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Multivariate functional data that are cross-sectionally compositional data are
attracting increasing interest in the statistical modeling literature, a major
example being trajectories over time of compositions derived from cause-
specific mortality rates. In this work, we develop a novel functional concur-
rent regression model in which independent variables are functional compo-
sitions. This allows us to investigate the relationship over time between life
expectancy at birth and compositions derived from cause-specific mortality
rates of four distinct age classes, namely 0–4, 5–39, 40–64 and 65+ in 25
countries. A penalized approach is developed to estimate the regression co-
efficients and select the relevant variables. Then an efficient computational
strategy based on an augmented Lagrangian algorithm is derived to solve
the resulting optimization problem. The good performances of the model in
predicting the response function and estimating the unknown functional coef-
ficients are shown in a simulation study. The results on real data confirm the
important role of neoplasms and cardiovascular diseases in determining life
expectancy emerged in other studies and reveal several other contributions
not yet observed.

1. Introduction. There is still a considerable heterogeneity across countries (even if we
focus on high-income countries only) in terms of longevity, and the variability of the time pat-
tern with which the recent mortality levels have been reached is even more heterogeneous.
Several studies have investigated on these time patterns (see, for instance, Canudas-Romo,
2010), but recently some are trying to analyze the role of causes of death in determining them.
For example, Bergeron-Boucher, Aburto and van Raalte (2020) try to determine which causes
of death are associated with longevity extension. Woolf and Schoomaker (2019) attribute the
recent stagnation of life expectancy in the USA to increasing midlife mortality caused by drug
overdoses, alcohol abuses, suicides and some organ diseases. Mehta, Abrams and Myrskylä
(2020) contest these findings, arguing that cardiovascular diseases are mainly responsible
for such stagnation. The idea of associating life expectancy (or other summary measures of
mortality rates) with causes of death is not new: many investigators have employed a de-
composition method (see, for instance, Vaupel and Canudas-Romo (2003)). However, most
of these studies are limited to a single country (see Jasilionis et al. (2023); Mehta, Abrams
and Myrskylä (2020)) or to a single age group (see Remund, Camarda and Riffe (2018)).
Others (see Canudas-Romo, Adair and Mazzuco (2020)) collapse time dimension into a sin-
gle indicator, thus not considering the evolution of causes of death over the last decades.
Recently Stefanucci and Mazzuco (2022) proposed a combination of Functional Data Anal-
ysis (FDA) and Compositional Data Analysis (CDA) to analyze the time pattern of causes
of death, limiting to mortality at age 40–64. Although the study by Stefanucci and Mazzuco
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TABLE 1
Classifications of causes of death used and age groups for which they are considered.

Classifications of causes of death Age classes
Congenital anomalies (CONG) 0–4
Infancy related causes, excluded congenital anomalies (INFA) 0–4
Certain infectious and parasitic diseases (INFE) 0–4 5–39 40–64 65+
Neoplasms (NEOP) 0–4 5–39 40–64 65+
Respiratory diseases (RESP) 0–4 5–39 40–64 65+
External causes of death (EXT) 0–4 5–39 40–64 65+
Diseases of nervous system (NERV) 0–4 5–39 40–64 65+
Digestive system diseases (DIG) 5–39 40–64 65+
Mental disorders (MENT) 5–39 40–64 65+
Endocrine, nutritional and metabolic diseases (END) 5–39 40–64 65+
Circulatory system diseases (CIRC) 5–39 40–64 65+
Diseases of urogenital system (UROG) 40–64 65+
Lung cancer (LUNG) 40–64 65+
Diseases of skin, musculoskeletal system and connective tissue system (SKIN) 40–64 65+

(2022) provides some useful insights on the evolution of cause-specific mortality, it remains
of a descriptive nature and is limited to a specific age group, while it might be of interest to
measure if and to what extent different compositions of causes of death are associated with
the evolution of overall mortality in the latest years. Conducting such an analysis can prove
highly beneficial in gaining valuable insights into the epidemiological experiences of differ-
ent countries. Moreover, it allows for an indirect association with trends in risk factors, such
as the prevalence of smoking.

We suggest that this can be performed by regressing the evolution of overall mortality
(measured in terms of life expectancy at birth) with causes of death composition of mortal-
ity as defined by Stefanucci and Mazzuco (2022). Sun et al. (2020) have recently proposed
a log-contrast regression model with functional compositional covariates but limited to the
case of a scalar response variable. Although of great interest, their model is not specifically
tailored to our purposes. Thus, we extend the previous work to cope with the functional
essence of our response variable (life expectancy over time). Such an extension consists of a
concurrent specification of the function-on-function linear regression model, with appropri-
ate constraints due to the compositional nature of the covariates. Four age groups of causes of
death are considered i.e., 0–4, 5–39, 40–64, and 65+, thus giving rise to four different com-
positions, each with many components – not necessarily the same ones, as shown in Table 1.
Since it is reasonable that only few of them are relevant to predict the outcome, the model
specification assumes sparsity of the regression coefficients. In this way, variable selection is
performed and interpretable results are obtained. An efficient computational strategy based
on an augmented Lagrangian algorithm is also described to estimate the proposed model, and
the performance of the method is illustrated through a simulation study.

The article proceeds as follows. In Section 2 we describe the analyzed data and formalize
all the relevant quantities. In Section 3 we introduce a novel concurrent functional regression
model with compositional covariates and discuss its estimation. The results of a simulation
study are presented in Section 4 and the results on real data are extensively commented on
Section 5. Finally, Section 6 concludes the article.

2. Data and problem setup. For each cause i, age x and calendar year t, we consider
cause-specific mortality rates that can be written as

imt
x =mt

x

iDt
x

Dt
x

,

where iDt
x is the number of deaths for cause i at age x and time t, Dt

x is the number of
deaths for all causes at age x and time t and imt

x and mt
x are the corresponding rates. For a
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TABLE 2
Considered countries.

