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Abstract  
 

 
This thesis aims at investigating cortical surface measures, specifically cortical complexity, 

and their importance on the understanding of psychiatric disorders, behavior and cognition. 

We performed three different studies to reach this goal. In Study 1, we aimed to investigate 

the brain cortical alterations underlying bipolar-schizophrenic spectrum disorders: patients 

with schizophrenia, patients with bipolar disorder, and healthy subjects were compared 

investigating SBM based cortical complexity measures (fractal dimension). Then, we 

proposed to correlate such structural abnormalities with available clinical and cognitive 

measures. Cortical complexity was reduced in schizophrenia patients compared to healthy 

controls in the right superior temporal gyrus while bipolar disorder patients showed 

significantly lower cortical complexity in the left pars opercularis compared to healthy controls. 

Additionally, bipolar patients had increased cortical complexity in the left lingual gyrus and this 

measure was positively correlated with the severity of manic symptoms. When compared to 

schizophrenia, bipolar patients showed significant increases in cortical complexity in the left 

inferior temporal gyrus, right temporal pole, inferior and superior temporal cortex. In Study 2, 

the objective was to investigate cortical complexity in patients with cocaine addiction. Since 

the frontal, parietal, temporal and insular cortices have been shown to play an important role 

in decision making and impulsivity, we hypothesized that cortical complexity in the brain of 

patients with cocaine addiction would be altered in these regions. Moreover, impulsivity is 

commonly associated with cocaine and the development to its addiction, so we expect that 

these alteration in the cortical surface may be related to measure of impulsiveness. The results 

showed that patients with cocaine addiction had higher levels of impulsivity and reduced 

cortical complexity in a cluster encompassing the left insula and supramarginal gyrus, as well 

as in the left medial orbitofrontal cortex. Additionally, the cortical complexity in the left medial 
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orbitofrontal cortex was correlated with the age of onset of cocaine addiction and with 

attentional impulsivity. These findings do indeed suggest that chronic cocaine use may be 

associated with changes in the cortical surface in fronto-parieto-limbic regions involved in 

emotional regulation, and that these changes may be linked to earlier use of cocaine. Finally, 

in study 3, our objective was to investigate changes in the brain surface of chess experts using 

cortical complexity and gyrification measures. We hypothesized that the surface indexes of 

the brain regions and networks underlying high-order cognition, including fluid intelligence, 

working memory, processing speed, and visuospatial processing, namely, prefronto-parieto-

temporal networks, would be altered. Additionally, since training in the chess game usually 

starts during childhood, we hypothesized that these indexes would be correlated with the 

training time of chess practice. The results showed that in chess experts, the cortical 

complexity was increased in the left frontal operculum and correlated with the starting age of 

chess practice, and decreased in the right superior parietal lobule. Chess expertise, also 

investigated through a logistic regression model was indeed predicted by the cortical 

complexity in a network of fronto-parieto-temporal regions. These findings suggest that the 

complex properties of the brain surface in a network of transmodal association areas important 

for flexible high-level cognitive functions are important for chess expertise, and that these 

changes may develop over time with long-lasting practice. 
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Chapter 1 

 
1.  Introduction 

 
1.1 The brain and its structure 
 

One of the earliest systematic studies of the human brain, which took place in half a century 

ago, sparked curiosity about the relationship between brain structure and function, as well as 

the impact of brain folding on abilities (Richman et al., 1975). Since then, more studies focused 

their effort on understanding the patterns and the structures of our brain. Over the course of 

human evolution, as well as during the development of individuals, the enlargement of the 

brain is directly associated with an enhancement of intellectual capabilities (Hofman, M. A, 

1989). Due to the unique shape of each individual brain, especially for larger species, 

nonlinear registration techniques are essential for comparing the different brain structures 

(Ashburner & Friston, 2000). Early development can result in the formation of population- and 

disease-specific patterns in addition to highly individual pattern folding (Tallinen et al., 2016). 

The brain is made up of two main types of tissue: gray matter (GM), which is the processing 

region containing a large number of neurons connected by myelinated dendrites that form 

white matter fiber tracts and enable high-speed communication between different regions, and 

white matter (WM), which is composed of these fiber tracts. The brain is also surrounded by 

cerebrospinal fluid (CSF) and housed within the skull. The cerebrospinal fluid acts as a 

physical buffer that enables geometrical changes in brain development and aging. The folding 

of the cortex, a ribbon of gray matter surrounding white matter, allows it to fit compactly within 

the cranium. This organized surface is particularly enlarged during individual and evolutionary 

development (Budday et al., 2015). The neocortex, which is the cortex of the cerebrum, is 

organized into six layers with regional variation in thickness and different functional 
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processing. Its structure is further influenced by the local folding and compensates for the 

number of layer-specific neurons (Amunts & Zilles, 2015).  For example, a cortical unit located 

on the top of a gyrus has a larger outer surface area and a smaller inner surface area, with a 

thicker inner layer and a thinner outer layer. On the other hand, a cortical unit located on the 

bottom of a sulcus has a smaller outer surface area and a larger inner surface area, with a 

thicker outer layer and a thinner inner layer. It is believed that local folding has only a limited 

impact on function and may be seen as the result of energy-minimizing processes related to 

brain growth (Amunts & Zilles, 2015). Magnetic resonance imaging (MRI) and automatic 

preprocessing techniques allow for the in vivo analysis of the macroscopic brain structure in 

the field of computational morphometry, even in large cohorts. Early regional manual 

measures have been extended to automatic whole brain techniques such as voxel-based 

morphometry (VBM), region-based morphometry (RBM), deformation-based morphometry 

(DBM), and surface-based morphometry (SBM). SBM allows for significant improvements 

compared to VBM or DBM by providing additional measures that describe the shape of the 

brain, allowing for the dissection of GM volume into thickness and other measures, improving 

registration and partitioning, correct anatomical smoothing, mathematical shape modeling, 

and the combination of different MRI modalities such as functional imaging, diffusion imaging, 

and structural weightings. Over the years, the volume of the GM and the cortical thickness 

have become important biomarkers for development, aging, plasticity, and various diseases 

(Shen & Chung, 2006).  

Although VBM is sensitive to subtle GM changes in the brain, it lacks the function to describe 

complex folding patterns and their development. DBM, on the other hand, partially covers 

folding differences as well as volume changes that impede analysis. RBM allows the 

combination of different techniques but highly depends on the atlas maps.  
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1.2 Brain development, plasticity and aging 
 

The development of the cerebrum in mammals goes through three main stages: ballooning, 

gyrification, and scaling. The ballooning phase involves the expansion of the ventricle, which 

compensates for the tangential growth of the intermediate zone and increases the surface 

area of the brain without significant folding. The gyrification phase is characterized by the 

formation of specific structures, such as the central sulcus, and is influenced by internal forces 

in the white matter or tangential growth in the gray matter. The scaling phase occurs in 

childhood and adolescence and involves a balance between tangential and radial growth. 

Changes in the adult brain, such as plasticity and aging, also affect the structure of the brain. 

Larger brains tend to have more individualized folding patterns due to higher tangential growth 

compared to radial growth (Budday et al., 2015). 

During the first few weeks of human gestation, the brain undergoes an intensive period of 

expansion. This is characterized by an increase in the size of the ventricle, accompanied by 

the growth of the intermediate zone and the brain's surface. During this time, only a few 

fissures become prominent due to bending. Neurons are produced in the ventricular zone and 

migrate to the skull, where they contribute to the development of the cortical layer. At this 

stage, the cortex exhibits a radial pattern on diffusion MRI, which indicates low connectivity 

within the cortex. Additionally, the first large fiber tracts become visible in the white matter 

(Huang, 2010).  

During the gyrification process, which occurs after the ballooning phase, it is believed that the 

internal forces of WM connectivity or tangential growth of GM play a role in the formation of 

cortical folds. External forces, such as those caused by the constraints of the skull and 

meninges, have been found to have a minor effect (Bayly et al., 2014). Recent experimental 

and computational growth models suggest that the natural folding of the brain is a result of an 

energy-minimizing process of surface expansion that is influenced by the stiffness of the inner 

core, the growing rate, and local thickness. Thinner regions and faster growing rates tend to 
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lead to more folding, while stiffer cores may result in more complex structures (Bayly et al., 

2014).  

The process of folding in the human brain is typically completed around the time of birth, at 

which point both radial and tangential growth are balanced again (Evans, 2006). 

Throughout an individual's lifetime, the cortex, steadily but very slowly, shrinks each year, 

while the WM continues to grow up until around age of 40. The WM may also show 

degeneration, as evidenced by MRI as WM hyperintensity with GM-like intensities in aging 

and in diseases such as multiple sclerosis. In addition to global tissue atrophy, brain plasticity 

allows for an increase in local tissue volume. For elderly individuals and people with 

neurodegenerative diseases such as Alzheimer's disease, accelerated tissue atrophy has 

been observed (Ziegler et al., 2014). Overall, tissue atrophy is accompanied by an 

enlargement of the ventricle and sulcal CSF, which maintains the general shape of the brain 

within the skull. 

 

1.3 The study of the brain surface 
 

Surface-based analysis of MRI images has been a popular approach for studying the 

development of the brain as an organized surface. This has resulted in the development of 

several software packages for automatic surface reconstruction and analysis. Surface meshes 

are graph structures that describe a shape by a set of vertices and faces connecting the 

vertices. Surface measures, which are stored as vertex or face-wise vectors, can be visualized 

as surface textures and analyzed using techniques similar to VBM. These measures can be 

generated on a regular volume grid using algorithms like marching cubes or isosurface 

methods, but they usually require additional pre- and post-processing. The quality of the 

generated meshes and measures depends on the method used, the structure being 

reconstructed, and the quality of the input data. In general, structural data that is suitable for 

VBM analysis can also be used for SBM analysis.  
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Preprocessing using voxel-based techniques is necessary to map individual brains to common 

templates, classify different tissues, and prepare data for surface reconstruction. Classification 

of  WM, GM, and CSF is based on image intensity and priors, and typically involves brain-

extraction, handling of image interference such as noise and inhomogeneity, and registration 

(Ashburner & Friston, 2005). To improve accuracy and stability, recent approaches use brain-

specific properties such as topological constraints, multiple input images, longitudinal 

modeling, templates and parameters specific to species or aging, or other concepts. 

Segmentation can also be used to normalize MRI intensities (Ashburner & Friston, 2005). 

Spatial registration involves estimating a mapping between an individual brain and common 

templates, often through iterative processes starting with affine transformations and low-

frequency deformations that are gradually increased to reduce anatomical variance among 

subjects. Atlas maps that divide brains into different regions are often obtained in the native  

space and mapped to an average template space, or directly generated in the template space 

(Ou et al., 2014). 

Shape analysis requires surfaces with identical topology, which can be achieved in two ways. 

The first approach is to use an existing template mesh and deform it to fit the individual 

anatomy, which works well for simple, unfolded structures but can be problematic for strongly 

folded ones. The second approach, known as bottom-up methods, involves creating an 

individual object and registering it to an average mesh, typically a sphere (Tosun et al., 2004). 

When reconstructing the neocortex of both cerebral hemispheres, most methods use the GM-

WM surface, as it provides a better initial representation of the folded brain than the GM-CSF 

boundary, which can be blurry in sulcal regions (Eskildsen & Østergaard, 2006). Other 

methods use the central surface, which runs through the middle of the cortex and is the 

average of the inner and outer surfaces and is therefore less noisy (Dahnke et al., 2013). In 

order to analyze shape, the surface mesh must be deformed to the CSF-GM boundary to 

estimate the cortical thickness, while also having to optimize and fixing the topology of the 

mesh. 
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Modification of said meshes is essential to optimize them, preparing the surface registration 

and creating modified meshes optimized to specific shape measures. Smoothing averages 

the coordinates of each vertex with its neighbors and removes artifacts but also anatomical 

details. Deformation moves the vertices based on internal forces (mesh connectivity) and 

external forces (tissue intensities). Remeshing (refinement/repair) alters the complexity and 

the topology of the mesh. Parameterization involves the analysis and synthesis of signals 

using simpler trigonometric functions. Averaging mixes normalized meshes with different 

vertex locations but identical structures to create a common mesh.  

Surface registration is the process of aligning the structures of individual brains through the 

minimization of surface properties and shape features. It is used to compare individual meshes 

by mapping them to a common template, such as a sphere. Surface registration can be applied 

to small (intra-individual), medium (inter-individual), or large (inter-species) folding patterns. 

While voxel-based registration is accurate, surface-based registration benefits from the 

improved characterization of the cortex through surface measures and advanced alignment of 

individual structures (Van Essen et al., 2001).  

 

1.4 Surface-Based Morphometry (SBM) 
 

Surface analysis has become an important aspect of structural brain imaging. Like VBM, SBM 

can be evaluated globally, by regions, or continuously over the entire surface. In addition to 

these capabilities, SBM also allows for more subtle measures, anatomical correct registration 

and smoothing, and direct interaction with mathematical folding models. In layman's terms, 

SBM allow to provide answers that VBM cannot reach.  

SBM has several drawbacks, including high complexity which can make it vulnerable to noise, 

artifacts, and errors, as well as significant computational demands. Also, the interpretation of 

some folding measures can also be complex. Surface preprocessing, which is more complex 

and therefore more prone to errors, may also be less sensitive and less robust, especially for 

subtle changes in brain plasticity. However, constraints can improve robustness and the 
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increased complexity of SBM allows for more characteristic measures, advanced anatomical 

registration and smoothing, which may compensate for these drawbacks. 

To understand the causes and effects of individual and evolutionary folding development, 

surface properties are key factors. Surface analysis offers a wide range of new or improved 

measures with various definitions and properties that require careful evaluation, particularly 

for abstract shape measures. 

There are several different types of surface-based morphometry techniques that have been 

developed and applied in neuroimaging research. Some of the most commonly used 

techniques include cortical thickness, gyrification index, and cortical complexity. 

 

Cortical Thickness 

 

Cortical thickness refers to the distance between the pial surface and the white matter surface 

of the cerebral cortex, which is the outer layer of the brain responsible for higher cognitive 

functions such as perception, attention, and memory. It is an important measure of brain 

development and structure and has been widely studied in both healthy individuals and those 

with neurodevelopmental and neurodegenerative disorders (Ashburner & Friston, 2005). 

Cortical thickness is known to vary across different brain regions and across different age 

groups. It is generally thicker in the primary sensory and motor cortices and thinner in the 

association cortices. It also tends to be thicker in children compared to adults, with a peak in 

thickness during the early developmental years and a gradual decline during adolescence and 

adulthood (Madre et al., 2020). 

There are several factors that can influence cortical thickness, including genetics, 

environmental influences, and brain connectivity. Studies have shown that genetics plays a 

significant role in determining cortical thickness, with heritability estimates ranging from 40% 

to 80%. Environmental factors such as prenatal exposures, childhood experiences, and 

lifestyle factors can also affect cortical thickness. Finally, brain connectivity, or the strength 

and pattern of connections between different brain regions, can influence cortical thickness by 
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affecting the amount of information processing and communication that occurs in different 

brain regions (Suh et al., 2019). 

