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Abstract

Recent advancements in next-generation sequencing have revolutionized our understand-

ing of the human microbiome. Despite this progress, challenges persist in comprehending

the microbiome’s influence on disease, hindered by technical complexities in species classi-

fication, abundance estimation, and data compositionality. At the same time, the existence

of macroecological laws describing the variation and diversity in microbial communities irre-

spective of their environment has been recently proposed using 16s data and explained by

a simple phenomenological model of population dynamics. We here investigate the relation-

ship between dysbiosis, i.e. in unhealthy individuals there are deviations from the “regular”

composition of the gut microbial community, and the existence of macro-ecological emer-

gent law in microbial communities. We first quantitatively reconstruct these patterns at the

species level using shotgun data, and addressing the consequences of sampling effects

and statistical errors on ecological patterns. We then ask if such patterns can discriminate

between healthy and unhealthy cohorts. Concomitantly, we evaluate the efficacy of different

statistical generative models, which incorporate sampling and population dynamics, to

describe such patterns and distinguish which are expected by chance, versus those that are

potentially informative about disease states or other biological drivers. A critical aspect of

our analysis is understanding the relationship between model parameters, which have clear

ecological interpretations, and the state of the gut microbiome, thereby enabling the genera-

tion of synthetic compositional data that distinctively represent healthy and unhealthy indi-

viduals. Our approach, grounded in theoretical ecology and statistical physics, allows for a

robust comparison of these models with empirical data, enhancing our understanding of the

strengths and limitations of simple microbial models of population dynamics.

Author summary

In this study, we explore emerging ecological properties in gut microbiomes. Our aim

here is to determine whether these patterns can be informative of the gut microbiome

(healthy or diseased) and unveil essential ingredients driving its population dynamics.
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Leveraging on metagenomic data and interpretable statistical models based on ecological

processes, we show that not all ecological patterns are informative to characterize its states,

while few are (e.g., species diversity). Eventually, thanks to the ecological interpretability

of the inferred models’ parameters, our analysis provides insights into the role of environ-

mental fluctuations and carrying capacities of the gut microbiomes in both health and dis-

ease. This study offers valuable knowledge, bridging theoretical concepts with practical

implications for human health.

Introduction

Next-generation sequencing has expanded our capacity to explore microbial biodiversity in a

previously unachievable depth. This ‘data explosion’ presents both challenges and exciting

prospects. Over the past 15 years, biomedical researchers have leveraged this technology to

delve into the human microbiome—the complex ecosystem of microorganisms coexisting in

and on the human body [1–4]. This approach has illuminated countless microorganisms, once

inaccessible via conventional culturing methods. All these efforts have aimed to establish a

community resource program to build comprehensive reference datasets and develop compu-

tational tools and clinical protocols. Although several recent studies underscore the critical

role of the microbiome in human health [5–11], our understanding of how the microbiome

influences disease is still limited. Current methods, primarily focused on correlations and asso-

ciations within the microbiome, are useful but often fail to identify the actual causes behind

these patterns [12]. In part, this is also due to several technical challenges in species classifica-

tion and abundance estimations, like sampling effects, false positives species (type 1 statistical

error in species detection) and data compositionality. In fact, capturing only sample fragments

of the entire genetic material leads to sparse datasets, where zero abundances do not always

imply species absence [13, 14]. Taxonomic profiling introduces false positive species due to

genome sequence overlaps, often resolved by selecting appropriate databases or setting abun-

dance cut-offs [15]. Additionally, normalization, such as sum-to-one, is essential due to the

compositional nature of microbiome data, significantly impacting data analysis [16–18]. Nev-

ertheless, microbiomes data display several emergent ecological patterns that are suitable to be

explained through population dynamics models. Such models range from probabilistic ones,

like the Multinomial Dirichlet Distribution [19], which estimates relative abundances and con-

siders sampling effects, to more complex interaction-based models like the generalized Lotka-

Volterra model or other phenomenological/computational models based on inferring species

interactions [20–23]. Finally, non-interacting stochastic models reflecting basic ecological pro-

cesses, like the stochastic logistic model [24], have demonstrated their effectiveness in repro-

ducing microbiomes macroecological patterns [13].

However, an investigation of a possible link between such emergent patterns and the state

space of the human gut microbiome, including dysbiosis, is still missing. This study intends to

address this gap by integrating theoretical frameworks in population dynamics modelling with

empirical data on gut microbiomes in health and in disease. In particular, our work aims to: 1)

Quantitatively reconstruct gut microbiome emergent patterns [25] in health and in disease at

the species level using shotgun data through a recently proposed taxonomic classifier [26]; In

particular, our analysis includes a meta-analysis of studies on gut microbiomes in healthy indi-

viduals and those with gastrointestinal diseases [4, 10, 27]. 2) Examine the consequences of

sampling effects and false positives on such ecological patterns; 3) Develop and compare how

well different statistical interpretable ecological models can describe such patterns and test
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possible differences between healthy and diseased cohorts; 4) Understand possible relation-

ships of the inferred models parameters (having a well-defined ecological interpretation) with

gut microbiome state (e.g., health or disease), so to be able to generate synthetic compositional

data with statistically significant differences between healthy and unhealthy individuals. In this

way, we can distinguish which patterns are “inevitable” versus those that are potentially infor-

mative about disease states or other biological drivers.

