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Abstract: The latest monkeypox virus outbreak in 2022 showcased the potential threat of this viral
zoonosis to public health. The lack of specific treatments against this infection and the success
of viral protease inhibitors-based treatments against HIV, Hepatitis C, and SARS-CoV-2, brought
the monkeypox virus I7L protease under the spotlight as a potential target for the development of
specific and compelling drugs against this emerging disease. In the present work, the structure of
the monkeypox virus I7L protease was modeled and thoroughly characterized through a dedicated
computational study. Furthermore, structural information gathered in the first part of the study was
exploited to virtually screen the DrugBank database, consisting of drugs approved by the Food and
Drug Administration (FDA) and clinical-stage drug candidates, in search for readily repurposable
compounds with similar binding features as TTP-6171, the only non-covalent I7L protease inhibitor
reported in the literature. The virtual screening resulted in the identification of 14 potential inhibitors
of the monkeypox I7L protease. Finally, based on data collected within the present work, some
considerations on developing allosteric modulators of the I7L protease are reported.

Keywords: monkeypox virus; I7L protease; drug repurposing; DrugBank; virtual screening; homology
modeling; AlphaFold; docking; protein–ligand interaction fingerprint; molecular dynamics

1. Introduction

The 2022 monkeypox virus outbreak has spread all over the world with more than
86,000 confirmed cases to date, reaching 110 countries, 103 of which had not reported any
previous cases [1,2]. Until recently, the monkeypox virus has been confined to the central-
western part of Africa, where it is endemic, with seldom and limited cases of expansion
to other continents [3]. Therefore, such an unprecedented worldwide outburst caused the
World Health Organization (WHO) to declare it a Public Health Emergency of International
Concern [4].

The monkeypox virus is an enveloped double-stranded DNA virus that belongs to
the Orthopoxvirus genus of the Poxviridae family [5,6]. The vaccinia and variola viruses
(the causative agent of smallpox) are also members of the Orthopox genus: meaning, they
are immunologically cross-reactive and cross-protective. Indeed, thanks to it being less
harmful to human health compared to the other members of the genus, the vaccinia virus
has been used as a model to study the entire Orthopox genus [7]. Accordingly, in the
present work, molecular targets will be referred to after the vaccinia virus nomenclature.

Nevertheless, the clinical manifestation of the monkeypox infection resembles the
ones of smallpox, albeit milder [8]. Indeed, the most typical symptom is a febrile rush [8],
usually accompanied by the emergence of umbilicated skin lesions [9], principally located
on the extremities and the face [6], which can cause several severe medical complications,
which may ultimately result in the patient’s death [8], with a maximum lethality rate of
4–10%, depending on the strain in the countries where this virus is endemic [10].
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Despite being mainly transmitted through direct contact with infected animals’ bodily
fluids and flesh, this virus can also be spread among humans via bodily fluid exchanges and
prolonged face-to-face exposure that can convey the virus through respiratory droplets [11].

To date, no monkeypox virus-specific drug has been designed, with vaccination
being proposed as a treatment against this pathogen owing to its long incubation time
(2–3 weeks) [12]. Another recently proposed treatment is Tecovirimat, a drug that blocks
the viral protein VP37, which has been approved by the Food and Drug Administration for
the treatment of smallpox [12,13].

The potential for rapid human-to-human diffusion of this virus demonstrated by
the 2022 outbreak and the lack of effective and specific treatments demand the rapid
identification and development of novel pharmacological tools to manage this disease.

According to the literature, within the replication cycle of the model vaccinia virus, a
fundamental step is the maturation of non-infective virions from immature intracellular
virions (IV) to mature intracellular virions (IMV). This maturation process is linked to the
activity of the viral protease I7L, which is responsible for the cleavage of A17, a structural
protein involved in the formation of the crescent membrane that eventually leads to the
virion assembly. This cysteine protease is also responsible for the cleavage of several core
proteins, including P25K/VP8, P4a, and P4b, which form more than 30% of the mass of the
virion [14,15].

Owing to its pivotal role within the replication cycle of Orthopox viruses, and to
the good results of drug discovery campaigns resulting in the development of protease
inhibitors against HIV, Hepatitis C, and SARS-CoV-2 [16], the I7L protease is a promising
target for the design of effective and specific drugs against the monkeypox virus, and as
such, it has been selected as the focus of the present computational study. Particularly, the
99% amino acid identity between vaccinia, variola, and monkeypox orthologues [17,18],
allows for extending considerations retrieved from the characterization of this protease
to the whole genus, paving the way for the development of compounds with pan-anti-
poxviral activity.

Since the structure of the I7L protease has not been experimentally determined yet, in
the present work it was modeled and characterized through the combination of various
computer-aided drug discovery (CADD) methods, including homology modeling, de novo
prediction, in silico mutagenesis, and molecular dynamics. Furthermore, the acquired
structural insights were exploited to perform a docking-based virtual screening on the
DrugBank database, a library of more than 10,000 compounds, including drugs approved
by the Food and Drug Administration, and clinical-stage drug candidates, seeking ligands
with binding features comparable with the ones of TTP-6171, the only noncovalent inhibitor
of the I7L protease reported in the literature, which could be readily repurposed against
the monkeypox virus.

2. Results
2.1. Modeling the I7L Protease Structure

Since the structure of the monkeypox I7L protease has not been experimentally solved yet,
three different models were created, either through homology modeling or de novo prediction.

