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A B S T R A C T   

Product temperature deviation is an important concern in the cold chain management and monitoring of food. 
Existing “rule-based” monitoring solutions are limited to the direct use of air temperature data of the vehicle used 
for transport, which can differ significantly from the real temperature of the food being assessed. Thus, this study 
focuses on developing a new artificial neural network model to precisely estimate the temperature of food 
products that are stored in multi-temperature refrigerated transport vehicles with minimum sensors. In addition 
to identifying the temperature in the car, the model also receives input from a multi-source dataset that includes 
various information such as the outside temperature, initial food temperature, door status, loading and unloading 
times, etc. The result of the study suggests that the proposed model could substantially enhance estimation 
accuracy and reliability with fewer temperature sensors in the transport vehicle. It was found that the root mean 
square error of food temperature estimation based on this model could be decreased by 77% and 79% for chilled 
and frozen zones, respectively. Moreover, long short-term memory and deep neural networks could avoid 
overfitting and reduce their estimation errors by about 55% and 48%, when compared to a back propagation 
neural network. Based on sensitivity analysis, food temperature estimation is significantly influenced by the 
product’s initial temperature and the cumulative time that a door is open. The proposed model could precisely 
track the real-time food temperature even with sudden ambient changes, thus enabling precautions to take place 
when required.   

1. Introduction 

Around one-third of all human-produced food worldwide is lost or 
wasted in the supply chain, with poor temperature management being 
one of the main contributors (Blakeney, 2019; Mercier et al., 2017). 
Temperature-controlled delivery is an integral segment of the cold chain 
for perishable foods. Globally, over 4 million refrigerated vehicles are 
currently in operation with an annual growth rate of 2.5% (Artuso et al., 
2019). In China, the annual growth rate of refrigerated vehicles reached 
19.1%, with over 340,000 units in 2021; which is likely due to the 
increasing demand for perishable food cold chains (Cold Chain Logistics 
Committee of CFLP, 2021). 

The Internet of Things (IoT) technology has been explored as a 

potential solution to achieve real-time temperature monitoring 
throughout food cold chains (Aghbashlo et al., 2015; Tang et al., 2021). 
As part of Industry 4.0, the IoT is an Internet-based global architecture 
that can analyze the digital identity connection between goods and 
services through the use of data networks (Birkel and Hartmann, 2020; 
E.S.A. et al., 2022; Hosseinpour et al., 2014, 2013). Cold chain logistic 
companies could collect a series of data by deploying global positioning 
system-based tracking technology and the wireless sensor network 
(WSN), which could gather important information on the geographical 
locations, velocities, temperatures, and relative humidities of the food 
transport vehicles. However, it is neither economical nor desirable to 
install a temperature sensor for each food item (Han et al., 2021). 
Badia-Melis et al. (2016) showed that the accuracy of equivalent tem
peratures using fewer sensors was assured by data mining techniques for 
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cold chain transportation. Evidence of IoT’s effectiveness in optimizing 
perishable food product quality has been explored by Salinas Segura and 
Thiesse (2017) and is based on a supply chain model of manufacturers, 
distribution centers, and retailers. The studies mentioned show that 
IoT-based delivery significantly reduces food spoilage. Furthermore, 
data mining could enable early alert and proactive temperature control 
systems by extracting rules from large-scale operational datasets (Li 
et al., 2010; Wang and Yue, 2017). Overall, it can be concluded that data 
mining technology can effectively be used to optimize cold chain pro
cesses by investigating the information underlying the sampling data to 
maintain the quality of food products (Ruiz-Garcia et al., 2009; Ting 
et al., 2014). 

Product temperature deviation is a concern in food cold chain 
monitoring that is based on IoT technology. A study conducted by 
Ruiz-Garcia et al. (2009) recorded a maximum temperature of 8.52 ◦C 
and a minimum of − 3.0 ◦C in a refrigerated vehicle that had a tem
perature setpoint of 0 ◦C. Around 98% of the time, the vehicle’s tem
perature exceeded the industry’s recommended range (setpoint ±
0.5 ◦C). Konovalenko and Ludwig (2021) experimented with several 
scenarios for a large cold chain logistics company by analyzing a dataset 
consisting of 19,146 recorded temperature values at multiple subcon
tractor stages. They found that only 16.55% of the values were correct 
because the temperatures were observed by sensors and evaluated by 

event-driven, rules-based monitoring across the multimodal supply 
chain (including ocean and air transport, warehousing, and 
distribution). 