Materials and methods

Theoretical framework

We now implement the mathematical framework, which can be summarized as follows. Start-

ing from a set of equations describing the dynamics of species abundances, we develop three

different statistical models aimed at generating synthetic data that match the observed data.

We then will use macroecological relationships to constrain these models, leaving a small

number of free parameters that can be fit to empirical data. By fitting these models and com-

paring their predictions against data from healthy and unhealthy microbiomes, we will eventu-

ally be able to gain insight into how different ecological patterns may arise and if and how the

parameters inferred from the models are related to the state (H or U) of the gut microbiome.

We therefore introduce the stochastic logistic model [13, 24], which gives the evolution of S
species abundances in time

dxi
dt
¼
xi
ti

1 �
xi
Ki

� �

þ

ffiffiffiffi
si
ti

r

xixi; ð1Þ

where xi 2 (0,1), Ki is the carrying capacity of species i = 1. . .S, τi sets the growth time scale

and σi is the width of environmental noise experienced by the i-th species. The latter captures

the fluctuations induced to the species growth rate by the environment (e.g. host) and by spe-

cies interactions [28].

It can be shown that this process, once stationarity is reached, follows a Gamma Distribu-

tion, i.e. pGðxiÞ ¼
b
ai
i

GðaiÞ
xai � 1

i e� bixi , which describes the abundance fluctuations of species i among

different samples, without considering compositionality [16, 29] and sampling effects [14].

Generally, we will refer to the distribution of abundance of a given species across different

samples as abundance fluctuation distribution [13]. The parameters αi and βi can be related to

the statistical mean and variance of the species abundances and the ecological parameters

given by the model as

ai ¼
�x2
i

s2
xi

¼
2 � si
si

; ð2Þ

bi|{z}
Parameter

¼
�xi
s2
xi|{z}

Observables

¼
2

siKi|{z}
Ecology

ð3Þ

Also, we can write the first two moments of the Gamma distribution as �xi ¼ Ki 1 �
si
2

� �
and

s2
xi
¼ K2

i
si
2

1 �
si
2

� �
. In other words, Eqs (2) and 3 show how the parameters of the Gamma dis-

tribution (αi,βi) are related to the observables (�xi, s2
xi

) and to the ecological parameters Ki and

σi. If we now consider compositionality and work with the relative abundances
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vi ¼ xi=
PS

i¼1
xi, then the latter are distributed following the Scaled Dirichlet Distribution [30]

Pð~vj~a;~bÞ ¼
1

Zð~a;~bÞ

QS
i¼1
vai � 1

i

ð
PS

i¼1
biviÞ

a0
; ð4Þ

where the distribution is defined with the constraint
PS

i¼1
vi ¼ 1. We have also introduced

a0 ¼
PS

i¼1
ai, and the normalization constant Zð~a;~bÞ ¼ Bð~aÞ=

QS
i¼1
b
ai
i . Finally, Bð~aÞ ¼

QS
i¼1
GðaiÞ=Gð

PS
i¼1
aiÞ is the S-variate Beta function. An exhaustive derivation of this result

can be found in S2 Text. The obtained family of probability distributions Pð~vj~a;~bÞ describes

the behavior of the relative species abundances in a given sample, has 2S parameters, and lies in

the (S − 1)-dimensional simplex ΔS. Since the number of observed species is large (S 2 [102,

103]) and the microbiome dataset typically includes R� 102 samples, fitting this model is an

unfeasible task. As we will show, we can greatly reduce the number of free parameters by con-

straining the model through relationships obtained from empirical macro-ecological patterns,

as proposed by [13].

First, we consider the Taylor’s Law (TL). It takes the form of a scaling relation between the

mean abundance of a species (among samples) and its fluctuations, i.e.

s2
xi
¼ A�xzi ; ð5Þ

for i = 1. . .S, where A and z do not depend on i. Compositionality does not affect this law if

and only if z = 2, and thus in this case the same A is also found if we consider~v, instead of~x
(otherwise a correction of the slope A should be taken into account, see S2 Text). Therefore,

we can connect the ecological parameters Ki, σi with z = 2, finding that TL is informative on

both intra-species competition (driven by K) and the intensity of environmental noise (σ).

