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Construction of a proper prior for a Bayesian
Envelope Model
Costruzione di una prior propria per un modello
Envelope bayesiano

Andrea Mascaretti

Abstract Envelope models are multivariate linear regression techniques that aim
at reducing the variance of the estimator. Bayesian envelopes allow to quantify the
uncertainty of inference by means of the posterior distribution. In this work, we
construct a proper prior distribution and compare it to the existing literature. A prior
sensitivity analysis is conducted, yielding similar results.
Abstract I modelli envelope sono una particolare tipologia di regressione lin-
eare multivariata finalizzata a ridurre la varianze degli stimatori. La formulazione
bayesiana di questi modelli consente di quantificare direttamente l’incertezza degli
stimatori mediante l’analisi della posterior. In questo lavoro, proponiamo una prior
propria per il modello e valutiamo l’impatto della prior sull’inferenza, ottenendo
risultati comparabili alle proposte presenti in letteratura.

Key words: envelope models, bayesian statistics

1 Response Envelopes

Envelopes [2, 1] are a class of models aimed at increasing the efficiency of multi-
variate regression by exploiting the relations between response and predictors that
affect the accuracy of the results and are not taken into account by standard meth-
ods. Within the usual multivariate regression setting, the expected value of a random
variable Y ∈ Rr is given a functional form such that we get

Yi = µ +βXi + εi, i = 1, . . . ,n, (1)

Andrea Mascaretti
University of Padova, Via Cesare Battisti, 241, 35121, Padova (PD), Italy, e-mail: mas-
caretti@stat.unipd.it
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2 Andrea Mascaretti

where {Xi}n
i=1 is a sequence of non-stochastic vectors, with Xi ∈ Rp for i =

1, . . . ,n, the errors are independent and identically distributed multivariate normal
vectors with zero mean and covariance Σ , µ ∈ Rr is an unknown vector of intercepts
and β ∈ M(r,p) (where M(a,b) denotes the space of real matrices of dimensions (a,b))
is the unknown matrix of regression coefficients. For simplicity (and without loss
of generality), we assume that the predictors are centred, ∑n

i=1 Xi = 0. Moreover,
let Y be the (n× r) matrix of rows (Yi − Ȳ )T , where Ȳ is the sample mean, and Y0
be the non-centred matrix. In a similar fashion, let X =

/
XT

i
0

be the matrix of the
predictors, SY,X = n−1Y T X and SX = n−1XT X . The maximum likelihood estimator,

β̂ = SY,X S−1
X , (2)

is incidentally equal to the ordinary least squares estimator. From Eq. 2, we no-
tice that this is akin to performing r separate univariate regressions: one for every
element of Y on X . Inference on β j,k, the ( j,k)th element of β is the same we would
obtain by constructing a univariate model. The model in Eq. 1 becomes operational
when inference is conducted simultaneously on different rows of β or various ele-
ments of Y jointly.

The intuition behind envelope models is that there might be linear combina-
tions of the response vectors whose distribution is invariant with respect to the non-
stochastic predictors. Explicitly modelling for this property allows to obtain estima-
tor whose variance is reduced. We call such linear combinations of Y X-invariant.
Notice that for a linear transformation G ∈ M(r,q), with q ≤ r, if GTY is invariant,
then also AT GTY has the same property for any non-stochastic matrix A ∈ M(q,q). In
other words, only span(G) is identifiable.

From a mathematical point of view, this is equivalent to assuming the existence
of two matrices Γ and Γ0 such that O = [Γ Γ0] is orthogonal. We obtain

1. Γ T
0 Y |X ∼ Γ T

0 Y
2. Γ TY ⊥ Γ T

0 Y |X

The conditions above entail that span(β )⊆ span(Γ ) and Σ =Σ1+Σ2 =PΓ ΣPΓ +
QΓ ΣQΓ , where P(·) is the orthogonal projector operation on a space and Q(·) =
I −P(·) is the projection on the orthogonal space. In this scenario, span(Γ ) is a re-
ducing subspace of Σ ([2]). The Σ -envelope of B = span(β ), EΣ (B), is the small-
est reducing subspace of Σ that contains B.