As summarized in Table 1, previous studies mainly applied infor
mation technology to analyze sensor data for food temperature esti
mation (e.g., the mean value method, kriging algorithm, capacitor 
algorithm, and artificial neural network (ANN)) (Badia-Melis et al., 
2016; Jedermann et al., 2009; Palafox-Albarran et al., 2015). These 
studies suggest that adopting suitable algorithms could reduce the 
number of temperature sensors while increasing temperature estimation 
accuracy. For example, the mean value method, cross-attribute kriging, 
and ANN were used for food temperature estimation in a reefer, which 
required 16, 8, and 8 sensors, respectively, and the corresponding Root 
Mean Square Errors (RMSE) were 3.97 ◦C, 1.0 ◦C, and 0.1 ◦C (Bad
ia-Melis et al., 2016; Palafox-Albarran et al., 2015). The same algorithms 
used in the previous studies could reduce estimation errors when 
investigating the reefer’s temperature database once additional attri
bute data is added. For example, it was found that adding humidity data 
as input variables to the Kriging algorithm reduces estimation errors 
(Jedermann et al., 2009; Palafox-Albarran et al., 2015). Proper tem
perature monitoring and alert are vital in ensuring the effectiveness of 
the cold chain in order to avoid food quality and safety issues (Tang 
et al., 2021). However, it is challenging to implement a traditional 
“rule-based” temperature estimation model along food cold chains 
because the temperature in a transport vehicle is often unevenly 
distributed and can experience significant fluctuations (Badia-Melis 
et al., 2018; Konovalenko et al., 2021). The rule-based methodology 
consists of assigning key thresholds (relying on the available data 
sources) that are verified versus the received measurement values; the 
system yields a notification before corrective action is taken in the event 
of deviating values. 

Significant gaps remain in the literature as existing studies mainly 
focus on food temperature estimation for the refrigerated transport 
segment and not the other segments of the cold chain like urban de
livery. Many food cold chain studies assume that only single loading and 
unloading operations occur during the entire transit. This would suggest 
that the carriage temperature is relatively constant throughout the 
transit. Additionally, the temperature of fresh food delivered by trucks 
could be affected by the following: 1) food characteristics, including 
heat transfer properties and initial temperatures; 2) technical variables, 
including the thermal leakage rate of the vehicle envelope, internal 
partitions, and door seals; 3) operational factors, including frequency 
and accumulation time of loading and unloading, pre-cooling, and 
packaging. The models built by data mining that use the internal tem
perature of the carriage to estimate the food temperature could have 

Nomenclature 

SL0 Initial shelf life (day) 
SL Remaining shelf life (day) 
Q10 The ratio of the reaction rate 
Tref The reference temperature 
ΔT The temperature deviation value 
t At a certain time 
k (Tref) The quality change rate at the reference temperature 
RSL The error rate of food shelf-life estimation 

Symbols 
IoT Internet of things 
WSN Wireless sensor network 
ANN Artificial neural network 
RMSE Root mean square rror 
BP Back propagation 
LSTM Long short-term memory  

Table 1 
The main methods for temperature estimation and performance analysis from the existing literature.  

Methods Objects Logistics Temp.* sensors RMSE* 
（◦C） 

Data source Reference 

Mean value Reefer containers Trans.* 16 3.97 Exp.* Badia-Melis et al. (2016) 
Simple interpolation Pallets Trans. 28 0.2 Exp. Jedermann and Lang (2009) 
Kriging Reefer containers Trans. 16 1.32 Exp. Badia-Melis et al. (2016) 
Kriging Truck Trans. 30 0.5 Exp. Jedermann et al. (2009) 
Kriging Truck Trans. 8 2.2 Exp. Jedermann and Lang (2009) 
Cross-attribute Kriging Reefer containers Trans. 8 1.0 Exp. Palafox-Albarran et al. (2015) 
Fuzzy multiple objective decision making Truck Trans. 7 1.79 Exp. Liu et al. (2014) 
Capacitor method Reefer containers Trans. 1 1.28 Exp. Badia-Melis et al. (2016) 
ANN* Reefer containers Trans. 8 0.11 Exp. Badia-Melis et al. (2016) 
ANN Reefer containers Trans. 1 1.49 Exp. Badia-Melis et al. (2016) 
ANN Reefer containers Trans. 4 0.32 Exp. Badia-Melis et al. (2016) 
ANN Reefer containers Trans. 3 0.37 Exp. Badia-Melis et al. (2016) 
ANN Pallet Sup. * 1/each pallet <0.5 Exp. Mercier and Uysal (2018) 
ANN Multi-temp. Truck Deliv. * 4 0.54 Exp. The study 
LSTM Multi-temp. Truck Deliv. 4 0.24 Exp. The study 
Deep learning Multi-temp. Truck Deliv. 4 0.33 Exp. The study 

*Abbreviations: ANN represents Artificial Neural Network; RMSE means Root Mean Square Error; Trans., Deliv., Exp. And Sup. Represent transportation, delivery, 
experiment, and supply chain respectively. Temp. Represents temperature. 
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large errors because they disregard the varying nature of multi- 
temperature vehicles. Thus, there is a significant challenge in accu
rately estimating the temperature of delivered food. 

After reviewing the existing literature, it was found that only a few 
studies have been conducted to estimate food products’ real tempera
tures in multi-temperature vehicles during urban delivery. To tackle the 
challenge and fill the gaps in the literature as identified above, this study 
develops a new ANN model by using multi-source datasets to precisely 
estimate temperatures with minimum requirements for the sensors and 
the transmission bandwidth. Specifically, the contributions of this study 
are threefold.  