Exploiting Eqs (2) and 3, we can thus reduce the number of parameters in our Scaled

Dirichlet Distribution model to 2 + S, since αi and βi are functions of �xi, z and A:

ai ¼
�x2� z
i

A
; bi ¼

�xi 1� z

A
: ð6Þ

The dependence of the αs and βs on the exponent z suggests that there exist two interesting

behaviors for the Scaled Dirichlet Distribution. In fact, for z = 1 we have a Poisson-like scaling

as variance and mean are proportional, and the Scaled Dirichlet Distribution reduces to the

Dirichlet distribution. The other limiting behavior with z = 2 is classically encountered in theo-

retical ecology [31]. In the following, we will only consider these two limiting cases, reducing

the number of free parameters to 1 (the TL’s amplitude A) + S (the species mean abundances).

Therefore, after some manipulations, we obtain the following distributions:

Pz¼1ð~vj~aÞ ¼
1

Bð~aÞ

YS

i¼1

vai � 1

i ð7Þ

Pz¼2ð~vjS; a;~bÞ ¼
1

ZðS; a;~bÞ
ð
Q

i viÞ
a� 1

ð
P

i biviÞ
aS ; ð8Þ

where ∑i vi = 1. The z = 1 prescribes a Poisson-like scaling with ai ¼
�xi
A (�xi and A can be directly

obtained from the data), and all the βs are proportional to a constant, and are canceled out

from the analytic expression of the Dirichlet distribution given by Eq (7). On the other hand,

for z = 2 we find that all αi = α = (2 − σ)/σ = A−1 are constant and bi � K � 1
i . Due to the invari-

ance of the corresponding distribution by rescaling of the βs, the proportionality constant is
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irrelevant (see SM section 4.2.4). Also, because in the latter case αi = α, then the dependence of

Zð~a;~bÞ on~a reduces to ZðS; a;~bÞ and thus the corresponding joint pdf given by Eq (8) is the

Symmetric Scaled Dirichlet distribution.

The second pattern that we exploit to reduce the number of the models free parameters is

the speciesmean (relative) abundance distribution (MAD), which describes the frequencies of

the species abundances averaged over samples. Indeed, it has been shown that different types

of microbiomes share the same average (relative) species abundance distribution [13], i.e.,

�xi � PMADðm; lÞ (�vi � PMADðmv; lvÞ), where the parameters μ (μv) and λ (λv) can be inferred

from the data. In S2 Text, we show that in the large S limit λv� λ. Typically, the distribution

PMAD has fat tails, and it is compatible with a Log-Normal distribution [13]. Regardless of the

particular form PMAD takes, its presence allows us to generate all the �xi (i = 1, . . .S) once μ and

λ are fitted from the data.

To take into account the effect of sampling, which cannot be neglected in microbiome data

[13, 14], we introduce the convolution of the Dirichlet and Symmetric Scaled Dirichlet distri-

butions with a multinomial one. In the first case, convolving the Dirichlet distribution with

multinomial sampling, we obtain the Multinomial Dirichlet Distribution [19] (MD). The inde-

pendent parameters of this model are thus the MAD parameters (μ, λ) and the TL amplitude

A. The MD model is compositional, but it does not satisfy the TL. In the second case, by

convolving the Symmetric Scaled Dirichlet distribution with the multinomial distribution, we

obtain a novel model with ecologically grounded constraints (TL), which we will refer to as

Multinomial Symmetric Scaled Dirichlet (MSSD). In this way, we can generate a synthetic

microbiome using the relative abundance of species~v as the densities and the number of reads

N as the number of trials of the multinomial distribution (see Fig 1). In this case, the number

of independent parameters to fit from the data is two, λ and A (or, equivalently, λ and σ).

We will compare the results obtained for both MD and MSSD models and also for the com-

positional-only-on-average stochastic logistic model originally proposed by Grilli [13], i.e.,

PSLG ¼
QS

i¼1
pGðvijai; biÞ, with

P
i �vi ¼ 1. To consider sampling effects and since the corre-

sponding joint species abundance distribution does not have a sum-to-one hard constraint, we

convolve PSLG with the Poisson distribution and call this model the Poisson Stochastic Logistic

Growth model (PSLG). In this model, the ingredient that ensures (on average) compositional-

ity is the fact that mean abundances are constrained to sum up to one. We note that, from a

statistical mechanics perspective, Pz = 2 and PSLG are, respectively, the microcanonical and

canonical formulations of the same model. Similarly to the MD, the parameters required to

fully specify the model are μ, λ and A.