Area Country
North Eur. Denmark, Finland, Norway, Sweden
West Eur. Austria, Belgium, Switzerland, France, Ireland, Netherlands, UK
East Eur. Hungary, Poland, Lithuania, Estonia, Latvia, Russia, Ukraine
South Eur. Italy, Spain
Extra Eur. USA, Japan, New Zealand, Canada, Australia

given age x, compositions of mortality rates can be regarded as compositions of imt
x using

mt
x as normalization constant. Otherwise, data with unit-sum constraints may be obtained

from iDt
x, using

∑
x,i

iDt
x as the normalization constant. The latter approach was adopted by

Oeppen (2008) and Kjærgaard et al. (2019) to model and forecast age-at-death distributions.
In this way, the parts of the composition are related to different ages and the results could
be difficult to interpret. Although this is not a problem for forecasting purposes, it is a major
drawback for our perspective. The exact opposite of the previous approach is to study imt

x

directly, that is, different compositions for each age. This would result in many predictors,
making estimation problematic, especially for limited sample sizes. Moreover, as before,
interpreting the results could be challenging. For these reasons, we focus on four age classes:
0–4, 5–39, 40–64, 65+, giving rise to four different compositions. From a demographic point
of view, they account for infant, premature, early-adult and senescent mortality causes of
death patterns, respectively. The underlying idea is that not only does the cause-of-death
composition change among age groups, but also its effect on life expectancy varies with age.
Age stratification allows us to control for different age structures across countries and over
time. Life expectancy is a summary indicator of overall mortality that is independent on age
structure of population but the compositions of causes of death are potentially affected by
age structure changes, since some causes might be negligible at very young ages and highly
relevant for old ones (e.g. dementia) and others (e.g. congenital anomalies) may be the other
way round. Therefore, by considering a distinct composition for each age group, we can
take into account the changing significance of different causes of death according to age.
Consequently, certain causes may become irrelevant for specific age classes.

Data on causes of death come from the WHO mortality database (WHO mortality
database) and from the Human Causes of Death database (HCD) (Human Cause-of-Death
Database) which contain time series of age-specific and cause-specific deaths for several
countries. A primary issue is that the International Classification of Diseases (ICD) has
changed significantly over the years, which may bias results. Following Canudas-Romo,
Adair and Mazzuco (2020) and Stefanucci and Mazzuco (2022), we use broad categories
of causes, which are minimally affected by the classification revisions. The categories con-
sidered are shown in Table 1: the number of causes is higher than in Stefanucci and Mazzuco
(2022), who limit their analysis to age group 40–64. Here, we also consider causes that are
specific to infant ages (e.g., congenital anomalies) and senescent ones (e.g., mental disorders,
including dementia and Alzheimer’s disease). As can be seen in Table 1, only some of the
14 causes are included in the composition of a specific age group. For example, age 0–4 in-
cludes only 7 causes; the others are ignored as their role for that age group is negligible. On
average, our classification accounts for 88% of the total number of deaths for the age class
0–4, 92% for the age class 5–39, and 98% for the age classes 40–64 and 65+. Regarding the
countries used in this work, after some preliminary analyses, we decided to limit the study
to the n= 25 nations reported in Table 2, with a population size exceeding one million and
good data quality. In order to consider the same time window for each nation, we restrict
the study to the years 1965–2012. Some years are still missing for a few countries, that is,
2005 for Australia, 1996—1997 for Poland, and 2000 for the UK. This is not an issue, since
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our methodology also works for a non-equispaced time grid. Furthermore, a small number of
zero counts is present in the age class 0–4 for external causes, neoplasms, infectious, respira-
tory and nervous diseases, as well as for mental and digestive diseases in the age class 5–39
and mental diseases in the other two age groups. Since the data have to be log-transformed,
we replace them by the maximum rounding error of 0.5, which is a common practice in
CDA (Aitchison, 2003). Concerning life expectancy at birth, we use data from life tables
from the Human Mortality Database (HMD) (Human Mortality Database), which contains
detailed, consistent, and high-quality data on human overall mortality, with no distinction
among causes (Barbieri et al., 2015).

3. Methods. The main objective is to analyze the time-varying effect of causes of
death on human longevity, studying whether variations in the causes of death composition
can be predictive of life expectancy at birth. Since life expectancies in a given year are
calculated based on age-specific mortality rates for the same year, we assume a concur-
rent relationship between the response variable and the covariates. We formulate the sta-
tistical problem in a very general way, considering an arbitrary number q of age classes
and the possible inclusion of time-varying control variables (i.e., non-compositional co-
variates). Let y(t) = [y1(t), . . . , yn(t)]

⊤ ∈ Rn be the response vector whose i-th compo-
nent is the life expectancy at birth at time t ∈ T for the i-th country, with i = 1, . . . , n.
Let xij(t) =

[
xij1(t), . . . , xijpj

(t)
]⊤ ∈ Spj−1 be the composition of pj cause-specific mor-

tality rates for the i-th nation and j-th age class at time t, with j = 1, . . . , q, and Sp−1 ={
[x1, . . . , xp]

⊤ ∈Rp, xk > 0,
∑p

k=1 xk = 1
}

denoting the positive simplex lying in Rp. Also,

let xi(t) =
[
xi1(t)

⊤, . . . ,xiq(t)
⊤]⊤ ∈ Rq be the vector containing all the q compositions,

with p =
∑q

j=1 pj , and let X(t) = [x1(t), . . . ,xn(t)]
⊤ ∈ Rn×p be the matrix of functional

predictors at time t. Finally, Zc(t) ∈ Rn×(pc+1) is the matrix of control variables at time t,
where the first column is a vector of ones 1n, to estimate the functional intercept. The ob-
served life expectancies and compositions of mortality rates at each calendar year can be
considered as discrete observations from y(t) and X(t), respectively.