• A novel and innovative ANN model is developed to estimate real- 
time temperatures of food products in delivery vehicles. To esti
mate real-time load temperature in lightly refrigerated transport 
vehicles using wireless temperature sensors, effective temperature 
control management by machine learning using ANN is critical. This 
may enable cold chain logistic organizers to implement strategies 
(such as reducing energy consumption and ensuring food quality) 
based on the proposed ANN model when reliable temperature data is 
available.  

• A comprehensive multi-source dataset following Fishbone Diagram 
Analysis Framework is selected to overcome the inadequacies of 
existing rule-based studies. The proposed ANN model takes into ac
count key parameters that affect the food products’ temperatures. 
Such as outside temperature, initial food temperature, door status 
and loading/unloading time. 

• Lastly, the validity of the proposed ANN model is verified by con
ducting sensitivity and uncertainty analyses. 

2. Methodology 

This study develops and proposes an ANN monitoring model based 
on a multi-source dataset to effectively estimate the temperatures of 
delivered food using a reduced number of sensors. First, multi-source 
data streams were selected based on the Fishbone Diagram Analysis 
Framework to identify the main factors that could affect temperature 
estimation (see Supplementary Material: Annex 2). Then the multiple- 
temperature monitoring system was established to simulate the food 
delivery process for collecting on-site experimental training data. Lastly, 
an improved ANN model was developed and verified by the multi-source 
data to precisely estimate the food products’ temperatures in the urban 
multi-temperature delivery truck. 

2.1. Experimental development 

2.1.1. Truck parameters 
A multi-temperature refrigerated truck experiment was designed in 

this study to simulate cargo loading deliveries for obtaining training 
data. Fig. 1 shows the structure of the multi-temperature refrigerated 

truck, with a load of 2 tons and dimensional parameters of 5.0 × 2.0 ×
2.0 m3. The truck was divided into chilled and frozen zones, with an air 
outlet speed of 6 m/s and an onboard mechanical refrigeration system. 
The different sections in the same carriage were separated by a thermal 
insulation partition. Heat exchange between the zones is achieved by 
dust within the air at the top of the carriage. 

2.1.2. Layout of temperature sensors 
Fig. 2a shows the layout of ambient temperature sensors inside the 

carriage. The temperature-controlled carriage was divided into six sec
tions. Five temperature sensors (10 cm away from the inside carriage 
body) were arranged in each section. Fig. 2b depicts the sensors’ layout 
to monitor food temperature. Twenty sensors were positioned in each of 
the chilled and frozen zones. Temperature sensors were placed exter
nally on both the left (sun side) and right (shade side) sides of the 
different sections. Before testing was done, all the temperature sensors 
were calibrated, and time lag was tested. The data acquisition interval of 
the sensor was set as 10s. The sensors were RC-5 temperature and hu
midity sensors (manufactured by Shenzhen Jingchuang Company, with 
a temperature measurement range of − 40 ◦C–70 ◦C and an accuracy of 
±0.2 ◦C). 

2.1.3. Cargo loading and assumptions 
Fig. 3 shows the layout of the simulated carriage at its rated full load. 

The chilled zone was loaded with four pallets, each with six boxes and 
four layers of fruits (citrus and bananas) which were packed in corru
gated cartons and stacked in tight piles. Meanwhile, the frozen zone was 
loaded with four standard pallets, each stacked with six boxes and four 
layers of frozen goods (corn, carrots, and cucumbers). The middle of 
pallets was reserved for ventilation gaps. The specific setup, process and 
assumptions are as follows:.  

(1) The trial was conducted in both the summer and winter seasons. 
Inside the carriage, the air temperatures of the chilled and frozen 
zones were set at 0 ◦C and − 18 ◦C for a period of 5 days during the 
winter. During the summer, the temperatures of the chilled and 
frozen zones were set to 12 ◦C and − 18 ◦C for a period of 8 days.  

(2) It was assumed that the carriage had 10 delivery points each day. 
According to a survey conducted by the Guangzhou Trans
portation Group’s cold chain delivery center, the intervals be
tween cargo loading and unloading were generated by random 
numbers between 35 and 60 min s. The truck door was open at 
each delivery point for a duration of 2–6 min. 

(3) The food products had both pre-cooled and non-precooled ther
mal states. Three days of non-precooling were assumed for the 
delivery of citrus, whilst two days of non-precooling were 
assumed for bananas. The product’s initial temperature varied 
depending on the food category and thermal state.  

(4) Fig. 4 illustrates a delivery scheme to prevent overfitting and 
ensure full data coverage of the space. The detailed loading/ 

Fig. 1. Structure of the multi-temperature refrigerated truck.  
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unloading scheme is shown in Supplementary Material: Annex 1. 
The test procedure is designed as follows: the refrigeration system 
had a fault state of 15 h. The fan failure was 5 h. The return air 
tank was partially blocked for 5 h and the air supply tank was 
partially blocked for 5 h. Finally, the study tested different load/ 
unload times when the door would remain open (12min, 16min, 
and 20min) in non-standard operating conditions to validate the 
effectiveness of the proposed model. A total of 22,750 valid re
cords were collected for the two experiments, each containing 
data from 72 temperature sensors and 2 door status sensors. A 
detailed analysis of the temperature data can be found in Sup
plementary Material: Annex 3. 