Abnormalities in cortical thickness have been associated with various neurodevelopmental 

and neurodegenerative disorders. For example, studies have shown that in individuals with 

bipolar disorders, the majority of studies reported thinner cortical thickness in the left anterior 

cingulate cortex and the left superior temporal gyrus, as well as several prefrontal regions. 

Similar investigations also show consistency of cortical thinning in individuals with bipolar 

disorder and schizophrenic patients in temporal and frontal regions, suggesting a common 

neuropathology (Hanford et al., 2016). 

 

Gyrification Index 

 

The gyrification index is a measure of the degree of folding or convolution of the cerebral 

cortex and is calculated by estimating the ratio between the total and the superficially exposed 

cortical surface of the brain (Zilles et al., 1988). The cerebral cortex exhibits individual and 

regional differences in gyrification, which are influenced by factors such as the forces that 

drive the extensive cortico-cortical connections along the brain surface and the fundamental 

principles of cortical development and organization. During fetal development, the cortex 

undergoes significant increases in gyrification. After the brain reaches approximately half of 

its final volume, gross folding patterns become stable (Zilles et al., 1988). There are two main 

hypotheses for the process of cortical gyrification: the gray matter hypothesis and the 

mechanical tension hypothesis. The gray matter hypothesis suggests that regional cortical 

gyrification is caused by growth processes during cortical development, such as neuronal 

differentiation and migration. These processes establish a foundation for subsequent changes 

in gyrification that may occur during childhood, adolescence, and adulthood. The mechanical 

tension hypothesis proposes that underlying intracortical axonal connections influence 

gyrification. Brain regions with greater neural connectivity have higher tension, which allows 

these regions to remain closer together during brain growth, leading to the formation of gyri. 
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Changes in neural connectivity, such as those that occur during synaptic pruning and dendritic 

arborization, could potentially alter the shape of gyri and sulci (Garcia et al., 2018). 

The gyrification index has been found to vary among individuals and across different brain 

regions and has been associated with a range of clinical and cognitive traits. For example, 

higher gyrification has been linked to higher intelligence, better cognitive performance, and a 

lower risk of neurological and psychiatric disorders (L. Li et al., 2021). In schizophrenia, 

several studies appointed deficits in gyrification in frontal and temporal regions. Remarkably, 

these abnormal gyrification characteristics could also be observed, even though at an inferior 

level, in first-degrees relatives (Matsuda & Ohi, 2018).  

 

Cortical Complexity 

 

In recent years, there have been important changes in development of novel methodological 

tools in the study of the brain cortex. The most promising index is the fractal dimension (FD), 

a measure that has been previously used to investigate natural structures and their complexity 

(Mandelbrot, 1967) and that has been applied across multiple scales, from the molecular level 

to the whole brain (Di Ieva et al., 2015). 

FD is a measure that characterizes the complexity of an object across different spatial scales. 

It provides a numerical value that reflects the self-similarity of a structure or its overall 

complexity. Using fractal geometry tools, the complex geometry of GM can be examined 

because of the fractal properties resulting from the recurrence of convolution patterns. 

Different methods can be applied to investigate said cortical complexity. One example is the 

box counting algorithm. In this procedure, which is designed to estimate the space-filling 

property of an object regardless of whether it is a fractal or not (Madan & Kensinger, 2016), 

by calculating regional areas for progressively lower sampling resolutions. Since the number 

of vertices continually decreases, the position of said vertices can have an important impact 

on the FD measure and could overlook essential cortical complexity information. One way to 

overcome these difficulties is by aligning sulci across the subjects to the same cortical 
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coordinates for each vertex for all subjects. However, these procedures is complicated and 

requires often manual delineation of geometrically corresponding areas across the subjects.  

Another method, useful to extract cortical complexity information, is the spherical harmonic 

(SPH). Using SPH reconstructions allows for the number of vertices to remain constant across 

all reconstructed surfaces, which minimizes the impact of individual vertex alignment and 

avoids the need for re-gridding the surface, which can introduce error through interpolation. 

Additionally, examining the pattern of regional differences in structural characteristics, rather 

than relying on a single global metric, may be more effective in analyzing clinical disorders 

(Yotter et al., 2011a). This method has the advantage of using data from multiple brain regions 

to create a unique neuroanatomical signature. This can be useful in research on mental 

illnesses such as schizophrenia (Yotter et al., 2011a). By utilizing SPH-derived 

reconstructions, it is possible to calculate a local FD for each vertex in the reconstruction. This 

is a crucial first step in establishing accurate neuroanatomical signatures for different disease 

states. Additionally, a comparison of the test-retest reliability of three FD estimation algorithms 

found that the spherical harmonic reconstructions had the highest intraclass correlation of 

surface-based estimations. Furthermore, FD was found to be more consistent and less 

affected by head motion than other morphological measures such as cortical thickness and 

gyrification (Madan & Kensinger, 2016). 

The relationship between FD and other measures of the cortical surface has been investigated 

in several studies. For example, It was observed that FD had a positive correlation with the 

folding area (FA) and a negative correlation with the cortical thickness in both hemispheres 

(Im et al., 2006). On the other hand, Madan and Kensinger (2016) found a positive relationship 

between whole-brain FD and cortical thickness. Two studies have examined the relationship 

between FD and the GI with conflicting results. (Madan & Kensinger, 2016) found a positive 

correlation, while (Lu, 2020) found a negative correlation between the GI and the FD of the 

left dorsolateral prefrontal cortex (DLPFC).  

(Nenadic et al., 2014) divided a sample of schizophrenia patients into three subgroups based 

on predominantly negative, disorganized, or paranoid symptoms. They found that the negative 
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subgroup had reduced FD in the right hemisphere and in specific regions in the left 

hemisphere, including the caudal anterior cingulate, precentral, and superior frontal regions. 

The paranoid subgroup had reduced FD in the right hemisphere and in the right superior 

parietal lobe, while the disorganized group did not show any differences in FD measures 

compared to the healthy control group. (Wolf et al., 2021) compared cortical complexity in two 

groups of schizophrenia patients, one with and one without parkinsonism. They found that 

patients with parkinsonism had increased cortical complexity in the left supplementary motor 

cortex compared to those without parkinsonism. (Nenadic et al., 2017)used spherical 

harmonic reconstruction to estimate FD in bipolar patients and found increased FD in the left 

lateral orbitofrontal cortex and right precuneus, as well as decreased FD in the right caudal 

middle frontal, right entorhinal cortex, right pars orbitalis, left fusiform cortex, and left posterior 

cingulate cortex. Cortical complexity play an important role also on human cognition. (Im et 

al., 2006) found a positive correlation between FD of the whole brain and years of education, 

as well as between FD of the right hemisphere and IQ in a sample of healthy young adults. 

(H. Liu et al., 2020) studied the relationship between FD and cognition in older individuals 

(ages 70-90) and found significant correlations between FD and global cognition in the bilateral 

temporal lobe, left occipital lobe, and several subcortical structures. Cortical complexity and 

FD, its associated measure, seems to be a strong and promising method on analyzing cortical 

surface structure in psychiatric and neurological disorders.  
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1.5 Scientific Proposal 
 

This thesis aims at investigating cortical surface measures, especially cortical complexity, and 

their importance on the understanding of psychiatric disorders and cognition. To reach this 

goal, three separate study have been conducted.  

 

In Study 1, we aimed to investigate the brain cortical alterations underlying bipolar-

schizophrenic spectrum disorders: patients with schizophrenia, patients with bipolar disorder, 

and healthy subjects were compared investigating SBM based cortical complexity measures 

(fractal dimension). Then, we proposed to correlate such structural abnormalities with 

available clinical and cognitive measures.  

In Study 2, the objective was to investigate cortical complexity in patients with cocaine 

addiction. Since the frontal, parietal, temporal and insular cortices have been shown to play 

an important role in decision making and impulsivity, we hypothesised that CC in the brain of 

patients with cocaine addiction would be altered in these regions. Moreover, impulsivity is 

commonly associated with cocaine and the development to its addiction, with cocaine addicts 

usually showing higher scores on the BIS-11 scale when compared to healthy controls. 

Indeed, we predicted the association between CC changes and 1) the duration of cocaine use 

for its widespread neurotoxic effects and 2) impulsivity characteristics (in particular, for the 

attentive subdomain) in those regions implicated in the predisposition to addiction. 

In Study 3, our objective was to investigate changes in the brain surface of chess experts 

using cortical complexity and gyrification measures. We hypothesized that the surface indexes 

of the brain regions and networks underlying high-order cognition, including fluid intelligence, 

working memory, processing speed, and visuospatial processing, namely, prefronto-parieto-

temporal networks, would be altered. Finally, since training in the chess game usually starts 

during childhood, we hypothesized that these indexes would be correlated with the training 

time of chess practice. 
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Chapter 2 

 
2. Study 1: Cortical folding complexity is 

distinctively altered in schizophrenia and 

bipolar disorder 
The contents of this study have been published in Schizophrenia Research (Trevisan, Miola, et al., 

2022): 

Trevisan N, Miola A, Cattarinussi G, Kubera KM, Hirjak D, Wolf RC, Sambataro F. Cortical folding complexity is 

distinctively altered in schizophrenia and bipolar disorder. Schizophr Res. 2022 Mar;241:92-93. doi: 

10.1016/j.schres.2022.01.037. Epub 2022 Jan 29. 

 

2.1 Background 
 

The Kraepelinian dichotomy between schizophrenia (SZ) and bipolar disorder (BD) remains 

still controversial, and continues to be debated given disputed boundaries, weak diagnostic 

validity, and limited promise for biological significance (d’Albis & Houenou, 2015). Growing 

evidence revealed that genetic risk is partly shared between schizophrenia and bipolar 

disorder (Cardno et al., 2002). Moreover, SZ and BD share environmental contributions, 

including prenatal factors (Brown et al., 2000), childhood adversity (Matheson et al., 2013), 

substance misuse (Henquet et al., 2006) and urbanicity (Heinz et al., 2013). Moreover,  

several clinical features show a significant overlap between SZ and BD,  including alterations 

of thought, perception, cognition, emotion and behavior (Murray et al., 2004). Patients with SZ 

frequently present with depressive symptoms (Häfner et al., 1999), conversely, 55 and 90% 

patients with BP show psychotic symptoms. Additionally, schizophrenic and bipolar disorder 

patients (during both syndromic mood disturbance and remission) share impairments in many 

cognitive domains, including attention, memory, and executive functions (Daban et al., 2006) 
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as well as alterations in affective processing (Gopin et al., 2011). Due to all these overlapping 

clinical and neuropsychological impairments, it can be challenging to differentiate the two 

disorders, especially in the first stages of the illness. Moreover, empirical efforts to identify a 

more fundamental, transdiagnostic phenotype of psychosis at the clinical symptom level 

remain remarkably limited (Reininghaus et al., 2016).  

 

The identification of diagnosis-specific biomarkers, including brain imaging can help the 

clinician to differentiate schizophrenia and bipolar disorders and provide more tailored 

treatments (Rapoport et al., 2012). A meta-analysis of VBM studies has revealed that 

schizophrenic patients were characterized by extensive grey matter deficits in frontal, 

temporal, cingulate and insular cortex and thalamus, and increased grey matter in the basal 

ganglia. (Ellison-Wright & Bullmore, 2010a) Bipolar patients showed grey matter reductions in 

the anterior cingulate and bilateral insula (Ellison-Wright & Bullmore, 2010b). Another VBM 

meta-analysis, although with a smaller sample size, revealed substantial overlaps in the 

regions affected by schizophrenia and bipolar disorder included regions in prefrontal cortex, 

thalamus, left caudate, left medial temporal lobe, and right insula (Yu et al., 2010). Notably, 

GM reductions are typically more extensive in SZ than in BD patients even when SZ studies 

are selected to match the mean age of onset and illness duration of BD studies (Ellison-Wright 

& Bullmore, 2010b). Notwithstanding some well documented trans-diagnostic differences 

(Redlich et al., 2014), there is also considerable overlap of brain structural volumetric 

abnormalities seen in BP compared to unipolar depression (Wise et al., 2017), to SZ (Maggioni 

et al., 2016) and other psychiatric disorders, (Goodkind et al., 2015) pointing to the problem 

of specificity of findings (Nenadic et al., 2017).  

 

A technique to investigate additional brain features is the surface-based morphometry (SBM), 

that enables to analyze features such as cortical thickness, gyrification and complexity .  

Given the observation that the cortical folding tends to develop until early childhood and then 

remains stable for much of the life-span, cortical gyrification has been suggested as a way to 
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investigate endophenotype in schizophrenia and bipolar disorders, as it is more specifically 

determined by neurodevelopmental and genetic factors (Yotter et al., 2011a).  

Another way to analyze the cerebral cortex is offered by fractal geometry (Kiselev et al., 2003), 

a novel spherical-harmonics based approach which is optimally designed for the analysis of 

complex morphological patterns (Collantoni et al., 2020).  

Cortical complexity, similar to gyrification, is an inherent morphometric feature that is more 

temporally stable (Yotter et al., 2011a) than volume or VBM-derived measures of grey matter.  

Studies directly comparing gyrification patterns between schizophrenia and bipolar disorder 

are scarce and still controversial (Madre et al., 2020), and to the best of our knowledge, 

abnormalities in cortical complexity have yet to be investigated among bipolar-schizophrenic 

spectrum.  

 

Thus, we aimed to investigate the brain cortical alterations underlying bipolar-schizophrenic 

spectrum disorders. Specifically, 43 patients with schizophrenia, 47 patients with bipolar 

disorder, and 65 healthy subjects were compared investigating SBM based cortical complexity 

measures (fractal dimension). Then, we proposed to correlate such structural abnormalities 

with available clinical and cognitive measures.  

 

2.2 Materials and methods 
 

2.2.1 Participants 
 

Patients with SCZ, BD, and healthy controls (HC) were selected from the Consortium for 

Neuropsychiatric Phenomics dataset. This dataset contains scans from 272 right-handed 

subjects, with a minimum of 8 years of completed formal education. Subjects were recruited 

by reaching out to local clinics and online portals. Patients with psychiatric comorbidities were 

excluded. From the original database, we excluded individuals with mild head injury (with loss 

of consciousness for a time between 2 to 30 minutes), current medical illness, past or current 
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substance abuse and/or dependence, past major depressive disorder, anxiety disorders, and 

ADHD. Furthermore, HCs were excluded if they had any past or current diagnosis of 

psychiatric disorder. The final sample included 43 patients with SCZ, 47 patients with BD type-

1 in partial or full remission, and 65 HCs (Table 1).  

Clinical assessment was performed using the Brief Psychiatric Rating Scale (BPRS) for 

psychiatric assessment, the Hamilton Rating Scale for Depression (HAM‐D), the Young Mania 

Rating Scale (YMRS) for the evaluation of the mood symptoms, and the Scales for the 

Assessment of Positive and Negative Symptoms (SAPS/SANS) to measure psychotic 

symptoms. Information about current psychiatric medications was recorded for all patients. 

The treatment dosage for each drug class (i.e., antipsychotics, mood stabilizers, 

antidepressants) was transformed to defined daily doses of drug intake (DDD) ratios as 

described by the World Health Organization Collaborating Centre for Drug Statistics 

Methodology System of Defined Daily Doses.  