Operatively, to sample from the three above described model models, we implement the fol-

lowing procedure (see also Fig 1): 1) Depending on the model, fit μ, λ, A from the data (for a

detailed discussion about fitting procedures, see S2 Text). 2) Extract S average abundances

from PMAD(μ, λ); 3) Using Eq (6) and the estimate of the coefficient A from the TL, generate~b

and~a (whose dimensions depend on z, see Eq (6)); 4) Sample the relative species abundances

vi, i = 1, ..SR for each of the r = 1. . .R samples we want to generate using Eq (7) or Eq (8); 5)

For each sample, with the appropriate sampling distribution, generate species counts using rel-

ative abundances and vi and the number of classified reads in the r−th sample, Nr; 5) Remove

all species whose relative abundance is below a given threshold κ. In order to understand the

effect of false positive species on the patterns and models outcomes, we will apply three differ-

ent cut-off κl = 4.5 × 10−7 (low), κm = 9 × 10−6 (medium), κh = 1.8 × 10−4 (high). The three

cut-off values were obtained considering how the diversity of the dataset changes with κ (for a

derivation of these values see Fig E in S1 File).
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Equipped with these models, our aim is to investigate the statistical properties and macroe-

cological patterns of two distinct groups of human gut microbial communities. The first is a

cohort of healthy (H) individuals, while the second is a cohort of individuals affected by gastro-

intestinal tract diseases, which we will generally refer to as unhealthy (U).

Microbiome metadata selection and analysis

We have selected gut microbiome data from three studies [4, 10, 27], where both sequencing

data and sample metadata are available for controls and three gastrointestinal tract diseases:

Crohn’s Disease, Ulcerative Colitis and Inflammatory Bowels Syndromes. In the following, we

will refer to the controls as the H group and all samples from pathological conditions as the U

group. We have filtered so as to have a homogeneous and not biased dataset (see S1 Data for

details). In general, we have selected patients who were less affected (at least at the time of the

study) by medical treatments, to limit the impact of different drug treatments on the gut

microbiome. After this filtering procedure, we ended up with RH = 91 shotgun metagenomic

samples from healthy control individuals and RU = 202 samples from dysbiotic microbiomes.

Fig 1. Schematic representation of the proposed theoretical framework to generate synthetic taxonomic data tables. Panel a: large coloured circles

indicate different samples of microbial communities. Each small ball inside the circle represents an individual of a given species (A,B,C). We normalize

the species abundances ni to densities vi (
PS

i vi ¼ 1). Panel b: We conceptualise the empirical data generation process in terms of sequential steps that

produce tabular count data. Species with low relative abundance may not be sampled, such as species B in sample 1. In panel c we show the densities

phase space for the case of three species and three samples, which can be represented by a simplex. Each point within the simplex now represents one of

the three samples, while each vertex represents a configuration where only the corresponding species is present in the sample. The relative abundance

contribution of each species can be represented by a gradient. For a given sample, in order to obtain the relative abundance of a species, one has to

project parallel to the simplex sides (as denoted by the lines). In panel d, we show the two macroecological patterns (Mean Relative Abundance

distribution and the mean-variance species abundances scaling relation) that can be used to infer the parameters of the stochastic logistic growth model.

Finally, in panel e, we show how the inferred population dynamics model, combined with sampling (e.g. the Multinomial Distribution), can be used to

generate synthetic tabular data.

https://doi.org/10.1371/journal.pcbi.1012482.g001
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We have implemented (for details, see S3 Text) a computational pipeline to process

throughput sequencing metagenomic data following best practices [32], such as quality filter-

ing (removing reads with Q< 20) and human DNA decontamination using the NCBI human

genome assembly (GRCH38).

The metagenomic taxonomic profiling tool we have adopted in our analysis is the Kaiju
classifier [26], which converts metagenomic reads in all possible open reading frames and

searches for the best match in a protein database. The advantage of this approach is that, due

to the degeneracy of the genetic code, it is robust to random mutations along the genome and,

as such, to evolutionary divergences between the dataset and the reference catalogue of

genomes. As a reference species catalogue, we have used RefSeq [33], which contains protein

sequences from complete archaeal and bacterial genomes. Metagenomic samples were profiled

on October 13th 2020. Eventually, we have classified (on average across samples) 39% of reads

in H samples and 37% U, at the species level. From these we build two data-tables, one for each

of the two classes (H and U), having the different species (S) as rows and the samples (R) as

columns. Each {i, j} entry gives the corresponding relative species abundances vi of the sample

j, so that
PS

i¼1
vji ¼ 1. Relative abundances are obtained by dividing the number of reads

assigned to a given species by the total number of reads recognized at the species level for that

sample. To implement the relative abundance threshold, we set to zero all species abundances

less than the relative abundance cut-off κ, i.e. vji ¼ 0 if vji < k.

Results

For ease of reference, Table 1 provides definitions for all the used acronyms, see also S1 Table.

Mean abundance distribution and Taylor’s law

We find that a similar PMAD is observed in both the H and U dataset, and its shape depends on

the relative abundance cut-off κ. In particular, for κ< 10−5 the MAD displays a Log-Laplace

shape, i.e. PMADð�xjm; lÞ ¼ e�
jlog �x � mj

l =ð2l�xÞ, while for κ> 10−5 the MAD is a Log-Normal distri-

bution PMADð�xjm; lÞ ¼ e
�
ðlog �x � mÞ2

2l2 =ð�x
ffiffiffiffiffiffiffiffiffiffi
2pl

2
p

Þ, the same found for OTU 16s data [13]. These dis-

tributions indicate a high heterogeneity in mean abundances having both heavy tails. On the

y-axis of Fig 2 we show the Byesian Information Criterion (BIC) ratio: if it is greater than one,

it indicates that the Laplace distribution is a better fit than the Log-Normal, while if BIC<1,

then the opposite is true. We thus obtain the values of μ and λ for three different thresholds of

Table 1. List of abbreviations and their descriptions.

