holds. With respect to the general scheme reported in Algorithm 3, we have
αu(αk,�k, θ) = min(�k,�

2
k), and the algorithm set as termination condition in step

14 (22), as for the smooth case. As for Dk , it must always satisfy cm(Dk) ≥ κ for
some positive κ independent from k, as well as

�k

αk
b1 ≤ ‖d‖ ≤ �k

αk
b2 (45)

for every d ∈ Dk .
We remark that convergence of mesh based schemes for smooth objectives is well

understood (see, e.g., [5, Chapter 7]), so that once again our main contribution here is
the adaptation to the bilevel setting. We begin our analysis by extending Lemma 3.2
under the simple decrease condition and condition (45) on the search directions.

Lemma 4.3 Let Assumptions 2.4 and 2.6 hold, together with (11). Let {xk} be a
sequence generated by Algorithm 3. If the step k is unsuccessful, then

‖∇F(xk)‖ ≤ 1

κ

(
b2�k L

2
+ 2L f ε

b1�k

)
. (46)

Proof Since the step is unsuccessful, by considering d ∈ Dk such that

− ∇F(xk)
�d ≥ κ‖∇F(xk)‖‖d‖ (47)

we have, reasoning as in (25) with c = 0

καk‖∇F(xk)‖‖d‖ − α2
k
L

2
‖d‖2 ≤ 2L f ε. (48)

Finally, we get

‖∇F(xk)‖ ≤ 1

κ

(
αk L‖dk‖

2
+ 2L f ε

αk‖dk‖
)

≤ 1

κ

(
b2�k L

2
+ 2L f ε

b1�k

)
. (49)

�	

We now extend Theorem 3.2 to our mesh based scheme. The main difference is the
absence of complexity estimates, which to our knowledge are not available for MADS
schemes.

Theorem 4.2 Let Assumptions 2.4, 2.5 and 4.1 hold. Let {xk} be a sequence generated
by Algorithm 3.
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1. If αmin > 0, then the algorithm satisfies the termination condition (22) in a finite
number of iterations, with the last iterate xk̄ satisfying,

‖∇F(xk̄)‖ ≤ 1

κ

(
b2αminL

2
+ 2L f ε

αminb1

)
. (50)

2. If, furthermore, it holds that αmin = 2
√

L f ε

b1b2L
, then

‖∇F(xk̄)‖ ≤ 1

κ

√
Lb2L f ε/b1. (51)

3. If αmin = 0, then lim inf αk = 0, and if additionally α0 ≥ ᾱmin = 2
√

L f ε

b1b2L
, for

some k̄ ∈ N0 we have

‖∇F(xk̄)‖ ≤ 1

θκ

(
Lᾱminb2

2
+ 2L f ε

b1ᾱmin

)
, (52)

and

F(xk) ≤ F(xk̄) + 2L f ε for all k ≥ k̄. (53)

Proof 1. Since the frame parameter �k is lower bounded, the mesh parameter αk is
lower bounded as well, and, by the subsequent finiteness of

⋃
k∈N0

Mk , the algorithm
terminates in a finite number of iterations. By the termination criterion, at the last
iteration k̄ we have �k̄ = αmin. Since the last iteration is unsuccessful, we hence get

‖∇F(xk̄)‖ ≤ 1

κ

(
b2�k L

2
+ 2L f ε

b1�k

)

= 1

κ

(
b2αminL

2
+ 2L f ε

b1αmin

)
, (54)

where we applied Lemma 4.3 in the second inequality.
2. Follows from the previous point replacing αmin with the given value in (50).
3. The property lim inf αk = 0 follows from standard arguments used in the analysis

of MADS schemes, already mentioned in the proof of Lemma 4.1. The result then
follows from point 1 and 2 (similarly to point 3 in Theorem 3.2). �	

5 Numerical illustration

In this section, we evaluate the performance of the proposed algorithms on a large
collection of nonlinear bilevel optimization problems.

Three direct-search solvers derived fromAlgorithm 2 and Algorithm 3 were imple-
mented in Matlab: Mesh-DS (related to Algorithm 3) with the mesh defined as in
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[5, Algorithm 8.2], Coordinate-DS (related to Algorithm 2) with Dk = [B⊕,−B⊕]
(where B⊕ is the canonical basis of Rn), and Random-DS (related to Algorithm 2)
with Dk = [ v

‖v‖ ,− v
‖v‖ ], where v ∈ R

n is a pseudo-randomly generated vector. We
note that for Mesh-DS, a simple decrease is imposed to decide the acceptance of a
candidate step. In contrast, Coordinate-DS and Random-DS are using a sufficient
decrease condition to make this decision.