 

Characteristics BP (N=47) SZ (N=43) HC (N=65) F or  P 

 
Demographics 

     

Age (Y), mean ± SD 35.3 ± 8.9 35.7 ± 8.7 33.1 ± 8.8 1.417 0.248 

Females, n (%) 19 (40.4) 13 (30.2) 34 (79.1) 3.87 0.144 
Education, mean ± SD 14.53 ± 1.9 12.46 ± 1.6 15.00 ± 1.8 28.87 <0.001 b, c 

 
Clinical  

     

HAMD, mean ± SD 14.0 ± 9.8 11.6 ± 9.3  1.2 0.233 

YMRS, mean ± SD 12.2 ± 11.0 8.1 ± 6.9  2.1 0.039 c 
SANS, mean ± SD 5.83 ± 3.6 9.37±4.8  -4.44 <0.001 c 

SAPS, mean ± SD 2.37 ± 2.3 7.11±4.3  -6.38 <0.001 c 

BPRS, mean ± SD  7.76±2.0 8.75±2.6  -2.0 0.048 c 

 
Current pharmacotherapy 

  

Antidepressants, n (%) 15 (31.9%) 22 (51.1%)  -0.533 0.595 

Antidepressant dose (DDD) 0.53±0.9 0.62±1.0  -0.395 0.693 
Antipsychotics, n (%) 26 (55.3%) 36 (83.7%)  3.709 <0.001 c  

Antipsychotic dose (DDD) 0.53±0.6 0.17±0.2  3.668 <0.001 

Mood Stabilizers, n (%) 34 (72.3%) 10 (23.3%)  -1.976 0.051 

Mood Stabilizer dose (DDD) 0.84±2.1 2.07±3.7  -1.893 0.061 

Table 1. Sociodemographic and clinical characteristics of the sample. a, b, c p<0.05 Tukey post-
hoc for BP vs HC, SZ vs HC, BP vs SZ contrasts, respectively. 
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2.2.2 Brain imaging 
 
Imaging acquisition. MRI data were acquired on a 3T Siemens Trio scanner using T1-weighted 

high-resolution anatomical scans (MPRAGE) with the following parameters: TR=1.9 s, 

TE=2.26 ms, FOV=250 mm, matrix =256 × 256, sagittal plane, slice thickness=1 mm, 176 

slices.  

 

Preprocessing. We used the Statistical Parametric Mapping analysis package (SPM12) 

together with the Computational Anatomy Toolbox for SPM (CAT12) with the standard protocol 

(http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf). Briefly, T1 images were spatially 

registered to the Montreal Neurological Institute (MNI) template using DARTEL registration 

(Ashburner, 2007). Brain structural data were segmented into grey matter (GM), white matter 

(WM), and cerebrospinal fluid (CSF) and then used for the reconstruction of the cortical 

surface for each participant using the projection-based thickness method (Dahnke et al., 

2013). The central surface reconstruction included topology correction, spherical inflation, and 

spherical registration. The central surface was used as the input for calculating the gyrification 

index, the fractal dimension, and sulcal depth values. Finally, all surface measures for both 

hemispheres were merged and resampled to a 32k mesh resolution. We also included a two-

step quality check: first, all images were inspected visually for artifacts before the pre-

processing. Then, after segmentation, the images underwent a quality control for intersubject 

homogeneity and image quality as included in the CAT12 toolbox, which uses noise contrast, 

inhomogeneity contrast, and root mean square of voxel resolution. None of the subjects was 

excluded for artifacts. 

 

Cortical Complexity estimation and comparison. CC was analyzed as in Dahnke et al. 

(2013)(Dahnke et al., 2013a), using a spherical harmonic reconstruction approach(Yotter et 
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al., 2011). Briefly, for each vertex, the spherical harmonics coefficient was extracted with 

maximum degrees (l-value) ranging from 11 through 29 and remapped into the harmonic 

space using a modified Fast Fourier transform. CC was calculated as the slope of the linear 

portion of the regression of the log (area) relative to the maximum l-value. Local CC was then 

re-parametrized in a common coordinate system using the fsaverage spherical mesh included 

in FreeSurfer (https://surfer.nmr.mgh.harvard.edu/). Resampled surface data for Fractal 

Dimension values were smoothed using a 25 mm (and 20 mm) Gaussian Full Width at Half 

Maximum (FWHM) prior to 2nd level analysis. Local whole-brain CC was compared using a 

one-way ANCOVA with diagnosis as a predictor and age as a covariate. Statistical significance 

was based on a family-wise error (FWE) corrected cluster-level threshold of p<0.05. 

 

2.2.3 Statistical analysis 
 

Demographic, clinical, and pharmacotherapy data were compared across diagnostic groups 

using chi‐square tests for categorical variables and one‐way ANOVA for continuous variables 

followed by pairwise chi-square/Tukey post hoc comparisons, respectively. The normality of 

the data distribution was assessed through a Kolmogorov-Smirnov test. Due to the distribution 

of the variables, we used Pearson's correlation to investigate brain-behavior correlations and 

Spearman’s correlation to investigate brain-drug treatment associations for each drug class. 

The level of significance was set to p<0.05 for all tests. Data analysis was performed with 

Jamovi (Version 1.2, https://www.jamovi.org) and R (http://www.rstudio.com/). 

 

2.3 Results 
 
2.3.1 Cortical Complexity 

 

CC was reduced in SCZ compared to HC in the right superior temporal gyrus (STG, x,y,z=42, 

15, -18; k=189, p=0.035). BD displayed significantly lower CC in the left pars opercularis 
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(x,y,z= -54,9,23; k=164; p=0.05) along with increased CC in the left lingual gyrus (x,y,z=10, -

71, 1; k=179; p=0.041) relative to HC. When compared to SCZ, BD showed a significant CC 

increase in the left inferior temporal gyrus (x,y,z=-50, -44, -11; k=241; p=0.014), the left lingual 

gyrus (x,y,z= -9, -77, 2; k=236; p=0.015), the right STG (x,y,z= 59, -9, -5; k=175; p=0.045), 

and in the right temporal gyrus (x,y,z= 40, 15, -19; k=261; p=0.009) (Fig. 1). No significant 

correlations were found between cortical complexity values and antipsychotic, antidepressant 

and mood stabilizers use.  

 

Figure 1. Abnormal cortical complexity (CC) in Schizophrenia (SCZ) and Bipolar Disorder (BD). Patients 
with SCZ had (a) decreased fractal dimension (FD) in the right superior temporal gyrus when compared 
to healthy controls (HC). Patients with BD had (b) increased FD in the left lingual gyrus and (c) 
decreased FD in the left pars opercularis compared to HC. When comparing between diagnoses, FD 
was reduced in the left inferior temporal gyrus, the left lingual gyrus, the right temporal pole, inferior 
and superior temporal gyrus in SCZ relative to BD. Statistical maps are displayed at p < 0.001 
uncorrected and p < 0.05 Family Wise Error (FWE) cluster-level corrected. The color bar represents the 
p-value. 

 

2.3.2 Correlation between imaging and clinical data 
 

With regards to clinical symptoms, CC in the right superior temporal gyrus was associated 

with the hallucination domain of the SAPS scale in SCZ (r=0.353, p=0.027). In BD, CC in the 

left lingual gyrus was positively correlated with the mania domain of the BPRS (r=0.358, 

p=0.016 (Fig. 2).  

Correlations with drug treatment. We did not find any significant correlation between FD values 

and psychotropic drug treatment in none of the patient samples: lithium and mood stabilizers 

(BP: =-0.220, p=0.146; SCZ: =0.124, p=0.452), antidepressant (BP: =0.120, p=0.431; 
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SCZ: =0.071, p=0.667), and antipsychotic medication (BP: =0.041, p=0.790; SCZ: =0.055, 

p=0.739).  

 

 

Figure 2. Correlation between imaging data and neuropsychological variables. a) In 
schizophrenic patients, the fractal dimension values in the superior temporal gyrus correlated 
with the hallucination domain of the SAPS scale (r=0.353, p=0.027). b) In bipolar patients, the 
fractal dimension values in the left lingual gyrus were correlated with the mania domain of 
the BPRS (r=0.358, p=0.016).  
 

2.4 Discussion 
 

FD was reduced in SCZ compared to HC in the right superior temporal gyrus (rSTG) and this 

is consistent with previous literature (Choi et al., 2020). Concerning clinical symptoms, FD in 

the rSTG was associated with the Scale for the Assessment of Positive Symptoms (SAPS) 

hallucination score in SCZ. The rSTG has a key role in auditory and language processing and 

previous studies support the association between neural alterations in rSTG and auditory 

verbal hallucinations (Palaniyappan & Liddle, 2014). BD displayed significantly lower CC in 

the left pars opercularis relative to HC. This finding is consistent with a mega-analysis that 

found reduced cortical thickness in this region and may be associated with its role in 

processing emotionally salient stimuli (Hibar et al., 2018). Additionally, BD had increased FD 

in the left lingual gyrus (lLG) and this measure was positively correlated with the Brief 

Psychiatric Rating Scale (BPRS) mania score.  
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Previous literature showed altered FD in several cortical regions in BD (Nenadic et al., 2017) 

and cortical thickness in the medial occipital cortex was correlated with mania severity (Kim et 

al., 2020). When compared to SCZ, BD showed a significant FD increase in the left inferior 

temporal gyrus, lLG, right temporal pole, inferior and superior temporal cortex. Altered 

neurodevelopment as reflected by neurological soft signs and cognitive impairments has been 

reported in SCZ as well as in BD (Valli et al., 2019). Notably, CC gradually develops in the 

pre/perinatal age, with small changes happening until the age of 20 years, after which this 

measure remains stable throughout adulthood, thus being a viable neurodevelopmental 

biomarker of the changes taking place mostly in the late foetal/early postnatal life (White et 

al., 2010). Altered CC in SCZ and BD may support the neurodevelopmental hypothesis of 

these disorders, whereby these mechanisms may be different in the disorders thus leading to 

different clinical courses (Valli et al., 2019). Indeed, a study investigating the effects of 

polygenic risk scores for psychiatric disorders on CC using found a marginal association with 

SCZ but not with BD (Schmitt et al., 2021). Thus, suggesting that CC alterations may be more 

pronounced in schizophrenia, heterogeneous across disorders, and partially influenced by 

environmental factors. The cross-sectional design limits our ability to make inferences or 

causation regarding the neurobiological features underlying SCZ-BD spectrum disorders. 

Although pharmacological treatments may affect brain structure (Centorrino et al., 2005), we 

did not find any effect of medications on CC. Future investigations and longitudinal research 

design that follow up patients during the course of the disorders will allow to progress our 

understanding of these findings. 
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Chapter 3 

 
3. Study 2: The complexity of cortical folding is 

reduced in chronic cocaine users 

The contents of this study have been accepted for publication in Addiction Biology.  

 

 

3.1 Background 
 

According to the 2021 report of the office of drug and crime of the United Nations, in the last 

year, around 275 million people have used drugs, about 5.4% of the global population aged 

15/64 years, thus increasing by 22% from 2010 and forecasting a further increase by 11% by 

2030 (United Nations : Office on Drugs and Crime, 2021). Only in the US over 70.000 drug 

overdoses occur annually, of which 21.2% are due to cocaine (Jovanovski et al., 2005). 

Cocaine-associated deaths also include long-term organic disability and neurocognitive 

deficits in attention, executive function, verbal memory, and response speed that could derive 

from sequelae of cardiovascular events due to the effects of this substance (Woicik et al., 

2009). Moreover, co-occurrence of psychiatric conditions, including generalized anxiety 

disorder, depression, attention deficit hyperactivity disorder, or conduct disorder is commonly 

observed (Woicik et al., 2009).  

Recent meta-analytic evidence has shown that patients with cocaine addiction (CA) present 

changes in the brain structure with significantly lower gray matter (GM) volumes in the right 

superior temporal gyrus, right insula, and right postcentral gyrus compared to healthy controls 

(HC), as well as increased GM volume in the right inferior parietal gyrus (Dang et al., 2022). 

In cocaine users, lower GM volume has been reported in the prefrontal and temporal cortex, 
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insula, striatum, and thalamus (Bittencourt et al., 2021). Interestingly, GM alterations seem to 

relate to the characteristics of substance use. Indeed, the duration of the drug intake is 

associated with abnormal GM volume in the right insula, right gyrus rectus, bilateral middle 

temporal gyrus, and right inferior frontal gyrus (Hall et al., 2015), while trait and behavioral 

impulsivity are related to the reduction of GM volume in fronto-parietal areas in cocaine users 

(Meade et al., 2020).  

Although brain volume are related to surfaced-base measures, these latter indexes may be 

more sensitive to cortical reductions, as shown in several neuropsychiatry disorders and aging 

(Lemaitre et al., 2012). As expected, alterations in cortical measures have been shown in 

cocaine users. Particularly, in non-treatment-seeker cocaine users, Geng and colleagues 

observed a reduction in cortical thickness (CT) in the bilateral insula and an increase in the 

bilateral temporal lobe (Geng et al., 2017), that are crucial areas for the integration of visceral 

sensations, which can affect the decision-making process in addiction (Naqvi & Bechara, 

2010). In addition, decreased CT in the superior frontal gyrus, inferior frontal gyrus, and 

orbitofrontal cortex (OFC) was described in cocaine users as well as smaller cortical surface 

area (CSA) in the anterior cingulate cortex (Hirsiger et al., 2019). Conversely, a recent 

investigation exploring gyrification in the orbitofrontal cortex (OFC) in cocaine users reported 

no significant differences from the control group (Hirsiger et al., 2019). 

Recently, novel measures have been introduced to describe the morphology of the cortical 

surface and to assess the cortical complexity in the fractal dimension. FD is a non-linear 

measure derived from fractal geometry that summarizes morphological aspects of an object, 

by providing a numerical value of self-similarity, as a way to outperform traditional Euclidian 

geometry for the description of complex structures (Meregalli et al., 2022). In this sense, FD 

can be defined as a complexity index that assesses how a detail in a fractal pattern varies 

across multiple measuring scales. Considering that the highly convoluted brain cortex 

represents a fractal structure, we can apply this very concept on the study of the grey matter 

(GM), as its complex cortical folding (CC) can be examined through fractal geometry tools 

(Meregalli et al., 2022). FD can be used to describe cortical complexity in clinical and healthy 



 29 

populations, as it is sensitive to detect morphological changes related to pathological and 

developmental changes (Trevisan, Jaillard, et al., 2022). Compared to VBM, surface-based 

analysis seems to be less influenced by inaccuracies in anatomical normalization during 

preprocessing, likely contributing to the heterogeneity of volumetric results (Tucholka et al., 

2012). CC can provide quantitative information on cortex convolution, gathering in a single 

numeric value cortical thickness, sulcal depth, and folding area (Free et al., 1996). CC  is more 

temporally stable than volume-based measures of GM (Yotter et al., 2011a). This measure 

increases from fetal age to adulthood, until it starts a slow and stable decrease until later in 

life (Zhang et al., 2016). FD changes have been found in several neurological and psychiatric 

disorders, including multiple sclerosis, dementia, stroke, and schizophrenia (King et al., 2009), 

with most studies showing a reduction in FD, thus suggesting that this measure can reflect 

alterations of brain function, e.g., in multiple sclerosis, in which it predicts the worsening of 

disability (Roura et al., 2021). Interestingly, findings from human studies and animal models 

examined how impulsivity, a construct commonly defined as deficits in the inhibition of 

behaviors, is a risk factor for the emergence of substance use disorders (SUD) (de Wit, 2009). 

