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Gödel’s Dialectica interpretation was conceived as a tool to obtain the consistency of 
Heyting arithmetic in the 40s. In recent years, several proof theoretic transformations, 
based on Gödel’s Dialectica interpretation, have been used systematically to extract new 
content from classical proofs, following a suggestion of Kreisel. Thus, the interpretation 
has found new relevant applications in several areas of mathematics and computer 
science. Several authors have explained the Dialectica interpretation in categorical terms. 
In particular, de Paiva introduced the notion of a Dialectica category as an internal 
version of Gödel’s Dialectica Interpretation in her doctoral work. This was generalised 
by Hyland and Hofstra, who considered the interpretation in terms of fibrations. In our 
previous work, we introduced an intrinsic presentation of the Dialectica construction via 
a generalisation of Hofstra’s work, using the notion of Gödel fibration and its proof-
irrelevant version, a Gödel doctrine. The key idea is that Gödel fibrations (and doctrines) 
can be thought of as fibrations generated by some basic predicates playing the role of 
quantifier-free predicates. This categorification of quantifier-free predicates is crucial not 
only to show that our notion of Gödel fibration is equivalent to Hofstra’s Dialectica fibration 
in the appropriate way, but also to show how Gödel doctrines embody the main logical 
features of the Dialectica Interpretation. To show that, we derive the soundness of the 
interpretation of the implication connective, as expounded by Troelstra, in the categorical 
model. This requires extra logical principles, going beyond intuitionistic logic, namely 
(suitable versions of) the Markov Principle (MP) and the Independence of Premise (IP) 
principle, as well as some choice. We show how these principles are satisfied in the 
categorical setting, establishing a tight correspondence between the logical system and the 
categorical framework. This tight correspondence should come in handy not only when 
discussing the traditional applications of Dialectica, but also when dealing with some 
newer uses of the interpretation, as in modelling games or concurrency theory. Finally, 
to complete our analysis, we characterise categories obtained as a result of the Hyland, 
Johnstone and Pitts tripos-to-topos construction when applied to Gödel doctrines.
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1. Introduction

Gödel’s Dialectica Interpretation is a proof interpretation of intuitionistic arithmetic in a quantifier-free theory of func-
tionals of finite type, called System T. The interpretation’s original use was to show the consistency of Heyting (or in-
tuitionistic) arithmetic. When combined with Gödel’s double-negation interpretation, which reduces classical arithmetic 
to intuitionistic arithmetic, the Dialectica interpretation yields a reduction of the classical theory as well. This approach 
has since been extended and adapted to other theories, and the pattern usually follows Gödel’s original example: first, one 
reduces a classical theory to a variant based on intuitionistic logic. Then one reduces the intuitionistic theory to a quantifier-
free functional theory, like system T. Much work has been done to understand this proof interpretation using categorical 
means. The notion of a Dialectica category was introduced by de Paiva [6] as an internal version of Gödel’s Dialectica Inter-
pretation. The idea is to construct a Dialectica category Dial(C) from a category C with finite limits. The main focus in de 
Paiva’s original work is on the categorical structure of the category obtained, as this notion of Dialectica category turns out 
to be also a model of Girard’s Linear Logic [12].

The construction was generalised by Hyland, who investigated the Dialectica construction associated to a fibred preorder 
[17]. Biering [3] studied the Dialectica construction for an arbitrary cloven fibration. Later Hofstra [16] wrote an exposition 
and interpretation of the Dialectica construction, emphasising its universal properties. His work gives centre stage to the 
well-known concepts of pseudo-monads, simple products, and co-products.

Taking advantage of the abstract presentation of Hofstra, in previous work [38,39] we introduced an intrinsic presentation 
of the Dialectica construction via the notion of Gödel fibration (and its proof-irrelevant version) a Gödel doctrine. The key 
idea is that Gödel fibrations (and doctrines) can be thought of as fibrations generated by some basic predicates playing the 
role of quantifier-free predicates. This categorification of quantifier-free predicates is crucial not only to show that the notions 
of Gödel fibrations introduced in [38] and Dialectica fibrations (as presented in [16]) are mathematically equivalent in the 
appropriate way, but also to show how Gödel doctrines embody the main logical features of the Dialectica Interpretation 
[39,40]. While in [38] we presented a reconstruction of where the categorification of concepts came from in the proof-
theory, in [40] we showed that this categorification worked not only for rules as in [39], but also for the logical principles 
themselves, which is always more exciting for logicians.

The main purpose of the work here is to provide a self-contained and complete study of Gödel doctrines, presenting in 
detail the results developed in [39,40], their connections with [38], and carrying out the analysis of these doctrines. The 
notion of Gödel doctrine provides an intrinsic categorical description of the Dialectica Interpretation, faithfully modelling the 
logical language, and generalised enough to provide a bridge between Gödel fibrations (useful for more expressive logical 
languages like dependent type theory) and Dialectica categories, very helpful for propositional languages and simply typed 
calculi. A relevant advantage of having such an intrinsic presentation (with respect to the previous presentations in terms 
of dialectica categories and fibrations) is that it allows us to recognise and represent all the logical features of the Dialectica 
interpretation (such as the logical principles) in the categorical setting.

Thus, in this paper, we first recall the Dialectica interpretation as presented by Troelstra in the Introductory Note [10] to 
the Dialectica article [13]. We discuss the Dialectica interpretation of the implication connective and the logical principles 
involved in the categorical interpretation of this connective. Then we present in detail the notion of categorical doctrine
and its logical meaning. Moreover, in order to present our results with a notation familiar to both logicians and category 
theorists, we employ the internal language of a doctrine [32]. As far as the notion of doctrine is concerned, we follow 
the notation and the definitions of Maietti and Rosolini in [24,25], where the authors introduce primary, elementary, and 
existential doctrines as generalisations of the original notion of Lawvere’s hyperdoctrine [21].

After recalling the main categorical tools involved, we focus on the notion of Gödel doctrine introduced in [39], and we 
show how these doctrines embody the main logical features of the Dialectica interpretation. In particular, the soundness of 
the interpretation of the implication connective, as expounded by Spector and Troelstra [35], in the categorical models will 
follow as a direct consequence of this tight correspondence. In particular, recall that such an interpretation is motivated by 
the equivalence:

(∃u.∀x.AD(u, x) → ∃v.∀y.B D(v, y)) ⇔
∃ f0, f1.∀u, y.(AD(u, f1(u, y)) → B D( f0(u), y))

where AD and B D are quantifier-free formulae. Showing this equivalence requires extra logical principles, going beyond 
intuitionistic logic, specifically the Markov Principle (MP) and the Independence of Premise (IP) principle, as well as some 
choice. While the traditional categorical approach takes this equivalence as the starting point for defining categorical models, 
as it is done in Dialectica categories [6], for example, our approach focuses instead on abstracting, in the setting of doctrines, 
the key logical features that allow us to conclude such an equivalence.

We show how these key logical features are satisfied in the categorical setting, establishing a tight correspondence be-
tween the logical system and the categorical framework. Our results build on the categorical presentation of existential and 
universal-free predicates we introduced first in the context of fibrations in [38], and then in the language of doctrines [39]. 
Having a categorification of such quantifier-free predicates is fundamental to properly state logical principles in categorical 
terms, since both (IP) and (MP) involve quantifier-free formulae.

Finally, to complete our analysis of Gödel (hyper)doctrines, we characterise categories obtained as a result of the tripos-
to-topos construction of Hyland, Johnstone, and Pitts [18] applied to these doctrines. After recalling the notions and the 
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construction of the category of predicates associated with a hyperdoctrine from [24], and the exact completion of a lex 
category [5], we present an explicit characterisation of the tripos-to-topos construction associated with a Gödel hyperdoc-
trine. Combining our results with the characterisation of exact completions presented in [26], we show that every category 
obtained as tripos-to-topos construction of a Gödel hyperdoctrine can be equivalently presented as the exact completion of 
the (lex) category of predicates associated to the hyperdoctrine itself. We then conclude with a brief discussion of future 
work.

2. Dialectica interpretation

This section recalls the definitions and results we shall need from the critical analysis of the Dialectica Interpretation 
provided by Troelstra in [10]. Gödel’s original article [13] appeared in 1958, in the journal Dialectica in honour of P. Bernays. 
It is believed that the ideas in the paper date back at least as far as 1941, when Gödel lectured at Yale on “In what sense 
is intuitionistic logic constructive?”. Gödel was not satisfied with the philosophical aspects of his description of the work 
on the interpretation and, for this reason, never returned the proofs of the English translation of the paper that he worked 
on and off from 1965 until his death. According to Troesltra ([10], page 219), Gödel presents his work as a “contribution 
to a liberalised version of Hilbert’s program: to justify classical systems, in particular arithmetic, in terms of notions as 
intuitively clear as possible.” In the original paper [13], System T is only outlined. Gödel argues that since finitistic methods 
are not sufficient to carry out Hilbert’s program, one has to admit at least some abstract notions in a consistency proof. He 
suggests one can replace the notion of constructive proof by the notion of ‘computable functional of finite type’, which he 
considers more definite, less abstract, and more ‘nearly finitistic’.

2.1. Interpretation of implication

Gödel’s Dialectica interpretation [13,10] associates to each formula A in the language of Heyting arithmetic HA its Di-
alectica interpretation AD , i.e. a formula of the form:

AD = ∃u.∀x.AD

where AD is a quantifier-free formula in the language of System T, which is as constructive as possible. The associations (−)D

and (−)D are defined inductively on the structure of the formulae, and we refer to [13,10] for a complete description.
The Dialectica interpretation’s original use was to show the consistency of Heyting arithmetic. In particular, Gödel’s 

principal result can be stated as follows:

Theorem 2.1 (Gödel 1958). Let A be a formula in the language of Heyting arithmetic HA. Whenever HA � A, then T � AD by means of 
an application of the rules of the introduction of quantifiers to AD, that is:

T � AD(t, x)

for some (finite sequence of) closed terms t.

Thus, the consistency of HA follows, provided that System T is consistent.
Recall that the most complicated clause of the translation is the definition of the translation of the implication connective 

(A → B)D . This involves logical principles which are usually not acceptable from an intuitionistic point of view, namely a 
form of the Principle of Independence of Premise, a generalisation of Markov Principle and some choice. The interpretation is 
given by:

(A → B)D := ∃V , X .∀u, y.(AD(u, X(u, y)) → B D(V (u), y)).

Given a witness u for the hypothesis AD one should be able to obtain a witness for the conclusion B D , i.e. there exists 
a function V assigning a witness V (u) of B D to every witness u of AD . Moreover, this assignment has to be such that from 
a counterexample y of the conclusion B D we should be able to find a counterexample X(u, y) to the hypothesis AD . This 
transformation of counterexamples of the conclusion into counterexamples for the hypothesis is what gives Dialectica its 
essential bidirectional character.