Based on two previously published works that led to the structure-based identification
of both covalent and noncovalent inhibitors of the vaccinia virus I7L protease [18,19], a first
model was built through the Phyre2 [20] server using the Saccharomyces cerevisiae Ulp-1
protease (PDB ID: 1EUV) as a template.

A second model was obtained through ColabFold [21], a web-based front-end for
protein structure fold prediction using AlphaFold2 [22,23]. Finally, since it has been re-
ported in the literature how homodimerization can influence the catalytic activity of the
I7L protease [24], a third model representing the protein in its dimeric form was generated
through ColabFold. The structures of the three different models are reported in Figure 1.
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Figure 1. Structure of the three models generated for the monkeypox I7L protease: (A) monomeric
model generated with Phyre2 using S. cerevisiae Ulp-1 protease (PDB ID: 1EUV) as a template;
(B) monomeric model generated with AlphaFold2; (C) dimeric model generated with AlphaFold2.

Although the two monomeric models look quite different at a first glance, a superposi-
tion between the two reveals how differences are mainly located away from the catalytic
site, which is, for the most part, quite conserved and superimposable (Figure 2).
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To assess the validity of generated models, we performed molecular dynamics simula-
tions to evaluate the models’ stability. Three independent MD replicates, with each 100 ns
in duration, were carried out on each of the models. The time-dependent evolution of the
backbone RMSD for each of the models is reported in Figure 3.
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Figure 3. This panel showcases the time-dependent evolution of the backbone RMSD calculated
throughout molecular dynamics simulations performed on each of the three I7L protease models:
(A) Phyre2 model (monomer), (B) AlphaFold2 model (monomer), and (C) AlphaFold2 model (dimer).

As can be noticed in Figure 3, there is a net difference in backbone stability among
the three generated models. Particularly, the two monomeric models, which are much less
stable than the dimeric one, generated by AlphaFold2, as highlighted not only by the high
RMSD values reached at the beginning of the simulation but also by the wide fluctuations
throughout the whole length of the trajectory. The low stability of the Phyre2 model can be
explained by the fact that a good portion of the protease structure is missing, specifically the
N-term (residues 1–165) and the C-term (365–423) since they did not have a correspondent
residue in the template structure.

The difference in stability between the two AlphaFold2 models can instead be ex-
plained by the fact that homodimerization seems to enhance enzymatic activity [24] and
that the N-terminal truncated protease (229–423) is not catalytically competent [17]. Indeed,
as can be observed in Figure S1 panel A (Supplementary Materials), the interface between
the two monomers in the AlphaFold2 model largely involves the N-terminal region, in-
cluding the G29-LCSNIDV-S37 loop, which has been flagged as crucial for the regulation
of the catalytic activity of I7L [25]. The stabilization of the N-terminal region within the
dimer model is also highlighted by the per-residue RMSF derived from the molecular
dynamics simulations (Figure S1, panels B and C, Supplementary Materials). Furthermore,
the secondary structure of the protease is well conserved throughout the MD simulations
of the dimer model, as highlighted by the plots reported in Figure S2 (Supplementary
Materials). Taken together, these observations indicate the dimeric AlphaFold2 model as
the most accurate representation of the monkeypox virus I7L protease.

To further validate our protease model, we performed in silico mutagenesis on each
conserved residue indicated in the work by Byrd et al. [17]. Specifically, a virtual alanine
scanning was executed through the appropriate module of the Molecular Operating Envi-
ronment suite (MOE) for all mutants. Coherently with experimental data, all investigated
mutations are predicted to destabilize the I7L protease (Table S1, Supplementary Materials).
Intriguingly, in the original work, the D258A mutant is determined to be viable, despite
D258 being involved in a hydrogen bond with the catalytic H241, which mostly assists
the catalysis process by ensuring the right orientation of the catalytic histidine towards
C328 [26]. Traditionally, cysteine proteases, including SARS-CoV-2 3CLpro [27], have been
associated with catalytic dyads [28], while catalytic triads have been linked to serine pro-
teases, due to the different nucleophilicity profile between thiolate and alkoxide ions [26]
However, based on the sequence conservation around the catalytic site between the I7L pro-
tease and the yeast Ulp-1 protease [29], a cysteine protease characterized by an Asp-His-Cys
catalytic triad [30], and on the presence of a catalytic triad involving either and Asp, Asn or
a Glu in other proteases belonging to the CE clan [31,32], such as the human adenovirus
2 proteinase (AVP) [33] and African swine fever virus pS273R protease [34], we can assume
that the proposed fold is plausible and that the conserved catalytic activity of the D258A
mutant could be attributed to compensatory effects, such as homodimerization and the
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presence of DNA/RNA [24]. Indeed, the catalytic activity of the prototypical CE protease
AVP is greatly increased by the peptide cofactor pVIc and the presence of DNA [35], with
the pVIc peptide occupying a similar interaction interface as the monomer–monomer one in
our dimeric model [36] (Figure S3, Supplementary Material). Considering that the binding
to the pVIc cofactor induces a conformational change of the active site [36], it is possible
that the instability noticed in MD simulations of our AlphaFold2 monomeric model is
related to the absence of the stabilizing/allosteric effect of the second monomer.

In the case of the pVIc peptide, the interaction is driven by the formation of a disulfide
bond between two conserved cysteine residues, namely C10 (pVIc) and C104 (AVP) [37,38].
Intriguingly, in our dimeric model, two cysteine residues located in the C-terminal alpha
helix (C408) face each other (Figure S4, Supplementary Materials), suggesting the possible
formation of a disulfide bond that could stabilize the dimeric form of the protease, hence,
increasing its catalytic activity.