Model in Eq. 1 can be rewritten as

Yi = µ +Γ ηXi + ε, (3)

where β =Γ η , Γ ∈M(r,u) is an orthogonal basis of EΣ (B) and u is the dimension of
the envelope EΣ (B). Moreover, the variance is Σ = Σ1 +Σ2 = Γ ΩΓ T +Γ0Ω0Γ T

0 ,
where Ω ∈ M(u,u) and Ω0 ∈ M(r−u,r−u) are two diagonal matrices carrying the coor-
dinate information with respect to the basis Γ and Γ0.
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Construction of a proper prior for a Bayesian Envelope Model 3

1.1 Bayesian Envelopes

The only contribution, to the best of our knowledge, on Bayesian envelopes models
is [3]. The rationale behind Bayesian envelopes is that it allows to quantify the un-
certainty of the predictions by computing the posterior distribution (as opposed to
bootstrap or asymptotic considerations), as well as extending the model to the cases
where n < r. Moreover, prior information can be incorporated into the learning pro-
cess, be it on the values of the parameters or to induce sparsity or other desirable
properties. As for the selection of u, the dimension of the envelope, [3] adopt a De-
viance Information Criterion to obtain the best value, in lieu of the Likelihood Ratio
Tests used within the frequentist framework. The interest in obtaining a proper prior
distribution for a Bayesian envelope stems from the fact that this is a prerequisite
to extend it to more complex scenarios, such as mixtures or nonparametric formu-
lations. In our work, we build on [3] and change the prior on the mean µ . Notice
that we require that the mean component be separated from the regression coeffi-
cients because we model our data up to a translation: assuming that a subset of Y is
X-invariant does not imply that it has zero mean. We also assume a priori indepen-
dence, which seems logical for the mean value of Y should not be influenced by the
values of X a priori. Whereas [3] employ an improper prior for the data, i.e. they set
π (µ) ∝ 1 on the support of µ , our proposal relies on a proper prior distribution.

The prior distribution is defined on the parameters (µ,η ,(Γ ,Γ0) ,Ω ,Ω0). Notice
that, for identifiability, we constrain Ω and Ω0 to be diagonal matrices with entries
disposed in decreasing order. This is equivalent to post-multiplying Γ and Γ0 by the
matrices of eigenvectors of the original Ω and Ω0. From a mathematical point of
view, this is equivalent to fix Γ and Γ0 to be bases of the envelope and, thus, as ele-
ments of a subset of a Stiefel manifold restricted to have that the maximum element
for each column as positive sign, denoted by S+

(·, ·). In this respect, we notice that the
Stiefel manifold of arbitrary finite dimensions (a,a) is a compact unimodular group
with a unique Haar measure, which induces a measure on S(a,b) and S+

(a,b).
The parameter space is then given by M(r,1)×M(u,p)×S+

(r,r)×Ou ×Or−u, where
Oa is the set of diagonal matrices of dimension a with entries disposed in decreasing
order.

We define the prior on the parameters as follows:

1. µ is set to be independent from the other parameters. We endow it with a multi-
variate normal distribution, so that π (µ) = Nr (µ0,Σ0),

2. The conditional prior on η is a matrix normal:

π (η |(Γ ,Γ0,Ω ,Ω0)) = N(u,p)
)
Γ T ,Ω ,C−1* ,

where C−1 is a positive definite matrix in M(p,p).
3. The prior on O = (Γ ,Γ0) is a matrix Bingham distribution with parameters G

and D, where G is a positive semi-definite matrix in M(r,r) and D is in Or with
positive entries. Thus, π (O) = B(r,r)

)
G,D−1

*
. The density is proportional to

exp
/
(−1/2) tr

)
D−1OT GO

*0
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4 Andrea Mascaretti

4. Denoting by ω and ω0 the diagonal vectors of, respectively, Ω and Ω0, we as-
sume that, a priori, they are distributed as order statistics of u and r−u indepen-
dent and identically distributed observations from Inverse-Gamma distributions
of shape and rate parameters α , ψ and α0, ψ0.

Notice that the main difference between our work and [3] is the prior on µ . From
a computational point of view, this means that the structure of the Gibbs sampler is
similar, the only difference being the structure of the full-conditional for µ , which
can be easily computed to be of the form

π (µ|η ,(Γ ,Γ0) ,ω,ω0,Y ) = Nr (µc,Σc) , (4)

where

Σc =

5
Σ−1

0 +

%
Σ
n

&−1
6−1

,

and

µc = Σc

5
Σ−1

0 µ0 +

%
Σ
n

&−1

Ȳ

6
.