We first recall the details behind the translation of (A → B)D showing the precise points where we have to employ the 
non-intuitionistic principles (MP*), (IP*) and choice. The sequence of equivalences below comes from the analysis of the 
Dialectica interpretation in ([10]), which Troelstra attributes to Spector. Then we explain the equivalences in detail:

AD → B D = ∃u.∀x.AD(u, x) → ∃v.∀y.B D(v, y)

≡ ∀u.(∀x.AD(u, x) → ∃v.∀y.B D(v, y))

≡ ∀u.∃v.(∀x.AD(u, x) → ∀y.B D(v, y))
3



D. Trotta, M. Spadetto and V. de Paiva Theoretical Computer Science 947 (2023) 113692
≡ ∀u.∃v.∀y.(∀x.AD(u, x) → B D(v, y))

≡ ∀u.∃v.∀y.∃x.(AD(u, x) → B D(v, y))

=: (A → B)D

First notice that AD → B D , that is:

∃u.∀x.AD(u, x) → ∃v.∀y.B D(v, y) (1)

is equivalent to:

∀u.(∀x.AD(u, x) → ∃v.∀y.B D(v, y)). (2)

If we apply a special case of the Principle of Independence of Premise, namely:

(∀x.C(x) → ∃v.∀y.D(v, y)) → ∃v.(∀x.C(x) → ∀y.D(v, y)) (IP*)

we obtain that (2) is equivalent to:

∀u.∃v.(∀x.AD(u, x) → ∀y.B D(v, y)). (3)

Moreover, we can see that this is equivalent to:

∀u.∃v.∀y.(∀x.AD(u, x) → B D(v, y)). (4)

The next equivalence is motivated by a generalisation of Markov’s Principle, namely:

¬∀x.C(u, x) → ∃x.¬C(u, x). (MP*)

In particular, we obtain that (4) is equivalent to:

∀u.∃v.∀y.∃x.(AD(u, x) → B D(v, y)). (5)

Recall from [1] the following argument to show the equivalence (4) ⇐⇒ (5), assuming that the law of excluded middle 
holds for B D : if B D is true then (4) ⇐⇒ (5) is justified, and if B D is false, then apply (MP*).

To conclude that AD → B D and (A → B)D are equiprovable we apply the Axiom of Choice (or Skolemisation), i.e.:

∀y.∃x.C(y, x) → ∃V .∀y.C(y, V (y)) (AC)

twice, obtaining that (5) is equivalent to:

∃V , X .∀u, y.(AD(u, X(u, y)) → B D(V (u), y)).

This analysis (from Gödel’s Collected Works, page 231) highlights the key role the principles (IP*), (MP*), and (AC) play in 
the Dialectica interpretation of implicational formulae. Next we examine the two principles (IP*) and (MP*), following our 
discussion in [38].

2.2. Independence of premise

In proof theory, the Principle of Independence of Premise states that:

(C → ∃u.D(u)) → ∃u.(C → D(u)) (IP)

where u is not a free variable of C . While this principle is valid in classical logic (it follows from the law of the excluded 
middle), it does not hold in intuitionistic logic, and it is not generally accepted constructively [1]. The principle (IP) is not 
generally accepted constructively because turning any proof of the premise C into a proof of ∃u.D(u) means turning a proof 
of C into a proof of D(t) where t is a witness for the existential quantifier, depending on the proof of C . In particular, the 
choice of the witness depends on the proof of the premise C , while the (IP) principle tells us that the witness can be chosen 
independently of the proof of the premise C .

In the Dialectica translation we only need a particular version of (IP), namely:

(∀y.C(y) → ∃u.∀v.D(u, v)) → ∃u.(∀y.C(y) → ∀v.D(u, v)) (IP*)

which means that we are asking (IP) to hold not for every formula, but only for those formulas of the form ∀y.C(y) with C
quantifier-free. We recall a useful strengthening of the (IP*) principle, namely:

(C → ∃u.D(u)) → ∃u.(C → D(u))

where C is ∃-free, i.e. C contains neither existential quantifiers nor disjunctions (of course, it is also assumed that u is not 
a free variable of C ).
4
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2.3. Markov principle

Markov Principle is a statement that originated in the Russian school of constructive mathematics. Formally, the Markov 
principle is usually presented as the statement:

¬¬∃x.C(x) → ∃x.C(x) (MP)

where C is a quantifier-free formula. Thus, the logical principle employed in the Dialectica interpretation, namely:

¬∀x.C(x) → ∃x.¬C(x) (MP*)

with C(x) a quantifier-free formula, can be thought of as a generalisation of the Markov Principle above. As remarked in [1], 
the Markov Principle is not generally accepted in constructive mathematics because in general there is no reasonable way 
to choose constructively a witness x for ¬C(x) from a proof that ∀x.C(x) leads to a contradiction. However, in the context of 
Heyting Arithmetic, i.e. when x ranges over the natural numbers, one can prove that these two formulations of the Markov 
Principle are equivalent. More details about the computational interpretation of the Markov Principle can be found in [28].

A natural generalisation of (MP*) is given by the following principle, that we call Modified Markov principle: i.e. when-
ever A(y) is a quantifier-free predicate and B(x) is an existential-free predicate, it is the case that:

(∀x.B(x) → A(y)) → ∃x.(B(x) → A(y)) (MMP)

where A(y) is quantifier free, B(x) is existential-free and the variable x does not occur free in A(y). Notice that (MP*) is 
obtained from (MMP) by replacing A(y) with ⊥, the falsum constant.

We now establish the notation of the rule-version of the previous logical principle. Recall that logical rules are weaker 
than logical principles, namely if a given theory satisfies a certain logical principle then, in particular, it satisfies the rule-
version of such a principle, while the converse does not hold.

Notation. To denote the rule-version of the logical principles we consider, we will add R- to the name of the principle in 
question. For example, we will denote by (R-IP) the rule:

� � θ → ∃u.η(u) implies � � ∃u.(θ → η(u))

corresponding to the principle of independence of premise (IP):

� � (θ → ∃u.η(u)) → ∃u.(θ → η(u))

and similarly, we will use (R-MP) for the Markov rule.
Having recalled the logical notions we need, we proceed to describe these notions using categorical logic, in the next 

section.

3. Lawvere doctrines

One of the most important notions of categorical logic which enables the study of logic from a pure algebraic perspec-
tive is that of a hyperdoctrine, introduced in a series of seminal papers by F.W. Lawvere. Hyperdoctrines synthesise the 
structural properties of logical systems [19–21]. Lawvere’s crucial intuition was to consider logical languages and theories 
as fibrations to study their 2-categorical properties, so that e.g. connectives, quantifiers, and equality are determined by 
structural adjunctions. Theories and models can be viewed as objects and morphisms of a suitable category, the category 
of hyperdoctrines, which is, in particular, a 2-category. In the 2-category of hyperdoctrines 2-cells represent morphisms of 
models. Thus, having a 2-categorical structure allows us not only to compare theories (objects) via models (1-cells) but also 
to compare models (1-cells) via the 2-cells that represent morphisms of models.

Recall from [32,33] that a first-order hyperdoctrine is a contravariant functor:

P : Cop −→ Hey

from a category with finite products C to the category of Heyting algebras Hey satisfying:

1. for every product projection A × B πA−→ A in C , the homomorphism PπA : P (A) −→ P (A × B) of Heyting algebras, where 
PπA denotes the action of the functor P on the arrow πA , has a left adjoint ∃πA and a right adjoint ∀πA . These adjoints 
satisfy the Beck-Chevalley conditions (BC), i.e. for any pullback square:

A′ × B

πA′

f ×id
A × B

πA

A′
f

A

5
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it is the case that the squares:

P (A × B)
P f ×id

∃πA

P (A′ × B)

∃πA′

P (A)
P f

P (A′)

and P (A × B)
P f ×id

∀πA

P (A′ × B)

∀πA′

P (A)
P f

P (A′)

commute, i.e. the equalities:

P f ∃πA = ∃πA′ P f ×id and P f ∀πA = ∀πA′ P f ×id

hold. The purpose of the Beck-Chevalley conditions is to guarantee that substitution commutes with quantification, 
appropriately, thus BC forces the equality in both diagrams.

2. For every object A of C there exists a predicate δA of P (A × A) satisfying for every α of P (A × A) that:

� ≤ P�A (α) if and only if δA ≤ α

where A 
�A−−→ A × A denotes the diagonal arrow.

A first-order hyperdoctrine determines an appropriate categorical structure to represent a first-order theory and its cor-
responding Tarski semantics. Semantically, a first-order hyperdoctrine is essentially a generalisation of the contravariant 
powerset functor on the category of sets:

P : Setop −→ Hey

sending a set A into the Heyting algebra P(A) of its subsets (ordered by inclusion), and a set-theoretic function A 
f−→ B to 

the inverse image functor PB 
P f = f −1

−−−−−→ P A. In this case, the adjoints ∀ f and ∃ f must be evaluated, on a subset D of A, 
respectively as the subsets ∃ f (D) = {a ∈ B | ∃a ∈ A. (b = f (a) ∧ a ∈ D)} and ∀ f (D) = {a ∈ B | ∀a ∈ A. (b = f (a) ⇒ a ∈ D)}.

From a syntactic point of view, a first-order hyperdoctrine can be seen as a generalisation of the Lindenbaum-Tarski 
algebra of well-formed formulae of a first-order theory. In particular, given a first-order theory Th in a many-sorted first-
order language L, one can consider the functor:

LTh : Vop −→ Hey

whose base category V is the syntactic category of L, i.e. the category whose objects are (α-equivalence classes of) finite 
lists −→x := [x1 : X1, . . . , xn : Xn] of typed variables and whose morphisms are lists of substitutions, while the predicates of 
LTh(

−→x ) are given by equivalence classes (with respect to provable reciprocal consequence ��) of well-formed formulae in 
the context −→x , and order is given by the provable consequences, according to the fixed theory Th. In this case, the left 
adjoint to the weakening functor LTh

π is computed by existentially quantifying the variables that are not involved in the 
substitution induced by the projection (dually, the right adjoint is computed by quantifying universally).

3.1. Existential and universal doctrines

Recently, several generalisations of the notion of a Lawvere hyperdoctrine were considered, and we refer for example to 
[23–25] or to [33,18] for higher-order versions. In this work, we consider a natural generalisation of the notion of first-order 
hyperdoctrine, and we call it simply a doctrine.

Definition 3.1. A doctrine is a contravariant functor:

P : Cop −→ Pos

where the category C has finite products and Pos is the category of posets.

Now we recall from Maietti and Rosolini [23,24,36] the notions of existential and universal doctrines.