In general, deficits in impulse control have been consistently reported in subjects with SUD. 

Addiction is usually associated with an impairment in the ability to ignore drug-related stimuli, 

but attentional biases in SUD patients are also present in more general nonspecific reward-

related situations (Anderson et al., 2013). Attentional biases could be one of the mechanisms 

by which impulsivity affects addictive behaviors. This may be caused by the biasing of classical 

conditioning processing and by affecting the dopaminergic system (Coskunpinar & Cyders, 

2013). Several instruments have been developed to measure the distinct facets of impulsivity, 

including the Barratt Impulsivity Scale (BIS-11), which allows the evaluation of a specific 

Attentional Impulsiveness subdomain (Patton et al., 1995). Structural MRI studies have been 

carried out to determine the neural correlates of impulsivity, both in healthy controls and in a 

clinical population where impulsivity is an important factor, such as patients with ADHD and 

bipolar disorders. In the healthy population, the volume of the orbitofrontal cortex has a 

tendency to correlate negatively with the impulsivity measured by the BIS-scale (Matsuo et 
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al., 2009). Specifically, attentional impulsivity seems to correlate negatively with the temporal 

gyrus volume in healthy controls, while the orbitofrontal was associated negatively in 

psychiatric patients characterized by impulsive behaviors (Lee et al., 2011). 

In this study, our objective was to investigate CC in patients with cocaine addiction using FD. 

Since the frontal, parietal, temporal and insular cortices have been shown to play an important 

role in decision making and impulsivity (Meade et al., 2020), we hypothesised that CC in the 

brain of patients with cocaine addiction would be altered in these regions. Moreover, 

impulsivity is commonly associated with cocaine and the development to its addiction, with 

cocaine addicts usually showing higher scores on the BIS-11 scale when compared to healthy 

controls (Kaag et al., 2014). In particular, high impulsivity also predicts the shift from impulsivity 

to compulsivity during the development of addictive behaviors (Belin et al., 2008). In 

agreement with this, neuroimaging studies have shown a relationship between impulsivity and 

cortical volume and surface area of the frontal, temporal, and insular cortex (Kaag et al., 2014). 

We suppose that CC, being less influenced by preprocessing biases (Tucholka et al., 2012) 

and representing by itself a series of VBM values (Free et al., 1996), can resume alterations 

that other analysis could not. As a promising index of brain alteration(King et al., 2009) more 

temporally stable than volume-based measures of GM(Yotter et al., 2011b), CC could be less 

susceptible by aging bias and considered a pure value of neuronal damage. Moreover, CC 

summarizes linked elements of the gray matter in a single measure, including cortical 

thickness, sulcal depth, and surface area, and results in a greater precision to detect brain 

changes relative to each individual index (Meregalli et al., 2022). Finally, we predicted the 

association between CC changes and 1) the duration of cocaine use for its widespread 

neurotoxic effects and 2) impulsivity characteristics (in particular, for the attentive subdomain) 

in those regions implicated in the predisposition to addiction. To reduce the heterogeneity of 

neural effects due to sex differences (Andersen et al., 2012), we limited our investigation to 

men.  
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3.2 Materials and methods 
 

3.2.1 Participants 
 

CA and HC were selected from the Mexican database on cocaine use disorder (Angeles-

Valdez et al., 2022). This open database contains demographic, clinical, and imaging data 

from 145 subjects who were recruited as part of a project on the study of addictions. Cocaine 

addiction was assessed using the MINI Mini-PLUS interview in Spanish version 5.0.0, which 

uses the DSM-IV criteria. Additionally, the instant view drug screening test was applied to 

screen for illicit substances other than cocaine (amphetamines, methamphetamines, 

benzodiazepines, cannabis, and opioids), thus excluding participants who showed a current 

dependence (based on the DSM-IV criteria) of substances other than cocaine and nicotine. 

Moreover, lifetime use of other drugs was evaluated using the Addiction Severity Index. Due 

to the low number of female participants in the study and to reduce sex-dependent 

heterogeneity (Andersen et al., 2012), we selected only male participants. Furthermore, we 

excluded patients with psychiatric or neurological comorbidities. To evaluate the association 

between FD and cocaine use characteristics, we excluded participants from the CA group 

whom daily cocaine intake was not specified in the database. The final sample included 52 

CA and 36 HC. Demographic data, history, and current substance use were collected (see 

Table 1 for sample details). Furthermore, participants with a history of schizophrenia, bipolar 

disorder, mania or hypomania, or with family history of any neurological disorder were 

excluded from the dataset.  

Moreover, the Barratt Impulsivity Scale (BIS-11), which allows the measurement of impulsivity 

and its subdomains, including Attentional Impulsiveness, Motor Impulsiveness, and Non-

planning Impulsiveness, was administered (Patton et al., 1995). All participants underwent 

detailed cognitive assessment of cognitive flexibility, inhibition, working memory, decision 

making, and executive functions using the following tests (Angeles-Valdez et al., 2022): Berg's 

card sorting test (BCST), Flanker task, Go/No-go task, Letter number sequencing, Digit span 



 32 

backward, Iowa gambling task, Tower of London. Cognitive performance was compared 

between CA and HC using ANCOVAs with age and education as nuisance variable. 

 Patients with cocaine 
addiction (N=52) 

Healthy controls 
(N=36) 

χ2 or t p 

Age (M±SD, years) 31.3 ± 6.51 30.1 ± 7.62 0.795 0.429 

Education (M±SD, years) 10.9 ± 2.9 13.2 ± 3.53 -3.276 0.002 

Total intracranial volume (M±SD, μl) 1442.7 ± 104.6 1460.4 ± 98.31 -0.796 0.428 

BIS Total score (M±SD) 61.1 ± 14.6 40.2 ± 10.4 6.52 <0.001 

BIS Attentive score (M±SD) 17.1 ± 5.23 11.6 ± 5.23 4.79  <0.001 

BIS Motor score (M±SD) 18.4 ± 7.79 13.3 ± 5.72 2.97 0.004 

BIS NonPlanning score (M±SD) 25.6 ± 6.82 15.3 ± 5.29 6.70 <0.001 

Duration of cocaine use (M±SD, years) 10.8 ± 6.4    

Age of onset of cocaine use (M±SD, years) 20.7 ± 4.99    

Mean dose of cocaine (grams) per week 
in the last year (dose=n) 

 

0.33= 6 
0.33-0.66= 11 
1-4= 22 
4-8= 5  
8-10= 2 
>10 = 3 
n/a = 3 

   

Method of drug administration (n) Smoking=35 
Inhalation = 13 
Both= 4 

   

Time since last use (M±SD, days) 11.6 ± 10.4    

Polysubstance abuse     

Tobacco (n) 43    

duration tobacco use (M±SD, years) 14.6 ± 8.06    

benzodiazepines (n) 2    

cannabis (n) 4    

Table 1. Demographics, brain size, impulsivity in the study samples, and current and past substance 

abuse. BIS, Barratt Impulsiveness Scale; M, Mean; SD, Standard deviation   
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3.2.2. Brain imaging 
 

Brain images were acquired on a Philips Ingenia 3T MR system with a 32-channel head coil 

with the following parameters: The T1-weighted images were acquired using a three-

dimensional FFE SENSE sequence, TR/TE = 7/3.5 ms, field of view = 240, matrix = 240 × 240 

mm, 180 slices, gap = 0, plane = sagittal, voxel = 1 × 1 × 1 mm (five participants were acquired 

with a voxel size = 0.75 × 0.75 × 1 mm), scan time = 3.19 min. 

 

Preprocessing. We used the Statistical Parametric Mapping analysis package (SPM12) 

together with the Computational Anatomy Toolbox for SPM (CAT12). For preprocessing and 

analysis, we applied default parameters in accordance with a standard protocol 

(http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf). 

In detail, T1 images were spatially registered to the Montreal Neurological Institute (MNI) 

template using DARTEL registration. Brain structural data were segmented into GM, white 

matter (WM), and cerebrospinal fluid (CSF) and then used for the reconstruction of the cortical 

surface for each participant using the projection-based thickness method (Dahnke et al., 

2013). The total intracranial volume (TIV) was calculated as the sum of the volumes of GM, 

WM, and CSF. The central surface reconstruction included topology correction, spherical 

inflation, and registration. The central surface was used as input to calculate the fractal 

dimension values. Finally, all surface measures for both hemispheres were merged and 

resampled to a resolution of 32k mesh. We also included a two-step quality check: First, all 

images were visually inspected for artifacts before preprocessing. Then, after segmentation, 

the images underwent a statistical quality control for inter-subject homogeneity and image 

quality, as included in the CAT12 toolbox. 

The CC was analyzed following the specifics implemented in CAT12, using the “spherical 

harmonic reconstruction” approach proposed by (Yotter et al., 2011a). To increase the signal-

to-noise ratio, given the average distance between the sulci and the gyri, the resampled 

surface data for the CC values were smoothed using a 25mm (and repeated using a 20mm to 

http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf
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exclude a significant effect of the smoothing filter) Gaussian FWHM kernel before the second 

level analyses.” 

 

3.2.2 Statistical analysis 
 

Demographic data were compared between the CA and HC groups using two-sample t-tests. 

Total and subdomain scores of BIS-11 were compared between the groups using an 

ANCOVA, with age and years of education (for BIS-11 scores) as covariates. A voxel-wise 

general linear model with age as a covariate was used to compare the CC between the two 

groups. Nonparametric permutation-based testing was applied to t-stat maps using the 

threshold-free cluster enhancement (TFCE) method with 10.000 permutations to correct for 

multiple comparisons with the family-wise error (FWE) approach at the cluster level with α= 

0.05. To exclude that drug administration methods could have affected our results, CA were 

stratified for this variable, and CC was compared using one way ANOVA. Furthermore, to rule 

out a possible confounding effect of education differences between groups, CC differences 

between CA and HC, ANCOVAs were performed on the CC values of the clusters showing a 

significant effect of diagnosis with years of education as a nuisance covariate. To investigate 

the correlation between clinical and imaging data in patients, we used a partial Pearson’s 

correlation between the addiction duration indexes (duration/age of onset), weekly dose 

(average weekly dose in grams of cocaine in the last year), BIS total and subscale scores, 

and CC in those clusters showing an effect of diagnosis. Furthermore, to investigate the 

correlation between clinical, cognitive and imaging data in patients, we used a partial 

Pearson’s correlation between addiction duration indexes (duration/age of onset), weekly 

dose (average weekly dose in grams of cocaine in the last year), BIS total and subscale 

scores, cognitive performance on each neuropsychological test and CC in those clusters 

showing an effect of diagnosis using education as covariate. 
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3.3 Results 
 
3.3.1 Demographical and Clinical Data 
 

The groups did not differ with respect to age (CA, 31.28±6.51 years; HC, 30.08±7.62; p= 0.428 

years) and showed a significant difference in education (CA 10.94±2.90 years, HC 13.19±3.52 

years, p= 0.001). The mean age of onset of cocaine addiction was 20.65±4.99 years. The 

drug administration methods were smoking only (n=35), inhaling only (n=13), and both (n=4). 

Current polysubstance use included cannabis (n=4) and benzodiazepines (n=2). None of the 

patients was using opioids or amphetamines at the time of evaluation (Table 1). CA patients 

had a higher BIS-11 total (p<0.001) and all subdomain scores: Attentional (p<0.001), Motor 

(p=0.004), and Non-Planning (p<0.001) when compared to HC (Table 1). Regarding cognitive 

performances, CA showed poorer performance compared to HC at the BCST in the following 

indexes: categories concluded (p < 0.001, t = -4.14) categories experienced (p < 0.001, t=-

4.14); correct responses (p = 0.008, t=-3.37); total mistakes (p = 0.008, t=3.41). All other 

cognitive assessments did not show any significant differences between the diagnostic 

groups. 

 

3.3.2 Cortical Complexity 
 

CA showed reduced CC compared to HC in a cluster that included the left insula and the left 

part of the supramarginal gyrus (SMG, cluster peak at x, y, z= -37, 7, -10; k= 1162, p= 0.008) 

(Figure 1.a) and in the left medial orbitofrontal cortex (cluster peak at x, y, z= -27, 48, 8; k= 

307, p= 0.039) (Figure 1.b). There were no significant differences in CC within the CA group 

between the type of drug administration in the left insula and left SMG cluster [F(df=2, 

49)=0.243, p=0.784)] and the left medial orbitofrontal cortex cluster [F(df=2,49)=0.477, 

p=0.623)]. These results did not change when 20 mm Gaussian FWHM kernel smoothing was 

applied. 
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Figure 1. Increased complexity of cortical folding (CC) in patients with cocaine addiction (CA) in the 
left (a) lateral and (b) medial hemispheres. CC was reduced in patients with CA in a cluster that spans 
the left insula and the left part of the supramarginal gyrus (a) and in the left medial orbitofrontal 
cortex (b) compared to healthy controls (HC). Statistical maps are displayed at p<0.001 uncorrected 
and p<0.05 family-wise-error (FWE) cluster-level corrected. The color bar represents the p-value. 

 

3.3.3 Correlations with cocaine use characteristics, impulsivity scores and 
cognitive perfomances 

 

The CC values in the medial OFC were positively correlated with the age of onset of cocaine 

addiction (r= 0.310, p= 0.028) (Figure 2.a). In addition, in the CA group, the CC values in the 

medial OFC were positively correlated with the attentional subdomain of the BIS score (r= -

0.307, p= 0.048) (Figure 2.b). No other correlations were found between the CC values and 

cocaine dose or impulsivity scores. Finally, We did not find any significant correlation with 

cognitive performance. 
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Figure 2. Scatter plot of the complexity of cortical folding (CC) and the age of onset of cocaine addiction 
(a) and the attentional subdomain of the Barratt Impulsiveness Scale (BIS) (b). The CC in the left medial 
orbitofrontal cortex (OFC) was positively correlated with the age of onset of cocaine addiction (a). The 
CC in the left medial orbitofrontal cortex (OFC) was negatively correlated with the attentional 
subdomain of the BIS (b). Age is measured in years, CC in arbitrary units (a.u.), and BIS score is an 
absolute value. The line represents the best fit.  
 

 

3.4 Discussion 
 

To our knowledge, this is the first study to investigate changes in the complexity of cortical in 

patients with chronic cocaine addiction. Our main finding is that patients with chronic cocaine 

addiction, compared to controls, showed a lower CC in the left insula, supramarginal gyrus, 

and medial orbitofrontal cortex. The CC in the left medial orbitofrontal cortex was positively 

correlated with the age of onset of cocaine addiction and negatively with the total years of 

cocaine addiction. Furthermore, CC in the left medial orbitofrontal cortex of cocaine users was 

negatively correlated with the attentional subdomain score of the BIS scale. 

