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1 Introduction

The heterogeneity of the particle masses in the Standard Model (SM) and Beyond (BSM) is
one of the big unknowns of modern high-energy physics. No explanation for the large hierarchy
of masses and mixings is present within the SM and, at the time being, no convincing evidence
of a specific flavour symmetric BSM construction has emerged. In addition, contrary to the
SM original ansatz, active neutrinos do have non-vanishing masses and two main frameworks
can be introduced to provide them with a mass: Dirac vs. Majorana. If neutrinos are Dirac
fermions, similarly to all the other SM fermions, a right-handed (RH) companion for each
flavour is introduced in the spectrum and, preserving the Lepton Number (LN) at tree level,
they acquire masses through the ElectroWeak (EW) Spontaneous Symmetry Breaking (SSB)
mechanism, proportionally to the Higgs vacuum expectation value (vev), vEW. This implies,
however, that the corresponding Yukawa couplings are tremendously small, deeply worsening
the SM flavour puzzle. Conversely, if neutrinos are Majorana fermions, their mass could be
associated with the breaking of the LN at a not-well-identified high-energy scale, providing a
“natural” explanation for their lightness through the well-known Seesaw (SS) mechanism [1–4].

An intriguing possibility is that the LN breaking, eventually leading to active neutrino
masses at low energy, is a manifestation of high-scale dynamics. Indeed, the Majorana
masses can be dynamically generated from the SSB of a global U(1) symmetry at a scale
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fa ≫ vEW. Consistently, a Goldstone boson, dubbed as Majoron [5–7], arises in this context
and the U(1) symmetry may be identified with the Peccei-Quinn symmetry associated with
the traditional QCD axion framework [8–14]. Indeed, in its original formulation, the Majoron
model has exactly the same ingredients of the KSVZ invisible axion, i.e. a complex scalar
field singlet under the SM symmetry and extra exotic heavy fermionic degrees of freedom.
The main difference is, of course, the fact that in the Majoron framework, the new exotic
fermions are singlets under the SM gauge group, and therefore the Majoron cannot be
evoked for solving the strong CP problem. Subsequent works have introduced the Majoron
in the context of the Type-II SS [15–17], radiative neutrino models [18, 19], its role as a
possible dark matter candidate [20–25] and more recently its impact in cosmology has been
highlighted [26–31], including the possibility that the Majoron may represent a viable solution
to the Hubble tension [32–35].

Differently to what happens for the QCD axion, where the U(1)PQ is explicitly broken
by non-perturbative QCD effects thus providing a tiny mass to the axion, the Majoron does
not come with an embedded explicit source of symmetry breaking. The mechanism that
gives mass to the Majoron has been debated since its formulation [5–7]. In refs. [36, 37],
for example, it is shown that Planck-suppressed operators explicitly break any global U(1)
symmetry, including LN embedded in a continuous Abelian group. Other mechanisms instead
involve the active neutrino mass generation mechanism, which includes a LN breaking, in
order to equip the Majoron with a mass [38–40]. In particular, ref. [40] shows that, in the
context of the Type-I seesaw mechanism, a minimal number of terms in the neutral lepton
mass matrix is necessary in order to build a massive Majoron model.

In this paper we will extend the results in the literature, introducing a realistic and
minimal Seesaw construction where LN and PQ are eventually identified and the Majoron
mass is strictly linked to the active neutrino masses. The starting point of our analysis is the
minimal Type-I SS, where the SM fermion spectrum is enlarged by only two RH neutrinos,
also called Heavy Neutral Leptons (HNLs), that are singlets under the whole SM group.
In this construction, therefore, at most two active neutrinos can become massive, while
the lightest one remains massless. It is possible, then, to embed a dynamical U(1)PQ SSB
mechanism, the Majoron being the associated Goldstone boson. We will work on this setup
by adopting the following “minimality” requirements:

i) only renormalisable interactions are considered in the Lagrangian densities;

ii) only one large (Majorana) scale is present, and associated with the SSB of the U(1)PQ
symmetry, i.e. only one complex scalar field couples to the RH neutrinos;

iii) only one (small) explicit U(1)PQ-violating term is introduced.

We will show that satisfying these three conditions will lead to a unique and predictive model
where the active neutrino masses and the Majoron mass are deeply connected, i.e. the explicit
symmetry-violating term is the necessary and sufficient ingredient to simultaneously provide
a mass to the active neutrinos and the Majoron.

The paper is structured as follows. In section 2, we briefly review the generation of
active neutrino masses in different SS realisations with only two RH neutrinos, first with
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the traditional type-I and then in section 2.1 the low-scale SS. In section 2.2, we explicitly
derive the active neutrino mass matrix including one-loop contributions induced by a heavy
but non-degenerate pair of HNLs. Section 3 describes the minimal massive Majoron Seesaw
(mmM) model. We explicitly extend the SM Lagrangian by specific couplings between the
HNLs and a complex scalar field, ϕ, singlet under the SM group, but endowed with a U(1)PQ
symmetry. Once this scalar acquires a vev, fa, the PQ gets spontaneously broken giving rise
to the Majoron. In section 3.1, we analyse different classes of ultraviolet (UV) embeddings
that can be constructed with one complex scalar and two RH neutrinos. In section 3.2 we
identify the mmM model that respects the three minimality conditions i)-iii). Then, we
determine the parameter space in which higher-order contributions to the neutrino mass
matrix do not spoil perturbativity, and therefore a realistic active neutrino spectrum and
PMNS mixing can be predicted.

Section 4 represents the core of this paper, containing the one-loop derivation of the
Majoron mass. A preliminary calculation is shown for a simplified model in section 4.1,
both in the chirality flipping and chirality preserving basis for the Majoron, and then in
section 4.2 the Majoron mass in the mmM model is derived, in the chirality preserving basis
where the calculations are greatly simplified. Finally, in section 5, we discuss the possible
phenomenology of this Majoron and compare it with the present bounds under the context
of general ALP and Dark Matter searches. This work is completed with three appendices:
appendix A deals with the diagonalisation of neutrino mass matrix and Majoron interactions;
appendix B describes the HNL interactions with the Majoron and SM gauge and Higgs bosons;
and finally, the one-loop Coleman-Weinberg (CW) potential [41] is derived in appendix C,
as a crosscheck of the diagrammatic calculation performed in section 4.

2 Seesaws with two HNLs

The Type-I SS mechanism [1–4] provides a natural explanation of the smallness of the active
neutrino masses by introducing RH neutrinos. To be able to explain the two neutrino
oscillation mass differences at least two HNLs, singlets under the whole SM group, have to be
introduced. Therefore, at most two active neutrinos can become massive while the lightest
one remains massless. In a compact notation, the SM and exotic neutral lepton fields can
be grouped in a left-handed lepton multiplet denoted as,

χL ≡ (νL, N c
R, S

c
R)T , (2.1)

where νL ≡ (νeL, ν
µ
L, ν

τ
L) are the SM neutrinos and NR and SR are the two HNLs, whose

conjugates are defined as ψcR = CψTR, where C is the charge conjugation matrix.
In this scenario, the most general (renormalizable) Lagrangian describing the neutral

lepton interactions reads:

−LLN = LL H̃ YN NR + LL H̃ YS SR+

+ 1
2
[
ΛNN N c

RNR + ΛSS ScR SR + ΛNS (N c
R SR + ScRNR)

]
+ h.c. .

(2.2)

where LL is the EW lepton doublet, triplet in flavour space, and H is the Higgs EW doublet,
with H̃ ≡ iσ2H

∗. YN,S are two generic three-dimensional vectors describing the Dirac-type
Yukawa interactions with the Higgs, while ΛNN , ΛSS and ΛNS are three one-dimensional
parameters.
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After EW SSB, with the Higgs developing a vev vEW = 246GeV, the following neutral
lepton mass matrix is generated

−LνM ⊃ 1
2 χLMχ χ

c
L with Mχ =


0 mN mS

mT
N ΛNN ΛNS

mT
S ΛNS ΛSS

 ≡

 0 m̂

m̂T Λ̂

 , (2.3)

where the Dirac mass terms are defined as mN,S ≡ YN,S vEW/
√
2. Sometimes it will be useful

to use the compact notation m̂ and Λ̂ for indicating the 3× 2 and 2× 2 Dirac and Majorana
mass terms. For example, diagonalising Mχ, a mass term for the active neutrinos appears
and the corresponding mass matrix is given by

mType-I
ν ≃ −m̂ Λ̂−1m̂T . (2.4)

The values of the Dirac and Majorana masses are fixed in order to reproduce the
active neutrino masses and the PMNS mixings. Assuming no large hierarchies within the
entries of the Dirac Yukawas, (m̂)ij = O(vEW), in order to reproduce the neutrino mass
squared differences, one is forced to take the overall scale of the Majorana mass matrix
as Tr Λ̂ ∼ 1014 − 1015 GeV. The latter is approximately the mass of the HNLs, after the
diagonalisation of Mχ, and therefore it is practically impossible to observe any effect of the
HNLs at present/future colliders or flavour factories.

In the original construction of the Type-I SS mechanism, all the leptons have the same
transformation properties under LN and customarily L(LL) = 1 = L(NR) = L(SR) is chosen.
It follows that the Dirac terms in eq. (2.2) are LN invariant, while the Majorana mass terms
violate LN by two units. A useful exercise consists of interpreting the Dirac Yukawas and the
Majorana masses as spurion fields, that is non-dynamical fields that may own transformation
properties, in this specific case, only under LN. Hence, one can formally implement LN
invariance of the whole Lagrangian, assigning specific charges to the spurions: whenever a
spurion charge is different from zero, the corresponding term would violate LN. Applying this
spurionic description to the Lagrangian in eq. (2.2), one obtains L(m̂) = 0 and L(Λ̂) = −2,
confirming that the Majorana terms violate LN. Moreover, we obtain that the active neutrino
mass matrix also violates LN as L(mType-I

ν ) = 2, as expected.
Going beyond the original setup, modifying the LN charge assignments would change the

previous conclusions, without necessarily affecting the physical observables. For example, if
we fix L(LL) = 1 and L(NR) = L(SR) = n ̸= 1, the Dirac terms would now violate the LN as
indeed L(m̂) = 1− n, while the Majorana ones may or may not violate it, depending on the
explicit value of n, being L(Λ̂) = −2n. However, the active neutrino mass matrix still violates
LN by the same quantity as in the traditional case, L(mType-I

ν ) = 2, for any value of n.
This simple exercise points out the following:

- There are several LN charge assignments that lead to the same physics.

- The LN conserving or violating status of a Lagrangian term can only be assessed
with respect to a specific choice of the charges. Moreover, we can conclude that LN
conservation can only occur if there is a charge assignment such that all the LN spurions,
m̂ and Λ̂ in this case, have vanishing charges.
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- The active neutrino masses necessarily depend on (a combination of) the spurions that,
in any charge assignment, have a non-zero charge: this is to say that LN is broken
by the simultaneous presence of these spurions, as otherwise, if any of them vanishes,
the active neutrinos would remain massless. For the Type-I SS case, as there exist
charge assignments such that both m̂ and Λ̂ are explicitly LN violating implies that
both quantities have to appear in the definition of mType-I

ν , confirming the result of the
explicit computation and that both of them should be non-vanishing to assure massive
active neutrinos. However, in more complicated setups with respect to the Type-I SS,
it may occur that LN-violating spurions appear only in loop-level contributions to the
active neutrino masses. Indeed, a broken symmetry does not necessarily imply that its
effects are manifest in observables described with tree-level Feynman diagrams.