3.1. Linear log-contrast model. Since the pioneering work of Aitchison and Bacon-
Shone (1984), log-contrast models have been very popular for regression problems with
compositional covariates. Suppose that we observe a response vector y = [y1, . . . , yn]

⊤ ∈Rn

and a design matrix X = [x1, . . . ,xn]
⊤ ∈ Rn×p with xi = [xi1, . . . , xip]

⊤ ∈ Sp−1, for
i= 1 . . . , n. Because of the unit-sum constraint, each row of the matrix X cannot vary freely
and the classical regression model is subject to identification problems. A naive solution is
to omit one of the parts of the composition, but the method is not invariant to the choice of
the removed component and the resulting coefficients are difficult to interpret. The idea of
Aitchison and Bacon-Shone (1984) is to perform an additive log-ratio transformation of the
compositional data so that the transformed data admit the familiar Euclidean geometry in
Rp−1. For a given reference component r ∈ {1, . . . , p}, let Zr = [z1, . . . ,zn]

⊤ ∈ Rn×(p−1)

be the associated design matrix, where the j-the element of zi is given by zij = log (xij/xir),
for j = 1, . . . , r− 1, r+ 1, . . . , p. The resulting linear log-contrast model is

(3.1) y = 1nβ0 +Zrβr + e,

where β0 is the intercept, βr ∈ Rp−1 is the regression coefficient, and e ∈ Rn is the error
vector, independent from Zr and distributed as N (0, σ2). The log-contrast model can be
written in the symmetric form

(3.2) y = 1nβ0 +Zβ+ e, s.t. 1⊤p β = 0,
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where Z ∈ Rn×p is the matrix resulting from log-transforming each element of the matrix
X , β0 and e are the same as in model (3.1), and the regression coefficient βr is the subvector
obtained from β by removing the r-th component. The log-contrast model obeys a landmark
concept in CDA, called subcompositional coherence (Aitchison, 2003): if the j-th coefficient
of β is zero, then the results are unchanged if the model is applied to the subcomposition
without the j-th component.

In the classical regression framework, the least squares estimation can be performed in-
differently assuming the model (3.1) or the constrained form in (3.2). However, in a high-
dimensional setup where variable selection is required, the use of a Lasso penalization
method (Tibshirani, 1996) determines the loss of equivalence between the symmetric and
non-symmetric form. For example, consider the inclusion of a L1 penalty term for model
(3.1), determining the optimization problem

(3.3) argmin
βr,β0

1

2
||y− 1nβ0 −Zrβr||22 + λ||βr||1.

The solution of problem (3.3) is not invariant to the choice of the reference category r and,
in general, is different from that of the Lasso criteria related to the symmetric model (3.2),
which determines the optimization problem

(3.4) argmin
β,β0

1

2
||y− 1nβ0 −Zβ||22 + λ||β||1, s.t. 1⊤p β = 0.

The latter is proposed and studied in the context of gut microbiome and metagenomic data by
Lin et al. (2014), who also provide theoretical guarantees for the resulting estimator. More-
over, the zero-sum constraint makes the model subcompositional coherent.

3.2. Sparse functional concurrent log-contrast regression. Although in practice the
functional compositional predictors and the response variable are observed at each calendar
year, here we assume that X(t) and y(t) are observed for each t ∈ T . Following the notation
of Section 3.1 and Section 2, let Z(t) ∈Rn×p be the matrix resulting from log-transforming
each element of the matrix X(t) at time t, and recall that y(t) ∈Rn is the functional response
and Zc(t) ∈Rn×(pc+1) is the functional matrix of control variables, including a vector of ones
1n as the first column. The matrix Z(t) contains q compositions and thus we need to impose
q zero-sum constraints to achieve subcompositional coherence. Following Lin et al. (2014)
and Sun et al. (2020), we propose the functional concurrent log-contrast regression model

(3.5) y(t) =Zc(t)βc(t) +Z(t)β(t) + e(t), s.t. Lβ(t) = 0q ∀t ∈ T ,

where β(t) =
[
β1(t)

⊤, . . . ,βq(t)
⊤]⊤ ∈ Rp is the functional regression coefficient, with

βj(t) = [βj1(t), . . . , βjpj
(t)]⊤ ∈ Rpj for j = 1, . . . , q, βc(t) ∈ Rpc+1 is the functional re-

gression coefficient related to the control variables, and e(t) ∈Rn is the vector of functional
errors distributed as N (0, σ2). The set of linear constraints is represented by the matrix

L=


1p1

0p1
· · · 0p1

0p2
1p2
· · · 0p2

...
...

. . .
...

0pq
0pq
· · · 1pq


⊤

∈Rq×p.

For our study, it is reasonable to assume that the effects of causes of death on life ex-
pectancy are smooth over years. To achieve smoothness, each coefficient curve is represented
by a linear expansion of k known basis functions, such that

β(t) =BΦ(t), βc(t) =BcΦ(t),
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where B = [b1, . . . ,bp]
⊤ ∈ Rp×k and Bc =

[
b0,bc1 , . . . ,bcp

]⊤ ∈ R(pc+1)×k are the coef-
ficient matrices, and Φ(t) = [ϕ1(t), . . . , ϕk(t)]

⊤ ∈ Rk is the vector of basis functions. For
simplicity and since it is usually sufficient in practice, here we assume the same number
k of basis functions for each predictor and control variable, obtained considering an equis-
paced grid of knots. Moreover, we assume that the elements of Φ(t) are B-splines of order d
(De Boor, 1978). A B-spline of order d is a piecewise polynomial function of degree d− 1
and is defined by a set of knots, which are the points where the functions meet. The choice is
not restrictive, and other basis functions can be adopted: see Ramsay and Silverman (2005)
for a detailed discussion. The same consideration applies to the number of basis functions k,
which can be assumed to be different for each coefficient curve.

Another reasonable assumption is that some compositional components have no effect on
life expectancy. To enable variable selection, we induce sparsity by using a L1 penalization
method. For model (3.5), the functional sparsity of the coefficient curves in β(t) translates
into the row sparsity of the coefficient matrix B. Many penalization methods have been
proposed in Statistics and Machine Learning literature to induce sparsity, among which the
Lasso (Tibshirani, 1996) is probably the most famous. The Group Lasso (Yuan and Lin, 2006)
is an extension which considers the concept of groups of coefficients and fits for the purpose
here, since it allows the whole coefficient vectors bj , for j = 1, . . . , p, to be selected rather
than their individual components.