Definition 3.2. A doctrine P : Cop −→ Pos is called existential (respectively universal) if, for every A1 and A2 in C and 
every product projection X

π−→ A, the functor:

P (A)
Pπ−→ P (X)
6
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has a left adjoint ∃π (respectively a right adjoint ∀π ), and these satisfy the Beck-Chevalley condition BC: for any pullback 
diagram:

X ′ π ′

f ′

A′

f

X π A

where π and π ′ are projections, and for any β in P (X) the equality:

∃π ′ P f ′β = P f ∃πβ ( resp. ∀π ′ P f ′β = P f ∀πβ)

holds.

Observe that the inequality ∃π ′ P f ′β ≤ P f ∃πβ ( resp. ∀π ′ P f ′β ≥ P f ∀πβ) of BC in Definition 3.2 always holds.
We recall from [23–25] that doctrines form a 2-category Doc where:

• a 1-cell is a pair (F , b):

Cop

P

F op Pos

Dop
R

b

such that C F−→D is a finite product preserving functor between the cartesian categories C and D, and:

P
b−→ R F op

is a natural transformation;

• a 2-cell (F , b) θ−→ (G, c) is a natural transformation F
θ−→ G such that for every A in C and every α in P (A), we have:

bA(α) ≤ RθA (cA(α)).

We denote as ExD the 2-full subcategory of Doc whose objects are existential doctrines, and whose 1-cells are those 1-cells 
of Doc which preserve the existential structure, namely those 1-cells commuting with left adjoins ∃π . Similarly, we denote 
by UnD the 2-full subcategory of Doc whose objects are universal doctrines, and whose 1-cells are those 1-cells of Doc
which preserve the universal structure.

From a logical perspective, the intuition is that a 1-cell between doctrines is a generalisation of the notion of a set-
theoretic model, whereas 2-cells represent morphisms of models.

3.2. Internal language of doctrines

A milestone in the history of mathematical logic is Gödel’s proof of the completeness property of Tarski’s semantics (in 
its usual set-theoretical formulation) for classical first-order logic. It tells us that a given first-order theory proves a given 
first-order statement if (and only if) every set-theoretic model of the given theory happens to be also a model of the given 
statement.

As long as we are interested in (fragment of many-sorted) intuitionistic first-order logic, this notion of semantics can 
be generalised allowing interpretations in classes of categories and categorical structures that generalise to some extent the 
properties of the category of sets. The notion of hyperdoctrine is suitable to this purpose: different weakenings of this notion 
can host interpretations (hence models) of different fragments of many-sorted intuitionistic first-order logic according to a 
notion of semantics that formally coincides with Tarski’s set-theoretic one for classical logic. In these generalised frame-
works, a soundness and a completeness result continue existing: a correspondence between provability and satisfiability 
holds.

The characteristic category-theoretic form of proof by diagram chasing to establish properties expressible in category-
theoretic terms, can in complex cases be difficult to construct and hard to follow because of the rather limited forms of 
expression of a purely category-theoretic language. Categorical logic enables the use of richer and more familiar forms of 
7
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expression meant to establish properties of particular kinds of categories and categorical structures, depending on the frag-
ment of intuitionistic logic that those structures model according to generalised Tarski’s semantics. In fact, one can define a 
suitable notion of internal language, naming the relevant constituents of the category and then applying the corresponding 
categorical semantics to turn assertions of this language (according to the corresponding fragment of intuitionistic logic) 
into categorical statements. Such a procedure has become highly developed e.g. in the theory of toposes where the internal 
language of a topos coupled with the generalised semantics of the whole intuitionistic first-order logic in toposes enables 
one to reason about the objects and morphisms of a topos as if they were sets and functions (see [27]). The notions of 
internal language and generalised semantics are not just a useful tool to simplify notation, but also a powerful instrument 
to formally prove a categorical equivalence between doctrines (in our case) and theories.

First, we briefly recall that theories in a given (possibly many-sorted) language over a fragment of first-order logic induce 
doctrines. Let us assume that we are given a fragment F of first-order logic. Whenever L is a (possibly) many sorted F -
language and Th is an L-theory, we can define a doctrine LTh over the syntactic category V associated to L, as described 
at the beginning of the current section. Depending on F , the doctrine LTh has several categorical properties. For example, if 
F is regular, then the fibres of LTh are inf-semilattices and LTh has left-adjoints to pullbacks along product projections and 
diagonals (satisfying both the Back-Chevalley condition and Frobenius reciprocity, see [36] for more details).

Whenever P is a doctrine over some category C such that P has the same categorical properties of LTh, then P can host 
models of Th according to a natural generalisation of Tarski’s semantics, which is sound and complete (for it admits the 
syntactic model) and is formally defined as classical Tarskian semantics for (a fragment of) first-order logic. In fact, an 
L-structure S in P consists of:

• an object of C for every L-sort;
• an arrow of C (between the appropriate S-interpretations of the sorts) for any L-function symbol;
• for every L-predicate symbol in some context, a predicate of the P -fibre of the S-interpretation of that context.

Then (terms and) formulas are inductively interpreted in S as usual (formally as for traditional Tarski’s semantics). While 
we are not giving a full inductive definition of the interpretation φ S of a L-formula φ in S , we recall that this notion can 
be written recursively on the complexity of φ itself, and we provide one of the inductive clauses as an instance, assuming 
that F is regular:

if φ ≡ ∃b.ψ(a, b) where ψ is a formula in context a : A, b : B; if the objects A S and B S of C are the S-interpretations 
of the sorts A and B in C; and if the subobject ψ S of A S × B S in C is the S-interpretation of the formula ψ ; then we 
define the S-interpretation φ S of φ as the subobject ∃πA ψ of A S , where πA the product projection A × B → A.

For a complete definition of the S-interpretation of φ we refer the reader to [27,34]. Finally, we say that S models some 
L-sequent φ � ψ in some given context when it is the case that:

φ S ≤ ψ S

in the P -fibre of the S-interpretation of the given context. Therefore, the L-structure S in P is a model of Th if it is a 
model of every sequent that Th proves.

According to this notion of semantics, it is the case that the P -models of Th, together with the model morphisms be-
tween them, are bijectively (equivalently) induced by the 1-cells LTh → P of Doc and the 2-cells between them, respectively 
(see Section 3.1 for the notions of 1-cell and 2-cell). Thus, the identity over LTh constitutes the syntactic model of Th.

Conversely, if P : Cop −→ Pos is a doctrine satisfying those categorical properties that allow the interpretation in P of 
formulas of any F -language (e.g. if F is regular, then the fibres of P are required to be inf-semilattices and P has left-
adjoints to pullbacks along product projections and diagonals satisfying Beck-Chevalley condition and Frobenius reciprocity), 
then an F -language LP can be defined starting from P itself: the language LP has a sort A for every object A of the base 
category C , an n-ary function symbol A1, . . . , An

f−→ A for every morphism A1 ×· · ·× An
f−→ A of C and an n-relation symbol 

R : A1, . . . , An for each element of P (A1 ×· · ·× An), all of this for each finite list of objects A1, . . . , An of C and every object 
A of C . The terms and the formulas of LP are the ones inductively generated as usual by applying to this signature the 
first-order symbols admitted by F . The language LP is called the internal language of the doctrine P .

Let ThP be the theory whose sequents φ � ψ in some context A are precisely those such that φ ≤ ψ in P (A). The 
doctrine LThP

P is equivalent to P in Doc (see [34]) and the assignment P �→ (LP , ThP ) extends to a pseudo 2-inverse to the 
2-functor (L, Th) �→ LTh , in such a way that Doc is equivalent to the 2-category of the theories in some language over F
together with the models (of one of them into the other one) and the model morphisms (between them).

Whenever P : Cop −→ Pos is a doctrine, we know that LThP
P is equivalent to P in Doc (see [34]). Therefore, the doctrine 

P , together with the equivalence LThP
P → P , constitutes the syntactic model of its own theory ThP in its own internal 

language LP . This fact means that, whenever φ and ψ are elements of P (A), for some object A of C , it is the case that 
φ ≤ ψ precisely when φ � ψ is a sequent of ThP in context A. This is precisely why we can deduce properties of P through 
8
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a purely syntactical procedure: every LP -sequent corresponds to a categorical statement or a condition involving P , and 
this is true precisely when that sequent belongs to ThP .

Taking advantage of this equivalence between satisfiability and provability for a doctrine P , from now on we write the 
assertions relative to P translated in its internal language LP and, instead of deducing one of these assertions from other 
given ones by explicitly using the categorical properties of P , we usually employ the inference rules of the fragment F
that these properties model, in order to achieve the same result. For example, if the fibres of P are inf-semilattices and P
has left-adjoints to pullbacks along product projections and diagonals satisfying the Beck-Chevalley condition and Frobenius 
reciprocity, then F is regular, hence we are allowed to deduce assertions in LP by means of the inference rules of many-
sorted regular logic. We define the following notation for the internal language LP of P . We write:

a1 : A1, . . . ,an : An | φ(a1, . . . ,an) � ψ(a1, . . . ,an)

to indicate the sequent in context associated to the inequality:

φ ≤ ψ

of the fibre P (A1 × · · · × An). In particular, we write:

a : A | ∃b : B.ψ(a,b) and a : A | ∀b : B.ψ(a,b)

to indicate the formulas in context associated to the predicates:

∃πA ψ and ∀πA ψ

in the fibre P (A), where πA is the projection A × B → A. In fact, as we said before regarding the notion of generalised 
interpretation of a formula, if a doctrine P : Cop −→ Pos is existential and α ∈ P (A × B) is a formula in context:

a : A,b : B | α(a,b)

then ∃πA α ∈ P A represents the formula a : A | ∃b : B.α(a, b). Analogously, if the doctrine P is universal, then ∀πA α ∈ P A
represents the formula a : A | ∀b : B.α(a, b) in context A. The fact that this notion of interpretation is sound and complete is 
not surprising: this is how usual set-theoretic Tarski’s semantics can be characterised in terms of categorical properties of 
the powerset functor P : Setop −→ Pos. This is what we mean when we say that generalised Tarski’s semantics is formally 
identical to the classic set-theoretic one.

We write a : A | φ �� ψ to abbreviate a : A | φ � ψ and a : A | ψ � φ. Moreover, when the type of a quantified variable is 
clear from the context, we will omit that type for the sake of readability. The substitution via given terms (i.e. reindexing and 
weakening) is modelled by pulling back along those given terms. The application of propositional connectives is interpreted 
by using the corresponding operations in the fibres of the given doctrine.

4. Towards Gödel doctrines

One of the fundamental notions of logic and proof theory is the notion of quantifier-free formula, and there are countless 
results built on the possibility of detecting quantifier-free formulae in the literature. For example, in the Dialectica interpre-
tation, this notion is present at every stage, and we could say the entire translation depends on the fact that, syntactically, 
we can identify and distinguish formulae with no occurrences of quantifiers.