A wide body of research has shown that drug-taking behaviors that occur after exposure to 

substances can be related to altered neural circuits involved in motivation, decision-making, 

and learned associations (Volkow & Fowler, 2000). More specifically, the prefrontal cortex 

(PFC), and in particular the OFC, appears to be a key player in the development of addictions, 

due to its role in decision-making, reward-based, and goal directed-behavior (Volkow & Li, 

2004). The PFC is essential for cognitive processes such as attention, working memory, 
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decision making, cognitive control and delay discounting, all of which are compromised in 

addicted individuals (George et al., 2008). Clinical studies have reported a pattern of 

generalized PFC dysfunction in drug-addicted individuals, which seems to be associated with 

worse outcomes (e.g., greater drug use, poor performance of PFC-related tasks, and higher 

likelihood of relapse) (George et al., 2008). Additionally, structural imaging studies have shown 

a reduction in PFC thickness in individuals with SUD, not only for cocaine addiction but also 

for other  substances (Chumachenko et al., 2015). Within the PFC, GM loss is more evident 

in dorsolateral PFC, ACC, and OFC, and is correlated with longer duration and greater severity 

of drug use (Chumachenko et al., 2015). Cortical thinning in the OFC and in the insula has 

been previously reported in patients with cocaine addiction and is associated with long-lasting 

changes in the OFC that impair voluntary control. This may be due to a general decrease in 

baseline metabolic activity in this region and a reduction of dopamine D2 signals (Volkow & 

Li, 2004). Additionally, disruption of the OFC has been linked to compulsive behavior and 

disinhibition (Woicik et al., 2009). We found a decrease in CC in the left mOFC in CA. Decline 

in CC has been associated with altered brain structure in neurodegenerative disorders 

characterized by cognitive impairment, including Alzheimer’s disease, frontotemporal 

dementia, and mild cognitive impairment (Nicastro et al., 2020). Reduced CC can be 

associated with impaired cognitive performance, and may underlie reduced response 

inhibition ability that is associated with impulsivity (vide infra). In particular, we found a 

correlation between CC in the left mOFC and the age of onset of cocaine use, suggesting a 

dose-effect relationship between cocaine use and the organization of the brain structure. 

Notably, this result is in line with a recent longitudinal investigation showing that changes in 

cortical thickness in the frontal cortex in cocaine users were linked to the amount of cocaine 

consumed over the study period (Hirsiger et al., 2019). 

Furthermore, CC in the cluster of reduced OFC was negatively correlated with the attentional 

domain of the BIS. Consistent with the literature on cocaine use, patients with CA had greater 

impulsivity that affected all subdomains in our study (Winhusen et al., 2013). Furthermore, CA 

is characterized by impairments in attentional skills and a significant attentional bias towards 
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cocaine-related stimuli (Hulka et al., 2015). In general, patients with SUD have an overall 

impairment with the processing of reward-related stimuli, due to cognitive and attentional 

biases (Anderson et al., 2013). Our results suggest that impaired impulsivity, and ultimately 

cognitive biases in SUD, may be linked to the reduced CC of the OFC (Anderson et al., 2013) 

(Figure 3). 

 

 

Figure 3. Relationship between brain changes, impulsivity, and cocaine use disorder. 

 

Similar findings of a correlation between GM volume and addictive behavior have been 

described in animal models. Alterations in cortical and sub-cortical GM volume have been 

correlated with behavioral sub-dimensions of addiction, such as high motivation for drug taking 

(mPFC), maintenance of drug use despite negative consequences (SC and PAG), and 

persistence of drug seeking (motor, somatosensory, association, insular cortices, and 

amygdala) (Cannella et al., 2018). Animal studies investigating the impact of chronic use of 

cocaine on drug-related behavior and brain structure in rats have found that cocaine exposure 

can induce persistent structural alterations in the regions implicated in addiction, such as 

nucleus accumbens, ventral pallidum, striatum, substantia nigra, insular cortex and OFC 

(Otaka et al., 2013). Furthermore, these changes appear to be most pronounced when drug 

exposition occurs early during adolescence. These findings suggest that cocaine use could 

induce brain changes that contribute to the reinforcement of addicted behavior (Wheeler et 

al., 2013). The impairment of set-shifting abilities in our study supports this idea (Madoz-

Gúrpide et al., 2011). 
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We also found a reduction in CC in the left insula in CA. Insula is involved in the integration of 

visceral sensations, which may affect the decision-making process in addiction (Naqvi & 

Bechara, 2010). This region sends input to the OFC, where they can inform decisions and 

guide actions (Penfield & Faulk, 1955). In particular, the connections between the insula and 

the ventro-tegmental area and the substantia nigra can play a crucial role in the development 

of addictions with modulation of dopamine signaling (Penfield & Faulk, 1955). Animal models 

investigating the learning processes underlying the association of external signals with the 

rewarding effects of drugs have shown that the insula is involved in the perception of bodily 

needs guiding motivated behaviors, with a key role for the interoceptive insular cortex in the 

craving for the drug in animals exposed to amphetamine (Koob & Volkow, 2016). Recent 

investigations have found significant alterations in the insular cortex in patients with different 

types of addiction (Battistella et al., 2014), including cannabis, online gaming addiction, social 

media, and smoke. In particular, a reduction in GM volume and cortical thinning in the insula 

were demonstrated in both cocaine and heroin-dependent patients (Bittencourt et al., 2021). 

Structural alterations in the insula may affect the interaction between cognitive and affective 

processes in decision making and ultimately contribute to the lack of avoidance responses to 

aversive events that can underlie drug-seeking behavior and craving.  

We found reduced CC in SMG. Recent studies have indeed shown that a reduction in GM 

volume in SMG predicts craving symptoms in cocaine addiction (Barrós-Loscertales et al., 

2011). Reduced connectivity between SMG and the ventral striatum, a brain circuit involved 

in emotional perception and awareness that has been associated with stimulant addiction 

(Ersche et al., 2020). Thus, the role of altered cortical complexity of SMG may be associated 

with an altered ability to control impulsive responses, including craving, motivational effects 

and maintenance of addicted behavior through cognitive control deficits such as dysregulation 

of incentive salience assigned to drug-related stimuli (Costumero et al., 2018). 

Overall, our study provides evidence that cocaine abuse alters the complexity of cortical 

folding in specific brain regions involved in enteroception, decision-making, and response 

inhibition. With our cross-sectional design, we cannot determine whether our findings 
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predispose to or result from addiction. However, the relationship between the altered CC in 

OFC and the duration of cocaine abuse suggests that this alteration may follow local 

neurotoxic or ischemic effects (Glauser & Queen, 2007). This observation is in line with 

evidence from animal studies that shows that repeated exposure to cocaine can induce long-

lasting changes in brain morphology, including inhibition of neurite extension, reduction in 

dilation of the endoplasmatic reticulum, abnormal lysosomal proteolysis and disturbed 

neuronal mitochondrial      dynamics (Wen et al., 2022). Notably, these cellular and molecular 

adaptations induced by cocaine appear to be linked to epigenetic changes, defined as 

regulations of gene expression, independently of the DNA sequence, that result from the 

interactions between environmental factors and the individual’s genome (Pierce et al., 2018). 

In cocaine addiction, numerous studies have reported cocaine-induced changes in epigenetic 

mechanisms, including histone modifications, DNA methylation, and microRNAs (Hirjak et al., 

2017).  

 

At the same time, although impulsivity is considered both a determinant and a consequence 

of drug use, including cocaine use, our findings of a relationship between the reduced 

complexity of cortical folding in this region and attentional impulsivity argues in favor of a 

preexisting condition that can underlie the risk of the disorder. Cocaine addiction is a complex 

disorder with genetic and environmental factors playing an important role individually and in 

interaction (Glauser & Queen, 2007), and the neurobiology revealed from CC seems to 

support this idea.  

On the other hand, Previous studies have investigated the relationship between cortical 

thickness, gyrification, cortical surface area, and CC (which are thought to have distinct 

neurodevelopmental trajectories) and impulsivity traits in healthy young adults (Hirjak et al., 

2017). Overall impulsivity was associated with higher local gyrification index (LGI) (particularly 

in temporo-parietal regions), with separate regions predicting distinct types of impulsivity: 

fronto-temporo-parietal regions for nonplanning impulsivity, and fronto-parietal and occipital 

areas for attentional impulsivity, respectively (Hirjak et al., 2017). The authors suggested that 
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variations in LGI (a marker of early neurodevelopment that was altered in the fronto-temporo-

parietal cortex) could lead to increased impulsivity in healthy individuals. Furthermore, cortical 

thickness (but not surface area) in the temporal, superior parietal, and occipital cortex was 

negatively associated with higher global impulsivity in healthy individuals (Kubera et al., 2018). 

Taken together, these findings suggest that alterations in brain structure and in cortical folding 

may reflect abnormalities in neurodevelopment and correlate with impulsivity traits also in 

healthy subjects without exposure to substances, thus representing a possible signature of 

vulnerability to addiction behaviors, that predates the neuroplastic effects of substances. 

Overall, the relationship between cocaine abuse and cortical alterations is complex and not 

yet fully clarified. Not only can CC alterations in CC can be a sign of a vulnerability trait leading 

to CUD (through impulsivity traits) but the substance itself can also cause changes in the 

cerebral cortex. Although genetic factors can directly contribute to cocaine dependence 

(heritability = 0.4-.7) (Fernàndez-Castillo et al., 2022) cocaine itself can affect gene expression 

in the prefrontal cortex and the midbrain, thus leading to functional and structural changes in 

the brain, including synaptic plasticity and neural connectivity, that are partly stable and can 

contribute to addiction and relapse in CUD (Fernàndez-Castillo et al., 2022). Animal studies 

show that prolonged exposure to cocaine can lead to impaired attention, and this bias is 

selectively mediated by altered OFC activity (Baeg et al., 2020).  

We must acknowledge some limitations of this study. First, the sample consisted of only men, 

which limits the generalizability of the results to women. However, addiction in general and to 

cocaine presents several differences between the sexes, including the severity of craving, 

medical and psychiatric comorbidity, and social, family, and employment problems (Andersen 

et al., 2012). Therefore, including only men should have reduced the heterogeneity of our 

results. Second, our study is cross-sectional and therefore cannot determine the causal 

relationship between brain changes and substance use disorder. Despite these limitations, to 

our knowledge, this is the first study to investigate the complexity of cortical folding in patients 

with cocaine addiction.  
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In conclusion, we show that the cortical surface morphometry, measured by the complexity of 

the cortical folding, is altered in cocaine addiction. Our results support the idea that the 

development of cocaine addiction may be associated with neurobiological alterations that 

underlie the vulnerability to this disorder. In its turn, the use of cocaine can affect the neural 

circuits that mediate behavior that support the addiction process itself with a feedforward 

mechanism. These theories are also supported by previous findings of cortical alterations in 

individuals with other substance use disorders (i.e., cannabis, alcohol, hallucinogens, 

stimulants) and addictive behaviors (i.e., online gaming), suggesting that cortical abnormalities 

might be implicated in the pathophysiology of addictions. Moreover, recent evidence has 

shown that cortical alterations are associated with impulsivity in neurodegenerative 

disorders(Meregalli et al., 2022), supporting the theory that structural cortical abnormalities 

might contribute to higher impulsivity, which in turn represents a risk factor for substance use 

disorders. Future longitudinal studies with a larger sample size including subjects with other 

substance or behavioral addictions are warranted to unravel the contribution of these 

processes in the development of addictions.  
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Chapter 4 

 
4. Study 3: Surface-Based Cortical Measures in 

Multimodal Association Brain Regions Predict 

Chess Expertise 

The contents of this study have been published in Brain Sciences (Trevisan, Jaillard, et al., 

2022): 

Trevisan N, Jaillard A, Cattarinussi G, De Roni P, Sambataro F. Surface-Based Cortical Measures in 

Multimodal Association Brain Regions Predict Chess Expertise. Brain Sci. 2022 Nov 21;12(11):1592. doi: 

10.3390/brainsci12111592. 

 

4.1 Background 
 

The game of chess is a complex intellectual activity that provides a useful model for the study 

of memory, attention, perception, visuospatial cognition, and problem-solving (Charness, 

1992). Success in chess appears to be related to several factors, including experience in 

chess playing, participation in tournaments, fluid intelligence, spatial processing, and social 

cognition(Atherton et al., 2003). A good performance in chess is related to intensive practice 

over the years, with a minimum of ten years of practice required at the grandmaster level 

(Simon & Chase, 1988). Cognitive factors may also contribute to chess expertise. A meta-

analysis of cognitive abilities in chess players showed that chess skills are positively correlated 

with fluid intelligence, comprehension, general knowledge, working memory, and processing 

speed (Burgoyne et al., 2016). 

Morphological neuroimaging studies explored how structural measures contribute to 

determining the neural correlates of chess expertise. Voxel-based morphometry (VBM) 

studies reported structural differences by comparing brain cortical and subcortical structures 
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between chess players and novices with little or no experience in the chess game. Overall, 

chess players show decreased gray matter (GM) volume and cortical thickness (CT) in the 

caudate nucleus (Duan et al., 2012), the frontal and parietal gyri (Ouellette et al., 2020), and 

the occipitotemporal junction, along with increased mean diffusivity in the left superior 

longitudinal fasciculus (SLF) (Hänggi et al., 2014). A recent study reports thinner CT in expert 

chess players compared to novices in the bilateral frontoparietal regions (Ouellette et al., 

2020). Moreover, greater expertise is correlated with decreased mean diffusivity in the right 

SLF (Hänggi et al., 2014), and the duration of professional training and cognitive scores are 

associated with diffusion measures in the association white matter tracts, including the 

uncinate fasciculus, inferior longitudinal (ILF), and SLF (Mayeli et al., 2018). Taken together, 

these studies suggest that chess expertise is associated with structural changes in a 

distributed network of regions engaged in cognitive tasks related to intelligence and 

visuospatial abilities with rather low regional specificity. 

Brain volumetric approaches (e.g., VBM) are robust methods that have been extensively used 

for the study of neurophysiological processes, as well as for neuropsychiatric disorders. 

Unfortunately, these methods may be inaccurate during spatial normalization to a standard 

template (Ghosh et al., 2010) for registration errors and may produce inflated statistics 

(Scarpazza et al., 2015) (see Goto et al. (Goto et al., 2022), for a more detailed comparison 

of the two approaches). Complementary to this approach, surface-based morphometry was 

introduced to provide more accurate information on cortical changes relative to VBM (Ghosh 

et al., 2010). Indeed, surface-based morphometry can measure different properties of the 

cortical surface, including the gyrification index (GI) and the fractal dimension (FD). In 

particular, GI is defined as the ratio of the pial surface area to the surface area of the cortical 

hull or the outer contour of the brain (Gregory et al., 2016). GI in a large set of associated 

regions is associated with general cognitive ability and intelligence, accounting for 5–12% of 

the variance in general intelligence (Tadayon et al., 2020). FD is a nonlinear measure derived 

from fractal geometry that quantifies self-similarity, a measure that outperforms traditional 

Euclidean geometrics for the description of irregular surfaces. FD can be defined as an index 
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of complexity that assesses how a detail in a fractal pattern changes with a varying measuring 

scale. Since the highly convoluted brain cortex represents a fractal structure (Hofman, M. A, 

n.d.), FD has been used to describe the morphology of the brain cortical surface and to assess 

the cortical complexity at the level of the brain hemispheres, regions, and neurons (Yotter et 

al., 2011a). 