We will use and adapt this reasoning in the next sections, where we will go through
other popular SS mechanisms, and show that the very last condition helps identify the
genuine LN-violating spurions.

2.1 The low-scale Seesaw models

A popular modification of the canonical Type-I Seesaw is the class of constructions that
undergo the name of low-scale Seesaw (LSSS) mechanisms [42–45], also known as “LN
protected” SS mechanisms. In this kind of scenarios, the two HNLs have different non-
vanishing LN charge assignments. For example, assuming L(LL) = L(NR) = −L(SR) = 1
leads to the following LN conserving Lagrangian:

−LLN = LL H̃ YN NR + ΛNS
2

(
N c
R SR + ScRNR

)
+ h.c. (2.5)

while (a combination of) additional terms, explicitly violating the LN symmetry, have to be
added to generate the desired light active neutrino spectrum: in all generality,

−LϵLN = LL H̃ ϵYS SR + ϵΛNN
2 N c

RNR + ϵΛSS
2 ScR SR + h.c. . (2.6)

By the physical assumption of an approximate LN symmetry, the three parameters ϵYS , ϵΛNN
and ϵΛSS are naturally small compared to the LN preserving ones appearing in eq. (2.5).

In the broken EW phase, one obtains the following neutrino mass matrix

−L LSSS
νM ⊃ 1

2 χLM
LSSS
χ χcL with MLSSS

χ =


0 mN ϵmS

mT
N µ′ ΛNS

ϵmT
S ΛNS µ

 , (2.7)

with the obvious definitions of the Dirac mass terms, inherited from the Lagrangian densities
in eq. (2.5) and (2.6), and where µ′ = ϵΛNN and µ = ϵΛSS have been used to make contact
with the notation often used in the literature. Adopting the spurion description, with the
chosen charge assignment, the parameters of the LN violating terms should be promoted
to spurions with non-vanishing charges, L(ϵmS , µ

′, µ) = (+2,−2,+2), while the quantities
mN and ΛNS do not acquire any charge.
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After the EW SSB, at leading order in the µ(′)/ΛNS and ϵmS/ΛNS expansion, the active
neutrinos mass matrix is given by

mLSSS
ν ≃ −µ mNm

T
N

Λ2
NS

− ϵ
mSm

T
N +mN m

T
S

ΛNS
. (2.8)

Having introduced only two exotic HNLs, this implies again that the lightest active neutrino
remains massless. The other two neutrinos acquire masses that are functions of ϵmS and
µ, but not of µ′ that does not play any role at leading order.

The advantage of this class of LSSS models is that having introduced “naturally” small
terms, i.e. ϵms ≪ mN and µ≪ ΛNS , one can explain the active neutrino masses by introducing
a much lighter Majorana scale. To reproduce the observed neutrino mass spectrum it is
sufficient to fix ϵmS(µ) ∼ 10(1000) eV for a chosen ΛNS ∼ O(TeV). It follows that, while
active neutrino masses remain small, the HNLs are relatively light and possibly detectable at
colliders. Moreover, the unique d = 6 effective operator resulting from integrating out the
HNLs does not depend on the LN violating parameters, thus describing possibly interesting
phenomenological effects in both direct and indirect searches [44]. Although TeV scale HNLs
is a very attractive feature of these constructions, it has to be pointed out that the texture in
eq. (2.7) provides a good description of the low-energy neutrino data even for larger ΛNS
by accordingly rescaling the LN violating parameters.

Two popular models in this scenario are the ones obtained by setting ϵmS = µ′ = 0,
dubbed as Inverse Seesaw (ISS) [46, 47] or by imposing µ = µ′ = 0, dubbed as Linear Seesaw
(LSS) [48, 49], that predict the following active neutrino masses respectively

mISS
ν ≃ −µ mNm

T
N

Λ2
NS

, mLSS
ν ≃ −ϵmSm

T
N +mN m

T
S

ΛNS
. (2.9)

Notice that in the ISS case, it is not possible to describe successfully the neutrino spectrum and
the PMNS mixing matrix with only two HNLs, as the product mNm

T
N has rank one. On the

other hand, in the Linear Seesaw case, the light neutrino mass matrix has, instead, rank 2 and
allows for a description of the neutrino sector compatible with data as discussed in ref. [50].

Before concluding this section, we generalise the charge assignment and discuss the
spurion role as we did for the Type-I SS case. First of all, one key hypothesis of this setup
is that L(NR) = −L(SR) ̸= 0 and as a result the term associated to ΛNS is automatically
LN invariant, while the two Majorana terms proportional to µ and µ′ always violate LN, as
L(µ) = −2L(NR) and L(µ′) = −2L(SR). To provide a mass for the active neutrinos, the
charge of the lepton doublet should be fixed such that L(LL) = L(NR): this guarantees that
the term proportional to YN is invariant under LN.1 All in all, a non-vanishing active neutrino
mass would therefore involve µ and µ′, although not necessarily the two at the same time.
The ISS case is the example in which only the term proportional to µ is switched on as an
explicit breaking of LN and a tree-level active neutrino mass is generated. On the other hand,
although we may expect the same for µ′, this is not the case: no tree-level contributions to
the active neutrino masses arise in this case, but they arise at one-loop [51]. Focusing now

1The alternative choice L(LL) = L(SR) leads to exactly the same physics, as indeed it is sufficient to
exchange NR with SR to obtain the same neutral lepton mass matrix.
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on the Dirac terms, if we fix L(LL) = 1 and L(NR) = −L(SR) = n ̸= ±1, we conclude that
both YN and YS should acquire a charge, L(YN ) = 1− n and L(YS) = 1 + n, thus breaking
LN. Notice that this is independent of the presence of the terms proportional to µ and µ′.
This implies that the active neutrino masses necessarily contain the product of the two Dirac
Yukawas, consistently with the explicit computation in the LSS mechanism.

An interesting alternative option with respect to the Inverse and Linear SS mechanisms
is when µ = 0, but both YS and µ′ are added to the Lagrangian. As we will discuss in
the next section, this may have a deep impact in the active neutrino mass generation and,
moreover, represents the optimal setup for a massive Majoron.

2.2 The Extended Seesaw limit

In this section, we further exploit the spurionic approach in a modified LSS Lagrangian,
which has been named as Extended Seesaw limit in ref. [52], whose physics case will be
worked out in the next section. Using the same notation of section 2.1, we separate the
neutral leptonic Lagrangian in a part that is invariant under LN and a part that explicitly
violates it, once fixing for definiteness the LN charges as L(LL) = L(NR) = 1, L(SR) = −3,
L(ΛNN ) = −2 and L(ΛNS) = 2:

−LLN = LL H̃ YN NR + ΛNN
2 N c

RNR + ΛNS
2 (N c

R SR + ScRNR) + h.c. (2.10)

−LϵLN = ϵLL H̃ YS SR + h.c. . (2.11)

The only term that explicitly breaks LN is the one proportional to ϵYS that is assumed to
be ϵYS ≪ YN . On the other hand, once ΛNN and ΛNS acquire a background value, they
represent two large Majorana masses such that ΛNN ∼ ΛNS ≫ vEW.

After SSB of the EW symmetry, the corresponding neutral lepton mass matrix reads:

−L ESS
νM ⊃ 1

2χLM
ESS
χ χcL + h.c. with MESS

χ =

 0 mN ϵmS

mT
N ΛNN ΛNS

ϵmT
S ΛNS 0

 , (2.12)

where ΛNN plays the role that in the traditional ISS mechanism belongs to µ′, although
the similarities end here, as there is a tree-level contribution to the active neutrino masses
proportional to ΛNN . Indeed, the active neutrino mass matrix at tree level is given by

mTL
ν = −ϵmSm

T
N +mN m

T
S

ΛNS
+ ϵ2

ΛNN
ΛNS

mSm
T
S

ΛNS
, (2.13)

although the second term is typically negligible as ϵ≪ 1 is assumed. On the other hand, this
condition translates to an upper bound for the Majorana scale: for example, ϵ < 10−3 implies
that ΛNS < 1012 GeV, to reproduce the observed atmospheric mass splitting.

It is well known in the literature [51–54], that large values of ΛNN and ΛNS can generate
a sizable mass splitting between the two HNL masses, implying non-negligible and possibly
dangerous one-loop corrections to the tree-level result in eq. (2.13). The calculation and the
discussion of the phenomenological consequences of such loop corrections will be detailed
in the following subsection.
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2.2.1 Active neutrino masses at one-loop

Let us start by diagonalising the HNL sector of the mass matrix in eq. (2.12). The leading
contribution, in the vEW /Λ expansion, to the masses of the HNL states reads:

MN,S = ΛNS
2

√4 +
(ΛNN
ΛNS

)2
∓
(ΛNN
ΛNS

) . (2.14)

Notice that positively defined masses can be obtained by redefining the lightest eigenvector
with a Majorana phase i.

The active neutrino mass matrix receives one-loop contributions from diagrams involving
the HNLs and either the Higgs or the Z gauge boson. At leading order in vEW /Λ one
obtains [51–54]:

δm1L
ν = 2 mN m

T
N

(4πv)2
M2
H + 3M2

Z

MN +MS
log

(
MS

MN

)
. (2.15)

While in the degenerate limit, MS ∼MN , i.e. ΛNN ∼ 0, the Higgs and Z boson contributions
cancel each other, when ΛNN ∼ ΛNS the HNLs mass splitting induces sizable one-loop
corrections. Summing together the tree- and one-loop contributions, the neutrino mass
matrix can be written as

mν = mTL
ν + δm1L

ν ≡ mT1(uvT + vuT ) +mT2vvT +mLuuT , (2.16)

where the vectors u and v

u ≡ YN
|YN |

, v ≡ YS
|YS |

, (2.17)

define the directions in the flavour space and where the tree-level and one-loop overall
numerical contributions mT1 ,mT2 and mL in terms of the Dirac Yukawas and Majorana
mass terms read

mT1 = −ϵ |YN ||YS |v
2
EW

2ΛNS
, mT2 = ϵ2

ΛNN
ΛNS

|YS |2v2
EW

2ΛNS
, (2.18)

mL = |YN |2

16π2
M2
H + 3M2

Z

MN +MS
log

(
MS

MN

)
. (2.19)

To obtain the analytic expressions for the light neutrino mass eigenvalues, we generalise
and adapt the procedure introduced in ref. [50], including the extra tree-level and one-loop
contributions. The two non-zero eigenvalues read

|m±|2 = 1
2
[
m2
C − τ2(2m2

T1 −m2
T2 −m2

L)

±
√(

m2
C − τ2(2m2

T1
−m2

T2
−m2

L)
)2

− 4τ4(m2
T1

−mLmT2)2

]
,

(2.20)

where

mC ≡ |2mT1 + ηmL + η∗mT2 | , η ≡ u†v ≡ |η|eiϑη , τ2 ≡ 1− |η|2 . (2.21)
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Conventionally, we have chosen mT1 < 0 and θη ∈ [−π/2, π/2]. This has no impact
on the results as the sign of mT1 can be adjusted in mC by a shift of π in the phase ϑη.
Contrary to the case in ref. [50], the phase ϑη is a physical parameter to the presence of the
extra tree- and loop-contributions: only neglecting mT2,L it is possible to redefine away ϑη.2

The vectors u and v are fixed to reproduce the PMNS mixing angles, following ref. [50]. As
there are enough free parameters to correctly account for the observed values, they do not
impose any constraints on the model3 For the Normal Ordered (NO) and Inverted Ordered
(IO) spectra, we thus have

NO: |m1|2 = 0 , |m2|2 = |m−|2 , |m3|2 = |m+|2 , (2.22)
IO: |m1|2 = |m−|2 , |m2|2 = |m+|2 , |m3|2 = 0 . (2.23)

We further define the ratio of the solar and atmospheric neutrino mass-splittings as in ref. [55]

r ≡ |∆m2
sol.|

|∆m2
atm.|

≡



|∆m2
21|

|∆m2
31|

= |m−|2

|m+|2
, for the NO ,

|∆m2
21|

|∆m2
32|

= |m+|2 − |m−|2

|m+|2
, for the IO .