However, while from a syntactic perspective it is effortless and natural to speak of quantifier-free formulae, describing 
this notion algebraically is not so obvious. The main problem is that the property of being quantifier-free is totally syntactic, 
not involving any other entity different from the formula itself we are considering. It does not depend, for example, on the 
fact that we are working in classical, constructive, or intuitionistic logic. It only depends on how a formula is written in a 
given formal language.

Therefore, if we want to provide a complete categorical presentation of the Dialectica interpretation, able to represent all 
its logical details, we have to deal with the problem of representing quantifier-free formulae. We need to find a suitable uni-
versal property to represent predicates that are quantifier-free categorically. Notice that quantifier-free predicates may satisfy 
different properties depending on the logical system we are considering. Hence if we want to represent these predicates via 
universal properties, we have to relativise this notion to a given system, that is to the Dialectica interpretation in our case.

4.1. Existential and universal free predicates

We discuss how to identify those predicates of an existential doctrine:

P : Cop −→ Pos

which are free from left-adjoints ∃π , and then dualise this notion to define those predicates that are free from right-adjoints ∀π . 
This idea was originally introduced by Trotta and Maietti [26] and, independently, by Frey in [11]. It was further developed 
and generalised to the fibrational setting in [38].
9
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Definition 4.1. Let P : Cop −→ Pos be an existential doctrine and let A be an object of C . A predicate α of the fibre P (A)

is said to be an existential splitting if it satisfies the following weak universal property: for every predicate β ∈ P (A × B)

such that α(a) � ∃b : B.β(a, b) (i.e. α ≤ ∃πA (β) in category-theoretic notation, where A × B 
πA−→ A is a product projection of 

C), there exists an arrow A 
g−→ B such that:

α(a) � β(a, g(a)) ( i.e. α ≤ P 〈1A ,g〉(β) in category-theoretic notation ).

Existential splittings stable under reindexing are called existential-free predicates. We introduce the following definition:

Definition 4.2. Let P : Cop −→ Pos be an existential doctrine and let I be an object of C . A predicate α of the fibre P (I) is 
said to be existential-free if P f (α) is an existential splitting for every morphism A 

f−→ I .

Employing the presentation of doctrines via internal language, we say that i : I | α(i) is existential-free if, whenever 
a : A | α( f (a)) � ∃b : B.β(a, b) for some term a : A | f (a) : I , then there is a term a : A | g(a) : B such that a : A | α( f (a)) �
β(a, g(a)).

Observe that we always have that a : A | β(a, g(a)) � ∃b : B.β(a, b), in other words P 〈1A ,g〉β ≤ ∃πA β . In fact, it is the case 
that β ≤ PπA ∃πA β (as this arrow of P (A × B) is nothing but the unit of the adjunction ∃πA � PπA ), hence a re-indexing 
by the term 〈1A, g〉 yields the desired inequality. Therefore, the property that we require for i : I | α(i) turns out to be the 
following: whenever there are proofs of ∃b : B.β(a, b) from α( f (a)), at least one of them factors through the canonical proof 
of ∃b : B.β(a, b) from β(a, g(a)) for some term a : A | g(a) : B .

Requiring the stability under substitution as in Definition 4.2 is clear since, in logic, if a formula is existential-free, and 
we apply a substitution to this formula, then we obtain again an existential-free formula.

Definition 4.3. Let P : Cop −→ Pos be an existential doctrine. Then we indicate by P∃-free : Cop −→ Pos the subdoctrine of P
whose predicates of the fibres P∃-free(A) are existential-free predicates of P (A).

Dualising the previous Definitions 4.1 and 4.2 we get the corresponding ones for the universal quantifier.

Definition 4.4. Let P : Cop −→ Pos be a universal doctrine and let A be an object of C . A predicate α of the fibre P (A) is 
said to be a universal splitting if it satisfies the following weak universal property: for every predicate β ∈ P (A × B) such 
that ∀b : B.β(a, b) � α(a), there exists an arrow A 

g−→ B such that:

β(a, g(a)) � α(a).

Definition 4.5. Let P : Cop −→ Pos be a universal doctrine and let I be an object of C . A predicate α of the fibre P (I) is said 
to be universal-free if P f (α) is a universal splitting for every morphism A 

f−→ I .

Again, employing the presentation of a doctrine via its internal language, the property we require of the formula i :
I | α(i), so that it is universal-free, is that whenever a : A | ∀b : B.β(a, b) � α( f (a)) for some term a : A | f (a) : I , then there is 
a term a : A | g(a) : B such that a : A | β(a, g(a)) � α( f (a)).

Definition 4.6. Let P : Cop −→ Pos be an existential doctrine. We say that P has enough existential-free predicates if, for 
every object I of C and every predicate α ∈ P (I), there exist an object A and an existential-free object β in P (I × A) such 
that α(i) is equiprovable with ∃a : A.β(i, a) (i.e. α = ∃πI β).

Analogously, we have the following definition for universal doctrines.

Definition 4.7. Let P : Cop −→ Pos be a universal doctrine. We say that P has enough universal-free predicates if, for every 
object I of C and every predicate α ∈ P I , there exist an object A and a universal-free object β in P (I × A) such that 
α(i) �� ∀a : A.β(i, a).

Definition 4.8. Let P : Cop −→ Pos be a universal doctrine. Then we indicate by P∀-free : Cop −→ Pos the subdoctrine of P
whose predicates of the fibres P∀-free(A) are universal-free predicate of P (A).

4.2. Skolem and Gödel doctrines

Building over the notions corresponding to quantifier-free predicates in doctrines we introduced in the previous section, 
we now define two particular kinds of doctrines, called Skolem doctrines and Gödel doctrines.
10
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The Skolem doctrines satisfy a version of the traditional principle of Skolemisation, namely:

∀u∃xα(u, x) → ∃ f ∀uα(u, f u).

The name Gödel doctrine is chosen because we will prove that these doctrines encapsulate the basic mathematical features 
of Gödel’s Dialectica interpretation.

Definition 4.9. A doctrine P : Cop −→ Pos is called a Skolem doctrine if:

(i) the category C is cartesian closed;
(ii) the doctrine P is existential and universal;
(iii) the doctrine P has enough existential-free predicates;
(iv) the existential-free objects of P are stable under universal quantification, i.e. if α ∈ P (A) is existential-free, then ∀π (α)

is existential-free for every projection π from A.

Remark 4.10. The last point (iv) of Definition 4.9 implies that, given a Skolem doctrine P : Cop −→ Pos, the sub-doctrine 
P∃-free : Cop −→ Pos of existential-free predicates of P as defined in 4.3 is a universal doctrine. From a purely logical per-
spective, requiring existential-free predicates to be stable under universal quantification is quite natural since this can be 
also read as if α(x) is an existential-free formula, then ∀x.α(x) is again an existential-free formula.

Proposition 4.11 (Skolemisation). Every Skolem doctrine P : Cop −→ Pos validates the Skolemisation principle:

a : A | ∀b : B.∃c : C .α(a,b, c)

is equiprovable with:

a : A | ∃ f : C B .∀b : B.α(a,b,ev( f ,b))

where α is any predicate in P (A × B × C).

Proof. Applying the properties of right and left adjoints, it is straightforward to check that a : A | ∃ f : C B .∀b :
B.α(a, b, ev( f , b)) � ∀b : B.∃c : C .α(a, b, c). Thus, we need to prove the converse.

Let us assume that a : A | γ (a) � ∀b.∃c.α(a, b, c) for some predicate γ ∈ P (A). By point (iv) of Definition 4.9, we assume 
without loss of generality that γ (a) is existential-free: otherwise, there is an existential-free predicate γ ′ covering γ (a) and 
we get back to our hypothesis by using that P is existential.

Since P is universal, it is the case that a : A, b : B | γ (a) � ∃c.α(a, b, c) and, being γ (a) existential-free:

a : A,b : B | γ (a) � α(a,b, g(a,b))

for some term in context a : A, b : B | g(a, b) : C . Since C is cartesian closed, there is a context f : C B together with a term in 
context f : C B , b : B | ev( f , b) : C such that there is a unique term in context a : A | h(a) : C B satisfying a : A, b : B | g(a, b) =
ev(h(a), b) : C . Hence:

a : A,b : B | γ (a) � α(a,b,ev(h(a),b))

and P being universal, it is the case that:

a : A | γ (a) � ∀b.α(a,b,ev(h(a),b)).

Finally, since:

a : A | ∀b.α(a,b,ev(h(a),b)) � ∃ f .∀b.α(a,b,ev( f ,b))

(this holds for any predicate δ(a, −) in place of the predicate ∀b.α(a, b, ev(−, b))) we conclude that:

a : A | γ (a) � ∃ f .∀b.α(a,b,ev( f ,b)).

We are done by taking ∀b.∃c.α(a, b, c) as the predicate γ (a). �
Example 4.12 (Hilbert epsilon calculus). Let us consider the intuitionistic Hilbert’s ε-τ calculus H. In this framework we mean 
that H is a many-sorted intuitionistic first-order logic whose sorts satisfy simply typed lambda calculus, together with the 
following additional rules (observe that 1. and 2. would happen to be equivalent in classical first-order logic):
11
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1. for every formula in context a : A, b : B | γ (a, b) there is a choice of a term in context a : A | εγ (a) : B called ε-operator, 
such that:

a : A | ∃b.γ (a,b) � γ (a, εγ (a));
2. for every formula in context a : A, b : B | γ (a, b) there is a choice of a term in context a : A | τγ (a) : B called τ -operator, 

such that:

a : A | γ (a, τγ (a)) � ∀b.γ (a,b).

For more details, we refer the reader to [2,8]. Let us consider the syntactic doctrine H : Cop −→ Pos associated to H, that 
is:

• the category C is the one whose objects A are the H-contexts and whose arrows are the H-context morphisms i.e. the 
H-substitutions;

• the poset H(A) contains the well-formed H-formulas a : A | φ(a). It is the case that a : A | φ(a) is smaller or equal than 
a : A | ψ(a) precisely when the sequent:

a : A | φ(a) � ψ(a)

can be inferred in H.

Then H is existential and universal, since it is a model of intuitionistic first-order logic. Moreover, C is cartesian closed, as 
the sorts of H model the simply typed lambda calculus.