Neuroimaging studies show that FD correlates with both morphological complexity and 

neuronal maturity (T. Liu et al., 2011). Furthermore, recent work in the literature shows that 

FD is associated with fluid intelligence, particularly information processing, and the ability to 

generate, test, and refute multiple hypotheses simultaneously (Franconeri et al., 2013). 

Therefore, FD appears to be closely related to working memory, attention, and visuospatial 

processing (Tadayon et al., 2020), which are crucial skills in the expertise of chess. 

Gyrification is considered a potential marker of early neurodevelopment since the formation of 

gyri and sulci in the brain begins between 10 and 15 weeks of human fetal life and reaches its 

peak during the third trimester of fetal life (White et al., 2010). Conversely, FD increases from 

fetal life through childhood and into adulthood, until it starts to decrease later in life (Shyu et 

al., 2010). Interestingly, both GI and FD provide useful information on cognitive abilities due 

to their close relationship with innate intelligence and with developmental changes, 

respectively (Tadayon et al., 2020). Furthermore, decreased FD has also been observed in 

several neuropsychiatric conditions associated with altered cognitive function (Meregalli et al., 

2022). 

In this study, our objective was to investigate changes in the brain surface of chess experts 

using GI and FD. We hypothesized that the surface indexes of the brain regions and networks 

underlying high-order cognition, including fluid intelligence, working memory, processing 

speed, and visuospatial processing, namely, prefronto-parieto-temporal networks, would be 

altered. Furthermore, since chess training usually starts during childhood, we hypothesized 

that these indexes would be correlated with the age of chess practice. 
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4.2 Materials and methods 
 

4.2.1 Participants 
 

We used data extracted from the Huaxi MR Research Center database [32]. This database 

contains healthy participants’ data from 29 professional chess players (age: 28.72 ± 10.84 

years; 9 females) and 29 novices (age: 25.76 ± 6.95 years; 15 females) with very limited skills 

and knowledge of the chess game. Professional chess players received rigorous training 

(training time: 4.24 ± 1.73 hours/day). They started playing at 8.50 ± 2.80 years old and 

professional training at 17.00 ± 5.80 years old, respectively. The professional chess players 

had an average score of 2401.1 ± 134.6 Elo chess skills. Specifically, 6 of them were rated 

grandmasters and 11 masters. Additionally, 23 of these professional chess players scored 

above the entry level for chess mastery by the standards of the United States Chess 

Federation. The two groups were matched for age, sex, and education (Table 1). All 

participants were right-handed and had no history of physical or mental disorders. 

 

 Professional Chess 
Players (N = 29) 

Novices (N = 29) p-Values  

Age: mean (SD) 28.72 (10.84) 25.76 (6.95) 0.22 
Sex: females (%) 9 (31.03%) 15 (51.72%) 0.11 
Education: years (SD) 13.27 (2.79) 13.92 (3.15) 0.41 
Elo rank: mean (SD) 2401.1 (134.6) - - 
Age at which they started 
professional training: 
mean years (SD) 

17 (5.8) - - 

Duration of daily training: 
mean hours (SD) 

4.12 (1.79) - - 

Table 1. Demographic and chess training characteristics of professional chess players (N = 29) and 
novice participants (N = 29). 
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4.2.2 Brain imaging 
 

Preprocessing. A high-resolution T1-weighted structural image was acquired for each subject, 

using an MPRAGE sequence. The scanning parameters were the following: TR = 1900  ms, 

TE = 2.26  ms, TI = 900  ms, bandwidth = 200  Hz/Px, FOV = 256 × 256  mm2, flip angle = 9°, 

176 slices, voxel size = 1 × 1 × 1 mm3. 

T1 images (Figure 1a) were spatially registered to the Montreal Neurological Institute (MNI) 

template, and then segmented into GM, white matter (WM), and cerebrospinal fluid (CSF) 

components (Figure 1b) using DARTEL (Ashburner, 2007). Segmented data were used to 

reconstruct the cortical surface of each participant (Figure 1c). The central surface 

reconstruction included topology correction, spherical inflation, and spherical registration. The 

central surface was used as an input to calculate GI and FD (Figure 1d). These values were 

analyzed following the specifics reported by (Dahnke et al., 2013), using the approach of 

“spherical harmonic reconstructions” proposed by (Yotter et al., 2011a). Finally, the mean 

values of FD, GI, and CT were extracted for 180 regions of interest (ROI) for each hemisphere 

(Figure 1e) as defined in the Human Connectome Project (HCP) multi-modal parcellation atlas 

(Glasser et al., 2016). All analyses were performed using the Computational Anatomy Toolbox 

for SPM (CAT12, http:// www.neuro.uni-jena.de/cat/ 16/12/2020). 

To confirm our approach, we wanted to replicate the findings of Ouellette and colleagues on 

GI differences in professional chess masters in the same dataset using a different software 

(CAT12 vs. Freesurfer) and analysis approach (high-resolution ROI vs. whole brain) (Ouellette 

et al., 2020). 

 

http://www.neuro.uni-jena.de/cat/
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Figure 1. Surface-based cortical measures [fractal dimension (FD) and gyrification index (GI)] 
estimation process. (a) Structural T1 image (in coronal orientation) was registered, normalized, and 
segmented to extract the; (b) grey matter (left) and white matter (right) components. From these maps 
(c) the cortical mesh was reconstructed using the projection-based thickness method (the inset 
illustrates an example of cortical mesh in the right prefrontal cortex); (d) the FD (in the figure, a 
Sierpiński triangle, which exemplifies the self-similarity concept, i.e., the large equilateral triangle can 
be decomposed into smaller equilateral triangles at different scales, is depicted) and the GI (not 
represented) were calculated from the cortical mesh; (e) the cortical surface was parcellated in 180 
regions of interest (ROI) per hemisphere using the Human Connectome Project multi-modal 
parcellation atlas and FD and GI values were averaged within each ROI. 
 

 

4.2.3 Statistical analysis 
 

Bivariate Analysis. Demographic data were tested for normality using the Shapiro-Wilk test. 

Bivariate comparisons were performed using chi-square tests for categorical variables and 

with two-sample t-tests or Mann–Whitney tests for continuous variables according to their 

distribution, with a false discovery rate (FDR) correction for multiple comparisons, 

respectively. The bivariate correlations between GI and FD and the behavioral variables 

provided in the dataset were carried out using Pearson’s or Spearman’s correlation tests 

according to the distribution of the variables. The correlations of variables related to the 

starting age of the chess training of the expert players were controlled by the age, sex, and 

education of the participants. The level of significance was set to p < 0.05 for all tests. We also 

performed an outlier analysis on the GI and FD values using the Grubbs’ method and found 

no outliers in the data. Additionally, we performed vertex-wise whole brain two-sample t-tests 

between the two player groups, where the FD, GI, and CT measures for both hemispheres 
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were merged and resampled to a 32k mesh resolution, with a 25 mm smoothing with a full 

width half maximum Gaussian kernel (FWHM). We then used threshold-free cluster 

enhancement (http://www.neuro.uni-jena.de/tfce 16/12/2020) with 5000 permutations and 

applied a family-wise-error (FWE) corrected threshold of p < 0.05 to control for multiple 

comparisons. 

 

Multivariate Analysis. To estimate the association of regional surface-based values with chess 

expertise, we performed logistic regression (LR) analyses, controlling for the effects of age, 

sex, and education. Two LR models (one for FD and another for GI) were estimated with chess 

skills as a dependent variable. Covariates were introduced in the model using block entry for 

demographic variables and a forward conditional stepwise method for regional GI and FD. 

The regions were pre-selected based on regions that reached significance in bivariate 

analyses comparing GI and FD in professional chess experts and novices at a threshold of p 

< 0.05 uncorrected. We evaluated the performance of the LR model using the chi-square 

likelihood ratio test, statistical tests of individual predictors (betas) using the Wald chi-square 

statistic and p < 0.05, goodness-of-fit using the Hosmer and Lemeshow test, and the 

Nagelkerke pseudo-R2 index, and predicted probabilities using a classification table assessing 

model accuracy. Internal validation was applied to correct for overfitting with bootstrap based 

on 5000 replications. Finally, we determined the regions in which FD and GI were associated 

with chess expertise by assessing the sensitivity and specificity of the LR models using the 

receiver operator characteristic (ROC) providing an area under the curve (AUC) estimate, with 

the highest AUC considered as indicating the best model (see Supplementary Materials). 

Statistical analyses were performed using Jamovi software (Version 1.2, 

https://www.jamovi.org), RStudio (http://www.rstudio.com/), and SPSS (IBM SPSS Statistics 

for Windows, Version 20.0, IBM, Armonk, NY, USA). 

 

 

 

http://www.neuro.uni-jena.de/tfce
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4.3 Results 
 

4.3.1 Cortical Complexity  
 

Bivariate Comparison. Compared to novices, professional chess players show significantly 

higher FD values in the left frontal operculum OP5 (lFOP5, p = 0.030) and the precentral 

operculum (PrCO), and significantly lower FD values in the right area 7M (7 m, p = 0.030), 

after FDR correction for multiple comparisons. 

From the additional whole-brain vertex-wise analysis, professional chess players show a 

cluster of significantly higher FD in an area located in the left frontal operculum (x, y, z = −34, 

28, 13, k = 12, p = 0.010, FWE-corrected) (Figure 2). 

 

 
FIGURE 2. Increased (in red) cortical complexity in the (b) left frontal operculum OP5 (left FOP5) and a 
decrease (in blue) in (a) the left caudal part of the dorsomedial prefrontal cortex (8BM), (b) the left 
inferior parietal lobule with a thin cortical ribbon (PFt) and (c) the right 7 m and right temporal area F 
(TF), respectively, predict chess expertise using logistic regression. L, left; R, right. 
 

 

4.3.2 Correlations with Chess-Related Features in Chess Masters 
 
Increased FD in lFOP5 is inversely correlated with the starting age of professional chess 

training (ρ = −0.544, p = 0.007) (Figure 3a). Furthermore, reduced FD on the right 7 m of 

professional chess players shows a trend for negative correlation with the daily duration of 

chess training (ρ = −0.384, p = 0.040) (Figure 3b). No significant correlation is found between 

the FD and Elo scores. 
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Figure 3. Scatter plots of fractal dimension (FD) values and demographic and behavioral data among 
professional chess players. (a) The FD in the left frontal operculum OP5 (lFOP5) is correlated with the 
age (years) at which the participants begin their professional training (ρ = −0.503, p = 0.008). (b) The 
FD in the right area 7M (r7m) is correlated with the daily time spent in chess training (ρ = −0.403, p = 
0.034). a.u. = arbitrary units. 
 

4.3.3 Regions Associated with Chess Expertise 
 

The LR model controlling for age, sex, and education (Table 2) shows that chess expertise is 

predicted by increasing FD in the left FOP5 and decreasing FD in the right 7 m, right 

temporal area F (TF), left caudal part of the dorsomedial prefrontal cortex (8BM), and part of 

the inferior parietal lobule with a thin cortical ribbon (PFt). Chess expertise is associated with 

FD values in a set of association regions including the left fronto-opercular cortex, the right 

SPL/posterior cingulum and the lateral temporal cortex, and the fronto-medial and IPL 

cortices (Figure 2). Moreover, younger age is significantly associated with chess expertise, 

with no significant effect of sex or education. The efficiency of the model reaches 93.1%, the 

Nagelkerke R2 = 0.793, and the AUC = 0.961 (SE = 0.025, 95%CI = 0.912 to 1.000), 

indicating high model performance.  
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Predictors with Bootstrap 
 B Bias SE p 95% CI 

 Lower Upper 

Age (years) −0.10 −5.98 34.31 0.025 −52.27 1.27 
Sex (male) 1.01 61.15 561.57 0.317 −135.33 595.34 
Education −0.24 −13.81 107.35 0.100 −118.85 16.58 
ROIs       
Left FOP5 11.07 485.79 2869.57 0.001 5.94 3844.66 

Left PFt −7.25 −412.05 2380.84 0.000 −3538.41 −4.18 
Left 8BM −16.41 −698.42 3863.81 0.001 −5819.85 −9.42 
Right TF −8.92 −404.94 2514.75 0.004 −3164.28 −3.45 
Right 7 m −7.67 −214.67 1686.45 0.002 −1616.48 63.18 

Intercept 74.24 3258.26 18,208.48 0.000 51.04 26,353.63 
Classification table   
 Predicted    
Observed Novices Professional 

chess players 
Correct %   

Novices 26 3 89.7%   
Professional 
chess masters 

1 28 96.6%   

Overall 
percentage 

  93.1%,   

Model fit Hosmer and Lemeshow test  
Nagelkerke R2  Chi-2 p   

0.793  5.724 0.678   

Table 2. Logistic regression model predicting chess expertise based on the fractional dimension of the 
specific regions of interest (ROI), after controlling for age, sex, and education.The significance of the 
factors (p-values) and 95% confidence intervals (95% CI) of the B values are indicated based on 5000 
bootstrap samples. SE, standard error; 8BM, caudal part of the dorsomedial prefrontal cortex; FOP5, 
frontal operculum OP5; PFt, inferior parietal lobule with a thin cortical ribbon; TF, temporal area F. 
 

4.3.4 Gyrification Index 
 

We do not find significant differences between the GI of professional chess players and 

novices after correcting for multiple comparisons. Given that the GI distribution is normal in 

all ROIs, we performed two-sample t-tests showing significant differences in 11 ROIs listed 

in Table S2. These ROIs were introduced into the LR model after controlling for the effects of 

age, sex, and education. The resulting LR model shows that GI is predicted by two ROIs, the 

posterior part of the right anterior cingulate cortex (24 prime, a24pr) and the superior and 

posterior part of the right superior temporal sulcus (STSdp and STSpr), as reported in Figure 
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4 and Table 3. The accuracy of the model is good [efficiency = 69%, AUC = 0.798 (SE = 

0.058, 95% CI = 0.685 to 0.911)]. 

 

 

Figure 4. Increased gyrification index in (a) the posterior part of the right anterior cingulate cortex 
(a24pr, in red) and decreased in (b) the superior and posterior part of the right superior temporal 
sulcus (STSdp, in blue) predicted chess expertise using logistic regression. R, right. 
 