(2.24)

In the limit mT2,L ≪ mT1 , the expression in eq. (2.20) greatly simplifies and reads

|m±|2 ≈ m2
T1 (1± |η|)2 , (2.25)

which matches with the result of ref. [50]. Along the same lines, it is convenient to extract
the value of |η| from the neutrino mass difference ratio:

|η| ≡ 1−
√
r

1 +
√
r
, for the NO , (2.26)

|η| ≡ 1−
√
1− r

1 +
√
1− r

, for the IO . (2.27)

These approximate expressions are valid given that, as it will turn out in our UV completed
model, the contributions of mT2,L are at most O(10%) in the considered parameter space.
Therefore, these will be the formulae used from now on.

3 The minimal massive Majoron Seesaw model

All the discussion in the previous section concerns the LN symmetry of the infrared (IR)
theory. However, a theoretically intriguing assumption is that the Majorana mass terms in
the low-energy Lagrangian of eq. (2.2) have a dynamical origin in the UV-theory, through the
SSB of the U(1)PQ at some scale fa ∼ Λ ≫ vEW, similarly to what happens in the SM where
Dirac mass terms arise from the SSB of the SU(2)L symmetry. In the following, we discuss

2Notice that, introducing a Majoron in this construction, even if mT2,L ̸= 0, the Majoron potential
dynamically relaxes such parameter to θη = 0, as discussed in appendix C.

3They enter, however, in fixing the flavour structure of the Majoron couplings, see section 5.
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the embedding of a dynamical SSB mechanism in the models with two HNLs described in
the previous section, respecting three “minimality” requirements: i) only renormalisable
interactions are considered in the Lagrangian densities; ii) only one large (Majorana) scale is
present and is associated with the SSB of the PQ symmetry, i.e. only one complex scalar
field couples to the HNLs; and iii) only one (small) explicit LN and PQ-violating term is
introduced. In particular, we assume that there is no other PQ symmetry-breaking term
than the one in the Yukawa sector. We will see that, once satisfied these three conditions,
a unique model that correctly describes the active neutrino spectrum and PMNS mixing
also predicts a tight correlation between these masses (i.e. associated with the LN breaking)
and the Majoron mass (i.e. resulting from the PQ breaking).

According to the previous criteria, the SM scalar spectrum is extended only by a single
complex scalar field ϕ, endowed with a U(1)PQ global symmetry, that gets spontaneously
broken by its non-vanishing vev, fa. It is customary to define

ϕ ≡ (fa + ρ)√
2

eia/fa , (3.1)

being ρ the radial mode and a the GB associated with the SSB of the PQ symmetry, hereafter
dubbed as Majoron. The scale fa is assumed to be much larger than the EW scale, fa ≫ vEW,
in such a way that the radial field can be integrated out and the Majoron remains the only
scalar light degree of freedom at low energies, besides the Higgs.

Although the RH neutrinos are gauge singlets, they can, in general, transform both under
the LN and PQ symmetries and therefore can couple both with the SM leptons (and the
Higgs) and the scalar field ϕ. Therefore, when the PQ symmetry gets spontaneously broken
the Majorana mass terms for the RH neutrinos are dynamically generated. The manifestation
of the LN breaking in the neutral lepton mass matrix of eq. (2.3) can be easily traced by
introducing LN spurionic charges, as already illustrated in the previous section. Thus, to
identify the specific LN-violating pattern, it is sufficient to impose a specific LN charge
assignment to the neutral leptons and read the spurionic charges of the terms in the neutral
lepton mass matrix. Giving a vanishing LN charge to the Higgs simplifies the exercise.

On the other hand, a different reasoning is necessary to identify the possible sources of
the PQ symmetry breaking, as we will discuss in the next section. In principle one could
also consider additional PQ-violating terms in the scalar potential, at the cost of washing
out the Majoron-neutrino mass correlation studied in this paper, contrary to the minimality
condition assumed from the beginning.

3.1 Spurionic analysis of the PQ symmetry

It is relatively easy to introduce the field ϕ in the SS realisations discussed in the previous
section, giving rise to SSB of the LN. Accordingly to the minimality condition i) of having
a renormalisable Lagrangian, we can write

−LPQ = LL H̃ YN NR + LL H̃ YS SR+

+ 1
2 ϕ

[
YNN N c

RNR + YSS ScR SR + YNS
(
N c
R SR + ScRNR

) ]
+ h.c. ,

(3.2)
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where the Dirac, YN,S , and Majorana, YNN,NS,SS, Yukawa terms are large or small depending
on the underlying LN symmetry assumed for each scenario. For example, the Linear Seesaw
case is obtained, after the EW and PQ SSB, for

YS → ϵYS , YNN = 0 = YSS (3.3)

and identifying

mN = YN√
2
vEW , ϵmS = ϵYS√

2
vEW , ΛNS = YNS√

2
fa , (3.4)

with the “natural” hierarchy, from the LN charge assignment point of view, ϵYS ≪ YN .
It is straightforward to observe that, besides the LN, the Lagrangian in eq. (3.2) possess

an unbroken U(1)PQ symmetry, with charge assignment

PQ(LL) = PQ(NR) = PQ(SR) = −PQ(ϕ)/2 . (3.5)

As a consequence, the Majoron originated within the PQ SSB remains massless. This can
be explicitly seen performing the following field redefinitions:

χL → e
− i

2
a

fa χL , (3.6)

that remove the Majoron dependence in all the Yukawa terms.4 The Majoron dependence
reappears then in the Lagrangian through the kinetic terms as derivative interactions,
signalling the underlying presence of the GB shift symmetry.

In order to give a mass to the Majoron, small PQ-violating terms in the Lagrangian
can be introduced:

−LϵPQ = 1
2 ϕ

∗
[
ϵYNN N c

RNR + ϵYSS ScR SR + ϵYNS
(
N c
R SR + ScRNR

) ]
, (3.7)

being ϵY naturally tiny parameters “protected” by the PQ symmetry. It is impossible now
to simultaneously eliminate the Majoron dependence from both the Yukawa Lagrangian in
eq. (3.2) and that in eq. (3.7) by a field redefinition alike in eq. (3.6), implying the presence
of shift symmetry violating terms in the theory and consequently a (loop generated) mass
for the Majoron.

The additional terms introduced in eqs. (3.7) also contribute to the active neutrino masses,
but clearly only through sub-dominant effects with respect to the leading contributions in
eq. (3.2). However, this implies that the Majoron mass is not correlated to the active
neutrino masses, or said otherwise the explicit PQ breaking can be considered as an ad hoc
ingredient to provide the Majoron with a mass –equivalent to an explicit Majoron mass
term in the scalar potential- rather than being a common feature of the Majoron and active
neutrino mass generation mechanisms. For this reason, we do not dub as “minimal” this
realisation and in particular it violates the minimality condition iii) as two independent
explicit symmetry-breaking terms are present, one for the LN and the other for the PQ.

4The simultaneous redefinition of the RH charged lepton fields, eR → e
− i

2
a

fa eR, ensures the removal of the
Majoron dependence in the charged lepton Yukawa interaction. Being a vectorial transformation implies no
generation of anomalous couplings with the gauge bosons.
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The choice of the Lagrangian in eqs. (3.2) and (3.7) is clearly not the only possible UV
completion. In particular, changing the PQ charge assignment in eq. (3.5) implies that ϕ(∗)

insertions may be different. The spurionic approach adopted in section 2 turns out to be
very useful also in this case, to discuss the (formal) invariance of the different terms under
the PQ symmetry and identify the minimal model. Thus, in what follows, we consider the
general Lagrangian in eq. (2.2) and apply the spurionic analysis for the PQ symmetry as
we did for the LN in the previous section.

First of all, given the structure of eq. (2.2), we notice that switching NR with SR gives
physically equivalent configurations. Therefore, without any loss of generality, we simplify the
spurionic discussion by fixing PQ(LL) = PQ(NR), which implies the PQ invariance of the term
proportional to YN . The spurionic charges of the other quantities entering eq. (2.2) read as:

PQ(YS) =PQ(NR)− PQ(SR) , PQ(ΛNS) =− PQ(NR)− PQ(SR)
PQ(ΛNN ) =− 2PQ(NR) , PQ(ΛSS) =− 2PQ(SR) .

(3.8)

In particular, if PQ(Λij) = ±PQ(ϕ) then the corresponding term is a Yukawa-like interaction
between the two HNL fields and the scalar ϕ(∗) (alike the terms proportional to YNN , YSS
and YNS in eq. (3.2)); on the other hand, if PQ(Λij) = 0 then we deal with a direct Majorana
mass term; in all the other cases, PQ(Λij) ̸= 0, ±PQ(ϕ) implies that it is not possible to
write down the corresponding term at the renormalisable level.

We can now proceed with considering different hypotheses. First of all, if PQ(NR) =
PQ(SR), then PQ(YS) = 0 and therefore also the second Yukawa term proportional to YS is
invariant under PQ. On the other hand, PQ(ΛNN ) = PQ(ΛNS) = PQ(ΛNN ) = −2PQ(NR)
and, by selecting PQ(NR) = −PQ(ϕ)/2, we end up with the Lagrangian in eq. (3.2), that
is with a non-minimal model where the Majoron mass and the active neutrino masses are
independent. Fixing PQ(NR) = +PQ(ϕ)/2 leads to an equivalent setup as indeed the
corresponding Lagrangian is the one in eq. (3.2) by interchanging ϕ∗ with ϕ. On the other
hand, for any other choice of PQ(NR), the second line of eq. (3.2) is strictly forbidden.