Although the vicinity of these two residues may be an AlphaFold2 artifact, the good
confidence in AlphaFold2′s prediction of the C-terminal helix highlighted by the high
pLDDT value (Figure S5, Supplementary Materials) and the observation that, throughout
our MD simulations, the distance between the two cysteines remains stable and compatible
with the formation of a disulfide bond [39] (Table S2, Supplementary Materials), reinforce
the plausibility of this structural hypothesis. Intriguingly, regions associated with the
highest uncertainty in the prediction are located at the interface between the two monomers
in the dimeric model, coherently with the hypothesis of a stabilizing role of the catalytic
domain carried out by the homodimerization process.

Furthermore, the Q322A and D248A mutants were also characterized through MD
simulations. We decided to focus on these two mutations since the other ones were readily
explainable by looking at the modeled three-dimensional structure of the protease. For
instance, H241, C328, and D258 are all part of the catalytic triad. G329, instead, is the
residue that follows the catalytic cysteine residue, and it has been demonstrated how the
protease has substrate specificity for residues bearing small sidechains, such as glycine and
alanine [24]. Likewise, W242 is a core residue of the binding site, that most likely concurs
in defining the substrate specificity towards small sidechain residues straddling across the
cleavage site [18], as in the case of Ulp-1 and other SUMO proteases [40]. Indeed, within
our MD simulations, two different clusters related to W242 conformation can be observed:
in the “closed” conformation, the tryptophane sidechain occupies the subpocket usually
occupied by the P1 glycine residue of the substrate, while in the “open” conformation the
tryptophane sidechain forms a tunnel that allows the harboring of the substrate near to the
catalytic cysteine (Figure S6, Supplementary Materials).

In the AlphaFold2 model, Q322 is involved in a network of interactions with the
backbone of L324 and the sidechain of S259, consistently with a possible crucial role in
the stabilization of the postcleavage subsite and the formation of the oxyanion hole [19]
(Figure S7, panel A Supplementary Materials). Likewise, D248, which has been flagged as
a pivotal residue for the catalytic activity of the protease despite not being part of the triad
or the catalytic site, is predicted to be involved in another crucial network of interactions
with the backbone of K250, N251, and, most notably, the sidechain of R230 (Figure S7,
panel B Supplementary Materials). As expected, coherently with the mutagenesis study
performed with MOE, the energetic analyses performed on MD trajectories carried out on
both the mutants and the wildtype I7L protease reveal how both the Q322A and D248A
mutants have an unfavorable energetic profile compared to the wildtype protein, although
the reduced timescale of our MD simulations did not allow for harsh local alterations of
the protein fold (Figures S8 and S9, Supplementary Materials).

Finally, to further characterize the interactive features of the catalytic site, we modeled
the binding mode of four substrate peptide sequences reported in the literature, namely
P4a (G614-S615), P4b (G61-A62), and two different cleavage sites on VP8/P25K (G18-S19
and G32-A33, respectively) [24,41]. Although the estimation of the cleavage rate of those
substrate peptides slightly varies depending on the experimental conditions, it is possible
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to assume that both VP8 [17,24,25,41] and P4b [24,25,41] are cleaved faster than P4a and
that VP8 is more rapidly processed than P4b [24,41]. Coherently, our modeling indicates how
both VP8 (G32-A33) and P4b have better interaction profiles with the catalytic site compared to
the VP8 (G18-S19) and P4a (Figures S10–S13 and Table S3, Supplementary Materials).

Furthermore, based on our structural analysis, it can be noticed how peptides with
higher cleavage rates have better electrostatic complementarities with the binding groove,
especially because of the presence of the negatively charged residues in positions P7–P8,
which have been previously linked with substrate specificity [24], and which interacts
with an electropositive patch formed by basic residues, such as R124, R172, and R196
(Figure S14, Supplementary Materials). Consequently, it is possible to hypothesize that the
faster cleavage rates of AGA sequences compared to AGS [41] may not be related to the
P1′ residue, coherently with the tolerated variability in P2–P1′ residues across substrate
sequences within the CE clan [42], yet might be instead related to ancillary residues located
before and after the proteolytic cut site, which confer an increased affinity towards the
binding groove.

2.2. Virtual Screening of the DrugBank Database

The validated I7L protease structure model was used to perform a docking-based
virtual screening of the DrugBank database toward the potential repurposing of existing
drugs as antiviral agents against the monkeypox virus. Specifically, DrugBank is a library
that collects about 11,614 molecules, including FDA-approved drugs (both small molecules
and biotech), nutraceuticals, and experimental therapeutics (molecules that reached various
stages of clinical experimentation). The workflow for the executed virtual screening is
schematized in Figure 4 and explained in detail hereafter.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 18 
 

 

mutants have an unfavorable energetic profile compared to the wildtype protein, alt-

hough the reduced timescale of our MD simulations did not allow for harsh local altera-

tions of the protein fold (Figures S8 and S9, Supplementary Materials).  

Finally, to further characterize the interactive features of the catalytic site, we mod-

eled the binding mode of four substrate peptide sequences reported in the literature, 

namely P4a (G614-S615), P4b (G61-A62), and two different cleavage sites on VP8/P25K 

(G18-S19 and G32-A33, respectively) [24,41]. Although the estimation of the cleavage rate 

of those substrate peptides slightly varies depending on the experimental conditions, it is 

possible to assume that both VP8 [17,24,25,41] and P4b [24,25,41] are cleaved faster than 

P4a and that VP8 is more rapidly processed than P4b [24,41]. Coherently, our modeling 

indicates how both VP8 (G32-A33) and P4b have better interaction profiles with the cata-

lytic site compared to the VP8 (G18-S19) and P4a (Figures S10–S13 and Table S3, Supple-

mentary Materials).  