In our tests, the parameters used for Algorithm 2 and Algorithm 3 were set as
follows: αmin = 10−6, θ = 1

2 , α0 = 1, c = 10−3, and γ = 2. For all the tested
approaches, the optional search step (Step 1) was not included. Instead, in the poll
step, when we observed a decrease along a specific direction, we further explored it
by using a simple extrapolation strategy (i.e., we multiplied the step-size αk by γ and
re-evaluated the function).

In our implementation, the lower-level problem is solved using the fminconMatlab
procedure. Toquantify the impact of inexact lower-level solutions on the performances,
we used 2 different accuracies when solving the lower-level problem (i.e., LL_tol
∈ {10−3, 10−6}). The rest of the fmincon default parameters were kept unchanged. A
feasibility tolerance of 10−6 for constraints violation was used in the solution of the
lower-level problem.

The three solvers, Mesh-DS, Coordinate-DS, and Random-DS, were evaluated
using 33 small-scale bilevel optimization problems from the BOLIB Matlab library
[46]. This library consists of a collection of academic and real-world problems. The
dimensions of the tested instances, with respect to the upper-level problem, do not
exceed 10 variables. Since an initial point is not provided, we generated five problem
instances by randomly selecting five different initial points, thus getting a total of 175
problem instances.

The computational analysis is carried out by using well-known tools from the
literature, that is data and performance profiles (see,e.g., [38] for further details).
We briefly recall here their definitions. Given a set S of algorithms and a set P of
problems, for s ∈ S and p ∈ P , let tp,s be the number of function evaluations required
by algorithm s on problem p to satisfy the condition

F̃(xk) ≤ F̃low + α(F̃(x0) − F̃low), (55)

where α ∈ (0, 1) and F̃low is the best objective function value achieved by any solver
on problem p. Then, the performance and data profiles of solver s are defined by

ρs(γ ) = 1

|P|
∣∣∣∣
{
p ∈ P : tp,s

min{tp,s′ : s′ ∈ S} ≤ γ

}∣∣∣∣ ,
ds(κ) = 1

|P|
∣∣{p ∈ P : tp,s ≤ κ(n p + 1)

}∣∣ ,
where n p is the dimension of problem p. We used a budget of 500 upper level function
evaluations in our experiments.

Figures 1 and 2 depict the resulting performance and data profiles, respectively,
considering two levels of accuracy α: 10−3 and 10−6. From Fig. 2, it can be observed
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Fig. 1 Data profiles using two type of tolerances to get an approximate minimizer for the lower-level
problem

Fig. 2 Performance profiles using two type of tolerances to get an approximateminimizer for the lower-level
problem

that the Coordinate-DS approach performs the best in terms of both efficiency (i.e.,
τ = 1) and robustness (i.e., larger τ ), particularly when the lower problem is solved
accurately (i.e., LL_tol=10−6). The data profiles (see Fig. 2) indicate that all the direct-
search approaches perform similarly for small budgets. As the budget increases, the
accuracy of the lower problem becomes impactful on the solver’s performance. Over-
all, on the test problems, the mesh-based approach is slightly more effective for small
budgets, i.e., less than 25(nx + 1). However, as the budget increases, the directional
direct-search algorithms appear to outperform the mesh-based approach.

6 Conclusion

In this work, we proposed an inexact direct-search based algorithmic framework for
bilevel optimization, under the assumption that the lower-level problem can be solved
within a fixed accuracy. We then proved convergence of two different classes of meth-
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odsfitting our scheme, that is directional direct-searchmethodswith sufficient decrease
and mesh based schemes with simple decrease. Our results include complexity esti-
mates for a directional direct-search scheme tailored forBOwith smooth true objective,
which extends previously knowncomplexity estimates for the single level case.Wealso
considered the nonsmooth case and gave convergence guarantees to (δ, ε)-Goldstein
stationary points for both classes, thus nicely extending the known Clarke stationary
point convergence properties of analogous schemes in the single level case. A lower
bound on the stepsize allows these method to convergence to a point with the desired
stationarity properties in a finite number of iterations. Preliminary numerical results
suggest that directional direct-search methods might lead to better performance than
mesh based strategies in this context.

Future developments include the extensions of our algorithms to constrained and
stochastic objectives, as well as numerical comparisons with recent zeroth order
smoothing based approaches for BO.
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