Abbrev. Description

H, U Healthy, Unhealthy

OTU Operational Taxonomic Unit

MAD Mean Abundance Distribution

TL Taylor’s Law

SAD Species Abundance Distribution

AO Abundance-Occurrence

SAR Species-Area Relation

BIC Bayesian Information Criterion

PSLG Poisson Stochastic Logistic Growth, Model

MD Multinomial Dirichlet, Distribution

MSSD Multinomial Symmetric Scaled Dirichlet, Distribution

https://doi.org/10.1371/journal.pcbi.1012482.t001
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κ. As can also be seen from Fig 2, the Laplace distribution is usually a better description of the

MAD, except for a large threshold where the MAD clearly displays a Log-Normal shape (and

compatibly with the OTU case [13]). In particular, by fitting PMAD we find λH = 1.407 ± 0.005

and λU = 1.413 ± 0.007 (uncertainty of the fit evaluated with a bootstrap procedure, for details

see S2 Text).

Regarding the TL, we find that the value of inferred A depends on the threshold κ. On the

other hand, the exponent z� 2 is remarkably robust for all κ and for H and U samples. In par-

ticular, for each value of κ we compare the R2-score ratio of the best fit power-law to that with

fixed z = 2 finding
R2
z¼2

R2
fit
� 1 suggesting a negligible discrepancy between the two models for this

scaling relation. Therefore, in the following, we assume zData = 2.

Emergent ecological patterns in healthy and unhealthy microbiomes

In this section, we investigate macro-ecological emergent patterns in gut microbiomes, and

test which model can describe them, and whether there are any statistically significant devia-

tions in such patterns between H and U samples.

We will focus on the following ecological patterns of the gut microbiomes: 1) α and γ diver-

sity [34], defined as the number of different species in each local community (i.e., samples)

and H and U meta-communities (i.e. union of all H/U samples), respectively; 2) The abun-

dance-occupancy distribution, describing the probability that a species with mean relative

abundance �v is found in a fraction �o of the total number of samples within a meta-community;

3) The species abundance distribution (SAD) of the H and U meta-communities; 4) The rela-

tion between the number of species observed in a local community normalized to the meta-

community one (α/γ-diversity, also known as Whittaker’s beta diversity) and its sequencing

depth (i.e., the metagenomic version of the species-area relationship).

To compare a given ecological pattern obtained from the data with the corresponding one

produced by a model, we first set the scaling exponent z (z = 2 for MSSD and SLG, z = 1 for

MD). Second, we fit the parameters μ, λ, A (in the case of MSSD, due to model symmetries

and as explained in S2 Text, fitting μ is not necessary) from the data with no cut-off (κ = 0).

We then generate 500 realizations of the two meta-communities (H and U) with the same

number of reads (N), of species (S = γ), and of samples R as found in the data. Eventually, we

consider the three relative abundance cut-offs κ both in the empirical and simulated data (i.e.,

Fig 2. Panel a:Mean Abundance Distribution shape displays a dependence on the relative abundance cut-off κ. The

BIC ratio curve for healthy and disease-related data collapse onto the same line. Panel b: Taylor’s Law holds in

empirical human gut communities, both in health and in disease. For rare species, it is difficult to discriminate

between Poisson-like and Taylor-like scaling, due to the fact that rare species are present only in a few samples. For

simplicity, we report the scatter plot only in the healthy case. A brief discussion of the fitting procedure can be found in

S2 Text.

https://doi.org/10.1371/journal.pcbi.1012482.g002
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all species with vi< κ are set to zero) and for each pattern we calculate a R2-like score (see S1

Text). The final R2-score we assign to the model is the average of all instances of the model.

The first patterns we consider are the γ and α diversities. The values of such quantities are

strongly dependent on κ, but reveal a persistent qualitative regularity among the three regimes.

Indeed, the overall (γ) diversity of species found in the unhealthy meta-community is larger

than that found in healthy microbiomes (γH< γU) for all κ. On the other hand, the average
local diversity (�a) found for the H samples is larger compared to that of the U samples, i.e.,

(�aH > �aU) (see Fig 3).

The second pattern we consider is the SAD [25], which describes, in a given sample the

probability of observing species with a given abundance. In agreement with previous results

obtained with 16s OTU data [13, 35] and also with shotgun data [36], we find that the SAD dis-

plays a heavy tail, that is compatible with small and medium cut-off with power-law distribu-

tions with exponents around 1.7 (see Fig G in S1 File for more details). For large thresholds,

the SAD is more compatible with a Log-Normal distribution. No significant differences are

observed between the H and U individuals (see Fig 4a). Moreover, all the models (PSLM,

MSSD, and MD) generate SADs that are compatible with the empirical ones. These results

confirm [37, 38] that SADs are not informative patterns of the underlying ecological mecha-

nisms driving species abundances.