We therefore continue our discussion assuming that PQ(NR) ̸= PQ(SR). In this case,
independently from the exact values of the charges, the Yukawa term proportional to YS is
not invariant under PQ. However, as already previously discussed, this term is necessary in
order to obtain realistic active neutrino masses and therefore it must be introduced as an
explicit breaking: we thus adopt the same notation as in the LSS with YS → ϵYS referring
to the PQ symmetry breaking.

Next, if one of the two RH neutrinos has a vanishing PQ charge, then the corresponding
Majorana HNL bilinear would be invariant under PQ and the associated term would be
a direct mass. On the other hand, it would always be possible to fix the non-vanishing
PQ charge of the other HNL such that a Yukawa-like Majorana term gets allowed in the
Lagrangian. Explicitly, if PQ(NR) = 0, the term proportional to ΛNN is invariant under PQ
and it enters the Lagrangian without any ϕ(∗) insertion. Then, there are two possibilities
to give mass to the second HNL: either PQ(SR) = ∓PQ(ϕ)/2 or PQ(SR) = ∓PQ(ϕ),
corresponding to promoting to a Yukawa-like interaction the term with ΛSS or that with
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ΛNS . At the Lagrangian level and using the notation of eq. (2.3), these two cases read as

PQ(NR) = 0 & PQ(SR) = ∓PQ(ϕ)
2 : Λ̂ −→

(
ΛNN 0
0 YSSϕ

(∗)

)

PQ(NR) = 0 & PQ(SR) = ∓PQ(ϕ) : Λ̂ −→
(

ΛNN YNSϕ
(∗)

YNSϕ
(∗) 0

)
.

(3.9)

The opposite situation with PQ(SR) = 0 is very similar and would lead to

PQ(SR) = 0 & PQ(NR) = ∓PQ(ϕ)
2 : Λ̂ −→

(
YNNϕ

(∗) 0
0 ΛSS

)

PQ(SR) = 0 & PQ(NR) = ∓PQ(ϕ) : Λ̂ −→
(

0 YNSϕ
(∗)

YNSϕ
(∗) ΛSS

)
.

(3.10)

All these models, however, are not minimal as they violate the minimality condition ii) as
there are two different scales associated with the Majorana terms after the PQ SSB: the
direct Majorana mass and fa.

On the other hand, if none of the HNLs has a vanishing PQ charge but PQ(NR) =
−PQ(SR), the diagonal Majorana terms would have charges PQ(ΛNN ) = −PQ(ΛSS) =
−2PQ(NR) such that, taking PQ(NR) = ∓PQ(ϕ)/2, they can be written in the Lagrangian
by multiplying by ϕ or ϕ∗. On the other hand, PQ(ΛNS) = 0 and it enters as a direct
Majorana mass. At the Lagrangian level, we can write

PQ(NR) = −PQ(SR) = −PQ(ϕ)
2 : Λ̂ −→

(
YNNϕ ΛNS
ΛNS YSSϕ

∗

)
(3.11)

and equivalently for PQ(NR) = −PQ(SR) = +PQ(ϕ)/2 interchanging ϕ∗ with ϕ and
viceversa. As for the previous two cases, also in this construction, there are two Majorana
scales, ΛNS and fa, and therefore the model is not minimal for condition ii).

As the result of the discussion above, we further restrict the choice of the PQ charges
of the HNLs such that PQ(NR) ̸= ±PQ(SR) with both non-vanishing, preventing in this
way any direct Majorana mass term in the Lagrangian. There are only two other possible
setups that allow to give masses to both the HNLs and lead to the Seesaw mechanism.
The first of them corresponds to promote the Majorana terms proportional to ΛNS and
to ΛSS to be Yukawa-like interactions: the corresponding PQ charges and the Majorana
block of the mass Lagrangian are

PQ(NR) = −PQ(SR)
3 = −PQ(ϕ)

2 : Λ̂ −→
(

0 YNSϕ
∗

YNSϕ
∗ YSSϕ

)
(3.12)

or the equivalent setup

PQ(NR) = −PQ(SR)
3 = +PQ(ϕ)

2 : Λ̂ −→
(

0 YNSϕ

YNSϕ YSSϕ
∗

)
. (3.13)

This construction does not suffer from the presence of multiple Majorana scales, as after
the PQ SSB the non-vanishing entries are proportional to fa, and thus it looks promising.
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However, the active neutrino mass matrix receives two different contributions at the tree level,

mν ≃ −
√
2 YSS
Y 2
NS

mN m
T
N

fa
−

√
2ϵmN m

T
S +mSm

T
N

YNSfa
, (3.14)

where the first term dominates, unless specific tuning is present among the parameters. It
follows that it is not possible to correctly describe the active neutrino masses and PMNS
mixing as the dominant term has rank 1, thus ruling out this model.

3.2 The minimal massive Majoron Seesaw Lagrangian

The only case left unexplored identifies the minimal massive Majoron Seesaw (mmM) model
where the Majoron mass and the active neutrino masses are indeed correlated. This model
satisfies the three minimality conditions i)–iii) and describes realistic active neutrino masses
and PMNS mixing. The PQ charges of the fields involved satisfy to

PQ(LL) = PQ(NR) = −PQ(SR)
3 = −PQ(ϕ)

2 (3.15)

and the corresponding PQ conserving and explicitly violating Lagrangian densities read as

−L mmM
PQ =LL H̃ YNNR+

YNS
2 ϕ∗

(
N c
RSR+ScRNR

)
+YNN

2 ϕN c
RNR+h.c. , (3.16)

−L mmM
ϵPQ = ϵLL H̃ YS SR+h.c. , (3.17)

where as usual YN , YNN and YNS are assumed to be order one, while ϵYS much smaller.
Notice that this Lagrangian is invariant under the interchange of ϕ and ϕ∗ as far as the
sign of PQ(ϕ) in eq. (3.15) is accordingly flipped.

Focussing on the explicit PQ breaking, it is straightforward to check that neglecting
the ϵYS term, the Majoron dependence can be removed from these Yukawa-like interactions,
reappearing only in derivative couplings, ending again with a massless Majoron model.
Moreover, in this same limit, the active neutrino mass matrix has rank 1 and cannot generate
the two observed neutrino mass differences. On the other hand, once this term is taken into
consideration, it explicitly breaks both the PQ symmetry and the LN: the Majoron acquires
a mass and the active neutrino masses can be described according to the observations, both
types of masses being necessarily proportional to ϵYS .

These equations closely look like the expressions in eqs. (2.10) and (2.11) of the Extended
Seesaw context, and indeed, after the SSB of the EW and PQ symmetries, the resulting
lepton mass matrix matches the one in eq. (2.12), with the mass terms explicitly given by

mN,S = YN,S√
2
vEW , ΛNN,NS = YNN,NS√

2
fa , ΛSS = 0 . (3.18)

We can now use the experimental data from neutrino oscillation experiments, adopting
for definiteness the results presented in ref. [55] (including the SK atmospheric data) to
constrain the parameter space of the mmM model by use of eqs. (2.25)–(2.27). In figure 1 we
scan the parameter space ΛNS vs. ϵYS , running over the different Yukawa couplings taken
in the “natural” range |Yi| ∈

[
10−2, 1

]
, letting ϵ the only ad hoc “small” parameter. Their

magnitude is represented by the coloured horizontal band: the smallest values are in blue,
while the largest ones are in orange. In the coloured regions, the mass eigenstates are fixed
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10−2 10−1 100
min(|Yi|)

10−2 10−1 100
|YNN |

10−2 10−1 100
|YN |

NO

10−2 10−1 100
min(|Yi|)

10−2 10−1 100
|YNN |

10−2 10−1 100
|YN |

IO

Figure 1. The colored region in the plots represents the allowed {ϵ, Yi, ΛNS} parameter space for
which the condition mL ≤ 0.1mT is satisfied, assuming Normal Order (top) or Inverse Order (bottom),
respectively. In the third upper plot the benchmark point |ϵYS | = 1.7× 10−4, |YNN | = |YN | = 0.06,
and Λ = 1010 GeV is shown.

to reproduce both mass differences, by setting r and one mass splitting to their experimental
central values, while variations within the corresponding 3σ ranges do not show qualitative
changes. The loop contribution is required to be at most the 10% of the tree-level ones, to
preserve the predictivity required by the hypothesis of this work. Moreover, ϵ satisfies the
condition ϵ ≤ 10−2 min |Yi|, reflecting the soft explicit breaking of the LN.

These conservative conditions show a parameter space where the scale ΛNS spans a
relatively small range of values, ΛNS ∼ 108 − 1011 GeV, where the Yukawa couplings are
larger than 10−2. As expected, relaxing any of the previous conditions enlarges the parameter
space: e.g., requiring the loop contributions to be at most the 30% of the tree-level one, one
would allow reaching scales of ΛNS ∼ 1012 GeV with Yukawa couplings of order |Yi| ∼ 0.7.

Notice that the requirement of not going below 10−2 in the Yukawa couplings constrains
the region of smaller ΛNS values. This can be seen in the left and centre plots of figure 1,
where |YN | and |YNN | need to be small in order to tame the loop contribution. As ΛNS grows
the loop contribution stops being so relevant, but as ϵ necessarily grows to fix the correct
mass splitting, the constraint of ϵ ≤ 10−2 min |Yi| exclude the upper sides of the rhomboid.

The next two sections are devoted to the study of the Majoron mass and its phenomeno-
logical constraints.
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4 One-loop contributions to the Majoron mass

Before calculating the one-loop contributions to the Majoron mass in the mmM scenario,
it is useful to discuss a simpler model, similar to the one introduced in [56], to highlight
some fundamental features.

4.1 Pseudo-GB mass radiative contributions in a toy model

We consider a Dirac fermion field ψ coupled to a complex scalar singlet ϕ through the
interaction Lagrangian

−L = y ϕψL ψR + ỹ ϕ∗ ψLψR + h.c. (4.1)

with y and ỹ reals. The fields ψ and ϕ have non-trivial transformation properties under a
global U(1), spontaneously broken by ϕ getting a non-vanishing vev, fa. It is clear from the
above Lagrangian that, due to the simultaneous presence of y and ỹ, there is no possible
charge assignment for which the interaction Lagrangian could preserve any U(1) symmetry.
One could assume that y-term is the symmetry preserving coupling and ỹ-term is the (small)
softly breaking one, but the opposite assumption is viable and leads to the same physical
results. For the time being, without fixing a specific charge assignment and thus without
identifying which term among y and ỹ is symmetry breaking, we just consider their product
y ỹ to be a small quantity.

After SSB has occurred, the fermion mass term and coupling with the pseudo-GB a reads:

−L ⊃ mψ cos
(
a

fa

)
ψ ψ + im′

ψ sin
(
a

fa

)
ψ γ5 ψ , (4.2)

⊃ mψ ψψ + im′
ψ

a

fa
ψ γ5ψ − mψ

2

(
a

fa

)2
ψψ + . . . , (4.3)

where mψ and m′
ψ are defined as

mψ ≡ y + ỹ√
2
fa , m′

ψ ≡ y − ỹ√
2
fa , (4.4)

and in the second line, we have expanded in a/fa and kept the two lowest order contributions
that are the only relevant for a one-loop calculation.