Notice that the Harris ergodicity of the chain is also a straightforward extension
of [3].

2 Simulation and Data Analysis

We now perform a test for different values of the prior distribution on a synthetic
dataset. The aim is to assess the sensitivity with respect to the choice of the hyper-
parameters. We generated n = 100 data points from a normal distribution with zero
mean and identity matrix as covariance. We set u = 1, p = 2, r = 3. The parameters
are defined as follows:

1. µ = (12,12,12)
2. ω = 6.2
3. ω0 = (3.2,1.4)
4. O = Ir

and Yi are randomly drawn from a multivariate normal with mean µ +Γ ηXi and
covariance Γ ΩΓ T +Γ0Ω0Γ T

0 . As for the hyperparamaters, we distinguish between
three cases. We focus on µ as it is the most relevant change we make. In the first
case, we use a weakly informative proper prior with µ0 = (0,0,0) and Σ0 = κIr,
with κ = 10. In the second test case, we set µ0 = Ȳ and Σ = Ir. Finally, we consider
the improper prior as in [3]. The other parameters are set as follows: C = Ip, D = Ir,
G = Ir, α = 3, ψ = 3, α0 = 3 and ψ0 = 3.

For each case study, we run a Gibbs sampler for 1000 iterations, with a burn in of
300. The initialisation for each chain was from the same random point in the param-
eter space. This was mainly for convenience, as we did not want to find a suitable
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Construction of a proper prior for a Bayesian Envelope Model 5

initial point (as it is customary for applied Bayesian analysis, f.i. by starting from
the approximate mode of the posterior), given that we wanted to assess convergence
starting from a somewhat arbitrary place.

Results for the three components of µ are reported, respectively in Tables 1, 2,
and 3.

We see that even though the empirical and the noninformative priors lead to
somewhat closer posterior estimates, the effect of placing a weakly informative
prior also yields posterior higher density intervals that are in line with the other two
classes of prior distributions. However, the true advantage of a proper prior is that
it allows for extending the model to more complex settings. The fact that it yields
similar results notwithstanding different hyperparameters is certainly encouraging,
although, as always, some care should be put in their refinement.

Table 1 Posterior inference for µ = (µ1,µ2,µ3) with a weakly informative prior: posterior higher
density interval (HDI) are reported.

Parameter Mean 3% HDI 97% HDI

µ1 12.67 12.005 13.359
µ2 12.043 11.715 12.324
µ3 12.097 11.882 12.313

Table 2 Posterior inference for µ = (µ1,µ2,µ3) with an empirical prior: posterior higher density
interval (HDI) are reported.

Parameter Mean 3% HDI 97% HDI

µ1 12.832 12.1 13.49
µ2 12.071 11.746 12.361
µ3 12.117 11.903 12.307

Table 3 Posterior inference for µ = (µ1,µ2,µ3) with a noninformative prior: posterior higher
density interval (HDI) are reported.

Parameter Mean 3% HDI 97% HDI

µ1 12.85 12.246 13.425
µ2 12.07 11.74 12.364
µ3 12.121 11.916 12.286
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6 Andrea Mascaretti

3 Conclusions

In this work, we have constructed a proper prior distribution for a Bayesian envelope
model. We carried out an assessment of the prior sensitivity on a simple test case,
obtaining that the choice of the hyperparameters for the parameter µ yields similar
results in the three cases studied: a weakly informative, an empirical one and a non-
informative prior. The importance of allowing more options stem from different
lines of reasoning. First of all, it might be required when prior knowledge is to be
incorporated into the model. Moreover, even though the actual impact of any of
these prior distributions is somewhat limited whenever the likelihood is dominant,
this might not necessarily be the case. In such scenarios, a weakly informative or
empirical prior might be preferable. Another advantage of a proper prior is that
it allows for an extension of the model to more complex scenarios. For instance,
finite mixture models and nonparametric extensions require prior distributions to be
proper. This is due to the latent cluster structure they posit on the data: the more
the clusters, the more likely they are empty. An improper prior is then ill-suited in
this context, as it is not an actual distribution and does not respect the probabilistic
properties required by Bayesian inference.
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