Predictors with Bootstrap 

Predictors B Bias SE p 95% CI 
Lower Upper 

Education 1.04 0.19 0.95 0.106 −0.27 3.00 
Age (years) 0.04 0.01 0.07 0.367 −0.05 0.18 
Male/female −0.10 −0.01 0.19 0.441 −0.48 0.24 
ROIs       

Right a24pr −0.37 −0.08 0.26 0.007 −0.95 −0.09 
Right STSdp 0.55 0.14 0.44 0.007 0.20 1.46 
Intercept −5.64 −2.13 13.46 0.503 −34.00 11.46 
 Classification table   

  Predicted    
Observed Novices Professional chess 

masters 
Correct %   

Novices 21 8 72.4%   
Professional chess 
masters 

10 19 65.5%   

Overall percentage   69.0%   
Model fit Hosmer and Lemeshow test  
Nagelkerke R2  Chi-2 p   
0.359  7.030 0.533   

Table 3. Logistic regression model predicting chess expertise based on the gyrification index of the 
specific regions of interest (ROI), after controlling for age, education, and sex. 
The significance of the factors (p-values) and 95% confidence intervals (95% CI) of the B values are 
indicated based on 5000 bootstrap samples. SE, standard error; a24pr, posterior part of the right 
anterior cingulate cortex; STSdp, superior and posterior part of the right superior temporal sulcus. 
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4.4 Discussion 
 

This study investigated differences in surface-based cortical measures assessed with FD and 

GI in whole brain areas parcellated using the HCP atlas in 29 chess experts and 29 novices. 

We find that experts show an increase in FD in the left FOP5, which is correlated with the 

starting age of chess training, and a decrease in FD in the right SPL-7 m area, with a trend for 

a negative correlation between FD and the duration of daily training. When applying a logistic 

regression model, FD predicts chess expertise in a network of transmodal association regions, 

including the SPL-7 m and lateral temporal cortex in the right hemisphere and the fronto-

opercular cortex FOP5, fronto-medial cortex 8BM, and IPL-PFt in the left hemisphere. Age, 

but not gender and education, have a significant effect on the model. Regarding GI, we find 

no significant differences between the two groups, after correction for multiple comparisons. 

Nevertheless, when using GI values from ROIs with significant differences in experts, chess 

expertise is predicted by two areas: the posterior part of the right anterior cingulate cortex and 

the posterior part of the right STSdp. 

We find that chess experts have increased FD in the left FOP5, this region lies in the precentral 

part of the frontal operculum, rostrally to BA44. Although the role of FOP5 has not been fully 

explored, the frontal operculum is an important component of the attentional and memory 

circuits. For instance, this region is more active in professional musicians when simulating or 

imagining playing a well-known piece (retrieval of motor memory) (Lotze et al., 2003). FOP5 

is also implicated in visuomotor learning, the selection of competing alternatives, and the 

retrieval and maintenance of rules, specifically when they are related to the context or when 

the subject is required to keep in mind a set of rule contingencies (Bunge, 2004). Moreover, 

increased performance in the executive component of a task is correlated with increased 

activation of the lateral frontal operculum (León-Domínguez et al., 2015) and can contribute 

to the transition from default mode to a task-positive network (Braver & Barch, 2006). More 

recently, FOP5 has been identified as a region of the extended multi-demand cognitive 

network, implicated more in relational tasks than in math and working memory tasks (Assem 
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et al., 2020). This is the first time that neural changes in this region are associated with chess 

expertise. FOP5 may be involved in various complex cognitive tasks, including the 

maintenance of multimodal mental representations that can promote high cognitive efficiency 

in chess experts. In particular, the level of player expertise, measured by the age of starting 

chess training, is positively correlated with the left FOP5 FD. These findings are in line with 

the previous literature that reveal that intensive training and learning processes produce 

changes in neurogenesis, glial genesis, and remodeling of different cellular and vascular 

components of the brain, resulting in regional structural and functional reorganization (Zatorre 

et al., 2012), especially from childhood to adulthood (Sydnor et al., 2021). The higher 

complexity in the left frontal operculum could reflect an increased processing effort in this area 

during chess playing. Since the frontal operculum is a phylogenetically old area that underlies 

several complex multimodal cognitive processes, when challenged, it cannot hyperspecialize. 

Thus, to maximize its efficiency, its complexity is increased. 

Area 7 m is a heteromodal associative region located in the superior parietal lobule and the 

precuneus (Glasser et al., 2016). Specifically, the superior parietal lobule is known to mediate 

several functions related to spatial processing, such as spatial attention, remapping of 

attentional priorities, and mental rotation (Caspari et al., 2017). It also plays an important role 

in the integration of visual and motor information, which is important for visually guided actions 

(Wang et al., 2015). Moreover, area 7m is involved in the manipulation of information in 

working memory (Koenigs et al., 2009). Thus, SPL could be involved in chess skills for its role 

in spatial visual processing, spatial attention, and working memory (Wang et al., 2015). Area 

7m plays a central role in a variety of integrated tasks, such as visuospatial imagery, 

memorization, and temporal processing of multiple task timelines (Cavanna & Trimble, 2006), 

and in mentalization and cognition. Moreover, the right precuneus is involved in controlling the 

spatial aspects of motor behavior (Seitz & Binkofski, 2003). Interestingly, as previously 

reported by Ouellette and colleagues, chess experts have cortical thinning in the left SPL and 

precuneus (Ouellette et al., 2020). Our study also shows a trend for an inverse correlation 

between cortical complexity in 7m and the duration of chess training. This suggests that 
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starting chess training in the middle of childhood may have enhanced cortical thinning, and 

this may lead to greater cognitive efficiency (Hänggi et al., 2014). Taken together, our findings 

suggest that a reduction in cortical complexity in the SPL and precuneus could be associated 

with better chess skills and performance, due to intensive cognitive training. 

PFt is an association area located in the anterior part of the inferior parietal lobule that is 

mainly connected to the sensorimotor circuit. The PFt area has been reported to be a key 

node of a network that aims to generate purposeful hand actions in human and non-human 

primates (Borra et al., 2017). In particular, the left PFt is also considered a part of the so-called 

salience network (Seeley et al., 2007), directing attention to the most important stimuli in the 

environment. Interestingly, two studies also implicate IPL functional connectivity in chess 

experts. Both studies find a greater connectivity of IPL with the visuomotor network (Song et 

al., 2020) and the frontoparietal network (Wang et al., 2015) in chess experts that are 

correlated with the duration of professional chess playing. Consistent with our findings in area 

r7m, the reduced FD could reflect a higher specialization of this area after intensive training, 

producing a faster and more efficient processing of the chess moves. 

Area TF is a limbic area of the lateral parahippocampal cortex located in the ventromedial part 

of the inferior temporal gyrus. TF is part of a large association network of regions including 

STS, visual area V4, and retrosplenial cortex, as well as multimodal association regions of the 

prefrontal, insular, cingulate, and posterior parietal cortices. Given its highly interconnected 

nature, area TF is highly engaged in tasks involving spatial information about the environment 

and, in particular, the processing of contextual associations (Aminoff et al., 2013) that support 

chess expertise through the holistic processing of various classes of stimuli. This is in line with 

an fMRI study showing that chess experts have increased activity in the collateral sulcus and 

the bordering area TF when looking at chess boards with plausible game positions, compared 

to boards where pieces were placed randomly (Bilalić et al., 2010). Consistently, a higher level 

of chess expertise is correlated with diffusion MRI connectometry in the bilateral ILF (Mayeli 

et al., 2018), an association white matter tract connecting the parahippocampal and extra-

striate occipital cortices. 
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Area 8BM is the caudal part of the human dorsomedial prefrontal cortex that belongs to the 

core multi-demand cognitive network of regions. This network is activated by a broad domain 

of tasks integrating brain processing to access and bind information and cognition operations 

required for the complex behaviors that are required for chess playing (Assem et al., 2020). 

Overall, chess expertise appears to be associated with cortical complexity changes in various 

regions engaged by tasks such as spatial information processing, mathematics, 

conceptualization, and social cognition. These findings suggest that the neural substrates 

involved in chess expertise can be defined within the broader framework of a network 

connecting transmodal and paralimbic association regions of the prefrontal, opercular, 

cingulate, dorsomedial parietal, and temporal cortices. In this view, FD appears to be a useful 

measure for a quantitative description of the structural complexity of the brain cortex, 

particularly in transmodal regions with flexible and high-level social and cognitive functions 

that are not well captured by CT measures. FD condenses cortex details into a single numeric 

value, which is an extremely compact measure of cortical complexity. 

In particular, previous studies exploring FD in neurological disorders point toward the idea that 

a decrease in FD is associated with brain damage, yielding gray matter and few investigations 

show an increase of this measure in pathological conditions (Meregalli et al., 2022). Our 

findings of decreased FD in chess experts in right 7 m, right PF, left 8 bm, and left PFt suggest 

that reductions in FD in healthy subjects are not related to gray or white matter lesions, but 

can result from long-term and intense training that yields the refinement of association neural 

circuits via selective synaptogenesis and synaptic pruning. 

Chess expertise is predicted by an increase in GI in the anterior part of the middle cingulate 

cortex and a decrease in GI in the superior and posterior part of the STS (Caspari et al., 2017). 

These are two key regions of the theory of mind network (Rilling et al., 2004), which is 

responsible for the mental representation of others’ intentions and expectations in social 

interactions, including the prediction of deceptive behaviors (Lissek et al., 2008) and the 

comprehension of the intentions of actions (Tettamanti et al., 2017). Specifically, STS is 

involved in social cognition and motor skills (Baker, C. M., Burks, J. D., Briggs, R. G., Stafford, 
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J., Conner, A. K., Glenn, C. A., ... & Sughrue, M. E., n.d.) and the cingulate cortex in 

mentalizing functions and in the response to the selection of cognitive output (Blanton et al., 

2001), respectively. GI changes in these areas can reflect the ability to understand the 

implications of the position of each piece in the game and to decode the emotions of the 

opponent, select the appropriate response, and take advantage of it in the match strategy. We 

do not find an effect of chess training on GI. This is expected, as GI changes are reported to 

occur during pregnancy and the first years of infancy and to remain relatively stable throughout 

life (Blanton et al., 2001). 

Cortical complexity assessed with FD is altered in chess experts in two regions implicated in 

high-level cognitive tasks and modulated by chess training. Our findings extend the reports of 

altered CT in chess experts (Ouellette et al., 2020) to a more complex measure that can reflect 

the characteristics of chess training. In particular, chess expertise is associated with 

differences in FD in a set of transmodal association late-maturing regions that undergo 

structural and functional changes until early adulthood (Sydnor et al., 2021). Indeed, FD, unlike 

GI, is likely to change in response to cognitive demands throughout life (Blanton et al., 2001), 

and its changes can contribute to the performance of complex cognitive behaviors, including 

chess expertise. However, more research is needed to assess whether FD can be a reliable 

method to investigate cortical changes related to expertise. 

Lastly, we also investigated CT in chess players and novices and found widespread cortical 

thinning in frontoparietal and visual areas involving primary, unimodal, and heteromodal areas. 

Our results replicate the findings reported by Ouellette and colleagues [8]. Of note, Ouellette 

et al. [8] investigated CT in the same dataset but using a different processing tool, Freesurfer 

versus CAT12, and a different cortical parcellation atlas, indicating that our results were not 

influenced by the processing steps that were used to estimate CT. 

Furthermore, a series of studies investigated the neural correlates of chess expertise using 

the same dataset, although focusing on resting-state connectivity and brain volumetry. In one 

study that investigates the dynamic resting state functional connectivity, the chess masters 

show enhanced global dynamic fluidity, operating over an extended dynamic range [66]. 
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Another resting state study shows increased functional connectivity between the posterior 

fusiform gyrus and the visuospatial attention and motor networks in chess players (Song et 

al., 2020). A surface-based study of cortical thickness by Ouellette and colleagues reports 

cortical thinning in professional chess players in the left SPL and precuneus (Ouellette et al., 

2020). Finally, only a VBM study is performed in this dataset and finds a significant reduction 

in the thalamic volume in chess masters, and this volume is correlated with the level of chess 

expertise and the training time (Wang et al., 2015). In our study, we analyze the complexity of 

cortical folding, a surface-based index, which is complementary to other morphometric 

approaches in the identification of structural changes in the cortex (Meregalli et al., 2022). In 

particular, cortical complexity summarizes information from different gray matter components, 

thus, resulting in a greater ability to detect changes associated with brain aging, cognition, and 

neuropsychiatric disorders, including those associated with cognitive impairment compared to 

the traditional surface- and volume-based approaches (Meregalli et al., 2022). Thus, our 

findings extend previous results of structural changes in the thalamus and parietal cortex to a 

broader structural network, including prefronto-tempo-parietal regions, which is consistent with 

the functional results indicating increased overall brain dynamics and functional connectivity 

in parieto-temporal networks, which may underlie the spatial information processing, working 

memory, conceptualization, and mentalization that can be necessary to become a chess 

master. 

Some limitations must be acknowledged. The sample size of this study is small. However, the 

study is sufficiently powered to identify group differences for morphometric measures, as 

confirmed by previous studies on the same database (K. Li et al., 2015). Another limitation is 

the type of phenotypic characterization of the participants that is limited to measures of 

demographic and chess expertise, which is sufficient for the purpose of the study, but hinders 

the possibility of investigating specific cognitive skills. Future studies incorporating thorough 

neurocognitive measures are needed. 

This study investigated the neural basis of chess expertise by exploring the differences in FD 

and GI in chess experts and novice participants. We show that chess expertise is associated 
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with FD changes in a flexible and interactive network of transmodal areas that integrate 

visuospatial information, working memory, abstraction, mentalization, and social cognition 

functions that promote the development of high-level skills and confer advantages to chess 

experts over novices. These findings add to previous evidence that the neural bases of chess 

expertise are related to a network of transmodal regions with a functional organization 

influenced by a variety of developmental, structural, and environmental factors (Sydnor et al., 

2021). This study also emphasizes that brain processes can be explored using cortical 

complexity assessed with FD. Future studies with larger sample sizes and more detailed 

cognitive information will allow a better and more in-depth understanding of the neural 

substrates of chess playing. We also suggest that studying the brain structure of chess players 

longitudinally would shed light on the nature of FD changes and their ontogenetic processes. 

Future research should also investigate the effects of extensive cognitive training on brain 

structure, not only due to chess play but also due to the learning of complex cognitive skills. 

Furthermore, longitudinal studies aimed at identifying brain areas that mediate complex 

cognitive skills in learning, including mastering chess, could be useful for a better 

understanding of learning and for the use of neurostimulation techniques to improve this 

process. 
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Chapter 5 
 

5. General Discussion 

 

In recent years, advances in computational methods have greatly improved the study of the 

cerebral cortex, enabling researchers to analyze its structure within various contexts, including 

physiological (such as neurodevelopment and aging) and pathological (such as neurological 

and psychiatric conditions). 

The main goal of this work is to examine the cortical complexity of the human cortex in different 

samples, both in pathological and healthy populations.  

 

5.1 Summary of main findings 
 

5.1.1 Study 1 
 

Cortical complexity (CC) and its associated measure (FD) were reduced in schizophrenia 

patients compared to healthy controls in the right superior temporal gyrus. Previous research 

has linked this region, which plays a key role in auditory and language processing, to auditory 

verbal hallucinations, and our findings support this association. Bipolar disorder patients 

showed significantly lower CC in the left pars opercularis compared to healthy controls, which 

is consistent with previous research finding reduced cortical thickness in this region. 