We then investigate the relation between the log-mean relative abundance of a species and

its occupancy, which we refer to as the abundance-occupancy (AO) curve. We have already

introduced the average relative abundance of species i as �vi ¼ 1

R

PR
j¼1
vji, while we define the

occupancy of species i as �oi ¼ 1

R

PR
j¼1
yðvjiÞ, where θ is the Heaviside Theta, which converts rela-

tive abundance data into presence/absence ones. The relation between �v and �o, as shown in

Fig 4b, describes how likely it is for a species, given its average relative abundance, to be sam-

pled in a realization of the system. This relation is also known as intensity-sparsity relation

[14]. When the low/medium value of κ is set, the curve suddenly saturates, suggesting that a

large proportion of the available S = γ species are expected to be sampled. In this scenario, the

community is dominated by rare species, and thus almost all sampled individuals belong to

different species, thus saturating the diversity very fast. As κ increases, we have fewer and

Fig 3. Box-whiskers plots describe the average local (α) diversity, while horizontal bars indicate the corresponding metacommunity (γ) diversity.

In healthy gut microbiomes (in blue) we find higher average α and lower γ diversity than unhealthy ones (in red). The three panels represent different

threshold relative abundance cut-off κ: a) low (κl = 4.5 × 10−7); b) medium (κm = 9 × 10−6); c) high (κh = 1.8 × 10−4). In each panel, we compare the

diversity of the empirical H and U diversity with respect to the one generated by three different null models: MSSD, SLG, and MD. MSSD is found to be

the best model, especially for low and medium κ.

https://doi.org/10.1371/journal.pcbi.1012482.g003
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fewer species that are rare in relative abundance but, at the same time, are harder to sample. As

Fig 4 shows (panels c, d), this behavior is common to all models and thus does not discriminate

against the underlying ecological processes. However, for low (high) κ the MD typically under-

estimates (overestimates) the occupancy of species (for details see Fig A in S1 File).

We can also directly compare the occupancy curves obtained from the presence-absence

data with those predicted by the models (as shown in Fig 4e and 4f). Interestingly, contrary to

the previous case, here there are differences in how well the models describe the empirical

emergent patterns. In particular, for H samples, the PSLG model outperforms the MSSD one,

whereas MSSD better predicts the pattern of U samples. Such results and goodness of fit for

the MD model are not robust to different thresholds (see Table 2 and Fig A in S1 File).

Finally, we consider the “metagenomic” version of the species-area-relation (SAR) [39], i.e.,

how the diversity increases with increasing sampled area. Here, the area is substituted by the

total number of classified reads. Therefore, we consider increasing the number of reads com-

bining the samples of each group and calculate the normalized diversity as the number of

Fig 4. Comparison of emergent empirical ecological patterns in healthy (H, top panels) and unhealthy (bottom panels) microbiomes and for

MSSD, SLG and MD models. Panels a-b) Species Abundance distribution (SAD); c-d) Species abundances occupancy curve (AO). Grey shaded points

refer to single species mean relative abundance and occupancy; e-f) Empirical vs. predicted occupancy curves (O). Shaded points refer to the predicted/

observed occupancy of single species. To compare the occupancy of simulated and observed species, we sort the simulated species according to their

mean abundance; g-h) Species Area Relationship (SAR) curves. These patterns can be investigated for different cut-offs (see Fig A-D S1 File), here we

show the average threshold cut-off κm = 9 × 10−6.

https://doi.org/10.1371/journal.pcbi.1012482.g004

Table 2. R2 scores for the considered macroecological patterns and for three different thresholds: Low κl, medium

κm and high κh.

AO Curve Species Occupancy SAR Curve

κl κm κh κl κm κh κl κm κh

H

MSSD 0.997 0.996 0.983 0.850 0.823 0.830 0.819 0.695 -15.131

PSLG 0.998 0.995 0.983 0.908 0.912 0.811 0.984 0.585 -22.655

MD 0.937 0.995 0.944 0.516 0.925 0.337 0.776 0.005 -59.763

U

MSSD 0.992 0.982 0.987 0.885 0.861 0.776 0.976 0.840 -0.779

PSLG 0.987 0.982 0.984 0.911 0.571 0.569 0.988 0.522 -1.244

MD 0.902 0.993 0.864 0.562 0.872 0.485 0.874 0.726 -1.302

https://doi.org/10.1371/journal.pcbi.1012482.t002
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unique species in the aggregated community divided by the γ diversity. Although all models

on average slightly overestimate the overall diversity, in H samples they all perform similarly,

while for U samples MSSD and MMD models (which can generate the same number of total

reads as found in the data) outperform the SLG model.

