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The more that advances in the medical field are capable of targeted treatments, the
more imaging should be tailored to patients. In this setting, the possibility of integrating
artificial intelligence (AI), new techniques, and hybrid imaging modalities with standard
imaging could represent a unique tool to extract as much data as possible from diagnostic
images, thus differentiating the type of disease affecting patients and leading them toward
the best therapeutic path [1,2].

In this Special Issue focused on the imaging assessments of cancer, from diagnosis to
treatment [3], we had the opportunity to demonstrate much interesting research in the field
of oncological imaging, embracing different subspecialities.

We will try to briefly summarize the main results of these papers.
Standardized reporting systems are taking up increasingly more space, reducing the

variability in reports and improving the precocious detection of small lesions. In multi-
parametric prostate MRI, the PI-RADS system has been endorsed by principal radiological
societies and it was shown to improve the accuracy of MRI significantly for prostate cancer
detection.

In their study, Sauck et al. assessed the capability of multiparametric MRI with the
PI-RADS v2 scoring system and the capability of using the volume of lesions to detect
prostate cancer, using MRI/trans-rectal-US-fusion biopsies as a reference standard. A total
of 157 patients underwent MRI and targeted biopsies and the presence of prostate cancer
was determined using the International Society of Urological Pathology (ISUP) grading
system. The results indicated that 24% of the PI-RADS 3 lesions, 36.9% of the PI-RADS
4 lesions, and 59.5% of the PI-RADS 5 lesions were neoplastic. The volume of the lesions
was significantly correlated with ISUP grades. The authors concluded that the PI-RADS
v2 score and lesion volume were associated with the presence and clinical significance of
prostate cancer, but that there was not an insignificant number of false positive findings [4].

Conventional cancer imaging approaches are based primarily on qualitative assess-
ments, which could overlook some valuable information that can be contained in the
images. Using textural analyses (TA), it is possible to elaborate on raw data provided by
imaging by mean of US, CT, MRI, and PET, and to obtain quantitative parameters that
are not normally appreciated by the human eye [5]. TA is a non-invasive imaging tool
with great potential to predict pathological features, response to therapy, and prognosis for
many tumors. Textural features showed similar or even stronger accuracies when detecting
cancer compared with the qualitative evaluation of expert radiologists [6]. The correlation
between radiomics data and clinical reports, pathology, histology, and genetic information
could provide a global view of tumor biology. Several case studies have demonstrated the
efficacy of radiomics texture analyses on CT scans for tumor diagnosis [7].

Crimì et al. investigated the relationship between contrast-enhanced CT TA and
KRAS, NRAS, BRAF, and MSI mutations in patients with colon cancer. TA parameters
were extracted from CT scans and compared between patients with wild-type and mutated
genes. The results revealed statistically significant differences in four parameters between
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the microsatellite stable (MSS) and microsatellite instability (MSI) groups. These findings
suggest that CT TA could potentially aid in identifying MSI in colon cancer by using
pre-treatment contrast-enhanced CT scans [8].

Another field of research that has shown promising results in the oncological field
is hybrid imaging, mainly driven by the introduction of new radiotracers and PET/MRI
scanners.

Ince et al. determine whether 18F-FDG PET/MRI could improve clinical response
assessments compared to MRI for nonoperative management in patients with rectal cancer
undergoing total neoadjuvant therapy. PET/MRI showed a 100% accuracy in assessing
complete responses compared to the 71% accuracy of MRI alone. The authors suggested
that PET/MRI can improve residual disease detection after total neoadjuvant therapy and
provide additional value for restaging and surveillance during watch-and-wait protocols
in patients affected by rectal cancer [9].

Bodapati et al. presented two cases of intra-orbital metastases in patients affected
by estrogen receptor-positive breast cancer studied with 18F-fluoro estradiol (18F-FES)
PET/CT. Although rare, orbital metastases can significantly affect the visual acuity and
quality of life, particularly in patients with breast cancer. The 18F-FES PET/CT technique is
a novel estrogen receptor-specific radiotracer that provides a more precise assessment of the
intracranial and infraorbital regions in estrogen receptor-positive cancers by minimizing
the physiological background activity. The cases presented and a review of the literature
demonstrated that 18F-FES PET/CT had a higher sensitivity than traditional 18F-FDG
PET/CT in detecting orbital metastases in breast cancer [10].

Imaging has a pivotal role even in the diagnosis of secondary hypertension, especially
by endocrinological causes.

Tizianel et al. emphasized the importance of individualized approaches for Primary
Aldosteronism (PA) assessments. PA is a common cause of secondary hypertension and
is associated with a high risk of cardiovascular and cerebral diseases. Classification of
PA subtypes (unilateral or bilateral) is essential to determine the most effective treatment
approach (surgical or medical). The authors presented five clinical cases representing
different PA subtypes, highlighting personalized diagnostic and therapeutic processes
tailored to each patient’s needs, medical history, and preferences [11].

Images can also guide biopsies, especially CT in lung lesions, allowing precise sam-
pling and diagnosis.

Baratella et al. evaluated the diagnostic accuracy of CT-guided needle biopsies for
primary lung malignancies in 350 thoracic biopsies. From this large studied sample, the
authors concluded that CT-guided core needle biopsies are a minimally invasive, highly
accurate, and safe procedure for diagnosing lung cancer, since it showed a 98.87% accuracy
and only three patients experienced major complications after the procedure [12].

Finally, imaging could represent a valuable tool in identification of nodal metastases,
especially in gastro-intestinal tumors. In addition, the accuracy of the identification of
metastatic lymph nodes is suboptimal and thus different criteria and types of measurements
could be used to enhance the diagnostic capacity of imaging.

Crimì et al. investigated the most accurate CT dimensional criteria for identifying
metastatic lymph nodes (LNs) in patients with gastric cancer during preoperative staging.
Various measurements, including the short axis (SA), the volume, the SA/long axis (LA)
ratio of the largest LN, the sum of the SAs of all LNs, and the mean SA/LA ratio, were
analyzed and compared with the presence or absence of LN metastases confirmed through
histopathology. The sum of SAs demonstrated the highest area under the ROC curve
(AUC) in the per-nodal group analysis, with a sensitivity and specificity of 62.4% and
72.6%, respectively, using a cutoff of >8 mm. In the per-patient analysis, the sum of the SAs
of all LNs in the locoregional nodal groups yielded the best AUC, with a sensitivity and
specificity of 65.6% and 83.7%, respectively. The authors concluded that the sum of the SAs
of all LNs in staging CT scans is the most reliable predictor for both metastatic invasion of
the nodal group and the presence of metastatic LNs in patients with gastric cancer [13].
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In conclusion, oncological imaging is evolving rapidly, and these advancements are
promising and could improve tumor diagnoses and treatment outcomes.
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