Furthermore, based on our structural analysis, it can be noticed how peptides with 

higher cleavage rates have better electrostatic complementarities with the binding groove, 

especially because of the presence of the negatively charged residues in positions P7–P8, 

which have been previously linked with substrate specificity [24], and which interacts 

with an electropositive patch formed by basic residues, such as R124, R172, and R196 (Fig-

ure S14, Supplementary Materials). Consequently, it is possible to hypothesize that the 

faster cleavage rates of AGA sequences compared to AGS [41] may not be related to the 

P1′ residue, coherently with the tolerated variability in P2–P1′ residues across substrate 

sequences within the CE clan [42], yet might be instead related to ancillary residues lo-

cated before and after the proteolytic cut site, which confer an increased affinity towards 

the binding groove.  

2.2. Virtual Screening of the DrugBank Database 

The validated I7L protease structure model was used to perform a docking-based 

virtual screening of the DrugBank database toward the potential repurposing of existing 

drugs as antiviral agents against the monkeypox virus. Specifically, DrugBank is a library 

that collects about 11,614 molecules, including FDA-approved drugs (both small mole-

cules and biotech), nutraceuticals, and experimental therapeutics (molecules that reached 

various stages of clinical experimentation). The workflow for the executed virtual screen-

ing is schematized in Figure 4 and explained in detail hereafter. 

 

Figure 4. Schematic representation of the workflow for the virtual screening performed on the Drug-

Bank database against the monkeypox virus I7L protease catalytic site. 

Figure 4. Schematic representation of the workflow for the virtual screening performed on the
DrugBank database against the monkeypox virus I7L protease catalytic site.

The library was docked to the I7L protease binding site (centered around C328, one
of the members of the catalytic triad) using the PLANTS docking program, generating
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10 poses for each ligand. The only noncovalent I7L protease inhibitor available in the
literature, TTP-6171, was also included in the library as a positive control.

At first, docking poses for the query compounds were compared to the selected
TTP-6171 pose reported in Figure 5, chosen among the top-scoring poses through visual
inspection. In this docking pose the compound nicely complements the shape of the binding
site and its key interaction features. Particularly, in this pose the naphthol moiety of TTP-
6171 stacks between the sidechains of W168 and W242, establishing both hydrophobic and
π-stacking interactions. Furthermore, the central node of the ligand (that mimics a glycine
residue, which is commonly found at the cleavage site), is placed in the narrowest portion
of the channel, close to the catalytic C328. Finally, further stabilizing interactions include
the H-bond between the backbone of M169 and the hydroxyl group of the naphthol and
another H-bond between the amide hydrogen of the “pseudo-glycine” portion of the ligand
and the backbone of S240.
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Figure 5. (A) Three-dimensional representation for the docking-predicted binding mode for the
reference compound TTP-6171. (B) Bidimensional representation for the docking-predicted binding
mode for the reference compound TTP-6171.

The comparison between the reference and the query compounds was carried out
through the recently developed IFPCS scoring function [43], to retain only those poses
that presented an interaction pattern congruent with the one for the reference. Practically,
both the reference pose and the queries were converted into protein–ligand interaction
fingerprints via the appropriate function of the Open Drug Discovery Toolkit library, and
compared through the cosine similarity metrics, keeping only those poses that matched
most of the binding features modeled for the TTP-6171.

Afterward, the remaining poses were further filtered based on some descriptors
provided by the Molecular Operating Environment suite. Particularly, the van der Waals
and electrostatic contributions to the interaction energy were used to keep only those poses
with a similar energetic contribution as the reference pose for the TTP-6171. Furthermore,
due to the shallow and solvent-exposed nature of the binding site, a cutoff on the percentage
of solvent-exposed ligand surface was used to keep only those poses that presented a similar
level of shielding from the solvent as the TTP-6171. Finally, a round of visual inspection
of poses was carried out, to prioritize poses with the best shape complementarity with
the binding site, resulting in the selection of 14 compounds. The docking poses for the
14 selected compounds are reported in Figures S15–S28 and Video S1 (Supplementary
Materials), while detailed information about each compound can be found in Table S4
(Supplementary Materials).
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The conservation of crucial binding interactions between the reference TTP-6171 and
query compounds found through the docking-based virtual screening is highlighted by the
aggregate heatmap, reported in Figure 6, which reports a per-residue interaction energy
decomposition for both the electrostatic and hydrophobic components to the protein-
ligand interaction.
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Figure 6. Per-residue decomposition of the main contributions to the protein-ligand interaction energy
for both the reference TTP-6171 and query compounds identified through the docking-based virtual
screening: the upper panel highlights electrostatic interactions, while the lower panel showcases
hydrophobic interactions.

As expected by the selection process based on the similarity of the protein–ligand in-
teraction fingerprints, interactions with key residues composing the binding site regarding
both the electrostatic and hydrophobic contributions to the interaction energy are conserved
through the series, despite differences in the chemical structure of the ligands. Particularly,
our selected compounds are predicted to have good electrostatic interactions with E125,
W168, M169, and S240, while main hydrophobic contributions can be principally traced to
W168, W242, and the alkyl chain of E125.

To cope with the neglected solvent effect and the static nature of molecular docking, a
short MD-based post-docking refinement was carried out. Principal descriptors extracted
from the post-docking refinement are summarized in Table 1.