To formulate the optimization problem, the zero-sum constraints and the coefficient curves
have to be expressed in terms of the elements of the matrices B and Bc. For this purpose, it
is convenient to express the problem in terms of b = vec(B⊤) ∈ Rpk and bc = vec(B⊤

c ) ∈
R(pc+1)k. It can be easily seen that imposing 1⊤pj

bj(t) = 0, for j = 1, . . . q and ∀t ∈ T , is
equivalent to imposing zero-sum constraints on the columns of the matrix B, that is, (L⊗
Ik)b= L̃b= 0qk with L̃ ∈Rqk×pk. Moreover, we have that

β(t) =
(
Ip ⊗Φ(t)⊤

)
b= Φ̃(t)b,

with Φ̃(t) ∈ Rp×pk and, similarly, βc(t) = Φ̃c(t)bc, with Φ̃c(t) ∈ R(pc+1)×(pc+1)k. In ac-
cordance with the above considerations, we propose to estimate the parameters to solve the
optimization problem

(3.6)
1

2
argmin

b,bc

∫
r(t)⊤r(t)dt+ λ

p∑
j=1

||bj ||2, s.t. L̃b= 0qk,

where r(t) = y(t)−Zc(t)Φ̃(t)bc −Z(t)Φ̃(t)b ∈ Rn and λ is a tuning parameter that con-
trols the strength of the group-Lasso penalization. The proposed estimator has the same desir-
able properties as its counterparts in the classical regression framework (Lin et al., 2014) and
in the functional case with scalar response (Sun et al., 2020). The zero-sum constraints for
each composition guarantee that the estimator remains unchanged under the transformation
X(t) 7−→ SX(t), where S = diag(s1, . . . , sn), with si > 0 for i= 1, . . . , n. Furthermore, the
constraints ensure that the proposed methodology is subcompositional coherent: if we knew
that some coefficient curves of β(t) are zero and estimated the model using the composi-
tions formed by excluding the parts associated with those curves, then the resulting estimator
would be unchanged. Finally, a direct consequence of the symmetric formulation of the prob-
lem (3.6) is that the solution is invariant under any permutation of the components of each
composition.
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3.3. Computation. We propose to solve the convex optimization problem (3.6) using an
augmented Lagrangian algorithm (Bertsekas, 1982). For a detailed review of the method and
its extensions with applications in Statistics and Machine Learning, see Boyd et al. (2011).
The problem (3.6) can be rewritten as

(3.7)

argmin
b,bc

1

2
b⊤Kb− b⊤J +

1

2
b⊤c Mbc − b⊤c P + b⊤c Qb

+ λ

p∑
j=1

||bj ||2, s.t. L̃b= 0qk,

where the matrices containing functional inner products with weighting functions are denoted
by K =

∫
Φ̃(t)⊤Z(t)⊤Z(t)Φ̃(t)dt ∈ Rpk×pk, J =

∫
Φ̃(t)⊤Z(t)⊤y(t)dt ∈ Rpk, M =∫

Φ̃c(t)
⊤Zc(t)

⊤Zc(t)Φ̃c(t)dt ∈ R(pc+1)k×(pc+1)k, P =
∫
Φ̃c(t)

⊤Zc(t)
⊤y(t)dt ∈ R(pc+1)k

and Q=
∫
Φ̃c(t)

⊤Zc(t)
⊤Z(t)Φ̃(t)dt ∈R(pc+1)k×pck.

Since bc is involved in neither the penalty term nor the constraint, the optimization problem
can be restated as

(3.8) argmin
b

1

2
b⊤K̃b− b⊤J̃ + λ

p∑
j=1

||bj ||2, s.t. L̃b= 0qk,

where K̃ = K − Q⊤M−1Q ∈ Rpk×pk and J̃ = J − Q⊤M−1P ∈ Rpk. Then, once the
solution b̂ is obtained, the estimate of the coefficient associated with the control variables is
b̂c =M−1(P −Qb̂).

The augmented Lagrangian associated with problem (3.8) is

Lρ(b,u) =
1

2
b⊤K̃b− b⊤J̃ + λ

p∑
j=1

||bj ||2 +
ρ

2
||L̃b||22 +u⊤L̃b,

where u ∈ Rqk is the Lagrange multiplier and ρ is the penalty parameter. The augmented
Lagrangian method finds the solution of the original problem iterating between a minimiza-
tion step and a dual ascent step. The procedure for a fixed λ is summarized in Algorithm
1. We allow the penalty parameter ρ to increase in each iteration if the error does not de-
crease sufficiently over the previous iteration. The adjustment scheme follows the guidelines
in Bertsekas (1982, p. 123). The first step of the algorithm updates

bk← argmin
b

Lρk−1(b,uk−1),

and it is equivalent to solving a standard group-Lasso problem. In our implementation, we
employ the Alternating Direction Method of Multipliers (Boyd et al., 2011), but other rou-
tines can be used to solve the problem. When the model is fitted for a path of λ, the solutions
û and b̂ associated with the previous penalty term are used as a warm start for the subsequent
iteration.

As noted before, the functional compositional predictors and the response variable are
observed at each calendar year and not continuously ∀t ∈ T . Therefore, all the integrals
involved in the optimization problem have to be computed from discrete-time observations. In
our study, we employ the trapezoidal rule, which is equivalent to approximating the discrete-
time data to continuous-time curves by means of linear interpolation.
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Algorithm 1 Augmented Lagrangian method to solve problem (3.8)

Require: b0, ρ0,u0, ϵ, kmax
k← 1
err0←max L̃b0

while errk−1 > ϵ & k ≤ kmax do
bk← argminbLρk−1(b,u

k−1)

errk←max L̃bk

if errk > 0.25errk−1 then
ρk← 10ρk−1

else
ρk← ρk−1

uk← uk−1 + ρkL̃bk

k← k+ 1

4. Simulations. We performed a simulation study in order to compare the performance
of our proposal based on a constrained group Lasso (CGL) with two possible competitors.
The first candidate is a baseline method, that is, a standard group Lasso in which the reference
level r is chosen randomly (BGL). The second competitor is based on a naive approach,
which consists of estimating the log-contrast regression model with the Lasso penalty of Lin
et al. (2014) at each time t ∈ T and smoothing the resulting estimates.