2.1.4. Shelf-life estimation model 
As shown in Eq. (1), this study used a simple calculation method for 

the edible food threshold based on a residual shelf life estimation model 
proposed by Jedermann et al. (2013) and Zou et al. (2022). 

SL= SL0 −

[

1+(Q10 − 1) •
ΔT
10

]

× k
(
Tref

)
× t (1)  

where t is time, Tref is the reference temperature, k (Tref) is the mass change 
rate at the reference temperature, ΔT is the temperature deviation value, and 
SL0 and SL represent the initial shelf life and the remaining shelf life after t, 
respectively. Q10 is the ratio of the reaction rate at the temperature Tref + 10 
and that at temperature Tref, ranging from 2 to 4 at a temperature of 0-10◦C. 
Given the complexity and variance of the relation between shelf life and 
temperature, Q10 is set to be 3 in this study. 

Equation (2) shows how the reduced shelf life in time t was 
calculated. 

SL
(
Tref +ΔT

)
= SL0 − SL=

[

1+(Q10 − 1) •
ΔT
10

]

× k
(
Tref

)
× t (2) 

Equation (3) shows how to calculate the error rate of food shelf-life 
estimation RSL versus the temperature deviation value. 

RSL =
SL

(
Tref + ΔT

)
− SL

(
Tref

)

SL
(
Tref

) =(Q10 − 1)
ΔT
10

(3) 

The general temperature error was between 0.5 ◦C and 1.0 ◦C, which 
corresponds to 10% and 20% shelf-life estimation errors, respectively. 

Fig. 2. Layout of temperature sensors (a: ambient temperature sensors inside the carriage; and b: food temperature sensors) Note: The capital letters A, B, C, D, E, and 
F indicate the layout of the temperature sensors inside the vehicle from rear to front, where A, B, and C is in the chilled zone and D, E, and F in the frozen zone. No. 1 
to 5 indicates the number of sensors in the same section. The red dots in the Figure represent sensors. 

Fig. 3. Cargo stacking diagram in the carriage.  
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Assuming that the temperature error reaches 1.5 ◦C and 2.0 ◦C, the 
relative shelf-life estimation errors would be 30% and 40%. For this 
study, the error of shelf-life estimation is considered to be within 10%, 
while temperature estimation error shall not exceed 0.5 ◦C. 

2.2. Artificial neural network (ANN) model 

2.2.1. Data selection 
This study used multi-source data to manage the temperature in the 

cold chain delivery of food. The multi-source data stream included 
ambient temperature sensors inside the carriage and information 
collected on logistics operation, food characteristics, environment, and 

equipment. The analysis framework of the fishbone diagram was 
applied, including “human, machine, material, law, and environment” 
elements to identify the main factors that could affect food temperature 
estimation. This study did not consider the influence of human factors 
on temperature estimation because they would be difficult to predict 
and control. The specific method used for determining the multi-source 
data stream is shown in Supplementary Material: Annex 2. Based on the 
assumptions, availability and applicability of the data, the multi-source 
data stream was selected and included the ambient temperature inside 
the carriage, precooling or not, car door status, outside temperatures, 
initial food temperatures, and the cumulative loading and unloading 
times. 

Fig. 4. Percentage of collected data influenced by various factors (chilled zone).  

Fig. 5. The ANN model for food temperature estimation (chilled zone).  
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2.2.2. ANN model structure 
The ANN model has been widely recognized to effectively estimate 

the temperature patterns of heat-generating fresh fruits and vegetables 
(Nunes et al., 2014). As shown in Fig. 5, this ANN model consisted of an 
input layer, a hidden layer, and an output layer. The number of nodes in 
the input and output layers was relatively fixed in the specific example 
presented. Given that this estimation used all structured temperature 
state data, the number of hidden layers should be adjusted based on the 
target performance requirements. Therefore, the ANN model can esti
mate the real food temperature by relying on multisource data streams 
(Fig. 5). Twenty food temperature sensors are located in each chilled and 
frozen zone, resulting in 20 neurons in the ANN output layer. The input 
layer neuron of the chilled zone consists of three types of data sources: 1) 
door status, including one sensor that detects the open/close door status 
and a counter that calculates the accumulative time that the door is open 
2) food parameters, including initial temperature and heat status (two of 
these parameters were acquired when leaving the warehouse, so there 
was no need to increase the sensing equipment in the carriage); 3) 
temperature information, including one outside temperature sensor, one 
frozen zone ambient temperature sensor, and one to six chilled 
compartment ambient temperature sensors. The overall ANN structure 
of the frozen zone was the same as the chilled zone. A temperature 
sensor in the carriage was added as needed: (1) one neuron was used to 
observe the estimation error between the estimated temperature and the 
real temperature; and (2) the number of temperature sensors in the 
carriage was increased to two until the estimation accuracy was ach
ieved (RMSE≤0.5 ◦C). 