As can be observed in Table 1, docking poses for the 14 selected compounds show
comparable stability and quality of interaction to the reference TTP-6171 pose, except
for DB13248, which shows a relatively high RMSF value, indicative of an unstable pose.
Interestingly, this ligand presents the lowest hydrophobic contribution to the interaction
energy, supporting the previously stated hypothesis of a hydrophobic-driven binding at
the catalytic site.



Int. J. Mol. Sci. 2023, 24, 7119 9 of 18

Table 1. Summary of principal descriptors extracted from the MD-based post-docking refinement
of virtual screening derived poses for the 14 selected compounds, plus the reference TTP-6171 pose.
The ligand RMSF, the average number of hydrogen bonds for each trajectory frame, the hydrophobic
score, electrostatic and van der Waals contribution to the protein–ligand interaction energy, and the
total interaction energy are reported. All descriptors are mediated across three independently run
MD replicates.

Molecule RMSF (Å)
Hydrogen Bonds

(Average Per
Frame)

Hydrophobic
Score

(kcal/mol)

Electrostatic
Contribution

(kcal/mol)

Van der Waals
Contribution

(kcal/mol)

Interaction Energy
(ele + vdW)
(kcal/mol)

TTP-6171 1.7 0.39 −1.27 −13.15 −43.15 −56.3

DB01748 1.11 0.33 −1.03 −24.07 −31.52 −55.59

DB02429 0.91 0.42 −1.11 −25.74 −32.58 −58.31

DB04888 1.7 0.62 −1.07 −35.46 −35.95 −71.42

DB07476 1 0.52 −0.58 −25.57 −31.4 −56.97

DB07531 2.54 0.15 −0.88 −15.51 −30.32 −45.83

DB07537 1.65 0.19 −1.41 −19.35 −36.64 −55.99

DB08399 1.2 1.18 −0.95 −19.91 −24.15 −44.06

DB08754 1.44 0.4 −1.22 −19.87 −33.97 −53.84

DB12027 1.39 0.44 −0.96 −13.85 −32.75 −46.6

DB12558 1.3 0.61 −1.36 −29.9 −41.37 −71.27

DB12882 1.54 0.88 −0.99 −66.94 −34.76 −101.69

DB13248 5.94 0.72 −0.12 −65.76 −12 −77.76

DB13948 1.66 0.65 −0.93 −29.17 −27.82 −56.99

DB16236 1.8 0.59 −0.6 −84.37 −31.02 −115.39

3. Discussion

The 2022 monkeypox virus outbreak brought to the attention of the general audience
this relatively unconsidered pathogen as a potential threat to public health. To mitigate the
lack of effective and specific treatment for this virus, and in consideration of the success of
recent drug discovery campaigns for the design of viral protease inhibitors, we performed a
preliminary computational study to structurally characterize the I7L protease and identify
potentially repurposable drugs as pharmacological tools against this disease.

Three different I7L models were generated, either through homology modeling or
de novo prediction, describing both the monomeric and dimeric forms of the protease.
MD simulations performed on generated models highlighted a net difference in stability
between the two monomeric models and the dimeric one, in favor of the latter. This
difference is coherent with the fact that homodimerization enhances the catalytic activity
of I7L [24]. Furthermore, the proposed dimerization interface is coherent with a similar
allosteric effect portrayed on the AVP protease, belonging to the same CE clan as the I7L,
by the peptide cofactor pVIc [36,37], and with the observation of the importance of the
N-terminal region of I7L for the catalytic activity [17,25], validating the reliability of the
proposed model.

After the model validation, a docking-based virtual screening was carried out on the
DrugBank database, a library containing FDA-approved drugs and drug candidates in
various stages of clinical experimentation, seeking readily repurposable compounds as
antiviral agents against the monkeypox virus.

At first, the binding mode of TTP-6171, the only non-covalent I7L inhibitor reported
in the literature, was elucidated. This compound is predicted to nicely fit into the catalytic
groove, owing to the good shape complementarity with the pocket. From an interaction
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perspective, this compound is predicted to insert a naphthol moiety amid two conserved
tryptophane residues, namely W168 and W242. Based on structural data on similar pro-
teases [33,34,44], mutagenesis data on the pivotal role of these two aromatic residues [17],
and the observation of equilibrium between an open and a closed conformation of the cat-
alytic tunnel regulated by the relative position of these two tryptophane residues through-
out our MD simulations, it seems reasonable to mark this as a crucial interaction in ex-
plaining the inhibitory activity of TTP-6171. Furthermore, this ligand placement allows
for establishing other ancillary stabilizing interactions with the pocket, other than placing
a “pseudo-glycine” ligand moiety towards the catalytic C328, as happens with peptide
substrate sequences.

Intriguingly, two previously published computational studies by Lam et al. [45] and
Dubey et al. [46] both predicted different binding modes for TTP-6171, despite working
on a superimposable I7L protease model generated through AlphaFold2. Particularly,
Dubey et al. described a binding mode for TTP-6171, which involves interactions with
residues such as C22, H23, S26, L27, N33, V36, L40, I371, Y393, K394, and E397. This
pocket is located on the opposite side of the catalytic site and includes the G29–S37 loop,
which is involved in the regulation of catalytic activity, either through homodimerization
or interaction with nucleic acids [17,24,25]. In our dimeric model, this subsidiary pocket
is predicted to harbor the C-terminal α-helix of the second monomer. Although this
putative mechanism of action would theoretically explain the TTP-6171 activity, there
are some concerns related to this prediction. First, this pose is not in agreement with
data on TTP-6171-resistant mutants (Y104C and L324M), which are both located far away
from this binding pocket [19]. Moreover, the monomeric protease model used in their
study undergoes a notable conformational rearrangement during molecular dynamics
simulations, as well as the predicted binding pose for TTP-6171, making it difficult to assess
if the instability observed for their pose is related to the protein instability or the poor
quality of interaction between the ligand and the protein.