We generate the compositional data similarly to the previous works of Lin et al. (2014),
Shi, Zhang and Li (2016), Sun et al. (2020). The discrete-time grid is equispaced within
the interval T = [0,1] and consists of 20 time points t1, . . . , t20. We consider scenarios with
q = 4 compositions, each with pj components, j = 1, . . . , q. To introduce dependence be-
tween the covariates, we use a compound symmetry correlation matrix ΣX ∈ Rpj×pj with
unit variances and correlations ρX . To account for time dependence, we consider a matrix
ΣT ∈ R20×20 with first-order autoregressive structure, unit variance and autoregressive pa-
rameter ρT . For each observation i= 1, . . . , n, the j-th composition over time is obtained by
simulating wij = [wij(t1)

⊤, . . . ,wij(t20)
⊤]⊤ ∼N (020pj

, σ2
X(ΣT ⊗ΣX)) and then normal-

izing the counts as

wijl(tv) =
exp{wijl(tv)}∑pj

l=1 exp{wijl(tv)}
,

for i = 1, . . . , n, l = 1, . . . , pj and v = 1, . . . ,20. The number of basis functions for cubic
splines is set to k = 5 and the number of components pj is the same across compositions
and equal to p/q. Only 3 coefficients are non-null for each composition. The coefficient
vectors are b1 = [1,−1,0,0,0]⊤, b2 = [0,0,−0.5,1,0]⊤, b3 = [−1,1,0.5,−1,0]⊤, bp1+1 =
[0.5,0,0,−0.5,1]⊤, bp1+2 = [0,1,−1,0,−1]⊤, bp1+3 = [−0.5,−1,1,0.5,0]⊤, bp2+1 =
[0.5,−1,−1,1,0]⊤, bp2+2 = [0,1,1,0,0]⊤, bp2+3 = [−0.5,0,0,−1,0]⊤,
bp3+1 = [1,0,0.5,0,−1]⊤, bp3+2 = [0,0,−0.5,0,0]⊤, bp3+3 = [−1,0,0,0,1]⊤. We also con-
sider scenarios with p = 40 and q = 1, with the same coefficients and the same degree of
sparsity as for p= 40 and q = 4. For simplicity, we do not include either an intercept or other
control variables. The response variables are generated from the model (3.5), with error terms
distributed as N (0, σ2), where σ2 set to achieve specific signal-to-noise ratios (SNR). We
simulated different settings (n,p, q) = (50,40,1), (50,40,4), (50,100,4) and several combi-
nations of parameters σ2

X = 9, ρT = (0.2,0.6), ρX = (0.2,0.6), SNR = (2,4). The tuning
parameters λ and k are selected by ten-fold cross-validation and one-standard error rule
(Hastie et al., 2009, p. 244)

We use four different measures to compare our proposal with competitors. The prediction
error is calculated using the average prediction mean square error

∑20
v=1 ||y(tv)−1⊤n β̂0(tv)−
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TABLE 3
Means and standard errors (in parentheses) of false positive and false negative rates for the three methods with

SNR = 2, based on 100 simulations.
Configuration FPR(%) FNR(%)
ρX ρT n p q CGL BGL Naive CGL BGL Naive
0.2 0.2 50 40 1 0.04 (0.04) 0.39 (0.11) 1.54 (0.20) 3.58 (0.41) 3.67 (0.42) 10.42 (0.52)

50 40 4 0.00 (0.00) 0.36 (0.11) 1.32 (0.23) 2.67 (0.39) 3.42 (0.41) 10.67 (0.52)
50 100 4 4.06 (0.22) 7.18 (0.22) 8.84 (0.30) 0.25 (0.14) 0.42 (0.18) 8.83 (0.54)

0.2 0.6 50 40 1 0.14 (0.07) 0.64 (0.16) 1.68 (0.25) 3.50 (0.41) 3.67 (0.42) 10.67 (0.54)
50 40 4 0.00 (0.00) 0.79 (0.17) 1.39 (0.23) 3.42 (0.43) 3.67 (0.43) 11.08 (0.46)
50 100 4 4.08 (0.20) 7.28 (0.23) 9.12 (0.33) 0.75 (0.24) 1.50 (0.32) 8.58 (0.52)

0.6 0.2 50 40 1 0.00 (0.00) 0.32 (0.10) 1.50 (0.20) 3.92 (0.43) 4.00 (0.45) 10.00 (0.52)
50 40 4 0.04 (0.04) 0.64 (0.15) 1.29 (0.22) 2.83 (0.40) 3.92 (0.45) 10.58 (0.44)
50 100 4 3.91 (0.19) 6.98 (0.19) 9.41 (0.34) 0.92 (0.26) 1.17 (0.29) 9.00 (0.50)

0.6 0.6 50 40 1 0.00 (0.00) 0.71 (0.14) 1.43 (0.23) 4.33 (0.43) 4.75 (0.43) 10.67 (0.53)
50 40 4 0.07 (0.05) 0.93 (0.19) 1.21 (0.20) 3.08 (0.40) 3.08 (0.40) 10.33 (0.53)
50 100 4 4.39 (0.20) 7.57 (0.22) 8.99 (0.32) 0.92 (0.26) 1.17 (0.29) 9.92 (0.53)

TABLE 4
Means and standard errors (in parentheses) of prediction and estimation errors for the three methods with SNR

= 2, based on 100 simulations. Estimation errors are multiplied by 100.