Additionally, BD patients had increased FD in the left lingual gyrus and this measure was 

positively correlated with the Brief Psychiatric Rating Scale (BPRS) mania score. When 

compared to schizophrenia, BD patients showed significant increases in FD in the left inferior 

temporal gyrus, lLG, right temporal pole, inferior and superior temporal cortex. 
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5.1.2 Study 2 
 

This study compared the cortical complexity between patients with cocaine addiction and 

healthy controls, and correlated it with characteristics of addiction and impulsivity. The results 

showed that patients with cocaine addiction had higher levels of impulsivity and reduced CC 

in a cluster encompassing the left insula and supramarginal gyrus, as well as in the left medial 

orbitofrontal cortex. Additionally, the CC in the left medial orbitofrontal cortex was correlated 

with the age of onset of cocaine addiction and with attentional impulsivity. These findings 

suggest that chronic cocaine use may be associated with changes in the cortical surface in 

fronto-parieto-limbic regions involved in emotional regulation, and that these changes may be 

linked to earlier use of cocaine.  

 

 

5.1.3 Study 3 
 

For this study, we used structural magnetic resonance imaging data from 29 chess experts 

and 29 novice players. We compared the CC of different brain regions between the two groups 

and used a multivariate model to identify surface-based brain measures that could predict 

chess expertise. The results showed that in chess experts, the CC was increased in the left 

frontal operculum and correlated with the starting age of chess practice, and decreased in the 

right superior parietal lobule. Chess expertise, also investigated through a logistic regression 

model was indeed predicted by the CC in a network of fronto-parieto-temporal regions. These 

findings suggest that the complex properties of the brain surface in a network of transmodal 

association areas important for flexible high-level cognitive functions are important for chess 

expertise, and that these changes may develop over time with long-lasting practice. 
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5.2 Cortical complexity, psychiatric disorders, cognition and behavior 
 

 

For the purposes of this work, we chose to evaluate the cortical complexity in both healthy and 

clinical populations, as CC appears to provide valuable morphological information beyond 

what is captured by other indices such as cortical thickness, local GI, and cortical surface 

(Meregalli et al., 2022).  

Psychiatric diseases, such as schizophrenia and bipolar disorders (investigated in Study 1), 

are defined by a partly shared genetic risk, but also share environmental attributes, including 

prenatal factors and substance misuse (Heinz et al., 2013). Both disorders are also 

characterized by an overlap of clinical symptoms, including alterations of thought, emotion, 

behaviors, perception and also cognition (Murray et al., 2004). Indeed, bipolar disorder and 

schizophrenic patients also share impairments in many cognitive domains, including 

attentions, memory and executive functions (Daban et al., 2006).  Due to all these similarities 

and the broad range of symptoms that are influenced these disorders, it is necessary to 

implement precise and reliable neuroimaging methods that can help us better differentiate the 

two disorders, especially in the first stages of the illness. In our line of work, we argue that 

cortical complexity, and the fractal dimension (its associated value), could be an innovative 

approach to identify distinct psychopathological phenotypes and their neurobiological 

processes. We showed how schizophrenics patients a reduction in cortical complexity in the 

right superior temporal gyrus, when compared to both healthy controls and bipolar disorder 

patients and how this reduction in CC was correlated with a particular symptom, the severity 

of hallucinations. There have been already previous findings that associated grey matter 

abnormalities of the superior temporal gyrus with auditory hallucinations, especially 

considering that this area has a key-role in auditory and language processing (Sun et al., 

2009). On the other hand, bipolar patients displayed reductions in cortical complexity, when 

compared to schizophrenic patients and healthy controls, in the left pars opercularis. This 

reduction in CC was also associated with working memory deficits. The role of the left pars 
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opercularis in the working memory is well explored by the literature (Metzler-Baddeley et al., 

2016), and our research strengthen the association between this area and the working 

memory domain thanks to the investigation of the cortical complexity. Furthermore, we also 

discovered an area of increased CC in the right lingual gyrus in bipolar patients, and its 

association with manic symptoms. This is in line with previous findings, where grey matter 

volumes of this region where also increased when compared to an healthy population (Wise 

et al., 2017) and manic symptoms ratings (Kim et al., 2020). 

In Study 1 we hypothesized how alteration in CC may act as a biomarker for psychiatric 

disorders.  We noticed also how alteration of the cortex structure was also correlated to 

change in behaviors (hallucinations severity and manic symptoms) and in cognition (working 

memory deficits). We then decided to further investigate these aspects by investigating 

another clinical population, patients with substance use disorders in Study 2. This population 

is usually characterized by deficits in behaviors, specifically in impulse control (de Wit, 2009), 

and in cognition, with impairments in attention (Anderson et al., 2013). Specifically, attentional 

impulsivity has been reported to correlate negatively with the volume of the orbitofrontal cortex 

in psychiatric patients with impulsive behaviors. (Matsuo et al., 2009). The objective of Study 

2 was to further investigate this associations by applying cortical complexity analysis in 

patients with cocaine addiction. We found that this clinical population, compared to healthy 

controls, showed lower CC in the left insula, supramarginal gyrus and the orbitofrontal cortex. 

The orbitofrontal cortex, in particular, appears to be a crucial player in the addiction 

development, with its role in decision-making and goal-oriented-behavior (Volkow & Fowler, 

2000). Indeed, in our study, the decline in CC of the orbitofrontal cortex was correlated with 

the age of onset of cocaine use, suggesting a dose-effect interaction between cocaine use 

and the cortex organization. Furthermore, consistently with previous studies (Hulka et al., 

2015), cocaine addict patients showed significantly higher attentional impulsivity, when 

compared to controls. Interestingly, we found that the complexity of the orbitofrontal cortex 

was also associated with the attentional domain of the BIS scale. This particular finding could 

suggest that cocaine use could induce brain changes that contribute to the reinforcement of 
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the addictive behavior. Even more, we reported a reduction of cortical complexity in the left 

insula. Notably, the insula play an important role in addiction (Battistella et al., 2014), including 

cannabis, online gaming addiction, social media and smoke. Structural alteration in the insula 

may affect the interaction between affective and cognitive processes in decision making, 

leading to the lack of avoidance responses to events that ultimately bring the subject to pursue 

drug-seeking behavior and craving. Finally, we reported reduced cortical complexity also in 

the supramarginal gyrus, an area that had been previously reported to reflect reduced grey 

matter volumed in cocaine addicts (Barrós-Loscertales et al., 2011). These results show that 

cortical complexity analysis, measured by the fractal dimension, is indeed altered in cocaine 

addiction. We support the idea that the development of this addiction may be associated with 

neurobiological alterations that underlie the vulnerability to this disorder. Then, cocaine use, 

that is led by this vulnerability, can affect the neural circuits that mediate behavior which 

support the addiction process itself, with a feedforward mechanism. In this study (Study 2), 

we further investigated how cortical complexity analysis can led us to a better understanding 

of behaviors and symptomatology in psychiatric disorders such as substance abuse disorders, 

but also how certain substances and behaviors can have an active effect on the structure of 

the cortex. Up until now, we have reported how psychiatric diagnosis and substances could 

have an effect on the cortical structure, measured by a solid methods such as the fractal 

dimension.  

Stemming from this, in the final study, Study 3, we wanted to further investigate this brain-

behavior relation by investigating the cortical structure of a population that is not characterized 

by mental disorders. Our objective was to understand if the cortical complexity indexes could 

be influenced by behaviors, without the effects of diagnosis or external substances. For this 

reason, we chose to investigate chess masters, comparing them to chess novices. The chess 

game is a complex intellectual activity that provides a useful model for the study of memory 

and attention (Charness, 1992). Both memory and attention have been proved by our previous 

studies (Study 1 and Study 2) to be connected to an alteration of the cortical structures. We 

found that chess experts have increased cortical complexity in a region of the left frontal 
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operculum. This region is an important component of the attentional and memory circuits. In 

fact, it is more active in professional musicians when simulating/imagining playing a musical 

piece, thus via the retrieval of motor memory (Lotze et al., 2003). The frontal operculum is also 

important for visuomotor learning, the selection of competing alternatives and the retrieval and 

maintenance of rules, specifically when the subject is required to keep in mid a set of rule 

contingencies (Bunge, 2004). Importantly, we found that the level of player expertise, 

measured by the age of starting chess training, is positively correlated with the cortical 

complexity values in this region. This finding is in line with previous literature that investigate 

how intensive training and learning processes produce changes in regional structural 

reorganization (Zatorre et al., 2012). This higher cortical complexity in the left frontal 

operculum could reflect an increased processing effort in this area during chess playing. Since 

the frontal operculum is a phylogenetically old area that underlies several complex multimodal 

cognitive processes, when challenged, it cannot hyperspecialize. Thus, to maximize its 

efficiency, its complexity is increased. Furthermore, we found a decrease in cortical complexity 

in an area of the right superior parietal lobule, area 7m. Specifically, the superior parietal lobule 

is known to mediate several function related to spatial processing, such as spatial attention, 

remapping of attentional priorities and mental rotation (Wang et al., 2015). Moreover, this area 

is also associated with the manipulation of information in working memory (Koenigs et al., 

2009). Interestingly, a previous study on the same participants revealed that this area was 

characterized by cortical thinning (Ouellette et al., 2020). Our study also shows a trend for an 

inverse correlation between cortical complexity in 7m and the duration of chess training. This 

could suggest that starting chess training in the middle of childhood may have enhanced this 

reduction in cortical complexity, and this may lead to greater cognitive efficiency. Finally, we 

investigated how the cortical complexity was predicted, by a logistic regression mode, in a 

network of fronto-parieto-temporal regions. Overall, it appears that chess expertise is related 

to changes in cortical complexity in various regions involved in tasks such as spatial 

information processing, mathematics, conceptualization, and social cognition. These findings 

suggest that the neural substrates underlying chess expertise can be identified within a 
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network connecting transmodal and paralimbic association regions in the prefrontal, opercular, 

cingulate, dorsomedial parietal, and temporal cortices. In this context, FD appears to be a 

useful measure for quantitatively describing the structural complexity of the brain cortex, 

particularly in transmodal regions with flexible, high-level social and cognitive functions that 

are not well captured by measures of cortical thickness. FD condenses detailed information 

about the cortex into a single numerical value, making it a highly compact measure of cortical 

complexity. We have previously reported how, in certain conditions such as psychiatric 

disorder or substance use, cortical complexity is altered in certain population, but thanks to 

further investigating healthy populations, we can hypothesizes that that reductions in cortical 

complexity are not necessary limited or related to gray or white matter lesions, but can result 

from long-term and intense training that yields the refinement of association neural circuits via 

selective synaptogenesis and synaptic pruning.  

 

 
5.3 Limitations of the studies 

 

 

In Study 1, the use of a cross-sectional design to investigate the cortical alterations underlying 

bipolar-schizophrenic spectrum disorders, limits the ability to make causal inferences. 

Limitations arise due to the inability of a cross-sectional design to distinguish between cause-

and-effect relationships. This design only provides information about associations between 

variables at a specific point in time. Furthermore, the use of pharmacological treatments is a 

potential confounding variable in this type of study. To account for this, we explored the 

potential impact of medications on brain structure and found no effect of medications on 

cortical complexity. However, the possibility remains that medication use could affect, in a 

more indirect way, the brain structure. Therefore, these results should be interpreted with 

caution, and future research using other study designs, such as longitudinal studies, is needed 

to better understand the relationship between medications and brain structure.  
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The aim of Study 2 was to investigate the cortical complexity in patients with cocaine addiction. 

One of the limitations of this study was its relatively small sample size, which consisted of only 

men. This limitation may limit the generalizability of the results to women. However, it is 

important to acknowledge that addiction in general, and cocaine addiction in particular, present 

several differences between sexes. These differences may include the severity of craving, 

medical and psychiatric comorbidity, and social, family, and employment problems. By 

including only men, the heterogeneity of the sample was reduced, potentially resulting in more 

robust findings. Nevertheless, it is crucial to recognize that the cross-sectional design of the 

study is insufficient to establish causal relationships between brain changes and substance 

use disorder. A longitudinal study design would allow for the examination of changes in cortical 

folding over time, providing insights into the directionality of the relationship between brain 

changes and substance use disorder. In conclusion, the limitations of the sample size and 

cross-sectional design of Study 2 should be taken into consideration when interpreting the 

results, and future research should aim to address these limitations to gain a more 

comprehensive understanding of the relationship between cocaine addiction and cortical 

folding. 

 

Study 3, which aimed to investigate the neural correlates of chess expertise, has some 

limitations that must be acknowledged. One of the limitations is the small sample size used in 

this study. Despite this limitation, the study was able to identify group differences for 

morphometric measures, as confirmed by previous studies on the same dataset. It is important 

to consider the impact of sample size on the study's power, as larger sample sizes may 

increase the power of the study and the generalizability of the results. However, it is important 

to note that the population of chess masters is extremely small, and so it is difficult to recruit 

large numbers of participants for a study of this nature. Another limitation of the present study 

is the type of phenotypic characterization of the participants, which is limited to measures of 

demographic and chess expertise. While this characterization is sufficient for the purpose of 

the study, it hinders the possibility of investigating specific cognitive skills that may be relevant 
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to chess expertise. As such, future studies may benefit from a more comprehensive 

characterization of participants that includes measures of cognitive abilities beyond those 

related to chess expertise. For example, future studies may benefit from including measures 

of memory, attention, and problem-solving abilities, which are critical components of chess 

expertise. 

Overall, while the present study has some limitations, such as the small sample size and 

limited phenotypic characterization, it provides valuable insights into the neural correlates of 

chess expertise. Future studies should aim to address these limitations to further elucidate the 

neural mechanisms underlying expertise in chess and related cognitive skills. By doing so, we 

may gain a more comprehensive understanding of the neural basis of expertise and its 

potential implications for cognitive development and rehabilitation. 

 

 

5.4 Conclusions and future directions 
 

 

Cortical complexity and its associated measure, the fractal dimension (FD), is a useful method 

for capturing additional morphological information of the cortex. Compared to other cortical 

indices, such as cortical thickness and gyrification index, FD is especially valuable in capturing 

unique features of the cortical structure. By incorporating FD measurements into structural 

evaluations of the cortex, researchers may gain deeper insights into cortical morphology that 

cannot be obtained through other means. Despite its usefulness, FD has not yet been 

systematically used in the evaluation of cortical structure. This underutilization highlights the 

need for further research to explore the potential benefits of including FD measurements in 

structural assessments of the cortex. Ultimately, a more comprehensive approach that 

integrates FD with other cortical indices may provide a more complete understanding of the 

complexities of cortical structure and function. Further longitudinal studies utilizing FD are 

needed to understand the role of cortical complexity during various neurodevelopmental 
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stages and aging, as evidenced by the lack of such observations in the existing FD literature. 

Such studies would enable us to gain a better understanding of the structural changes in the 

cortex over time, which would aid in the identification of neural mechanisms underlying 

neurological and psychiatric disorders. Additionally, the data obtained from longitudinal 

studies would allow for the assessment of the effectiveness of interventions aimed at a better 

understanding of cortical structure and function. Therefore, I believe that a certain priority in 

the field would be to conduct longitudinal studies that utilize FD to investigate cortical 

complexity in both clinical and general population.  
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