As the simultaneous presence of y and ỹ explicitly breaks the U(1) symmetry, one expects
a GB mass term to appear at loop level proportional to the product y ỹ. Denoting with
−iM (p2) the sum of all one-particle-irreducible one-loop contribution to the GB scalar
propagator, any positive contribution to M (p2 = 0) corresponds to a positive shift of the
GB mass. Such contributions can appear only from two types of loops, shown in figure 2:
a) the Bubble diagram and b) the Balloon diagram. The Bubble diagram (left) needs two
3-point vertices, and therefore is proportional to m′2

ψ , while the Balloon one (right) only
involves a single 4-point vertex and is proportional to mψ.
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(a) Bubble Diagram. (b) Balloon Diagram.

Figure 2. Diagrams contributing to the 1-loop mass of the GB.

In dimensional regularization (with d ≡ 4− 2ε), one obtains that the zero momentum
contribution to the GB propagator reads:

−iM = −iMA − iMB

= i
m′2
ψ

f2
a

∫ ddk
(2π)d

Tr
[
γ5(/k +mψ)γ5(/k +mψ)

]
(k2 −m2

ψ)2 + i
mψ

f2
a

∫ ddk
(2π)d

Tr[/k +mψ]
k2 −m2

ψ

= −i
(−m2

ψm
′2
ψ +m4

ψ)
4π2f2

a

[
1− log

(
m2
ψ

µ2
R

)
+ 1
ε̃UV

] (4.5)

with the first (second) term referring to the bubble (balloon) diagram. In eq. (4.5), µR is
the renormalisation scale and ε̃UV is defined as

1
ε̃UV

≡ 1
εUV

− γE + log(4π) , (4.6)

with γE the Euler-Mascheroni constant.5 The one-loop pseudo-GB mass, in the MS-scheme,
then reads

m2
a =

yỹ (y + ỹ)2

4π2 f2
a , (4.7)

confirming the dependence on the product between y and ỹ, independently from the U(1)
charge assignment, that is without having identified which one among y and ỹ does explicitly
break the symmetry. On the other hand, if any of the two parameters is vanishing the
Lagrangian is left with an accidental symmetry that protects the GB from acquiring a mass
and indeed the expression in eq. (4.7) does vanish. This can be easily understood by writing
the scalar field in the polar coordinates. Indeed, the two terms in eq. (4.1) would have
exponentials with opposite signs and, only if either y or ỹ is vanishing, then it is possible
to perform a ψ redefinition to reabsorb the GB dependence. In this case, the GB would
reappear in the kinetic terms and only with derivative couplings, implying the presence of a
shift symmetry that protects the GB from acquiring a mass term.

It is instructive to repeat the computation of the GB mass in the chirality-preserving basis,
also known in the literature as derivative basis. Moreover, to make more evident the results of
this exercise, we assume a specific charge assignment such that the y-term is U(1)-preserving,
while ỹ is U(1)-breaking and we move to a more explicit notation with ỹ → ϵỹ, being ϵ a small

5Notice that the momentum zero computation is consistent with the fact that the GB is massless at tree
level and therefore any correction to the kinetic term would effectively be translated into a 2-loop correction
to its mass.
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parameter.6 By performing the following field-dependent redefinition in the whole Lagrangian,

ψ → e−iγ5a/2fa ψ , (4.8)

the GB dependence is removed from the y-term and is only left in the ỹ-term, and the
relevant interactions read

−L ⊃ y fa√
2
ψψ + ϵ

ỹ fa√
2

[
cos

(2a
fa

)
ψψ − i sin

(2a
fa

)
ψγ5ψ

]
− ∂µa

2fa
ψγµγ5ψ + · · ·

⊃ (y + ϵỹ) fa√
2

ψψ − ϵ
2 ỹ fa√

2

[(
a

fa

)2
ψψ + i

a

fa
ψγ5ψ

]
− ∂µa

2fa
ψγµγ5ψ + · · · ,

(4.9)

where in the last line only the linear and quadratic terms in a/fa have been kept. For a
vanishing ỹ, the a field has only derivative couplings reflecting its exact GB nature. Instead,
for ỹ small, but different from zero, shift-breaking terms are present and lead to the one-loop
pseudo-GB mass term.

In the derivative basis, the computation of the mass is much simpler as indeed i) diagrams
with (one or two) derivative couplings never contribute to the GB mass as they always carry
an external momentum dependence, and ii) the GB mass contribution is dominated by
the balloon diagram,

−iMB = −i ϵ y
3 ỹ f2

a

4π2

[
1− log

(
m2
ψ

µ2
R

)
+ 1
ε̃UV

]
+O

(
ϵ2
)
, (4.10)

being the bubble one suppressed by two powers of the small parameter ϵ. By expanding
eq. (4.5) in ϵ and keeping the leading term, (−m2

ψm
′2
ψ +m4

ψ) = y3ỹf4
a and we recover the

result in eq. (4.10). This proves that moving to the derivative/chirality preserving basis,
leaving the GB dependence only into the explicitly breaking term(s), is the most convenient
one for what concerns the calculation of the contributions to the GB mass. Indeed, the
computations reduce to only one topology of diagrams, the Balloon one, at the leading order
in ϵ. This is indeed the choice that we will make in the next section for the mmM model.

4.2 Majoron mass in the Minimal Majoron model

In this section we calculate the one-loop contribution to the Majoron mass in the mmM
model and the complete Yukawa Lagrangian relevant for this computation is the following:

−LYuk = LLH Ye eR + LL H̃ YN NR + ϵ LL H̃ YS SR+

+ YNS
2 ϕ∗

(
N c
R SR + ScRNR

)
+ YNN

2 ϕN c
RNR + h.c.

(4.11)

Once LN is spontaneously broken, the ϕ-radial model, ρ, acquires a large mass mρ ≈ fa ≫ vEW,
and therefore it can be safely integrated out and it is not expected to have any significant
impact in the low-energy phenomenology we are interested in. In the following, only the
lepton couplings with the light angular mode, a, are considered.

6Obviously the alternative assignment in which the symmetry is broken by the y-term would be per-
fectly equivalent.
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Armed with the toy-model discussion, the simplest approach to calculate the Majoron
mass contributions is moving to the chirality preserving basis, leaving the Majoron dependence
on the explicit PQ breaking term, where only the balloon diagram contributes at leading
order in the small parameter ϵ. By means of the following field-dependent redefinition of
the fermionic fields,

{NR, LL, eR} → {NR, LL, eR} e−ia/(2fa) , SR → SR e
3ia/(2fa) , (4.12)

the Majoron dependence in the second-line terms in eq. (4.11) is reabsorbed, without reap-
pearing in the first two terms (i.e. the PQ conserving ones) of the first line. The only
dependence on the Majoron field, after the redefinition in eq. (4.12), is left in the only
PQ symmetry violating term of the first line, i.e. the one proportional to ϵYS , and in the
derivative couplings that originate from the fermion kinetic terms: all in all, the Lagrangian
containing the Majoron interactions reads

La =
∂µa

2fa

(
νLγ

µνL +NRγ
µNR − 3SRγµSR

)
+
(
ϵ ℓL H̃ YS SR e

2ia/fa + h.c.
)
. (4.13)

As all the SM leptons identically transform under the PQ, there is no tree-level Majoron
coupling with the charged leptons and no anomalous gauge terms.

Before proceeding with the calculation of the one-loop contribution to the Majoron
mass, it is convenient to write the Lagrangian in terms of the physical fields, that is the
mass eigenstates of the neutral lepton mass matrix eq. (2.12) accounting for the parameter
definitions in eq. (3.18). All the details of the straightforward procedure are reported in
appendix A and for convenience, we only report here the leading contributions to the HNL
masses in terms of the fundamental parameters of the mmM Lagrangian,

MN,S = ΛNS
2

√4 +
(
YNN
YNS

)2
∓
(
YNN
YNS

) . (4.14)

As in the chirality preserving basis the leading order contribution to the Majoron
mass comes from the Balloon type diagram, the leading contribution to the Majoron mass
comes from

−La ⊃
|mN ||ϵmS ||η|

2
√
MN MS(MN +MS)

(
MNScRSR −MSN c

RNR

)
a2

f2
a

+ h.c. , (4.15)

whose derivation can be found in appendix A. In fact, the SM neutrino contributions to the
Majoron mass are proportional to the active neutrino masses and therefore are completely
negligible. Moreover, the ScRNR terms come with a linear coupling to the Majoron, and
therefore, as learned from the toy model analysis, they contribute to ma only through the
bubble type of diagrams, thus being of O(ϵ2). However, in this model, a stronger statement
regarding the Majoron mass can be made. The potential is constrained by symmetry
arguments to be of the form

V (a) ∝ |mN ||ϵmS |ΛNNΛNS cos
(2a
fa

)
, (4.16)
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meaning that dimensionally the potential is already saturated by the necessary combination
of EW- and Majorana-Yukawas (cfr. eq. (C.5)). The presence of extra EW-Yukawa factors
in general, including dependence on ϵ, can only enter as a correction factor of the type
∝ (1 + |mN,S |2/f2

a ), meaning that it would be NLO in 1/fa expansion. This implies that
in the derivative basis, the balloon captures the full result of the amplitude at LO in fa.
The same statement is not valid in the toy model, where only one scale is present and thus
no suppressions of the type vEW/fa are possible.