Configuration Prediction error Estimation error
ρX ρT n p q CGL BGL Naive CGL BGL Naive
0.2 0.2 50 40 1 8.45 (0.02) 8.49 (0.02) 13.92 (0.11) 3.90 (0.04) 3.97 (0.04) 7.77 (0.04)

50 40 4 8.22 (0.02) 8.34 (0.03) 12.55 (0.08) 3.80 (0.04) 4.15 (0.06) 7.63 (0.05)
50 100 4 8.35 (0.03) 8.59 (0.04) 14.64 (0.10) 2.01 (0.02) 2.25 (0.03) 3.97 (0.02)

0.2 0.6 50 40 1 8.46 (0.03) 8.48 (0.03) 14.04 (0.13) 4.06 (0.05) 4.13 (0.06) 7.90 (0.06)
50 40 4 8.35 (0.03) 8.51 (0.03) 12.63 (0.09) 3.88 (0.04) 4.25 (0.06) 7.64 (0.06)
50 100 4 8.35 (0.03) 8.68 (0.04) 14.64 (0.09) 2.03 (0.02) 2.31 (0.03) 3.98 (0.03)

0.6 0.2 50 40 1 4.18 (0.01) 4.21 (0.01) 7.33 (0.07) 3.91 (0.04) 4.00 (0.04) 7.87 (0.05)
50 40 4 4.08 (0.01) 4.14 (0.01) 6.24 (0.04) 3.83 (0.04) 4.12 (0.05) 7.56 (0.04)
50 100 4 4.30 (0.02) 4.43 (0.02) 7.62 (0.06) 1.96 (0.02) 2.21 (0.02) 3.99 (0.02)

0.6 0.6 50 40 1 4.22 (0.01) 4.24 (0.01) 7.23 (0.08) 3.93 (0.04) 4.06 (0.05) 7.86 (0.06)
50 40 4 4.04 (0.01) 4.11 (0.01) 6.17 (0.03) 3.86 (0.04) 4.21 (0.06) 7.61 (0.04)
50 100 4 4.34 (0.01) 4.48 (0.02) 7.59 (0.06) 2.01 (0.02) 2.29 (0.02) 3.97 (0.02)

Z(tv)β̂(tv)||22/(20n) computed from an independent test sample of size 1000. The estima-

tion error is measured by
∑p

j=1

(∫
T |β̂j(t)− βj(t)|2dt

) 1

2

/p. As variable selection measures,
we use the false positive rate (FPR) and false negative rate (FNR), where positives and nega-
tives refer to non-null and null coefficients, respectively. The naive method does not include
a procedure for the selection of coefficient curves, but only a variable selection procedure
at each time t, therefore, we select active predictors based on empirical evidence. Conse-
quently, to have a fair comparison, we use the same criteria for all three methods. As in Sun
et al. (2020), the estimated index set Ŝ of non-null coefficients is defined as

Ŝ =

j :

(∫
T β̂2

j (t)dt
) 1

2

∑p
j=1

(∫
T β̂2

j (t)dt
) 1

2

≥ 1

p
, j = 1, . . . , p

 .

The means and standard errors of the performance measures for the scenario with SNR
= 2 are reported in Tables 3 and 4. From Table 3, we can see that the proposed CGL has
a similar variable selection performance compared to BGL when n > p, although the latter
has the tendency to have higher false positive rates. This behavior is due to the automatic
inclusion of the randomly chosen baseline for BGL and is, in fact, even more pronounced for
q = 4. The advantages of the proposed CGL can be appreciated for the scenarios with p > n,
where it clearly outperforms competitors. As seen in Table 4, the proposed CGL performs
slightly better in terms of prediction and estimation error and, as before, the difference with
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TABLE 5
Means and standard errors (in parentheses) of false positive and false negative rates for the three methods with

SNR = 4, based on 100 simulations.
Configuration FPR(%) FNR(%)
ρX ρT n p q CGL BGL Naive CGL BGL Naive
0.2 0.2 50 40 1 0.00 (0.00) 0.00 (0.00) 0.21 (0.09) 1.75 (0.34) 1.50 (0.32) 7.17 (0.43)

50 40 4 0.00 (0.00) 0.00 (0.00) 0.18 (0.08) 1.33 (0.31) 1.83 (0.35) 7.83 (0.33)
50 100 4 1.14 (0.11) 3.48 (0.17) 4.57 (0.23) 0.00 (0.00) 0.00 (0.00) 5.08 (0.51)

0.2 0.6 50 40 1 0.00 (0.00) 0.00 (0.00) 0.14 (0.07) 2.50 (0.38) 2.33 (0.38) 6.67 (0.44)
50 40 4 0.00 (0.00) 0.04 (0.04) 0.11 (0.06) 1.33 (0.31) 1.75 (0.34) 7.25 (0.37)
50 100 4 1.37 (0.13) 3.93 (0.18) 5.12 (0.22) 0.17 (0.12) 0.08 (0.08) 6.25 (0.49)

0.6 0.2 50 40 1 0.00 (0.00) 0.07 (0.05) 0.18 (0.08) 2.58 (0.39) 2.67 (0.39) 7.50 (0.37)
50 40 4 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.58 (0.33) 1.58 (0.33) 8.33 (0.37)
50 100 4 1.30 (0.13) 3.53 (0.17) 4.23 (0.19) 0.00 (0.00) 0.17 (0.12) 5.17 (0.46)

0.6 0.6 50 40 1 0.00 (0.00) 0.00 (0.00) 0.14 (0.07) 2.67 (0.39) 2.67 (0.39) 7.08 (0.46)
50 40 4 0.00 (0.00) 0.04 (0.04) 0.11 (0.06) 1.75 (0.34) 1.83 (0.35) 7.67 (0.35)
50 100 4 1.24 (0.13) 3.98 (0.18) 5.28 (0.23) 0.17 (0.12) 0.33 (0.16) 5.67 (0.49)

TABLE 6
Means and standard errors (in parentheses) of prediction and estimation errors for the three methods with SNR

= 4, based on 100 simulations. Estimation errors are multiplied by 100.