In the work of Lam et al. [45], instead, TTP-6171 is predicted to bind in a solvent-
exposed cleft situated right below the cleavage site. Although this prediction is more
coherent with data on compound-resistant mutants (the L324M mutation is located on the
oxyanion loop that borders the catalytic site), there are some questions about its validity.
First, the chemical structure of TTP-6171 shown in their work is not coherent with the one
reported in the original work by Byrd et al. [19], which was instead utilized in this work and
the one in Dubey et al. Furthermore, in their post-docking refinement, the proposed binding
mode is not stable, rapidly reaching an alternative, extended conformation (RMSD = 12 Å),
which is, then, maintained for the rest of the simulation. In virtue of the shallow and
solvent-exposed nature of the catalytic site, which does not offer many anchoring points
for small molecule inhibitors, and the comparably higher stability of the docking poses
presented for their virtual screening hits (which straddle across the catalytic cleft in a
similar way to docking poses for our virtual hits) to the one of TTP-6171, it is possible to
assume that our binding mode is more convincing. Another piece of evidence supporting
this working hypothesis is that substrate peptides binding seems to be more driven by
residues located at the N-terminus end of the peptide rather than the ones located at the
C-terminus end of the cleavage sites, coherently with a certain tolerance and variability like
post-cleavage residues [17,24,25,41], and with the solvent-exposed nature of the lower cleft.
Finally, in the work by Katritch et al. [18], which identified 97 covalent inhibitors of the I7L
protease through a docking-based virtual screening executed on a homology model based
on the yeast Ulp-1 protease, the modeled binding modes presented for the hit compounds
closely resembled the one proposed in the present work for TTP-6171 and the noncovalent
hits extracted from our virtual screening.

Although the strategy of covalently targeting the catalytic site seems advantageous,
considering the difficulties of targeting such shallow and solvent-exposed binding grooves,
without a rational design supporting the idea of a targeted covalent inhibition, the lack
of selectivity and potential associated adverse effect could hamper the development of
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the initial hits into pharmacological tools with any real-world application [47], hence, the
idea of performing a structure-based virtual screening for identifying noncovalent binders.
Specifically, we focused our attention on the DrugBank database, a library composed
of FDA-approved drugs and clinical drug candidates, since the identification of well-
characterized compounds from a pharmacokinetic and pharmacological perspective would
drastically reduce the time needed for transitioning a hit into a candidate [48].

Our multistage virtual screening led to the selection of 14 candidate inhibitors of
the I7L protease. Compared to the reference TTP-6171, the selected compounds present
similar shapes and electrostatic features regardless of their chemical scaffold, other than
presenting a superimposable predicted binding pattern. Unfortunately, as reported in
Table S4 (Supplementary Materials), only two out of fourteen virtual hits belong to the “ap-
proved” ensemble of the DrugBank database (Mitapivat, a pyruvate kinase activator used
for hemolytic anemia, and Phthalylsulfathiazole, which is employed as a gastrointestinal
antibiotic), with the other four compounds belonging to the “investigational” group and
the rest being part of the “experimental” group. Furthermore, many of the “investigational”
or “experimental” hits have been developed as antitumoral agents, thus, preventing their
application in the treatment of a viral disease due to the intolerable adverse effects. How-
ever, if their activity should be experimentally confirmed, they could serve as starting point
for the development of specifically designed antiviral compounds, other than validating
the usefulness of the presented structural model of the I7L protease and similar models
built by homology with the yeast Ulp-1 protease.

Finally, due to the peculiar topological features of the catalytic site, it might be worth
investigating alternative strategies for modulating I7L proteolytic activity that does not
involve competitive binding within the catalytic groove. According to our structural inves-
tigation, indeed, three possible pathways could be pursued: targeting the electropositive
exosite defined by basic residues, such as R124, R172, and R196 (exosite 1), aiming at the
allosteric pocket flanking the N29–S37 loop (exosite 2), or targeting the dimerization inter-
face. Due to the different nature of those hotspots, with exosite 2 seemingly being the only
druggable cavity through a small molecule inhibitor, the development of aptamers could
represent a way to produce potent and selective binding at those flat and solvent-exposed
surfaces, based on previous attempts on similar targets, including the human thrombin [49].

Despite the aforementioned issues, developing I7L protease inhibitors represents a
promising strategy complementary or alternative to addressing other potentially viable tar-
gets. For example, despite the recent release of the experimentally determined structure of
the F8 DNA polymerase [50], which provides a structural basis for the rational development
of compounds able to inhibit the synthesis of viral DNA, targeting this macromolecular
machinery is complicated by pharmacodynamic issues, such as an intrinsic lack of selec-
tivity of nucleoside analogs, and pharmacokinetic limitations, such as their conversion
to the triphosphate form [51]. Another possible route would be to target the membrane
protein VP37, the molecular target of Tecovirimat, although the lack of experimentally
solved structure of this protein and atomistic details on the mechanism of its inhibition
would present similar challenges to those described for the I7L protease [52].