2.2.3. Machine learning algorithms and training methods 
The Back Propagation (BP) neural network is a multi-layer feedfor

ward neural network that could learn and store a wide range of input- 
output pattern mapping relationships (Shih and Wang, 2016). BP neu
ral networks use the fastest descent method to continuously adjust 
weights and thresholds, which ultimately minimizes the network’s 
squared errors (Leng et al., 2019). Typical learning algorithms are the 
Levenberg Marquardt (LM) algorithm, the bayesian regularization al
gorithm, and the conjugate gradient algorithm (Chen et al., 2013). Based 
on the performance comparison of algorithms, this study selected the LM 
algorithm (see Supplementary Material: Annex 4 for an explanation). 
Samples were divided into three parts: training sets (70%), validation 
sets (15%), and test sets (15%) based on preliminary analysis (Tang 
et al., 2021; Xu et al., 2013). 

3. Results and discussion 

Developing an improved ANN model using multi-source data to 
achieve precise food temperature estimation during urban delivery re
quires balancing the performance and information technologies (i.e., 
sensor configuration, bandwidth demand, and computational resource 
consumption). The effects this has on food temperature estimation re
sults are analyzed and discussed in the following sections. 

3.1. Food temperature estimations 

Table 2 shows that the estimation error decreases with an increase in 
the number of sensors. The test set error is 2.35 ◦C with only one ambient 
temperature sensor deployed in the chilled zone. The test set error is 
then reduced to 1.32 ◦C once six sensors are installed. Overall, the 
estimation error between one and six sensors was decreased by 43.0%. 
This indicates that there is a significant increase in estimation accuracy 
when more temperature monitoring sensors are used. Badia-Melis et al. 
(2016) implemented the ANN model to achieve a temperature estima
tion error of 1.49 ◦C, using only one sensor in a single-temperature reefer 
(the results are compared Table 1). However, for this study, six sensors 
were required to reach an acceptable level of accuracy which indicates 
that temperature estimation is considerably more demanding for 
multi-temperature reefer than for a single-temperature one. Addition
ally, the shelf-life estimation error could reach around 30% according to 
Eq. (3) when using 2 × 6 sensors to monitor food temperature. There
fore, improving the temperature estimation accuracy by merely 
increasing the number of onboard temperature sensors is economically 
unfeasible. 

3.2. The effect of food temperature estimation based on multi-source data 

Table 3 presents the performance results of an ANN estimation of 
RMSE based on multi-source data after 100 epochs. The results show 
that the RMSE of training and validation sets is 0.54 ◦C, while the RMSE 
of the test set data is 0.53 ◦C. This error value is reduced by around 77% 
when compared to only using ambient temperature sensor data. The 
results from the frozen zone show a temperature estimation error of 
0.61 ◦C for the test set. This error value is reduced by around 79% when 
compared to only using ambient temperature sensor data. As shown in 
Tables 2 and 3, the error in the ANN model based on multi-source data is 
reduced by about 60% when compared to the conventional rule-based 
methods (6 sensors used). 

Error distribution plots were created to verify the results. As shown 
in Fig. 6, the multi-source data temperature estimation errors are well- 
distributed. Temperature estimation errors are predominantly distrib
uted between − 0.5 ◦C and 0.3 ◦C in the chilled zone and between 
− 0.35 ◦C and 0.60 ◦C in the frozen zone. The percentage of absolute 
temperature estimation errors beyond 1.0 ◦C is very rare. Thus, this ANN 
model using multi-source data could lead to significantly improved food 
temperature estimation performance. 

3.3. Experimental verification 

Fig. 7a compares temperature changes with time (i.e., ambient 
temperature, real food temperature, and estimated temperature) inside 
the multi-temperature carriage. The estimated temperature roughly 
coincides with the real temperature, which suggests that the ANN model 
using multi-source data performs well in the case of sudden changes in 
food temperature. To further demonstrate this finding, an indirect pre
cooling test was designed, i.e., bananas were not pre-cooled before day 
8, but were pre-cooled to 11 ◦C before loading for distribution on day 9. 

Table 2 
ANN estimation of RMSE using ambient temperature data with four sets of temperature sensors.  

Sets of temperature sensors * Chilled zone (RMSE)/◦C Frozen zone (RMSE)/◦C 

Training Validation Test Training Validation Test 

One a 2.35 2.33 2.35 2.93 2.97 2.96 
Two b 2.28 2.29 2.31 2.06 2.08 2.10 
Three c 2.00 2.03 1.98 1.77 1.75 1.78 
Six d 1.34 1.35 1.32 1.57 1.59 1.58 

Note: * The number below represents all temperature sensor sets associated with the smallest estimation error. a. one sensor, i.e., only the current ambient temperature 
monitoring sensor (A2) is used in the chilled zone; b. Two sensors, i.e., A2+B1; c. Three sensors, i.e., A2+B1+C2; d. Six sensors, i.e., all sensors on the top surface of the 
compartment are used as the source of sensors, A1+A2+B1+B2+C1+C2. The location of each sensor is shown in Fig. 2. 
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It can be found from the results shown in Fig. 7b that although the 
difference between the ambient temperature values for those two days is 
minor, the real food temperature varies dramatically, especially at the 
jump-change point (circled in red). When the food temperature sud
denly drops by 8 ◦C or more, such changes are well-tracked with a multi- 
source data approach based on this improved ANN model. However, the 
difference between the ambient and real temperature values is signifi
cant, with a maximum error of over 10 ◦C. 