Let i : I | α(i) be any predicate of H and let A 
f−→ I be any substitution in C . If a : A, b : B | β(a, b) is a predicate such that:

α( f (a)) � ∃b : B.β(a,b)

then it is the case that ∃b : B.β(a, b) � β(a, εα(a)), hence α( f (a)) � β(a, εα(a)). This proves that the predicate i : I | α(i) is 
existential-free, and i : I | α(i) was arbitrary. This implies:

• the existential-free predicates are stable under universal quantification;
• the doctrine H has enough existential-free predicates: if a : A | α(a) is any predicate, then its weakening a : A, a′ :

A | α(a) is existential-free and:

a : A | ∃a′.α(a) �� α(a)

where α(a) in the right-hand side is the result of substituting the term in context a : A | εα(a) : A in the a′-component 
of the predicate a : A, a′ : A | α(a);

Therefore H is a Skolem doctrine.

Now we introduce the main notion of this section:

Definition 4.13. A doctrine P : Cop −→ Pos is called a Gödel doctrine if:

(i) P is a Skolem doctrine;
(ii) the sub-doctrine P∃-free : Cop −→ Pos of the existential-free predicates of P has enough universal-free predicates.

As we prove in Theorem 4.17, the condition (ii) of Definition 4.13 is crucial to show that in a Gödel doctrine every 
formula admits a presentation of the ‘quantifier’ form (∃u∀x.α(u, x), where α is quantifier-free) used in the Dialectica 
translation.

Now we have all the tools needed to introduce the notion of quantifier-free predicate in the categorical setting of Gödel 
doctrines.

Definition 4.14. A predicate α of a fibre P (A) of a Gödel doctrine P that is both an existential-free predicate of P and a 
universal-free predicate in the sub-doctrine P∃-free of existential-free predicates of P is called a quantifier-free predicate of 
P . The sub-doctrine of quantifier-free predicates is denoted by P∃∀-free : Cop −→ Pos.

Therefore, given a Gödel doctrine P : Cop −→ Pos, we have the following canonical inclusions of doctrines:

P∃∀-free ι1 P∃-free ι2 P

where P∃∀-free ι1 P∃-free is a morphism of doctrines, while P∃-free ι2 P is a morphism of universal doctrines.
12
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Remark 4.15. Notice that a predicate of a Gödel doctrine that happens to be both existential-free and universal-free is in 
particular quantifier-free in the sense of Definition 4.14. However, a universal-free predicate of the sub-doctrine P∃-free of 
a given Gödel doctrine P may not be a universal-free predicate in the whole doctrine P , because the universal property of 
being universal-free is relative only to the predicates of P∃-free. Therefore, the quantifier-free predicates of P as established 
in Definition 4.14 are not the existential and universal free predicates of P .

Example 4.16. The doctrine defined in Example 4.12 is a Gödel doctrine. In fact, by using the choice function τ analogously 
to how we used ε in Example 4.12, one can prove that every predicate of H is universal-free, which means that the sub-
doctrine H∃-free of the existential-free predicates of H (i.e. H itself) has enough universal-free predicates.

To simplify the notation and make clear the connection with the logical presentation of the Dialectica interpretation, for 
a given Gödel doctrine P : Cop −→ Pos we will use the notation αD to indicate a predicate α of P∃∀-free, i.e. a quantifier-free 
predicate.

Theorem 4.17 (Prenex normal form). Let P : Cop −→ Pos be a Gödel doctrine, and let α be a predicate of P (I). Then there exists a 
quantifier-free predicate αD of P (I × U × X) such that:

i : I | α(i) �� ∃u : U .∀x : X .αD(i, u, x).

Proof. By definition of Gödel doctrine, since the doctrine P has enough existential free objects, there exists an existential-
free predicate β ∈ P (I ×U ) such that i : I | α(i) and ∃u : U .β(i, u) are equiprovable. Then, since the subdoctrine of existential-
free predicates has enough-universal free predicates, we can conclude that there exists a quantifier-free predicate αD of 
P (I × U × X) such that i : I | α(i) is equiprovable with ∃u : U .∀x : X .αD(i, u, x). �

The next result establishes the precise connection between Gödel doctrines and the Dialectica interpretation. Employ-
ing the properties of a Gödel doctrine, we can provide a complete categorical presentation of the chain of equivalences 
involved in the Dialectica interpretation of implicational formulae, described in Section 2.1. In particular, we show that the 
crucial steps where the principles (IP*) and (MP*) are applied are represented categorically via the notions of existential-free 
predicate and universal-free predicate.

Theorem 4.18 (Dialectica functionals categorically). Let P : Cop −→ Pos be a Gödel doctrine. Then for every AD ∈ P (I × U × X) and 
B D ∈ P (I × V × Y ) quantifier-free predicates of P we have that:

i : I | ∃u.∀x.AD(i, u, x) � ∃v.∀y.B D(i, v, y)

if and only if there exist I × U
f0−→ V and I × U × Y

f1−→ X such that:

i : I, u : U , y : Y | A(i, u, f1(i, u, y)) � B D(i, f0(i, u), y).

Proof. Let us consider two quantifier-free predicates AD ∈ P (I × U × X) and B D ∈ P (I × V × Y ) of the Gödel doctrine P . 
The equivalence (where for the sake of readability we omit the types of quantified variables):

i : I | ∃u.∀x.AD(i, u, x) � ∃v.∀y.B D(i, v, y) ⇐⇒
i : I, u : U | ∀x.AD(i, u, x) � ∃v.∀y.B D(i, v, y)

follows from the definition of left adjoint functor. As the predicate ∀x.AD (i, u, x) is existential-free in P , it is the case that:

i : I, u : U | ∀x.AD(i, u, x) � ∃v.∀y.B D(i, v, y) ⇐⇒
i : I, u : U | ∀x.AD(i, u, x) � ∀y.B D(i, f0(i, u), y)

for some arrow I × U
f0−→ V . Therefore:

i : I, u : U | ∀x.AD(i, u, x) � ∀y.B D(i, f0(i, u), y) ⇐⇒
i : I, u : U , y : Y | ∀x.AD(i, u, x) � B D(i, f0(i, u), y)

since the universal quantification is right adjoint to the weakening functor. Now we employ the fact that B D (i, f0(u), y)

is universal-free in the subdoctrine of existential-free predicates of P . Since AD(i, u, x) is a quantifier-free predicate of P , 
it is the case that ∀x.AD (i, u, x) is existential free: this follows from the fact that in every Gödel doctrine, existential-free 
predicates are stable under universal quantification (this is the last point of Definition 4.13). Therefore:
13
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i : I, u : U , y : Y | ∀x.AD(i, u, x) � B D(i, f0(i, u), y) ⇐⇒
i : I, u : U , y : Y | AD(i, u, f1(i, u, y)) � B D(i, f0(i, u), y)

for some arrow I × U × Y
f1−→ X of C . Combining the first and the last equivalences, we obtain that:

i : I | ∃u.∀x.AD(i, u, x) � ∃v.∀y.B D(i, v, y) ⇐⇒ there exist ( f0, f1) such that
i : I, u : U , y : Y | AD(i, u, f1(i, u, y)) � B D(i, f0(i, u), y)

and we are done. �
Theorem 4.18 shows that the notion of Gödel doctrine encapsulates the basic mathematical feature of the Dialectica 

interpretation, namely its interpretation of implication, which corresponds to the existence of functionals of types f0 :
I × U → V and f1 : I × U × Y → X as described. One should think of this as saying that a proof of a formula of the form 
∃u.∀x.AD(i, u, x) → ∃v.∀y.B D(i, v, y) is obtained by transforming it to:

∀u.∃v.∀y.∃x.(AD(i, u, x) → B D(i, v, y))

by means of the Principle of Independence of Premises (IP) and Markov Principle (MP), and then Skolemising twice.
Therefore, combining the results in 4.11, 4.17 and 4.18 we obtain that the notion of a Gödel doctrine really provides a 

categorical abstraction of the main concepts involved in the Dialectica translation. We discuss this in more detail in the next 
section.

5. A characterisation of Dialectica doctrines

The concept of Dialectica category, originally introduced by de Paiva [6], was generalised to the fibrational setting by 
Hofstra [16].

We briefly recall the notion of a Dialectica category Dial(C) associated to a finitely complete category C (see [6] for 
further details):

• An object of Dial(C) is a triple (U , X, α), where α is a subobject of U × X in C . We think of such a triple as a formula 
∃u.∀x.α(u, x).

• An arrow from ∃u.∀x.α(u, x) to ∃v.∀y.β(v, y), for two objects (U , X, α) and (V , Y , β) in Dial(C) is a pair (U
f−→

V , U × Y
F−→ X) of arrows of C , i.e. a pair:

(u : U | f (u) : V , u : U , y : Y | F (u, y) : X)

of terms in context (as usual, we are thinking of C as the category of contexts associated to some type theory), satisfying 
the condition:

α(u, F (u, y)) ≤ β( f (u), y)

between the reindexed subobjects, where the squares:

α(u, F (u, y)) α

U × Y 〈πU ,F 〉 U × X

β( f (u), y) β

U × Y
f ×1Y

V × Y

are pullbacks.

A finitely complete category C admits a natural structure of subobject doctrine Sub : Cop −→ Pos, if we look at C itself as 
a category of contexts associated to some type theory and at the subobjects α of a given object X of C as the predicates 
α(x) in context x : X .

So we can see that the notions of object and arrow of Dial(C) are motivated by Gödel’s notion of Dialectica interpretation 
(see Section 2.1), and in particular by its action on formulas in the language of arithmetic of the form A → B .
14
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5.1. Dialectica doctrines

The notion of Dialectica category was generalised to an arbitrary fibration by Hyland [17], Biering [3] and Hofstra [16]. 
In this section we deal with the proof-irrelevant version of the fibrational Dialectica construction associating a doctrine 
Dial(P ) called a dialectica doctrine to a given doctrine P :
Doctrinal Dialectica construction. Let P : Cop −→ Pos be a doctrine whose base category C is cartesian closed. The dialec-
tica doctrine Dial(P ) : Cop −→ Pos is defined as the functor sending:

• an object I into the poset Dial(P )(I) defined as follows:
– objects are quadruples (I, U , X, α) where I, U and X are objects of the base category C and α ∈ P (I × U × X);

– partial order: we stipulate that (I, U , X, α) ≤ (I, V , Y , β) if there exists a pair ( f0, f1), where I × U
f0−→ V and I ×

U × Y
f1−→ X are morphisms of C such that:

α(i, u, f1(i, u, y)) ≤ β(i, f0(i, u), y).

• an arrow J
g−→ I into the poset morphism Dial(P )(I) →Dial(P )( J ) sending a predicate (I, U , X, α) to the predicate:

( J , U , X,α(g( j), u, x)).

Remark 5.1. Let P : Cop −→ Pos be a doctrine and let I be any object of C . Then the poset Dial(P )(I) is isomorphic to the 
poset reflection of the Dialectica category associated to some category.

5.2. Dialectica doctrines via quantifier completions

Our aim is to connect the notion of doctrinal Dialectica construction to the one of a Gödel doctrine and show that, under 
certain hypotheses, these notions are equivalent. In order to show this, we ask ourselves when is it the case that a doctrine 
is an instance of a Dialectica construction and, in this case, which doctrine do we need to complete in order to go back to 
the doctrine we started from.