Lastly, it is important to stress that although the present work has been executed
using state-of-the-art CADD methodologies and through systematic comparison with
available experimental evidence, it remains a preliminary theoretical study that needs
further experimental validation, both from a structural and biological perspective. Indeed,
although the present work provided some plausible mechanistic explanations on previously
published data, the low amount of information available and the emergence of novel
structural insights, such as the possible formation of a disulfide bridge that regulates the
dimerization equilibrium will hopefully inspire some targeted biological investigations
that will complement the data reported in the present work.



Int. J. Mol. Sci. 2023, 24, 7119 12 of 18

4. Materials and Methods
4.1. Hardware Overview

Each ordinary molecular modeling procedure was carried out on a Linux Workstation,
shipping a 12-core Intel(R) Xeon(R) CPU E5-1650. The docking-based virtual screening was
performed on a 64-core AMD Opteron™ Processor 6376 CPU cluster. Molecular dynamics
simulations were conducted on a GPU cluster composed of 20 NVIDIA devices ranging
from GTX980 to RTX2080Ti. Each machine used Ubuntu 20.04 as its operating system.

4.2. I7L Protease Structure Modeling

The three-dimensional structure of the monkeypox virus I7L protease has not been
experimentally determined yet. For this reason, three different models were created, either
through homology modeling or de novo prediction.

Initially, the primary sequence of the I7L protease was retrieved from the UniProt [53]
database (accession code: Q5IXV7). The Protein-BLAST [54,55] webserver was used to
search for suitable templates for the generation of a homology model, leading to the identi-
fication of the C-terminal domain of the ULP-1 protease of Saccharomyces cerevisiae (PDB
ID: 1EUV [44]) as the best possible template (17% sequence identity with the monkeypox
virus I7L protease). Considering that this structure was already used in previous scientific
works for the generation of a homology model of the vaccinia virus I7L protease that led to
the identification of the noncovalent inhibitor TTP-6171 [19] and 97 covalent inhibitors [18],
the high sequence identity of the I7L gene among the Orthopoxviridae family (between 95
to 99%), and the complete conservation of catalytic site residues [19], a first model of the
monkeypox I7L protease in its monomeric form was constructed through the Phyre2 [20]
webserver, using structure 1EUV as a template.

A second model of the I7L protease structure in its monomeric form was obtained
through ColabFold [21] 1.3, a web-accessible front-end for de novo prediction of protein
structures through AlphaFold [22,23] 2.2. The same method was used for generating
a third model of the I7L protease in its dimeric form since it has been reported how
homodimerization can influence its catalytic activity [24].

4.3. Models Validation

To assess the reliability of the three models generated as presented in Section 4.2, their
stability was evaluated through a series of classic molecular dynamics simulations. At
first, each model was checked using the “Structure Preparation” tool from the Molecular
Operating Environment (MOE [56]) 2022.02 suite. Afterward, the “Protonate3D” tool was
exploited to assign the most probable protonation state to each residue (pH 7.4, T = 310 K,
i.f. = 0.154). Finally, partial charges were attributed according to the AMBER10:EHT force
field, as implemented in MOE.

The system setup for MD simulation of preprocessed structures was, then, carried out
by combining different packages from Visual Molecular Dynamics (VMD [57]) 1.9.2 and
the AmberTools22 [58,59] suite. Specifically, parameters for protein atoms, water molecules,
and ions were assigned according to the ff14SB [60] force field.

Each protease model was solvated in a rectangular base prism box of TIP3P [61] water
molecules, ensuring a minimum 15 Å distance between each protein atom and the box
border. Furthermore, the appropriate number of sodium and chlorine ions were added to
electroneutralize the box and reach a salt concentration of 0.154 M. Before MD simulation,
500 steps of energy minimization with the conjugate-gradient algorithm were employed to
remove clashes within each system.

MD simulations presented in the current article were carried out using the ACEMD [62]
3.5 engine, which is based on the open-source Python library for molecular simulations
OpenMM [63] Specifically, a 2 fs integration timestep was used, the M-SHAKE algorithm
was used to constrain the length of bonds involving hydrogen atoms, the particle-mesh
Ewald [64] method with cubic spline interpolation, and 1 Å grid spacing were used to
compute electrostatic interactions, while a 9.0 Å cutoff was applied for the calculation of
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Lennard-Jones interactions. Before the productive simulations, a two-stage equilibration
process was carried out. In the first equilibration step, 0.1 ns of NVT simulation were
performed, with harmonic positional restraints imposed on each protein atom, leaving
water molecules and ions unconstrained. In the second equilibration run, 0.5 ns of NPT
simulation were carried out, with the same harmonic positional restraints applied only
on the protein backbone. In both cases, a 5 kcal mol−1 Å−2 force constant was applied
on restrained atoms for the whole length of the simulation. For each simulation, the
temperature was maintained at 310 K through a Langevin thermostat [65], while for
simulations in the NPT ensemble, the pressure was maintained at 1 atm through a Monte
Carlo barostat [66]. For each investigated model, three 100 ns independent MD replicates
were performed in the NVT ensemble (T = 310 K). Then, trajectories were analyzed by
calculating the time-dependent evolution of the backbone RMSD and the protein secondary
structure, other than the per-residue RMSF, making use of the appropriate functions of
the MDA analysis [67,68], Python library, and VMD. Finally, representative frames were
extracted from each trajectory through clustering with the TTCLUST [69] Python package.