Fig. 8 shows a significant difference between the ambient tempera
ture and the real temperature of the food in the frozen zone. This is 

because the sensor was incapable of quickly detecting the real food 
temperature, while the temperature difference exceeds 15 ◦C between 
the initial food temperature (around − 15 ◦C) and the ambient temper
ature of the carriage（>0 ◦C）during the daily loading. The food tem
perature estimation largely agrees with the precise temperature curve 
(Fig. 8). This indicates that the food temperature in the frozen zone 
could also be accurately predicted based on the improved ANN model. 

3.4. Sensitivity analysis 

3.4.1. Effect of multi-source data variability in two temperature zones 
Table 4 shows the RMSE of the test set as the variation in multi- 

source data of the chilled zone compared to the original results. The 
factors influencing the estimation performance in descending order are 
initial food temperature, cumulative time that the door is open, frozen 
zone temperature, precooling, door status, and outside temperature. The 
initial food temperature has the most significant impact on the estima
tion outcome. However, previous studies did not include initial food 
temperature data in the ANN model, potentially causing significant 
estimation error (Mercier et al., 2017). Secondly, the pre-cooling stage 
and process is crucial in maintaining the quality of perishable foods (Do 
Nascimento Nunes et al., 2014). It is noted that the initial food tem
perature data included the pre-cooling data of food products in this 
study. Next, the cumulative time that the door is open considerably 
contributes to food temperature estimation. Without considering this 
factor, the error is increased by 0.21 ◦C. Food temperature rises rapidly 
during distribution due to door-opening operations, which is consistent 
with the findings of Abad et al. (2009), Koutsoumanis et al. (2010), and 
McKellar et al. (2014). For example, Abad et al. (2009) monitored a 
temperature increase of 2 ◦C during the loading and unloading fresh fish. 
The temperature could increase by 10 ◦C in summer during the loading 
and unloading of lettuce (McKellar et al., 2014). However, Abad et al. 
(2009) and Tsang et al. (2018) only focused on temperature changes in 
single loading and unloading operations rather than the cumulative time 
that the door is open. Lastly, the temperature difference between zones 
influences the food temperature estimation error (about 0.1 ◦C) in the 
chilled zone because the partitions are not thoroughly heat-insulated 
(Liu et al., 2019; Tsang et al., 2018). When considering the non-linear 
interaction of the temperatures between frozen and chilled zones in 
the same carriage (Konovalenko et al., 2021), integrated analysis of the 
temperature sensor data synthesis is imperative. 

Table 5 demonstrates the effects of multi-source data variability on 
food temperature estimation in the frozen zone. The magnitude of the 
influence of the RMSE on food temperature estimation is in the same 
order as the results for the chilled zone. The estimation error is increased 
from 0.61 ◦C to 1.01 ◦C (the initial temperature of food is excluded). 
Similarly, the error goes up by 0.73 ◦C when not taking into account the 
cumulative time that the door is open. Other factors, such as door status 
and outside temperature data, hardly influence the estimation results. 
Based on benchmark results, the location of the temperature sensor also 
has little impact on temperature estimation. However, this is not the 
case when using Kriging-based algorithms (Badia-Melis et al., 2016; 
Jedermann et al., 2009; Palafox-Albarran et al., 2015). 

3.4.2. Effect of the data acquisition interval on the estimation performance 
In addition to potentially using fewer sensors, temperature moni

toring systems aim to transmit a smaller volume of data to the cloud, 

Table 3 
ANN estimation of RMSE based on multisource data.  

Sets of temperature sensors chilled zone (RMSE)/◦C Frozen zone (RMSE)/◦C 

Training Validation Test Training Validation Test 

One 0.54 0.54 0.53 0.61 0.62 0.61 
Two / / / 0.57 0.58 0.57  

Fig. 6. Error distribution in temperature estimation.  
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which requires maintaining a relatively longer data acquisition interval 
while ensuring temperature estimation accuracy (Tang et al., 2021). As 
such, this study analyzed the influence that different data acquisition 
intervals had on the temperature estimation errors by focusing on the 
chilled zone. As seen in Table 6, the overall impact that the data 
acquisition interval had on the temperature estimation errors is rela
tively low. It grows slightly as the data acquisition interval increases, for 
example, the average values at 10s, 1min, and 2min are 0.50 ◦C, 0.50 ◦C, 
and 0.52 ◦C, respectively. Assuming that the acquisition interval is 
extended to 5 min, the average error in food temperature estimation is 
only 0.57 ◦C. It increases by 14% over 10s under the corresponding 
control, but the amount of transmitted data is reduced to 1/30. Although 
the short data acquisition intervals (<1s) can be achieved by the 

development of 5G and IoT technologies, it implies that higher band
width requirements are associated with energy consumption (Li et al., 
2018; Zhu et al., 2022). The recommended criterion for temperature 
data acquisition interval in China is 5 min or less (GB/T, 20196, 2019). 
Thus, it is suggested that a data acquisition interval of 2–3 min is 
reasonable (the error shall be limited to about 0.5 ◦C). Additionally, 
future studies on data acquisition intervals shall consider fault warnings 
for building an efficient temperature monitoring system (Tang et al., 
2021). 