The main background result we need is the following statement. (Here Q ∀ and Q ∃ denote the universal and the exis-
tential completions of any doctrine Q . We are going to recap these notions later.)

Theorem 5.2 (Hofstra [16]). If P : Cop −→ Pos is a doctrine, then there is an isomorphism:

Dial(P ) ∼= (P∀)∃

which is natural in P .

We briefly recall the notion of existential completion of a doctrine, see [36] for more details:

Existential completion. Let P : Cop −→ Pos be a doctrine. The existential completion P∃ : Cop −→ Pos of P is the doctrine 
such that, for every object A of C , the poset P∃(A) is defined as follows:

• objects: triples (A, B, α), where A and B are objects of C and α is a predicate in P (A × B).

• order: (A, B, α) ≤ (A, C, β) if there exists an arrow A × B 
f−→ C of C such that:

α(a,b) � β(a, f (a,b)) ( i.e. α ≤ P 〈πA , f 〉(β))

in P (A × B) (here A × B 
πA−→ A is the projection on A).

Whenever f is an arrow A → C of C , the functor P∃(C) 
P∃

f−→ P∃(A) sends an object (C, D, γ ) of P∃(C) to the object:

(A, D, γ ( f (a),d)) (i.e. (A, D, P 〈 f πA ,πD 〉(γ )))

of P∃(A) (here πA, πD are the projections from A × D).

We think of a triple (A, B, α) in P∃(A) as the predicate (∃b : B)α(a, b). This construction provides a free completion, i.e. 
it extends to a 2-functor (−)∃ : Doc → ExD which is left adjoint to the corresponding forgetful functor ExD → Doc (which 
sends an existential doctrine P to the doctrine P itself). We recall that the associated monad happens to be lax-idempotent. 
Analogously, let us recall the notion of universal completion of a doctrine.

Universal completion. Let P : Cop −→ Pos be a doctrine. The universal completion P∀ : Cop −→ Pos of P is the doctrine 
such that, for every object A of C , the poset P∀(A) is defined as follows:
15
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• objects: triples (A, B, α), where A and B are objects of C and α is a predicate in P (A × B).

• order: (A, B, α) ≤ (A, C, β) if there exists an arrow A × C
g−→ B of C such that:

α(a, g(a, c)) � β(a, c)

in P (A × C).

Again, if f is an arrow A → C of C , the functor P∀(C) 
P∀

f−→ P∀(A) sends an object (C, D, γ ) of P∀(C) to the object 
(A, D, γ ( f (a), d)) of P∀(A).

We think of a triple (A, B, α) in P∀(A) as the predicate (∀b : B)α(a, b). As for the notion of existential completion, this 
construction provides a free completion, i.e. it extends to a 2-functor which is right adjoint to the obvious forgetful functor 
inducing a colax-idempotent monad. The universal and the existential completions of a given doctrine P are related by the 
following natural isomorphism:

P∀ ∼= (−)op((−)op P )∃ (6)

where (−)op is the functor Pos → Pos which inverts the order of any poset (see [37]).
We recall that the existential and universal completions are really well-behaved, as the doctrines obtained by applying 

(either of) these completions to a given doctrine P can be internally characterised without explicitly referring to P .

Proposition 5.3 (Intrinsic ∃, ∀-completions). Let P : Cop −→ Pos be a doctrine. Assume that P is existential. Then P is an existential 
completion of some other doctrine P ′ precisely when it has enough existential-free predicates, i.e. when, for every predicate a :
A | α(a) of P , there is an existential-free predicate:

a : A,b : B | β(a,b)

of P such that α(a) ∼= (∃b : B)β(a, b) in P (A). In this case, such a doctrine P ′ is the full sub-doctrine P∃-free of P whose predicates are 
the existential-free predicates of P .

Analogously, if P is a universal doctrine, then P is a universal completion of some doctrine P ′ precisely when it has enough 
universal-free predicates, i.e. when, for every predicate a : A | α(a) of P , there is a universal-free predicate:

a : A,b : B | β(a,b)

of P such that α(a) ∼= (∀b : B)β(a, b) in P (A). In this case, such a doctrine P ′ is the full sub-doctrine P∀-free of P whose predicates are 
the universal-free predicates of P .

By means of the Proposition 5.3 above, the following result follows. This provides a characterisation of the free-algebras 
of the monad Dial(−).

Theorem 5.4 (Intrinsic Dialectica doctrines). Let us assume that the category C is cartesian closed. Then the doctrines P : Cop −→ Pos
that are dialectica completions of some doctrine P ′, i.e. P ∼= Dial(P ′), are precisely those that are Gödel doctrines. Moreover, in this 
case, such a doctrine P ′ is the full sub-doctrine P∃∀-free of the quantifier-free predicates of P .

Theorem 5.4 establishes a way of re-defining the notion of doctrinal dialectica construction by only referring to the inter-
nal properties of a given doctrine P , i.e. without the need for mentioning the existence of a doctrine that P is the dialectica 
completion of. As the instances of the dialectica completion are precisely the Gödel doctrines, the properties defining the 
latter notion fully characterise the notion of dialectica doctrine itself. This is our second main theorem, following the result 
stated in Theorem 4.18 it shows that Gödel doctrines are a sensible doctrine adaptation of Dialectica categories.

Example 5.5. Let us consider the syntactic doctrine H of Hilbert’s ε-τ calculus as in Example 4.12. Since every predicate of 
H is quantifier-free, by Theorem 5.4 it is the case that H is the dialectica completion of itself. In fact, one can prove that a 
Gödel doctrine is isomorphic to its dialectica completion precisely when it is a model of Hilbert’s ε-τ calculus (see [26] for 
more details regarding the existential completion).

We end the current section with the following:

Remark 5.6. The existential completion of a universal doctrine whose base is cartesian closed happens to be universal as 
well (see [16] for more details). Therefore, by Theorem 5.4, it is the case that Dialectica doctrines already happen to be both 
existential and universal.
16
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Complementing this description, one can also look at the Dialectica completion as a procedure to add existential and 
universal quantifications to the predicative part of a type theory containing at least the simply typed lambda calculus. 
Trotta and Spadetto [37] analyse which logical structure we might assume to be already present in the predicative part of 
our type theory, is preserved – or at least maintained – by this procedure.

6. Gödel doctrines and their Dialectica principles

A Gödel doctrine is essentially a structure where the main features underlying the Dialectica translation hold in a gen-
eralised form. One of these concepts is e.g. the existence of a witness function and a counterexample one, for every given 
implication i : I | ∃u.∀x.AD(u, x, i) � ∃v.∀y.B D(v, y, i). Intuitively, one can look at the notion of existential-free predicate as 
a reformulation of the principle of independence of premises, as well as the universal property characterising a universal-free
predicate reformulates the content of Markov principle. In fact, in the proof of Theorem 4.18 existential and universal free 
predicates correspond to (IP) and (MP*) in the Dialectica interpretation of implicational formulae.

In this section, we are going to make this intuition precise, by formally connecting the notion of Gödel first-order 
hyperdoctrine to the principles (IP) and (MP*).

6.1. Gödel hyperdoctrines

We show in which sense the principles (IP*) and (MP*) are satisfied in a Gödel hyperdoctrine, using their rule versions. 
First, we have to equip Gödel doctrines with the appropriate Heyting structure in the fibres in order to be able to formally 
express these principles. Therefore, we consider Gödel hyperdoctrines.

Definition 6.1. A hyperdoctrine P : Cop −→ Hey is said to be a Gödel hyperdoctrine when P is a Gödel doctrine.

Notice that from a logical perspective, one might want the quantifier-free predicates to be closed with respect to all the 
propositional connectives, since this is what happens in logic. However, we can demand less. So we start requiring only the 
Heyting structure on the fibres and study the logical principles in this setting.

Theorem 6.2. Every Gödel first-order hyperdoctrine P : Cop −→ Hey satisfies the Rule of Independence of Premise, i.e. whenever 
β ∈ P (A × B) and α ∈ P (A) is an existential-free predicate, it is the case that:

a : A | � � α(a) → ∃b.β(a,b) implies that a : A | � � ∃b.(α(a) → β(a,b)).

Proof. Let us assume that a : A | � � α(a) → ∃b.β(a, b). Then it is the case that a : A | α(a) � ∃b.β(a, b). Since α(a) is free 
from the existential quantifier, it is the case that there is a term in context a : A | t(a) : B such that:

a : A | � � α(a) → β(a, t(a)).

Therefore, since:

a : A | α(a) → β(a, t(a)) � ∃b.(α(a) → β(a,b))

(as this holds for any predicate γ (a, −) in place of the predicate αD(a) → β(a, −)) we conclude that:

a : A | � � ∃b.(α(a) → β(a,b)). �
Similarly, we can prove the following result.

Theorem 6.3. Every Gödel first-order hyperdoctrine P : Cop −→ Hey satisfies the following Modified Markov Rule, i.e. whenever 
βD ∈ P (A) is a quantifier-free predicate and α ∈ P (A × B) is an existential-free predicate, it is the case that:

a : A | � � (∀b.α(a,b)) → βD(a) implies that a : A | � � ∃b.(α(a,b) → βD(a)).

Proof. Let us assume that a : A | � � (∀b.α(a, b)) → βD(a). Then it is the case that a : A | (∀b.α(a, b)) � βD(a). Hence, since 
βD is quantifier-free and α is existential-free, there exists a term in context a : A | t(a) : B such that:

a : A | � � α(a, t(a)) → βD(a)

therefore, since:

a : A | α(a, t(a)) → β(a) � ∃b.(α(a,b) → βD(a))
17
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we can conclude that:

a : A | � � ∃b.(α(a,b) → βD(a)). �
To obtain (the generalised) Markov rule from Theorem 6.3 we have to require that the predicate associate with falsum 

⊥ to be quantifier-free.

Corollary 6.4. Every Gödel first-order hyperdoctrine P : Cop −→ Hey such that ⊥ is a quantifier-free predicate satisfies (the gener-
alised) Markov Rule, i.e. for every quantifier-free predicate αD ∈ P (A × B) it is the case that:

b : B | � � ¬∀a.αD(a,b) implies that b : B | � � ∃a.¬αD(a,b).