From the couplings in eq. (4.15), one can calculate the Balloon contribution to the Majoron
mass in the MS scheme. The result can also be derived employing the CW potential, as shown
in appendix C in eq. (C.9). Assuming vEW ≪ fa, in the NO case, the Majoron mass reads

m2
a =

|η||mN ||ϵmS |
π2

√
MNMS

MN +MS

[(
M2
S +M2

N

)
f2
a

log
(
MS

MN

)
+

+ (M2
S −M2

N )
f2
a

(
log

(
MNMS

µ2
R

)
− 1

)]
. (4.17)

Let us notice that in a generic model with explicit PQ symmetry breaking one expects
typically m2

a ∝ ϵf2
a . This happens, indeed, in the toy model described in section 4.1 as clearly

revealed by eq. (4.10). Instead, with the specific symmetry-breaking pattern introduced for
the mmM model, the Majoron mass for large fa behaves as m2

a ∝ ϵ v2
EW log fa/µR, that is,

m2
a asymptotically depends only logarithmically from the large PQ SSB scale, thus allowing

a naturally lighter ALP.7

Assuming now also mL ∼ mT2 ≪ mT1 and by means of eqs. (2.25) and (2.26), the
Majoron mass can be strictly connected with the neutrino mass splittings

m2
a ≃

√
|η||∆m2

32|
2π2

MNMS

MN +MS

[(
M2
S +M2

N

)
f2
a

log
(
MS

MN

)
+

+ (M2
S −M2

N )
f2
a

(
log

(
MNMS

µ2
R

)
− 1

)]
, (4.18)

where, to understand the correct scale dependence in m2
a one has now to recall from eq. (2.18)

that ∆m2 ∝ v4
EW/f

2
a . The result for the IO scenario can be obtained by simply replacing

|∆m2
32| → |∆m2

21| in eq. (4.18). To provide an intuitive idea of the Majoron mass behaviour
in terms of the relevant model parameters, in figure 3 ma as a function of the HNLs masses
MN,S (left) and the Yukawas YNN,NS (right) has been shown, with the different colour
nuances indicating the Majoron mass (in keV) as reported on the scale on the right of the
figure. The different black contours indicate, instead, the corresponding mL/

√
∆m2

atm values
as an estimation of the relative size of the loop contribution with respect to the tree-level one.
This gives an idea, similarly to figure 1, of how much the parameter space gets constrained
for taming the one-loop contribution to the active neutrino masses. In grey, we estimate
the region that could induce a mT2 > 0.1mT1 . In terms of the HNL masses (left plot) this
means that, in order to keep the one-loop vs tree-level ratio below 0.1, one needs either

7See also the discussion in ref. [40].
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Figure 3. Dependence of the Majoron mass with respect to the (left) HNL masses MN,S and (right)
the Yukawas YNN,NS , for fa = 1010 GeV and YN = 0.01. The different colours indicate the mass range
of the Majoron, while the different black lines are contours of the mL/

√
∆m2

atm ratio. The gray area
bounds the region where mT2 > 0.1mT1 .

going close to the mass degeneracy region or increasing MS above ∼ 109 GeV for a fixed
MN , however, this last region would create a larger mT2 contribution. The white region in
the left plot of figure 3 corresponds to the inaccessible region once MS > MN is chosen in
eq. (2.14). The right plot of figure 3 represents the same information but as functions of
the YNN,NS Yukawas: one can notice here that for Yukawas YNN,NS ∼ O(10−2) and for the
chosen scale fa = 1010 GeV, a Majoron mass around the keV scale is typically reproduced,
while a ∼ 100MeV scale Majoron can be obtained for O(1) Yukawas couplings.

The second task is to identify the parameter space that satisfies the constraints mentioned
in section 3.2, that is ϵ≪ 0.01min |Yi| and mT2 ,mL ≪ mT1 . The allowed parameter space is
then shown in figure 4 with respect to one of the masses of the HNLs. The pair of HNLs
needs to be non-degenerate, as otherwise YNN = 0 and the Majoron would become massless.
However, a small tuning needs to be employed to control the size of the loop level. For this
reason, the pair of HNLs is quasi-degenerate and we can plot the dependence for only one
of the masses. On the plots of figure 4 we observe the dependence on the scale fa (left),
which shows a linear scaling ma ∼ fa, this dependence is clear only when one fixes ϵ|mS ||mN |
to reproduce the neutrino masses, while if one keeps the dependence on the Yukawas (as
in eq. (C.9)) this scaling is implicit. The range of fa goes from 108 − 1011 GeV for masses
of the Majoron between 1 − 5 × 104 keV. We also see in figure 4 (right) the dependence
of the mass with respect to the Yukawas showing that the region of the largest Yukawas
corresponds to the heaviest Majoron.
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Figure 4. Majoron mass plotted as a function of MS . Different colours indicate the dependence on
the fa scale (left plot), or on the min |Yi| value (right plot) as shown in the corresponding upper bars.

Note that this constrained space can be enlarged at the cost of relaxing our “natural”
Yukawas, however at the cost of needing to control both loop and tree level extra contributions.
This would be possible to accommodate the neutrino masses, but a loss in the predictivity
of the Majoron mass would be expected.

5 Phenomenology of the minimal massive Majoron

In the previous section, it has been shown that the typical Majoron mass range, predicted
by the mmM model, lies in the

[
1, 5× 104] keV interval, i.e. slightly below the muon mass,

with the typical SSB scale ranging between
[
107, 1011]GeV. In this section, the main

phenomenological impact of the mmM model in particle and astroparticle/cosmological
observables will be discussed.

The full mmM Lagrangian in the neutral lepton mass basis is described in appendix B.
At tree-level the Majoron couples exclusively with neutral leptons, and clearly only the
Majoron couplings with active neutrinos can be directly constrained by present experiments.
Imposing that the observed neutrino oscillation mass differences and PMNS mixing angles
are being reproduced by opportunely choosing the Dirac and Majorana Yukawas entries of
the neutral lepton mass matrix, the lowest order8 Majoron-active neutrino coupling (see
for example eq. (B.7)) reads

Laνν = − i a

2fa
νLmν γ5 ν

c
L . (5.1)

8Alternatively here one could use as mν the complete tree-level plus one-loop neutrino mass matrix
calculated in eqs. (2.13) and (2.15).
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Couplings of the Majoron with charged SM leptons arise at one loop level through Z
and W exchanges. For having a more compact notation, and matching with the existing
literature [57, 58], it is useful to introduce the following adimensional hermitian coupling

K ≡ m̂m̂†

v2
EW

= mNm
†
N + ϵ2mSm

†
S

v2
EW

= 1
2
(
|YN |2uu† + ϵ2|YS |2vv†

)
. (5.2)

Since in our model the RH leptons couple simultaneously to ϕ and ϕ∗, see eq. (4.11), the
Majoron-charged lepton couplings derived in [57–59] need to be accordingly modified. There-
fore, the one-loop Majoron-charged leptons effective Lagrangian in the mmM model reads:

Laℓℓ =
i a

16π2fa
ℓ
(
Mℓ tr

[
K̃
]
γ5 + 2Mℓ K̃H PL − 2 K̃HMℓ PR

)
ℓ , (5.3)

where Mℓ is the diagonal charged leptons mass matrix and we have defined

K̃ =K+(σ−1)
v2

EW

[
mNm

†
N

(
1−R2

)
+RϵmSm

†
N+R3mN ϵm

†
S+ϵ

2mSm
†
S

(
1+R2

)]
, (5.4)

with R = ΛNN/ΛNS , K̃H = (K̃ + K̃†)/2. In eq. (5.4) the parameter σ = ±1 has been
introduced to switch easily between the models usually described in the literature (σ = 1)
where the RH leptons are coupled solely to ϕ, from our model (σ = −1) where they are
coupled simultaneously to ϕ and ϕ∗. Notice also that for σ = −1 but R ≪ 1, one gets
K̃ ≃ −K, that is, exactly the same coupling of the models with σ = 1 but with a→ −a. In
other words, the R≪ 1 region of our model corresponds to a scenario where the RH leptons
couple only to ϕ∗, as emerges looking at the Lagrangian of eq. (4.11). Finally, to match with
(part of) the existing literature, bounds to the Majoron-electrons coupling are going to be
expressed in terms of the dimensional parameter, gae, defined as

Laee = i
me

16π2fa

(
TrK̃H − 2(K̃H)ee

)
a ē γ5 e ≡ i gae a ē γ5 e (5.5)

We are not reporting here Majoron couplings with quarks and nucleons as the associated
phenomenology, in our mmM scenario, is less compelling then the charged leptons one. In
fact, Majoron couplings with quarks are flavour diagonal and therefore relevant bounds from
flavour changing neutral currents observables (for example in s→ d a or b→ d a transitions)
are not expected, being suppressed by two loops and by the relatively large scale fa typically
above 106 GeV (see for example the discussion in [60, 61]).

Majoron couplings with weak gauge bosons arise at one-loop level but with a O(1/f2
a )

suppression or at two-loops at O(1/fa), therefore they are not phenomenology appealing. Con-
versely, O(1/fa) two-loop contributions to the Majoron-photons couplings can be potentially
relevant [58], contributing to the anomalous Lagrangian term

Laγγ = −gaγγ4 aFµνF̃
µν . (5.6)

A complete calculation of the two-loop Majoron-photons coupling is beyond the scope of
this paper. We can, however, opportunely adapt the results of ref. [58] to reproduce an
approximate gaγγ suitable in the parameter space of interest for our model. From a careful
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inspection of the gaee coupling of eq. (5.5) one realizes, that in the allowed parameter space
the exact one-loop calculation is fairly approximated by the R≪ 1 expression within a 10%
accuracy. Hence we assume, within the same range of validity, the following gaγγ coupling

gaγγ ≃ − αem
8π3fa

TrK
∑
f

Nf
c Q

2
fT

f
3 h

(
m2
a

4m2
f

)
+

∑
ℓ=e,µ,τ

Kℓℓ h

(
m2
a

4m2
ℓ

) , (5.7)

that is the result of [58] with a global minus sign indicating that RH leptons are predominantly
coupled with ϕ∗. In eq. (5.7) f runs over all fermions, Nc is the number of colours, T f3 is
the weak isospin and

h(x) ≡ − 1
4x

[
log

(
1− 2x+ 2

√
x(x− 1)

)]2
− 1 ≃


x

3 for x→ 0

−1 for x→ ∞
(5.8)

The dependence of the loop function h(x) implies that the largest contributions come from
the lightest generation of fermions, namely from electrons and up/down quarks. Furthermore,
the anomalous coupling to photons (as well as to gluons) vanishes in the ma → 0 limit,
showing that the lowest order amplitude originates from the □aF F̃ effective operator.

Bounds from Majoron-active neutrino coupling. Given the lightness and the feebly
interacting nature of the Majoron, it constitutes an appealing candidate for DM [17, 21, 22,
37, 39, 40, 62–64]. An exhaustive analysis of the production of the Majoron relic abundance
is beyond the scope of this work. For the rest of this paragraph, it will be assumed that
Majoron is almost stable, represents the only DM component and predominantly decays
into light neutrinos. The strongest available constraints, extracted from refs. [65, 66], are
shown in figure 5, where we refer for the detailed labelling. Different colours indicate different
min(|Yi|) values as shown in the upper bar. As pointed out in the literature (see e.g. [65]),
from DM-Majoron decays into neutrinos one bounds mainly the SSB scale fa having only a
mild dependence on the Yukawa couplings. Notice that by simply requiring the “naturalness
conditions” introduced in section 3.2 (i.e. ϵ < 0.01 × min(|Yi|) and |Yi| ∈

[
10−2, 1

]
) and

taming the loop contribution, our prediction lies just above the CMB bounds (purple) and on
the left of the current neutrino experiments like SK (blue and orange areas), KamLand (red
area) and Borexino (green area). Hence, scenarios with “relaxed naturalness conditions” are
being already ruled out by present neutrino data. Future neutrino experiments like JUNO
(dashed blue line) could, instead, start probing the region of interest for the mmM model.