3.4.3. Effect of machine training models on the estimation performance 
This study also examines the effectiveness of BP, long short-term 

memory (LSTM), and deep learning networks on temperature 

Fig. 7. Three temperature profiles in the chilled zone. (a: normal refrigerated temperature; and b: a sudden change in refrigerated temperature at a certain period 
of time). 
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estimation error values. The RMSE of food temperature estimation for 
different ANN models is presented in Table 7. The LSTM contains one 
hidden layer by employing the “Adam” optimizer for the dataset training 
test. The temperature estimation error is 0.24 ◦C without the dropout 
layer. A dropout layer with a regularization process is then added to 
avoid overfitting, yielding a test set RMSE output of 0.53 ◦C for the 
estimation error. This outcome is essentially the same as the one from 
the BP network. Considering that the LSTM network generates up to 
thousands of parameters, the study recommends a more accessible BP 

network in case there is no particularly high demand for temperature 
estimation accuracy. 

A deep learning network model was built to examine the perfor
mance of adding hidden layers on the reliability of temperature esti
mation. A dropout layer is added after each hidden layer to prevent 
overfitting. The RMSE of the test set is 0.51 ◦C when there are two 
hidden layers in the network, which is a similar result to the BP network. 
When the network has three hidden layers, the RMSE of the test set 
decreases to 0.33 ◦C. As such, the deep neural network enables better 

Fig. 8. Three temperature profiles in the frozen zone.  

Table 4 
Effect of various data sources on temperature estimation errors in the chilled zone.  

Ambient temperature sensor inside the 
carriage 

Outside temp./ 
◦C 

Frozen zone 
temp./◦C 

Pre-cooled/ 
◦C 

Initial temp./ 
◦C 

Door status/ 
◦C 

Cumulative door opening 
time/◦C 

Benchmark/ 
◦C 

A1 0.53 0.59 0.56 0.94 0.55 0.73 0.48 
A2 0.53 0.62 0.56 0.93 0.53 0.66 0.50 
B1 0.51 0.58 0.61 0.89 0.52 0.71 0.53 
B2 0.53 0.60 0.54 0.91 0.48 0.67 0.52 
C1 0.57 0.53 0.52 0.85 0.50 0.71 0.52 
C2 0.55 0.57 0.52 0.93 0.56 0.76 0.46 
Average 0.54 0.58 0.55 0.91 0.52 0.71 0.50 

Note: The first column is the location of the ambient temperature sensor in the chilled zone (Fig. 2). The benchmark is the RMSE of temperature estimated when all 
multisource data is used as input. The other columns are the RMSE of temperature estimated after excluding the data. All the above data refer to the RMSE of the test 
set. 

Table 5 
Effect of various diversity data on temperature estimation errors (frozen zone).  

Ambient temperature sensor inside the 
cabin 

Outside temp./ 
◦C 

Frozen zone temp./ 
◦C 

Initial temp./ 
◦C 

Door status/ 
◦C 

Cumulative door opening time/ 
◦C 

Benchmark/ 
◦C 

D1 0.74 0.81 1.06 0.64 0.74 0.62 
D2 0.70 0.66 1.09 0.59 0.69 0.58 
E1 0.69 0.66 1.03 0.65 0.71 0.64 
E2 0.65 0.62 1.09 0.63 0.82 0.62 
F1 0.69 0.68 0.96 0.66 0.69 0.63 
F2 0.64 0.72 0.84 0.62 0.73 0.58 
Average 0.68 0.69 1.01 0.63 0.73 0.61 

Note: The first column is the location of the ambient temperature sensor in the frozen zone (Fig. 2). The benchmark is the RMSE of temperature estimation when 
multisource data is input. The other columns are the RMSE of temperature estimation after excluding this data. All the above data refer to the RMSE of the test set. 
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temperature estimation, but it is complicated because of the significant 
number of parameters, memory usage, and computation time. 

3.5. Uncertainty analysis 

An uncertainty analysis was conducted to determine how un
certainties in multi-source data affect the reliability of the temperature 
estimation results. The Pearson correlation coefficient (R) was utilized 
to measure a linear correlation between the estimated and real food 
temperatures. As shown in Fig. 9, the overall R of the chilled and frozen 
zones is 0.995 and 0.990 in the same carriage. This indicates that esti
mated temperature highly correlates with the real temperature in a 
multi-temperature carriage. These results show that the model proposed 
in this study presents a lower level of uncertainty in food temperature 
estimations. 