Proof. This follows from Theorem 6.3 by replacing βD with ⊥, which is quantifier-free by hypothesis. �
In Theorems 6.3 and 6.2 we proved that the universal properties of existential and universal free predicates allow us to 

prove that a Gödel first-order hyperdoctrine satisfies the Modified Markov Rule and the Rule of Independence of Premise.
From a logical perspective, the intuition behind Theorem, 6.2 is that the existential-free predicates of a Gödel first-order 

hyperdoctrine correspond to formulae satisfying (R-IP). Similarly, we have that the quantifier-free predicates of a Gödel 
doctrine are exactly those satisfying an (R-MMP) by Theorem 6.3. Notice also that applying the definitions of existential-free 
and universal-free predicates, we immediately obtain the following presentation of the Rule of Choice, see [23] (also called 
explicit definability in [30]) and the Counterexample Property, previously defined in [37].

Corollary 6.5. Every Gödel first-order hyperdoctrine P : Cop −→ Hey such that ⊥ is a quantifier-free object satisfies the Counterex-
ample Property, that is, whenever:

a : A | ∀b.α(a,b) � ⊥
for some predicate α(a, b) ∈ P (A × B), then it is the case that:

a : A | α(a, g(a)) � ⊥
for some term in context a : A | g(a) : B.

Corollary 6.6. Every Gödel first-order hyperdoctrine P : Cop −→ Hey such that � is existential-free satisfies the Rule of Choice, that 
is, whenever:

a : A | � � ∃b.α(a,b)

for some existential-free predicate α ∈ P (A × B), then it is the case that:

a : A | � � α(a, g(a))

for some term in context a : A | g(a) : B.

6.2. Principles as a strengthening of rules

We have just looked at which rules hold in Gödel first-order hyperdoctrines. In this subsection we analyse the respective 
logical principles in Gödel first-order hyperdoctrines. Thus, we look for the right hypotheses that allow us to produce models 
of the stronger formulation of the rules as principles. These hypotheses involve closure properties of the existential-free and 
quantifier-free predicates under some propositional connectives (conjunction, implication, falsehood). These requests appear 
natural if we compare our notions of being categorically existential-free and quantifier-free, to the syntactic notion of being 
free from a quantifier. Applying connectives to predicates free from a quantifier produces predicates that continue being 
free from that quantifier. We are going to see a concrete instance of these closure properties in Example 6.13.

The following theorem is the first of this series of results and involves the Independence of Premise:

Theorem 6.7 (Independence of Premise in Gödel hyperdoctrines - strong version). Every Gödel first-order hyperdoctrine P : Cop −→
Hey whose existential-free predicates are closed with respect to finite conjunctions satisfies the Principle of Independence of 
Premise, i.e. whenever β ∈ P (A × B) and α ∈ P (A) is an existential-free predicate, it is the case that:

a : A | � � (α(a) → ∃b.β(a,b)) → ∃b.(α(a) → β(a,b)).
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Proof. First, since every Gödel doctrine has enough existential-free predicates, there exists an existential-free predicate 
γ (a, c) ∈ P (A × C) such that:

a : A | ∃c.γ (a, c) �� α(a) → ∃b.β(a,b).

In particular, we have that a : A, c : C | γ (a, c) � α(a) → ∃b.β(a, b). Then we have that:

a : A, c : C | γ (a, c) ∧ α(a) � ∃b.β(a,b)

and γ (a, c) ∧ α(a) is an existential-free predicate since both γ (a, c) and α(a) are existential-free predicates and existential-
free predicates are closed under finite conjunctions by hypothesis. Therefore, we can conclude that there exists a term 
a : A, c : C | t(a, c) : B such that:

a : A, c : C | γ (a, c) ∧ α(a) � β(a, t(a, c)).

Hence:

a : A, c : C | γ (a, c) � α(a) → β(a, t(a, c))

and since α(a) → β(a, t(a, c) is exactly (α(a) → β(a, b))[t(a, c)/b] and it always holds that:

a : A, c : C | (α(a) → β(a,b))[t(a, c)/b] � ∃b.(α(a) → β(a,b))

we can conclude that:

a : A, c : C | γ (a, c) � ∃b.(α(a) → β(a,b)).

Therefore we get that:

a : A | ∃c.γ (a, c) � ∃b.(α(a) → β(a,b))

and, since a : A | ∃c.γ (a, c) �� α(a) → ∃b.β(a, b), it is the case that:

a : A | � � (α(a) → ∃b.β(a,b)) → ∃b.(α(a) → β(a,b)). �
As a corollary of the previous result, we obtain the following presentation of the principle (IP*) introduced in Section 2.2

in terms of Gödel first-order hyperdoctrines. We recall that (IP*) is precisely the form of the Principle of Independence of 
Premise we need in the Dialectica interpretation.

Corollary 6.8. Every Gödel first-order hyperdoctrine P : Cop −→ Hey such that the existential-free predicates are closed with respect 
to finite conjunction satisfies (IP*), i.e. whenever β ∈ P (C × B) and αD ∈ P (A) is a quantifier-free predicate, it is the case that:

−| � � (∀a.αD(a) → ∃b.∀c.β(c,b)) → ∃b.(∀a.αD(a) → ∀c.β(c,b)).

Proof. It follows from Theorem 6.7 and from the fact that if αD is quantifier-free then ∀a.αD is existential-free. �
Similarly, we can prove the following result for Markov principle. In this case, we make the additional request that there 

is an arrow from the terminal object of the base category to any other object. This corresponds to requiring that every 
context of the underlying type theory has a substitution from the empty context, that is equivalent to the assumption that 
every basic sort has a given term (hence that every type in context has a term in context) i.e. is not initial.

Theorem 6.9 (Modified Markov in Gödel hyperdoctrines - strong version). Every Gödel first-order hyperdoctrine P : Cop −→ Hey such 
that there exists an arrow 1 → C for every object C of C , and whose existential-free predicates are closed with respect to implication, 
satisfies the following Modified Markov Principle, i.e. whenever βD ∈ P (A) is a quantifier-free predicate and α ∈ P (A × B) is an 
existential-free predicate, it is the case that:

a : A | � � (∀b.α(a,b) → βD(a)) → ∃b.(α(a,b) → βD(a)).

Proof. Since α is an existential-free predicate and βD is quantifier-free it is the case that: ∀b.α(a, b) → βD(a) lives in 
P∃-free(A). Thus, since P∃-free has enough universal-free predicates as P is a Gödel doctrine, there exists a universal-free 
predicate of P∃-free, i.e. a quantifier-free predicate:

σD ∈ P∃-free(A × C)
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of P , such that:

a : A | ∀c.σD(a, c) �� ∀b.α(a,b) → βD(a).

In particular a : A | ∀c.σD(a, c) ∧ ∀b.α(a, b) � βD(a) and hence:

a : A | ∀c.∀b.(σD(a, c) ∧ α(a,b)) � βD(a)

since by hypothesis all types are inhabited. Now, since βD is quantifier-free, i.e. it is universal-free in P∃-free, there exist two 
terms a : A | t(a) : B and a : A | t′(a) : C such that:

a : A | σD(a, t′(a)) ∧ α(a, t(a)) � βD(a).

Therefore it is the case that a : A | σD(a, t′(a)) � (α(a, b) → βD(a))[t(a)/b]. Now, since:

a : A | ∀c.σD(a, c) � σD(a, t′(a))

always holds and since a : A | (α(a, b) → βD(a))[t(a)/b] � ∃b.(α(a, b) → βD(a)), we can conclude that:

a : A | � � (∀b.α(a,b) → βD(a)) → ∃b.(α(a,b) → βD(a)). �
To obtain the presentation of the generalised Markov Principle (MP*) used in the Dialectica interpretation as a corollary 

of Theorem 6.9, we simply have to require the bottom predicate ⊥ of a Gödel first-order hyperdoctrine to be quantifier-free.

Corollary 6.10. Every Gödel first-order hyperdoctrine P : Cop −→ Hey such that there exists an arrow 1 → C for every object C of C , 
and whose existential-free predicates are closed with respect to implication, and such that ⊥ is a quantifier-free predicate, satisfies (the 
generalised) Markov Principle, i.e. for every quantifier-free predicate αD ∈ P (A × B) it is the case that:

b : B | � � ¬∀a.αD(a,b) → ∃a.¬αD(a,b).

Proof. It follows by Theorem 6.9 just by replacing βD with ⊥, that is quantifier-free by hypothesis. �
We have proved that under suitable hypotheses, a Gödel first-order hyperdoctrine satisfies (IP*), (MP*), (MMP), and the 

principle of Skolemisation.
Therefore, combining Theorem 6.7, Theorem 6.9, and Proposition 4.11, we can repeat the chain of equivalences we 

provided in Section 2.1, and obtain the following main result.

Theorem 6.11 (Strengthened Dialectica functionals). Let P : Cop −→ Hey be a Gödel first-order hyperdoctrine such that:

• there exists an arrow 1 → C for every object C of C;
• existential-free predicates are closed with respect to implication and finite conjunction;
• falsehood ⊥ is a quantifier-free predicate.

Then for every ψD in P (I × U × X) and φD in P (I × V × Y ) quantifier-free predicates of P we have that the formula:

i : I | ∃u.∀x.ψD(i, u, x) → ∃v.∀y.φD(i, v, y)

is provably equivalent to:

i : I | ∃ f0, f1.∀u, y.(ψD(i, u, f1(i, u, y)) → φD(i, f0(i, u), y)).

Theorem 6.11 fully represents a categorical version of the translation of the implication connective in the Dialectica 
interpretation. In particular, it shows that the equivalence (ψ → φ)D ↔ (ψ D → φD) presented in Section 2.1 is perfectly 
modelled by a Gödel first-order hyperdoctrine satisfying the natural additional closure properties of Theorem 6.11.

Remark 6.12. Observe that Theorem 6.11 can be considered a stronger version of Theorem 4.18. Hence, once more, it con-
verts the rule stated in the latter theorem into an actual principle.

In detail, by the thesis of Theorem 6.11, it is enough to observe that the first sequent of the statement of Theorem 4.18
is equivalent to the sequent:

i : I | � � ∃u.∀x.AD(i, u, x) → ∃v.∀y.B D(i, v, y)

by the elimination and introduction rules for the implication, and that the second one is equivalent to the following:
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i : I | � � ∃ f0, f1.∀u, y.(AD(i, u, f1(i, u, y)) → B D(i, f0(i, u), y)).

For this second equivalence one applies the implicational elimination and introduction to convert the second sequent of 
4.18 into:

i : I, u : U , y : Y | � � AD(i, u, f1(i, u, y)) → B D(i, f0(i, u), y)

which is actually equivalent to i : I | � � ∃ f0, f1.∀u, y.(AD(i, u, f1(i, u, y)) → B D(i, f0(i, u), y)), by Corollary 6.6 and being 
the formula:

i : I | ∀u, y.(AD(i, u, f1(i, u, y)) → B D(i, f0(i, u), y))

existential-free.