Table 2 summarizes all the results and the comparison between the goodness of fit (mea-

sured as explained in S1 Text) of the three models for the presented emergent empirical eco-

logical patterns of gut microbiomes in both health and disease states.

Finally, by fitting the MSSD, we can gain insight into possible differences in species popula-

tion dynamics within microbiomes of healthy and diseased individuals. As reported in Fig 5,

by fitting the MAD we find λ for both H and U cohorts. We can interpret it as the fluctuation

scale of the carrying capacities. This turns out to be statistically indistinguishable between the

H and U cohorts. However, the most relevant difference comes from the value we infer for σ,

the width of the environmental fluctuations. The stochastic logistic growth model Eq (1) pre-

dicts that the abundance fluctuations distribution has a polynomial part with an exponent

greater than zero if σ> 1 (as observed in the unhealthy cohort) and less than zero if σ< 1 (as

observed in the healthy cohort).

Discussion and conclusion

By inferring the parameters of the models that best describe these patterns, we have obtained

ecological insights into dysbiosis that would not be directly accessible from the data. In partic-

ular, we have found that while the intrinsic logistic population dynamics are similar in the H

and U cohorts (they have very similar carrying capacities determined by λ), fluctuations in

growth rates due to extrinsic environmental factors (given by σ) are much stronger in the U

microbiomes. This is reflected in the abundance fluctuations distribution shifting from a

modal distribution in H samples to a power-law one (with exponential cut-off) in U micro-

biomes, i.e., the probability of a species being very rare is higher in dysbiosis.

This result allows us to explain why in the H cohorts we observe a higher α, but a lower γ
diversity: the species in the U microbiomes experience higher fluctuations, and are thus more

prone to local extinctions, but are also subject to higher turnover (thus increasing the global

diversity of the group). Therefore, we believe that for dysbiois the celebrated Anna Karenina

Fig 5. The parameters of Taylor’s law and mean abundance distribution are informative about the underlying

stochastic logistic model. The values obtained from the data suggest that healthy and unhealthy species abundance

distribution follow different qualitative behaviors, with the unhealthy case being prone to more extinction. Average

and standard deviation estimates of the parameters have been obtained through a bootstrap procedure.

https://doi.org/10.1371/journal.pcbi.1012482.g005
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principle “All happy families are alike; each unhappy family is unhappy in its own way” (Lev

Tolstoj, Anna Karenina, 1877) also holds: ‘All healthy gut microbiomes are alike; each

unhealthy gut microbiome is unhealthy in its own way”. In fact, there are convergent observa-

tions suggesting that dysbiosis can be attributed to host-specific factors [40, 41]. We also have

implemented a stratification analysis (see Fig A-C in S2 File), where we investigated whether

the distinct diversity patterns for healthy and unhealthy microbiomes also hold if only specific

gastrointestinal diseases are considered. We have observed that while Chrohn’s disease (CD)

and ulcerative colitis (UC) exhibit trends consistent with our general findings (lower average α
diversity and higher γ diversity in U patients), inflammatory bowel syndrome (IBS) presents

less systematic tendencies. This distinction is noteworthy given the clinical challenges associ-

ated with the diagnosis of IBS. We have also performed a stratified inference of the environ-

mental noise (σ) and carrying capacity heterogeneity (λ) parameters, finding results

compatible with the previous ones. For the different cohorts, there is no substantial difference

in λ; On the other hand, we have found that CD and UC are associated with an environmental

noise strength σ close to one and larger than healthy microbiomes, supporting our interpreta-

tion discussed above. Again, IBS has a behavior more similar to that of healthy individuals.

We have also shown that microbiome species abundance data exhibit a Taylor law with a z

value of 2. Interestingly, the MD model, by its design, does not satisfy this fundamental con-

straint. However, as shown in Table 2, the MD model is capable of generating AO curves and

SADs that are compatible with the data at any threshold. Similarly, it can accurately reproduce

Occupancy curves at a medium threshold and SAR curves at a low threshold. This finding

highlights that not all patterns and thresholds are equally informative. Some are more effective

than others in differentiating between models and underlying ecological processes. Although

AO curves have previously been used to test specific underlying ecological theories [42], our

results suggest that the shape of the AO curve is simply the result of two main ingredients: het-

erogeneous population averages and random sampling. Similarly, all patterns at low thresholds

are dominated by a large number of rare species (which in shotgun data are probably false pos-

itives [15]).

Something similar occurs for the SAD, where all models are practically indistinguishable

from one another. Indeed, the fact that different models (i.e., processes) can lead to very simi-

lar SAD patterns has long been known in theoretical ecology [25, 43].