Bounds on loop-induced Majoron couplings. Even if the Majoron does not constitute
the totality of the observed DM, as assumed in the previous paragraph, it can be bound
from other astrophysical and cosmological experiments as it would still contribute to the
cosmological history of the universe via an irreducible freeze-in component [67]. In figure 6
(top) the bounds on the one-loop Majoron-electron couplings of eq. (5.3) are shown, as a
function of the Majoron mass ma and for different values of the SSB scale fa (left plot) and
min(|Yi|) (right plot). Constraints from CMB, CRB and X-Rays (the cyan, green, and yellow
regions respectively), derived in ref. [67], are shown. As reference the XENON1T [68] and
XENONnT bounds [69] (darker red) are also plotted. All these data produce constraints
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Figure 5. Constraints on Majoron DM. The DM bounds are mainly taken from ref. [65] and
include CMB (purple area), neutrino experiments, namely Borexino (green area), KamLand (red
area), SK (blue area) and projected JUNO (20yr) sensitivity (dashed blue line). Bounds from ref. [66],
that include reinterpreted SK data (orange area) and atmospheric neutrinos data (gray area) are
also included.

that are still at least two orders of magnitude away from the prediction of the mmM model
represented by the two triangular regions in the lower part of the plots.9

Of higher interest are the cosmological bounds that can be derived on the Majoron-photon
coupling of eq. (5.7), and that are shown in two lower plots in figure 6 as function of the
Majoron mass ma and for different values of the SSB scale fa (left plot) and min(|Yi|) (right
plot). The particular shape of the mmM predicted region is due to the functional dependence
on the fermion to Majoron mass ratios in the loop function h(x) in eq. (5.8). In these plots,
one can observe that, again, the effects of the irreducible Majoron production in CMB, CRB
and X-Rays (the red, green and yellow regions respectively), are still far from the regions of
interest. Stronger bounds to the Majoron-photon coupling can, instead, be obtained from
the observation of galactic and Extragalactic Background Light (EBL) derived in ref. [71],
and using XMM-Newton from [72], NuStar [73–75] and INTEGRAL [76]. These experiments
are already able to constrain the upper part of the predicted area at the cost, however, of a
thermalization temperature of the order of the Planck mass (see the discussion in ref. [71])
and only one coupling at a time.

As can be seen from the plots, gaγγ grows with fa. This can be understood from eq. (5.8),
wherein the small x region (below the MeV) gaγγ ∝ m2

a/fa until reaching a “plateau” in the
large x-region. From eq. (4.18) ma is proportional to fa, once the neutrino mass is given as
an input, hence, gaγγ ∝ fa. This fictitious dependence, which resembles a non-decoupling
effect, stems from the neutrino mass constraint and is not valid for arbitrarily large values
of fa: as mν ∼ ϵ|YN ||YS |v2

EW/fa an increase in fa must be compensated by an increase in
9We acknowledge the use of the axion bounds repository for these plots [70].
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Figure 6. Constraints to Majoron-electron (top) and Majoron-photon (bottom) couplings. Predictions
of the mmM model are plotted for different values of the SSB scale fa (left) and min(Yi) (right).
Irreducible constraints from CMB, CRB and X-Rays (the cyan, green and yellow regions respectively),
derived from ref. [67], are shown. In the upper plots, the constraints from XENON1T [68] and
XENONnT [69] (dark red region) are also plotted, while in the lower plots bounds from galactic and
extra-galactic photons emitted from Majoron decay are depicted, assuming the particle is the full
amount of DM.

|YN,S |. Once the perturbativity limit |YN,S | ≤ 1 is imposed, the artificial growth with fa
cannot continue for arbitrarily large values.

Bounds from LFV. In the mmM model, as can be seen from eq. (5.3), Majoron-charged
lepton flavour-violating couplings are generated at 1-loop level, opening the possibility to
study ℓi → ℓja processes, which decay width reads

Γ(ℓi → ℓja) =
|K̃ji|2

2048π5f2
am

3
i

√
λ(m2

i ,m
2
a,m

2
j )
[
(m2

i −m2
j )2 −m2

a(m2
i +m2

j )
]
, (5.9)

where λ(x2, y2, z2) is the Källén function.
In the Majoron mass range predicted by the mmM model, i.e. ma ≲ 5× 104 keV < mµ,

the strongest bounds come from the µ→ ea decay, while τ → µa and τ → ea decays would
be relevant only for ma ≳ mµ. In figure 7 the constraints from refs. [77, 78] on the LFV
coupling (K̃H)eµ defined in eqs. (5.4) are shown. We notice that both the present and future
sensitivity of LFV experiments are still orders of magnitude far from testing the region of
interest for the mmM model.
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Figure 7. Present (solid) and future (dashed) 95% C.L. bounds on the flavour violating Majoron-e-µ
coupling Keµ. The mmM model preferred region as functions of the different SSB scale fa (left) and
min(|Yi|) (right) are depicted.

6 Conclusions

The Majoron is traditionally considered as the would-be-Goldstone boson of the spontaneous
breaking of the Lepton Number. The origin of its mass is an old problem and in this paper,
we propose a scenario where it naturally arises without invoking Planck effects or extra
ingredients behind those strictly necessary to correctly describe lepton masses and mixing.

The model is a high-scale Seesaw mechanism with two right-handed neutrinos with a mass
texture that is very similar to the one associated with the so-called linear Seesaw. The heavy
neutral lepton masses arise after the spontaneous symmetry breaking of a global Abelian
symmetry, while the active neutrino masses can be correctly described only by introducing
an explicit breaking of such symmetry. The Majoron is generated after the spontaneous
breaking and acquires mass due to the explicit breaking. Although this may appear to be
completely generic, we showed that it is not: not all the possible explicit breakings of the
symmetry would lead to a mass for the Majoron.

We identified the unique, minimal model where the Majoron mass and the active neutrino
masses are strictly tied together, by requiring three conditions to be satisfied: renormalisability
of the model Lagrangian; only one Majorana scale that is associated with the spontaneous
breaking of the Abelian symmetry; only one explicit breaking of this symmetry. The latter
thus plays the role of both Lepton Number and PQ symmetry.

As a consequence of these conditions, only one scalar field ϕ transforming under the
Abelian symmetry is introduced in the spectrum and, to guarantee a mass for the Majoron,
both ϕ and ϕ∗ enter the Lagrangian. In particular, this scalar field appears in the Majorana
terms of the Lagrangian that represent the mass terms for the heavy neutral leptons, once it
develops a vacuum expectation value. If these Majorana terms constitute the spontaneous
symmetry-breaking sector, one of the Dirac terms explicitly violates the symmetry. The
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resulting neutral lepton mass matrix, after both LN/PQ and electroweak symmetry breaking,
has already been studied in the pure neutrino context and undergoes the name of Extended
Seesaw limit: it predicts potentially large one-loop contributions to the active neutrino masses
that are kept under control only focusing in a parameter space where the two heavy neutral
leptons have almost degenerate masses.

All in all, active neutrino masses and the lepton mixing can be correctly described with
heavy neutral leptons with masses in the range [107, 1012]GeV, when the Dirac and Majorana
Yukawa couplings span the range [10−2, 1], for both the normal and inverse ordering of
the active neutrino mass spectrum.

The Majoron mass arises at one-loop and proportional to the active neutrino masses. We
performed the explicit computation and confirmed the result through the CW potential, in the
MS-scheme. We found that the derivative or chirally preserving basis for the Majoron couplings
greatly simplifies the computations. In our model, the Majoron mass turns out to scale
logarithmically with the spontaneous symmetry breaking scale fa. This is in contrast with the
traditional QCD axion models where the mass is inversely proportional to fa. Once inserting
neutrino data as inputs and requiring natural values for the Yukawa couplings ∈ [10−2, 1],
we obtain a Majoron mass in the range [1, 105] keV corresponding to fa ∈ [108, 1012]GeV.

This light and feebly interacting Majoron represents an appealing candidate for Dark
Matter. We performed phenomenological analyses investigating the impact of its couplings
with active neutrinos, charged leptons and photons, the last two being loop-induced. Majoron-
neutrino interactions have an impact in the CMB and in oscillation neutrino experiments:
the proper parameter space of the model lays just next to the excluded region by these
experiments and therefore it would be directly probed once the experimental uncertainties
decrease. Majoron couplings with electrons and photons are tested by CMB, CRB and
X-Rays, but their sensitivities do not reach the proper parameter space of our model. The
same holds for XENON1T and XENONnT (expected) bounds. For the specific case of the
couplings with photons, the model could be probed from the observation of galactic and
extra-galactic photon spectrum. Interestingly, the Majoron-photon coupling grows linearly
with fa in the examined parameter space, and therefore the first region that could be tested
corresponds to the highest values of fa and largest Majoron masses. Finally, our Majoron
describes lepton flavour-violating processes, µ → ea, τ → µa and τ → ea, but far from
testing the proper parameter space of the model.

To summarise, the minimal massive Majoron Seesaw model represents the first example
where the Majoron mass naturally arises from the same context where active neutrino masses
and the lepton mixing are correctly described, without the necessity of introducing ad hoc
new parameters or invoking high-scale-suppressed operators e.g. Planck-induced contributions.
Its minimality conditions imply the uniqueness of the model and link the Majoron mass to
the active neutrino masses providing a phenomenological viable scenario that could be probed
by CMB, EBL, and oscillation neutrino experiments in the near future.
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A ALP PQ-breaking interactions

In this appendix, we give some details regarding the Majoron PQ-breaking interactions in
the lepton mass basis. This is necessary to calculate the Majoron mass in section 4. After
rotating away the PQ-preserving terms, the only term relevant for the Majoron mass is

−La ⊃ ϵ LL H̃ YS SR e
2ia/fa + h.c. . (A.1)

The block diagonalisation of the neutral mass matrix Mχ can be performed through a unitary
redefinition of the field vector χL [79]. As we are interested in interactions of O(Λ̂−1), we
expand the unitary matrix at second order in the mixing matrix Θ

χL → Uχ χL with Uχ ≃

1− 1
2ΘΘ† Θ

−Θ†
1− 1

2Θ
†Θ

 , (A.2)

which requires at this order

Θ ≃ m̂ Λ̂−1 =
(
mN ϵmS

)(ΛNN ΛNS
ΛNS 0

)−1

= 1
ΛNS

(
ϵmS mN − ϵmS

ΛNN
ΛNS

)
. (A.3)

After this first diagonalisation, the fields get rotated, at LO in Θ, as

νL → νL +Θ

N c
R

ScR

 = νL + ϵmS

ΛNS
N c
R + 1

ΛNS

(
mN − ϵmS

ΛNN
ΛNS

)
ScR ,N c

R

ScR

 →

N c
R

ScR

−Θ† νL =

N c
R

ScR

− 1
ΛNS

 ϵm†
S

m†
N − ϵm†

S

ΛNN
ΛNS

 νL .
(A.4)

On the other side, the HNLs are not yet written in terms of mass eigenstates: we still need
to diagonalise the 23 sector of the resulting mass matrix after the block diagonalisation. To
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do so, we perform a second field redefinition that only affects the neutral exotic states:

(
NR SR

)T
→ UN

(
NR SR

)T
with UN = 1√

MN +MS

(
i
√
MN

√
MS

−i
√
MS

√
MN

)
,

(A.5)
obtaining the HNLs masses in eq. (2.14). The parameters ΛNS,NN can be written in terms
of the HNL masses via

ΛNS =
√
MNMS , ΛNN =MS −MN . (A.6)

Combining these field redefinitions we obtain the explicitly breaking term in the lepton
mass basis:

−La ⊃
(
e2ia/fa − 1

){
− 1√

MNMS
νLU

†
PMNS

(
ϵmSm

T
N −

(
α2 − 1
α

)
ϵ2mSm

T
S

)
U∗

PMNSν
c
L

− i√
(MN +MS)

(√
MSνLU

†
PMNSϵmSNR −

√
MNνLU

†
PMNSϵmSSR

)
+ (N c

RNR)
1

(MN +MS)

[
ϵ2m†

SmS − α

(
ϵm†

NmS −
(
α2 − 1
α

)
ϵ2m†

SmS

)]

+ (ScRSR)
1

(MN +MS)

[
ϵ2m†

SmS + 1
α

(
ϵm†

NmS −
(
α2 − 1
α

)
ϵ2m†

SmS

)]

+ (N c
RSR)

i

(MN +MS)

[
1
α
ϵ2m†

SmS −
(
ϵm†

NmS −
(
α2 − 1
α

)
ϵ2m†

SmS

)]

−(ScRNR)
i

(MN +MS)

[
αϵ2m†

SmS +
(
ϵm†

NmS −
(
α2 − 1
α

)
ϵ2m†

SmS

)]}
+ h.c. , (A.7)

where we defined α ≡
√
MS/MN . The derivative couplings can be obtained similarly by

employing the field redefinitions of eq. (A.4) in the Lagrangian of eq. (4.13) and are not
going to be explicitly reported here.