Configuration Prediction error Estimation error
ρX ρT n p q CGL BGL Naive CGL BGL Naive
0.2 0.2 50 40 1 4.29 (0.01) 4.31 (0.01) 7.71 (0.08) 2.98 (0.03) 3.05 (0.03) 5.97 (0.04)

50 40 4 4.30 (0.01) 4.36 (0.02) 6.78 (0.05) 2.85 (0.03) 3.08 (0.04) 5.71 (0.05)
50 100 4 4.31 (0.01) 4.46 (0.02) 8.75 (0.09) 1.53 (0.02) 1.71 (0.02) 3.28 (0.02)

0.2 0.6 50 40 1 4.30 (0.02) 4.33 (0.02) 7.90 (0.11) 3.00 (0.03) 3.09 (0.03) 6.02 (0.05)
50 40 4 4.28 (0.01) 4.34 (0.02) 6.71 (0.06) 2.86 (0.03) 3.09 (0.04) 5.69 (0.05)
50 100 4 4.46 (0.02) 4.61 (0.02) 8.90 (0.08) 1.52 (0.02) 1.72 (0.02) 3.29 (0.02)

0.6 0.2 50 40 1 2.21 (0.01) 2.22 (0.01) 4.25 (0.05) 2.93 (0.03) 3.02 (0.03) 6.00 (0.04)
50 40 4 2.17 (0.01) 2.19 (0.01) 3.49 (0.03) 2.85 (0.03) 3.04 (0.04) 5.72 (0.04)
50 100 4 2.22 (0.01) 2.28 (0.01) 4.57 (0.04) 1.51 (0.02) 1.68 (0.02) 3.28 (0.02)

0.6 0.6 50 40 1 2.18 (0.01) 2.18 (0.01) 4.15 (0.05) 3.02 (0.04) 3.07 (0.04) 6.03 (0.04)
50 40 4 2.11 (0.01) 2.14 (0.01) 3.36 (0.03) 2.92 (0.03) 3.17 (0.04) 5.81 (0.04)
50 100 4 2.24 (0.01) 2.32 (0.01) 4.61 (0.05) 1.53 (0.02) 1.72 (0.02) 3.30 (0.02)

the competitors is emphasized for p > n. Furthermore, increasing the correlation between
the components leads to lower prediction errors, regardless of the method. This is because a
small correlation determines few dominating components in each composition. As expected,
the naive method has inferior performance in terms of all the measures in all the settings,
since it is an unsophisticated approximation of the functional nature of the data. Another
expected behavior can be seen from Tables 5 and 6, which show that increasing the SNR
leads to improved performance.

5. Results. The proposed functional concurrent regression model with compositional
covariates is fitted separately for males and females, since the trajectories of their causes of
death have profoundly different characteristics. We use cubic spline bases, and the penalty
parameter λ as well as the number of basis functions k are selected through leave-one-out
cross-validation, due to the limited sample size, and one-standard error rule. In this applica-
tion, the only control variable is the intercept.

As a by-product of the regression model results, we can measure the relative importance of
causes in the j-th age class by considering the relative squared L2 norm of the group-specific
coefficients between years t and t+ 1

pj∑
l=1

∫ t+1

t
|βjl(t)|2dt

/
4∑

j=1

pj∑
l=1

∫ t+1

t
|βjl(t)|2dt .
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Fig 1: Relative magnitude of the age group–specific coefficients for females and males.

The results are reported in Figure 1 and show that, for both men and women, the most im-
portant age class is 40–64. This can be attributed to the inclusion of countries from Eastern
Europe, for which the compositional trajectories in the age group 40–64 are very different
from the other high-longevity nations. The result is consistent with the demographic litera-
ture, in which traditional life expectancy decomposition methods are applied longitudinally
for single countries. For example, Meslé (2004) shows that in many former Soviet countries,
decreases in life expectancy in the period 1965–2000 for males can be attributed to the rise
in mortality at working ages. This is also in line with the substantial sex difference in the
contribution of the age group 5–39. Another expected finding is the decline in importance
for the age group 0–4, regardless of sex, which is associated with a progressive reduction
in infant mortality. We also notice an increasing importance of age class 65+ for men. This
can be explained by the faster progress of men in reducing heart disease-related mortality in
recent decades, a pattern observed by Feraldi and Zarrulli (2022).

Regarding the results relative to specific causes, it is worth recalling that the interpreta-
tion of coefficients for the log-contrast model is different from the standard linear regression
model. The main reason lies in the zero-sum constraint, which reflects the fact that one com-
ponent increases its relative importance only if one or more of the others decreases (Coenders
and Pawlowsky-Glahn, 2020). For the model (3.5), it can be shown that the following inter-
pretation holds at each time t. Multiplying by a factor c the ratio of one component βjl(t)
of the j-th composition over each of the other parts βjm(t),m = 1, . . . , j − 1, j + 1, . . . , pj
leads to a change of log(c)βjl(t) in the expected value of the response variable. Equivalently,
we can also interpret the coefficients jointly as follows. The expected value of the response
variable grows when increasing the relative importance of components with positive coef-
ficient and reducing that of components with negative coefficient. However, interpretation
over time is not straightforward and we make use of additional plots to elucidate it, following
Sun et al. (2020). The idea is to compare the smoothed trajectories of log compositions for
three clusters of countries with the estimated coefficient curves. For each predictor and each
year, the nations are divided into three groups characterized by low, medium and high life
expectancy, thus giving rise to time-varying partitions. For each group, the smoothed values
together with their 95% confidence bands are calculated using local regression. In this way,
we can also check whether our model describes relationships encountered in raw data. Figure
2 shows the resulting plots for four relevant causes. The graphs show that our model provides
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Fig 2: Smoothed curves of log composition of some causes of death for three clusters of coun-
tries, with the estimated coefficient curves below. For each predictor and year, the nations are
divided into three groups characterized by low (in yellow), medium (in light blue) and high
(in green) life expectancy.

realistic results. We observe that increases (decreases) in the difference of the prevalence of
a cause of death between high- and low-longevity countries are reflected in increasing (de-
creasing) coefficient curves. For example, considering the age class 40–64 for females, in the
’60s, countries with higher prevalence of death by neoplasms and lower by circulatory dis-
eases have higher life expectancy. In subsequent years, the difference in terms of prevalence
of neoplasm between high- and low-longevity countries increases and this is reflected in the
increasing estimated curve, while the reverse holds for circulatory diseases.