3.6. Practical implication and limitations 

To estimate real-time loading temperatures in refrigerated transport 
vehicles using wireless temperature sensors, precise temperature control 
management by machine learning using ANN is critical. The option for 
machine learning to only be trained by air temperature inside the 
vehicle is limited when using one or a few sensors in transit. As an 
alternative, increasing the number of sensors is essential to reduce the 
uncertainty related to the applied assumptions. However, the ANN is 
hampered by the deployment cost, which could also result in expensive 
human resource costs, as analysing the data patterns sampled from the 
multi-temperature vehicle is very complicated. Therefore, cold chain 
logistic organizers must consider how to improve the model’s precision 
using fewer temperature sensors. Furthermore, although experimental 
data (collected from the laboratory and field) are often incomplete (i.e., 
few measured food products and uncertain environmental conditions) 
the first-hand data generated by the experiment are more robust to 
construct a training dataset for the machine learning model. This may 
enable cold chain logistic organizers to implement strategies (such as 
reducing energy consumption and ensuring food quality) based on the 
proposed ANN model when reliable temperature data is available. Thus, 
the findings from this study can be used as a basis for temperature 
management across the food cold chain and as a reference for decision- 
making systems of food and pharmaceutical cold chain operations. 

However, it is important to note that there are several research 
limitations in this study. First, the representativeness of the food samples 
used in the study is limited due to high financial costs and long testing 
periods. The samples tested were oranges, bananas, and several frozen 
vegetable products. Future research requires the inclusion of a wider 
variety of raw food products to improve the generalization of the esti
mation model. In addition, the theoretical construction of multi- 
temperature refrigerated vehicles is limited by environmental 

Table 6 
The RMSE of food temperature estimation error at different data acquisition 
intervals.  

Diversity 
data 

10s/ 
◦C 

30s/ 
◦C 

1min/ 
◦C 

2min/ 
◦C 

3min/ 
◦C 

4min/ 
◦C 

5min/ 
◦C 

A1 0.48 0.55 0.50 0.57 0.56 0.57 0.58 
A2 0.50 0.56 0.50 0.49 0.57 0.57 0.59 
B1 0.53 0.54 0.53 0.51 0.55 0.59 0.56 
B2 0.52 0.50 0.48 0.56 0.58 0.59 0.57 
C1 0.52 0.57 0.53 0.50 0.51 0.53 0.53 
C2 0.46 0.51 0.47 0.50 0.55 0.57 0.57 
Average 0.50 0.54 0.50 0.52 0.56 0.57 0.57 

Note: The first column indicates that the input diversity data contains one 
temperature sensor at different locations. 

Table 7 
The RMSE of food temperature estimation for different ANN models.  

Network 
types 

BP LSTM Deep neural network 

One 
hidden 
layer 

One hidden 
layer+
One 
dropout 
layer 

Two hidden 
layers +
Three 
dropout 
layers 

Three hidden 
layers +
Three 
dropout 
layers 

RMSE/◦C 0.53 0.24 0.53 0.51 0.33  

Fig. 9. The linear correlation (R) between estimated and real temperatures.  
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conditions and other realistic delivery factors - all of which have an 
influence on the temperature of the food products. The temperature 
profiles of the food products are also influenced in a multi-directional 
manner, with the external environment and the internal heat gener
ated by the product having an effect. Further research is needed to in
crease the accuracy of the estimation model by considering variables 
representing predictive concerns, such as the number of delivery points, 
loading and unloading times, reefer models, and load capacities. 

4. Conclusions and prospects 

This study proposes an improved ANN model using multi-source data 
to precisely estimate the temperature of delivered food products based 
on an experimental set-up. The main conclusions are.  

1) The proposed ANN model could substantially enhance estimation 
accuracy and reliability in comparison to the models trained with 
only the internal air temperature dataset. Compared to the tradi
tional ANN models trained with one temperature sensor dataset, the 
RMSE of food temperature estimation using the improved ANN 
model could be decreased by 77%–79%. Most importantly, the 
improved ANN model can precisely track the real-time food tem
perature under sudden temperature changes, thus enabling pre
cautions to take place when required. 

2) Different multi-source dataset categories could affect food tempera
ture estimation to various extents. Thus, it is important to rank their 
influence based on a sensitivity analysis. The results suggest the 
following ranking in ascending order: initial food temperature, cu
mulative door opening time, frozen zone temperature, pre-cooled 
temperature, external temperature, and door status.  

3) The recommended data acquisition interval is 2–3 min. It was found 
that extending the data acquisition interval does not significantly 
reduce temperature estimation errors.  

4) Different ANN models like LSTM and deep learning networks can 
improve estimation accuracy and prevent overfitting. Compared to 
the BP network, the temperature estimation error of LSTM without 
the dropout layer and deep learning networks with three hidden 
layers could be decreased by around 55% and 48%, respectively. 

The implementation of the proposed ANN model in urban food de
livery can lead to the construction of a multi-decision system for the 
agrifood supply chain, including real-time food quality monitoring, 
temperature alerting, and refrigeration system fault detection. Given the 
complexity of the ANN model, the critical focus for future research 
should be optimizing the model database and strengthening the gener
alization capability. This would help cold chain operators to detect and 
prevent temperature chain breaks on time and ultimately reduce food 
loss. 
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