Not all the interactions presented above are relevant to the LO prediction of the Majoron
mass. First of all, as we are in the chirality preserving basis, only the Balloon diagram can
provide relevant contributions at LO. This prompts us to neglect any term with powers of
ϵ2 and consider only diagonal couplings, leaving us with

−La⊃
[
1
2νLmνν

c
L+

2ϵm†
NmS√

MNMS(MN+MS)

(
MNScRSR−MSN c

RNR

)]
e2ia/fa+h.c. .

(A.8)
Moreover, as concluded in eq. (4.5) for the toy model, such contributions are proportional
to the fermion running in the loop and therefore we can focus on the HNL couplings in
eq. (A.8). The mixed ScRNR term only contributes to the sub-leading Bubble diagram, while
the active neutrino term contribution to the dominant Balloon diagram is proportional to
the light neutrino masses, being therefore completely negligible. We can thus restrict our
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considerations to the following terms of the Lagrangian

−La ⊃
2ϵm†

NmS√
MN MS(MN +MS)

(
MNScRSR −MSN c

RNR

)
a2

f2
a

+ h.c. . (A.9)

B Majoron and HNLs interactions

The interaction matrix with the Majoron can be compactly written down in block matrix
form. After the block diagonalization has been carried out, to move to the mass basis, one
must include the unitary matrix

U ≡
(
UPMNS 0

0 UN

)
, (B.1)

where UPMNS is the light neutrinos PMNS matrix and UN is defined in eq. (A.5). The
interactions in the mass basis reads

La ≃ −1
2χLU

†MaU
∗χcL , (B.2)

where

Ma =
(
(Ma)11 (Ma)12
(Ma)21 (Ma)22

)
(B.3)

and its components are given by

(Ma)11 ≃−mTL
ν eiσa/fa+ϵ2mSm

T
S

ΛNN
ΛNS

(
eia/fa−eiσa/fa

)
, (B.4)

(Ma)12 = [(Ma)21]T ≃
(
−eiσa/famN+

(
eia/fa−eiσa/fa

)
ϵmS

ΛNN
ΛNS

ϵmSe
iσa/fa

)
, (B.5)

(Ma)22 ≃
(
ΛNNeia/fa ΛNSeiσa/fa

ΛNSeiσa/fa 0

)
, (B.6)

where we have introduced a parameter σ that helps us interpolate between the typical
Majoron of the literature, σ = +1 all mass terms couple to ϕ, and other non-standard
scenarios such as the mmM, where σ = −1, ΛNS couples to ϕ∗ while ΛNN to ϕ. Expanding
the exponential at LO, we thus have

(Ma)11 ≃ ia

fa

[
−σmTL + ϵ2mSm

T
S

ΛNN
ΛNS

(1− σ)
]
, (B.7)

(Ma)12 = [(Ma)21]T ≃ ia

fa

(
−σmN + (1− σ) ϵmS

ΛNN
ΛNS

σϵmS

)
, (B.8)

(Ma)22 ≃ ia

fa

(
ΛNN σΛNS
σΛNS 0

)
. (B.9)

The interactions with gauge bosons can be derived similarly and in the mass basis they read

LZ ⊃ − g

2 cos θW
χL /Z U

†
(
1−ΘΘ† Θ

Θ† Θ†Θ

)
U χL , (B.10)
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LW± ⊃ − g√
2
χL /W

+
U †

1− 1
2ΘΘ† 0
Θ† 0

 ℓL , (B.11)

Lh ⊃ −
(
h

v

)
χL U

†

 m̂ν
1
2m̂1

2m̂
T 1

2
(
Θ†m̂+ m̂TΘ∗

)
U∗ χcL , (B.12)

where recall that

Θ ≃ m̂ Λ̂−1 = 1
ΛNS

(
ϵmS mN − ϵmS

ΛNN
ΛNS

)
, (B.13)

and thus

ΘΘ†≃ 1
Λ2
NS

[
ϵ2mSm

†
S+

(
mN−ϵmS

ΛNN
ΛNS

)(
m†
N−ϵm†

S

ΛNN
ΛNS

)]
, (B.14)

Θ†Θ≃ 1
Λ2
NS

 ϵ2m†
SmS ϵm†

S

(
mN−ϵmS

ΛNN
ΛNS

)
(
m†
N−ϵm†

S

ΛNN
ΛNS

)
ϵmS

(
m†
N−ϵm†

S

ΛNN
ΛNS

)(
mN−ϵmS

ΛNN
ΛNS

)
 . (B.15)

C One-loop effective potential and Majoron mass

In this appendix we provide an alternative derivation of the Majoron mass, computing the
full one-loop contribution to the scalar potential through the Coleman-Weinberg (CW) poten-
tial [41]. Accounting already for the trace over the Dirac indices, the fermionic contribution,
in the MS scheme, reads

VCW = −1
2 × 1

16π2 Tr

[(
MχM†

χ

)2
(
log

(
MχM†

χ

µ2
R

)
− 3

2

)]
(C.1)

where Mχ ≡ Mχ(H,ϕ) is the neutral mass matrix in eq. (2.12) including the dependence
of the scalar fields H and ϕ. In the following a compact notation for the neutral mass
matrix Mχ is going to be adopted:

Mχ(H,ϕ) =
(

0 m̂(H)
m̂(H)T Λ̂(ϕ)

)
, (C.2)

where m̂ and Λ̂ are the field-dependent Dirac and Majorana blocks inheriting the structure
of the mass matrix in eq. (2.12). The overall factor 1/2 in front of the expression is due
to the Majorana nature of the fermionic fields involved, which have half of the degrees of
freedom of Dirac fermions.

We turn now to the explicit computation of the relevant traces. We consider only the
terms containing the Majoron contribution. We find

Tr
[
(MχM†

χ)2
]
=2Re

(
Tr
[
(m̂†m̂)2

])
+Tr

[
(Λ̂†Λ̂)2

]
+2
(
Tr
[
m̂†m̂Λ̂†Λ̂

]
+Tr

[
m̂T m̂∗Λ̂Λ̂†

])
⊃ 2ϵYNS YNN v2

EW

(
Y †
N YS ϕ

2+Y †
S YN ϕ

∗2
)

(C.3)

⊃ 2ϵYNS YNN |YN | |YS | |η|v2
EW f2

a cos
(
ϑη+

2a
fa

)
,
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where in the last step we made use of the definitions in eq. (2.21). This confirms that
the Majoron mass can only obtain a contribution when the four Yi couplings are present
and non-vanishing, and the leading contribution turns out to be linear in the LN breaking
parameter ϵ. The computation of the log is far more problematic as one needs the eigenvalues
of the full 5 × 5 matrix, MχM†

χ. However, recalling from the explicit computation that
the one-loop diagrams contributing to the Majoron mass are proportional to internal lepton
masses, we can safely neglect in the calculation the light active neutrino masses. Denoting
with {µi}5

i=1 the eigenvalues of MχM†
χ, this allows to write

TrMχM†
χ ≈ µ1 + µ2 , Tr(MχM†

χ)2 ≈ µ2
1 + µ2

2 , (C.4)

where µ1,2 represent the two large HNL masses. By solving the system in eq. (C.4) the CW
potential for the Majoron field, in the MS scheme reads:

VCW =− ϵ
YNS YNN |YN | |YS | |η| v2

EW f2
a

16π2 cos
(
ϑη +

2a
fa

)
×

×
[

(Y 2
NN + 2Y 2

NS)
YNN

√
Y 2
NN + 4Y 2

NS

Arcoth

 (Y 2
NN + 2Y 2

NS)
YNN

√
Y 2
NN + 4Y 2

NS

+
(
log

(
Y 2
NSf

2
a

2µ2
R

)
− 1

)]
.

(C.5)

To obtain the final expression one has to use of the well-known algebraic identity:

Arcoth(x) = 1
2 log x+ 1

x− 1 . (C.6)

A few comments are in order. First of all, expanding the cosine, we would get a linear
term for the Majoron, corresponding to a tadpole. To avoid it, we can perform a shift
in the Majoron field

2a
fa

→ 2a
fa

− ϑη , (C.7)

with a consequent appearance of e±iϑη/2 term in eq. (4.11). As already mentioned, the
couplings YNS and YNN can be made real by a proper redefinition of the leptons fields and,
as a result, the ϑη phase would eventually end up in the Dirac Yukawa couplings. This
is more evident in the chirality conserving basis in eq. (4.13), where the only term that
would be affected by the Majoron shift is the LN explicit breaking term: the ϑη phase can
be absorbed in the definition of YS ,

YS e
−iϑη → YS . (C.8)

The net effect of this redefinition propagates to eq. (2.21), where the parameter η turns out
to be a real number. This resembles what occurs with the QCD axion, aQCD. As discussed
by Vafa and Witten [80], the QCD vacuum energy has its minimum when aQCD → aQCD − θ,
where θ includes a phase from the quark mass matrices. The latter, which is physical only
in the presence of the axion, gets fixed by a minimum condition that also prevents the
appearance of the axion tadpole. As the HNL sector is not coupled to SM gauge bosons,
this shift does not induce any anomalous SM gauge boson coupling.

– 33 –



J
H
E
P
0
3
(
2
0
2
4
)
0
9
4

By taking the second derivative on the CW potential, one automatically obtains the
one-loop contribution to the Majoron mass:

m2
a = ϵ

YNS YNN |YN | |YS | |η| v2
EW

4π2 ×

×
[

(Y 2
NN + 2Y 2

NS)
YNN

√
Y 2
NN + 4Y 2

NS

Arcoth

 (Y 2
NN + 2Y 2

NS)
YNN

√
Y 2
NN + 4Y 2

NS

+
(
log

(
Y 2
NSf

2
a

2µ2
R

)
− 1

)]
.

(C.9)
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