4.4. In Silico Mutagenesis

To further assess the validity of the dimeric protease model, mutants were generated
in silico based on previously published experimental data [17] and evaluated through
the same MD-based protocol reported in Section 4.2. Mutants were prepared through the
editing of the dimeric protease model with the “alanine scanning” tool in MOE 2022.02,
calculating the stability difference between the mutated protein and the wildtype expressed
as dStability (kcal/mol). Furthermore, based on visual inspection of the protease model,
Q322A and D248A were further evaluated using the previously described MD-based
protocol, resulting in three independent 100 ns MD replicates for each case.

4.5. Substrate Peptides Modeling

The sequences for each of the four modeled substrate peptides (P9-P4′), namely P4a,
P4b, and the two cleavage sites on VP8, were retrieved from the work of Aleshin et al. [24].
Peptide binding poses were manually modeled by templating the P2–P1 positions from the
peptide substrate of yeast Ulp-1 protease (PDB ID: 1EUV) and iteratively adding missing
residues through the combination of the “Protein Builder” tool in MOE 2022.02, and cycles
of energy minimization, according to the AMBER10:EHT force field, as implemented in
MOE 2022.02. The obtained complexes were relaxed through 3 independent, 3 ns MD
replicates, using the same procedures described in Section 4.2. An approximation of the
binding free energy was obtained through the MM/GBSA method, as implemented in the
AmberTools22. The last trajectory frame extracted from the trajectory associated with the
closest-to-average binding free energy value was chosen as representative and visually
analyzed, while a per-residue interaction energy matrix calculated on the representative tra-
jectory was obtained through the github.com/molecularmodelingsection/SuMD-analyzer
Python script presented and discussed in the work by Pavan et al. [49].

4.6. Virtual Library Preparation

The complete DrugBank 5.1.9 database was retrieved from the DrugBank website
and prepared for docking calculations using various tools from the QUACPAC OpenEye
suite [70] and CORINA Classic [71], as follows. At first, the “filter” tool was used to reduce
and eliminate from the library compounds, which did not present drug-like properties,
by applying the strict “drug” filter. Then, the most probable tautomeric and protomeric
state at pH 7.00 was attributed to each remaining compound through the “tautomers” and
“fixpka” tools, respectively. Finally, three-dimensional coordinates were generated with
CORINA Classic, and partial charges were attributed according to the MMFF94 [72] force
field through the “molcharge” tool.
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4.7. Docking-Based Virtual Screening

The prepared compound library was docked onto the catalytic site of the I7L protease
dimeric model using the Protein–Ligand ANT System (PLANTS) [73,74] program, which is
free to use for academics, coupled with the ChemPLP [75] scoring function. The binding
site was defined as a sphere of radius 12 Å centered around the center mass of Cys328,
one of the three residues defining the catalytic triad. For each ligand, the best ten poses
according to the scoring function were retained for further analysis. The same docking
protocol was also applied to TTP-6171 [19], the only noncovalent I7L protease inhibitor
available in the literature, which was used as a positive control.

Initially, docking poses were filtered based on the similarity of their interaction pattern
with the top-scoring pose for the positive control TTP-6171. Specifically, the recently
developed IFPCS [43,76,77] scoring function was used to perform the comparison between
the reference TTP-6171 pose and the query poses derived from the virtual screening. Each
docking pose is encoded in a rx8 integer vector (where r is the number of protein residues
and 8 is the number of possible protein–ligand interactions that are computed), and the
cosine similarity between a reference pose and a query one is calculated. This results
in a score that can range from −1 (indicating total congruence between the two binding
patterns) and 0 (indicating total divergence).

Afterward, poses were filtered based on their electrostatic and van der Waals inter-
action energy, other than the percentage of the solvent-exposed surface. The first two
elements were calculated through the related descriptors of MOE, while the third was com-
puted through an SVL script provided by the MOE support team. Finally, the remaining
poses were subjected to a round of visual inspection. All adopted filtering criteria, which
were calibrated based on the reference docking pose for the TTP-6171, are summarized in
Table 2. A heatmap reporting a per-residue decomposition of the electrostatic (kcal/mol)
and hydrophobic (arbitrary units) contribution to the protein–ligand interaction energy for
selected poses was generated by making use of an in-house SVL script.

Table 2. Pose filtering criteria adopted for the docking-based virtual screening performed on the I7L
protease dimeric model.

Observable Criteria

IFPCS ≤−0.97

Electrostatic interaction energy ≤10 kcal/mol

Van der Waals interaction energy ≤10 kcal/mol

% ligand solvent exposure ≤15%

Visual inspection Good shape complementarity with the pocket

4.8. MD-Based Post-Docking Refinement

To account for the protein flexibility, which is neglected in docking calculations,
docking poses that passed all filters described in Section 4.5 were subjected to MD-based
refinement. Specifically, each protein–ligand complex derived from the virtual screening
and the reference docking pose for the TTP-6171 were prepared for MD simulations using
the same protocol described in Section 4.2, both in the system setup and in the equilibration
stage. Differently from the simulation of protein-only systems, ligand partial charges were
attributed through the “antechamber” module using the AM1-BCC [78] method, ligand
parameters were assigned according to the general amber force field (GAFF) [79] and
harmonic positional restraints were added also to the ligand atoms in both equilibration
stages. For the production stage, 3 independent, 3 ns MD replicates were carried out to
relax the system in an explicit solvent environment.

Generated trajectories were, then, analyzed by making use of an in-house Python
script, calculating the ligand RMSF, the hydrophobic contribution to the interaction energy
derived from the empirical Cyscore [80] scoring function, the number of hydrogen bonds
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calculated with VMD, and the interaction energy, calculated as the sum of the electrostatic
and van der Waals terms, computed through the NAMD [81] Energy 1.4 plugin for VMD.
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