The estimated coefficient curves for males are reported in Figure 3. The positive increasing
trend of neoplasms in age classes 5–39 and 40–64 is a clear effect due to substitute mortality,
which has been defined as “that mortality which results from a decrease in another specific
disease” (Van De Water, 1997). That is, in many countries with high longevity, cancer mortal-
ity has become the main cause of death due to the reduction of other conditions, such as those
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Fig 3: Estimated coefficient curves for the four age classes, males.

related to the circulatory system. In fact, circulatory diseases can be seen to have a negative
effect for all age groups, excluding 0–4. Another cause with a negative decreasing effect in
age class 5–39 is digestive diseases. It can be linked to the high incidence of this class of dis-
eases, particularly liver cirrhosis, observed in early adulthood for Eastern European nations
(Blachier et al., 2013) and other Commonwealth countries, such as the UK (Lewer et al.,
2020). For the age class accounting for senescent mortality, the effect of circulatory diseases
is negative and strongly increasing, concurrently with the positive increasing effect of ner-
vous, respiratory and infectious diseases. These are conditions whose susceptibility is higher
in the elderly. The estimated positive increasing effect reflects the process of population ag-
ing, that is, the increase in proportion of population aged 65 and over, which is particularly
vulnerable to the aforementioned diseases. It is interesting to highlight the sign change of
infectious diseases, which means that in the first period this condition was associated with
low-longevity countries.

The results for females are reported in Figure 4. Compared to males, the increasing positive
effect of neoplasms and the increasing negative effect of circulatory diseases in age class 40–
64 overshadow all others in terms of magnitude. In this age group, differently to males, skin
and urogenital diseases are selected. On the contrary, endocrine and infectious diseases, as
well as lung cancer, are not included. One possible explanation for the non-inclusion of lung
cancer is its high mortality rate in both low- and high-life expectancy countries for women
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Fig 4: Estimated coefficient curves for the four age classes, females.

(Jani et al., 2021). In the senescent age group, the effect of respiratory diseases is positive
decreasing and, unlike males, there is an increase in the prevalence of urogenital diseases over
time for high-longevity countries. This cause, which is also selected for age classes 40-64,
appears to be a sex-specific cause.

To assess the stability of the selection procedure, we generated 500 bootstrap samples and
used leave-one-out cross-validation to select the tuning parameters, as for the model esti-
mated with the original data. The results reported in Figure 5 show that the variable selection
is quite stable. In general, our proposal appears to be able to select the relevant predictors, at
the cost of including some causes which may not have much effect on life expectancy. This is
the case of external diseases in the age class 5–39 for both sexes, as well as neoplasms in the
age class 5–39 for females and lung cancer and circulatory diseases in the age class 40–64
for males. On the other hand, infectious diseases for the age group 0–4 is selected in more
than 70% of the bootstrap samples for both sexes, indicating that it may play an important
role, although its coefficient is estimated to be zero.

6. Discussion. We introduced a functional regression model with compositional co-
variates in the spirit of the proposal by Sun et al. (2020), extending their work to the
relevant framework of a functional response. The model allows us to explain the evolu-
tion of life expectancy at birth for several countries as a function of the compositions de-
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Fig 5: Proportion of the causes of death selected in 500 bootstrap samples, for females and
males. In gray, the bars of the selected predictors from fitting the model to the original data,
in black the bars of the estimated null coefficients.

rived from cause-specific mortality rates of four distinct age groups. The method involves
a B-spline expansion of the unknown functional coefficients coupled with a group-Lasso
penalty, enabling variable selection at the function level and consequently high interpretabil-
ity of the results. The methodology is implemented within the R package FCRC, available at
https://github.com/emanuelegdepaoli/fcrc, where the code for reproducing
the analysis, the simulation studies and all images of the paper is also included.

It is worth noting that causes of death cannot be regarded as causal drivers of overall
mortality (life expectancy). The main reason is that the cause of death and mortality occur
simultaneously, so one cannot be the cause of the other. It would be more sensible to include
risk factors (e.g. life–styles, pollution, etc.) to assess a causal link with mortality. However,
to our knowledge, there is no harmonized and sufficiently high quality cross–country data
over time on risk factors to do that. Instead, causes of death data are available, and while
they cannot be considered really “drivers” of overall mortality we can see them as mediators
between risk factors and life expectancy. Therefore an analysis such as ours can indirectly
provide additional insights on the epidemiological trajectories of countries.

One major finding is that life expectancy is mainly driven by mortality at age 40–64 for
women, while for men the 65+ and 5-39 age groups are also relevant. Not surprisingly, we

https://github.com/emanuelegdepaoli/fcrc
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found that circulatory diseases are increasingly relevant in determining the life expectancy
of countries: the lower the relative importance of circulatory diseases, the higher the life
expectancy. We also found an increasing relevance of digestive diseases for young men and
women and of lung cancer for young men only. Other results, such as the increasingly positive
effect of neoplasms at age 40–64 and of diseases of nervous system at age 65+ (that is,
the higher the relative importance of these causes, the higher the life expectancy) can be
explained in terms of “substitution effect”, which means that the increasing relevance of these
causes is an indirect effect of the reduction of other causes. We should keep in mind that the
sample is made up of several countries with a different pattern of overall and cause-specific
mortality. In particular, Eastern European countries that underwent a serious mortality crisis
after the fall of the Soviet Union have a peculiar pattern that might have driven some of these
results.

The proposed model allows us to simultaneously consider all causes of death and age
groups in determining the evolution of overall mortality. This is increasingly important, since
it has been observed that the composition of cause-specific mortality is becoming increas-
ingly diversified (Bergeron-Boucher, Aburto and van Raalte, 2020), thus making analyses
based on a single cause of death less reliable.

We consider the summary measure of life expectancy at birth, but other measures such as
the modal age at death Canudas-Romo (2008), which is not affected by infant mortality, or
lifespan disparity Vaupel and Canudas-Romo (2003), which is a measure of compression of
age–specific mortality, can be used as a response variable, providing further insights on the
evolution of mortality in high income countries.
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