For the SAR curves there is a very strong impact of the thresholds on the models goodness

of fit. At low thresholds, all models performed well, thus not providing any discriminatory

power for the right choice of the model. However, at the high threshold, there was a significant

drop in the goodness of fit for all models. In fact, due to removal of all the rare species, the

SAR loses its characteristic shape, and thus it is not useful for models comparison. At the inter-

mediate threshold, the MSSD model performed the best, although it is important to note that

the R2 value is lower compared to its maximum R2 = 0.819. In this case, we also have found

that all models fit U samples better than H samples. This effect is probably because in U sam-

ples the γ diversity is higher, and we have many more rare species, thus increasing the slope of

the SAR (that is, in general, overestimated by the models).

Upon closer examination of the Species Occupancy patterns in Table 2, notable differences

emerged between healthy and unhealthy samples at the medium threshold. In the H samples,

the SLG model showed the highest goodness of fit, closely followed by the MSSD model. On

the contrary, the unhealthy samples showed a different pattern. The SLG model, which per-

formed strongly in the healthy samples, showed a marked decrease in its goodness of fit, indi-

cating potential challenges in capturing the complexity of species occupancy in unhealthy

systems at this threshold. The MSSD model also showed a reduction in performance, but

remained relatively more consistent compared to the SLG model. The performance of the MD
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model for both H and U samples was extremely variable, depending on the cut-off κ. For the

medium threshold, the fit—although not as good as the one of the MSSD and SLG models—

had a relatively high R2, whereas for the low and high thresholds, it decreased markedly.

In our study, we thus have found that, unlike to AO curves and SADs, species occupancy

and diversity curves provide key insights into the performance of various models. Models

incorporating Taylor’s law with z = 2 (SLG and MSSD) offer a better explanation of the data at

the medium threshold (which has proven to be the most informative cut-off for false positives).

This suggests that large species fluctuations, as dictated by Taylor’s law with a scaling exponent

of z = 2, are important for accurately predicting presence/absence patterns and species diver-

sity in empirical datasets. We also have found that models that perform well in healthy com-

munities may not necessarily do so in unhealthy ones, and vice versa. This insight is crucial for

ecological modeling and could guide future research in developing or choosing models that

are tailored to the specific conditions of the ecological systems being studied. Furthermore, we

have found that the SLG model, although effectively similar to the MSSD in many respects,

underestimates species occupancy (see Fig 4f) and overstimates species diversity (see Fig 4g).

The reason is that SLG can generate ecological communities with a number of individuals that

is only on average as the one of the corresponding sampled data, while MSSD implements

strict compositionality of the data.

All in all, we suggest that although compositionality and sampling strongly obscure ecologi-

cal signals, making most empirical patterns qualitatively similar, there are indeed quantitative

ecological differences between microbial communities of the gut microbiome in health and

disease. In particular, considering only a few relevant patterns like Taylor’s law and species

occupancy and using interpretable analytical models that also include environmental noise, we

can propose an interpretation of the observed differences in the taxonomic data, eventually

shedding light on the underlying ecological processes characterizing informative emergent

patterns, such as the specific trend of α and γ diversity in both H and U cohorts. Thus, we con-

clude that dysbiosis is characterized by stronger turnover than healthy microbiomes, which is

due to larger environmental fluctuations.
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42. Sieber M, Pita L, Weiland-Bräuer N, Dirksen P, Wang J, Mortzfeld B, et al. Neutrality in the metaorgan-

ism. PLoS Biology. 2019; 17(6):e3000298. https://doi.org/10.1371/journal.pbio.3000298 PMID:

31216282

43. Purves DW, Pacala SW, et al. Ecological drift in niche-structured communities: neutral pattern does not

imply neutral process. Biotic interactions in the tropics. 2005; p. 107–138. https://doi.org/10.1017/

CBO9780511541971.006

PLOS COMPUTATIONAL BIOLOGY Emergent ecological patterns of gut microbiomes in health and disease

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012482 September 27, 2024 16 / 16

https://doi.org/10.1186/s12859-019-2882-6
https://doi.org/10.1186/s12859-019-2882-6
http://www.ncbi.nlm.nih.gov/pubmed/31757204
https://doi.org/10.1186/s12859-015-0858-8
http://www.ncbi.nlm.nih.gov/pubmed/26821617
https://doi.org/10.1016/j.tree.2012.01.004
http://www.ncbi.nlm.nih.gov/pubmed/22341498
https://doi.org/10.3390/biom14010005
https://doi.org/10.3390/biom14010005
http://www.ncbi.nlm.nih.gov/pubmed/38275746
https://doi.org/10.1016/0025-5564(81)90086-9
https://doi.org/10.1038/nature16504
http://www.ncbi.nlm.nih.gov/pubmed/26762459
https://doi.org/10.1038/s41591-019-0464-9
http://www.ncbi.nlm.nih.gov/pubmed/31133693
https://doi.org/10.1371/journal.pbio.3000298
http://www.ncbi.nlm.nih.gov/pubmed/31216282
https://doi.org/10.1017/CBO9780511541971.006
https://doi.org/10.1017/CBO9780511541971.006
https://doi.org/10.1371/journal.pcbi.1012482