Theorem 6.11 follows as a consequence of the fragment of first-order logic under which the internal language of a 
Gödel first-order hyperdoctrine is closed. Observe that this fragment contains at least intuitionistic first-order logic together 
with the Principle of Independence of Premise, the Modified Markov Principle, and the Principle of Skolemisation. These 
principles, together with the rules of intuitionistic first-order logic, are precisely what is needed to get the equivalence 
(A → B)D ↔ (AD → B D) in a Gödel first-order hyperdoctrine.

Clearly, any boolean doctrine satisfies these principles as well, as it models every inference rule of classic first-order logic. 
However, in general, they are not satisfied by a usual hyperdoctrine, because they are not necessarily true in intuitionistic 
first-order logic. It turns out that the fragment of first-order logic modelled by a Gödel hyperdoctrine is between intuitionistic first-
order logic and classical first-order logic: it is powerful enough to guarantee the equivalences in Section 2.1 that justify the 
Dialectica interpretation of the implication.

We end the current section with the following:

Example 6.13. Let us consider the syntactic doctrine H of Hilbert’s ε-τ calculus of Example 4.12. Recall from Example 4.16
that H is a Gödel doctrine, hence we have that H is a Gödel hyperdoctrine in the sense of Definition 6.1. Since H is a 
model of many-sorted intuitionistic first-order logic and since every predicate of H is both existential-free and universal-
free (hence every element is quantifier-free), it is the case that all of the hypotheses of the results of this section are trivially 
satisfied by H . Hence H happens to be a model of all of the versions of the Rule/Principle of Independence of Premise and 
Markov’s Rule/Principle presented. Clearly, in order to have (MP*) and (MMP) satisfied by H one needs to make the further 
assumption that the sorts of Hilbert’s ε-τ calculus be inhabited.

Observe that, in general, if a hyperdoctrine P has Hilbert’s ε-operators only (hence it is a hyperdoctrine possibly with-
out τ -operators), that is enough to have the required closure property under implication and finite conjunction of the 
existential-free predicates. This is actually enough to deduce the soundness of (IP) (and (IP*)), as in the proofs of Theo-
rem 6.7 and Corollary 6.8 we do not use that P∃-free has enough universal free predicates (see Example 4.12). However, in 
order to also have (MMP) (hence (MP*) with the additional closure properties) to be satisfied, one actually needs P ∃-free

to have enough universal free predicates. This is ensured e.g. if P has τ -operators as well. We refer to [8] for details and 
proofs of the validity of (MMP) and (MP*) in Hilbert’s τ -calculus.

A non-syntactic example of hyperdoctrine equipped with ε-operators only is presented in Example 5.14 of [23] (observe 
that the domain category of this example does not contain initial objects). Also, see [31] for further instances of doctrines 
equipped with Hilbert’s ε-operators.

We turn now to an application of Gödel doctrines.

7. Tripos-to-topos and Gödel doctrines

The tripos-to-topos construction was originally introduced in [33,18] as a generalisation of the construction of the cat-
egory of sheaves on a locale. Recently, this construction has been proven to be an instance of the exact completion of an 
elementary existential doctrine. We refer to [25,23] for the details, but we briefly recall it.

Tripos-to-topos. Given a first-order hyperdoctrine P : Cop −→ Hey, the category TP consists of:

• objects: are pairs (A, ρ) where ρ ∈ P (A × A) satisfies:
– symmetry: a1, a2 : A | ρ(a1, a2) � ρ(a2, a1);
– transitivity: a1, a2, a3 : A | ρ(a1, a2) ∧ ρ(a2, a3) � ρ(a1, a3).

• arrows (A, ρ) 
φ−→ (B, σ): are objects φ ∈ P (A × B) such that:

1. a : A, b : B | φ(a, b) ∧ ρ(a, a) � σ(b, b);
2. a1, a2 : A, b : B | ρ(a1, a2) ∧ φ(a1, b) � φ(a2, b);
3. a : A, b1, b2 : B | σ(b1, b2) ∧ φ(a, b1) � φ(a, b2);
4. a : A, b1, b2 : B | φ(a, b1) ∧ φ(a, b2) � σ(b1, b2);
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5. a : A | ρ(a, a) � ∃b.φ(a, b).

Then the following holds:

Theorem 7.1. Let P : Cop −→ Hey be a hyperdoctrine. Then TP is an exact category.

The construction of the category TP can be presented in the more general context of elementary and existential doctrines, 
and it is also called the exact completion of the elementary existential doctrine P , since it lifts to an adjunction between 
the 2-category of exact categories and that of elementary and existential doctrine. We refer to [25, Cor. 3.4] for a complete 
description of the construction in the general case.

7.1. Tripos-to-topos and exact completions

We recall from [26] a useful characterisation of the tripos-to-topos construction of a first-order hyperdoctrine arising 
as an existential completion. Again, in the present work we present the results for hyperdoctrines, but the characterisation 
presented in [26] works for an arbitrary elementary and existential doctrine.

To properly present such a characterisation we first need to recall from [23,25,24] the construction of the category of 
predicates of a first-order hyperdoctrine. The construction of this category is related to the comprehension and comprehensive 
diagonal completions.

Definition 7.2. Given a first-order hyperdoctrine P : Cop −→ Hey we define the comprehension completion Pc : Gop
P −→

Hey of P as follows:

• an object of GP is a pair (A, α) where A is a set and α ∈ P (A);

• an arrow (A, α) 
f−→ (B, β) is an arrow A 

f−→ B such that:

a : A | α(a) � β( f (a)).

The fibres Pc(A, α) are given by those predicates γ of P (A) such that a : A | γ (a) � α(a) (i.e. γ ≤ α). Moreover, the action 
of Pc on a morphism f : (B, β) → (A, α) is defined as Pc( f )(γ ) = P f (γ ) ∧ β i.e. the predicate:

b : B | γ ( f (b)) ∧ β(b)

where γ ∈ P (A) is such that γ ≤ α.

Similarly, the construction which freely adds a comprehensive diagonal is provided by the extensional reflection. We 
denote δA := ∃�(�A). According to the internal language of a given doctrine P , the predicate δA ∈ P (A × A) corresponds to 
the predicate:

a1 : A,a2 : A | a1 = a2.

Definition 7.3. Given an elementary doctrine P : Cop −→ Hey we can define the extensional reflection P x : X op
P −→ Pos

of P as follows: the base category XP is the quotient category of C with respect to the equivalence relation where f ∼ g
when:

� � f (a) = g(a) ( i.e. �A ≤ P 〈 f ,g〉(δB) in category-theoretic notation )

in context a : A, for two parallel arrows f , g : A → B . The equivalence class of a morphism f of C , i.e. an arrow of XP , is 
denoted by [ f ].

Finally, we denoted by Pred(P ) the category of predicates of a doctrine P , i.e. the category defined as:

Pred(P ) := XPc

where Pc is the comprehension completion of P . Again, we refer to [23,25,24] for a complete description of these construc-
tions. Now we have all the instruments to recall the characterisation of tripos-to-topos of existential completions from [26]. 
Such a characterisation essentially shows that every tripos-to-topos of an existential completion is an instance of (−)ex/lex

completion, namely the exact completion of a lex category in the sense of [5,4].

Theorem 7.4. Let P : Cop −→ Hey be a first-order hyperdoctrine. Then we have the equivalence:

TP∃ ≡ Pred(P )ex/lex

of exact categories.
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7.2. Tripos-to-topos for Gödel first-order hyperdoctrines

We recall that a Gödel first-order hyperdoctrine is in particular the existential completion of its subdoctrine of existential-
free predicates by Theorem 5.4 and Proposition 5.3. Therefore, we are able to apply Theorem 7.4 and can conclude the 
following characterisation of the tripos-to-topos construction of Gödel first-order hyperdoctrines:

Theorem 7.5. Let P : Cop −→ Hey be a Gödel first-order hyperdoctrine. Then the equivalence of exact categories:

TP ≡ Pred(P∃-free)ex/lex

holds.

We recall from [33,18] that when a doctrine is a tripos, then its tripos-to-topos construction is a topos. Hence, we have 
the following corollary for Gödel first-order hyperdoctrines:

Corollary 7.6. Let P : Cop −→ Hey be a Gödel first-order hyperdoctrine. If P is a tripos, then Pred(P∃-free)ex/lex is a topos.

Given this corollary, we might be tempted to call these toposes Dialectica toposes. These are however different from 
Biering’s Dialectica toposes.

Remark 7.7. The notion of Dialectica topos introduced in [3] as the tripos-to-topos of a suitable tripos called dialectica tripos. 
In [15] Hofstra characterises triposes arising in terms of ordered PCAs equipped with a filter. This characterisation includes 
Effective Topos-like triposes, but also the triposes for relative, modified and extensional realisability and the dialectica 
tripos. Therefore, the dialectica tripos can be seen as a tripos arising from a suitable ordered PCA. Triposes given by PCAs 
are known to be instances of a general completion that freely adds left adjoints along arbitrary maps. Hofstra was the first 
to observe this fact, see [15,14], but later in [11] and [26] it was proved that the construction identified by Hofstra in [14]
is a particular case of the full existential completion of a primary doctrine.

In this paper we have proposed a different approach to the definition of doctrines related to the Dialectica interpretation, 
focusing on the logical principles and rules we need to properly translate the implication connective as in the Dialectica. 
Therefore, we could say that our approach is more syntactic, and less related to realisability in general. The Dialectica tripos 
introduced in [3] is not a Gödel doctrine in general, since Gödel doctrines are given by an existential completion just along 
projections (and by a universal completion), while the Dialectica tripos is an instance of the full existential completion. 
Therefore, the Dialectica tripos satisfies different structural properties with respect to an arbitrary Gödel doctrine. For ex-
ample, the Dialectica tripos has left adjoints along every arrow, satisfying Beck-Chevalley conditions, while in an arbitrary 
Gödel doctrine the Beck-Chevalley conditions are not satisfied along arbitrary maps. Employing the universal properties of 
the existential and universal completions, one can show that the Dialectica tripos just contains a Gödel doctrine, but it is 
not equivalent to such a doctrine.

We can also relate this work to Maietti’s work on Joyal’s arithmetic universes.

Remark 7.8. Observe that categories arising as tripos-to-topos results of Gödel first-order hyperdoctrines have the same ab-
stract presentation as the Joyal-arithmetic universes introduced by Maietti in [22]. Recall also that a Joyal-arithmetic universe 
is defined as the exact completion Pred(S)ex/lex of the category of predicates of a Skolem theory S as defined in [22, Def. 
2.2], namely a cartesian category with a parameterised natural numbers object where all the objects are finite products of 
the natural numbers object.

8. Conclusion

This article is the culmination of various intertwined investigations begun in [38] and [39]. Inspired by Hofstra [16]
and Hyland [17], as well as by the work of Maietti and Trotta [26], itself inspired by Trotta [36], we embarked on the 
programme of expanding the characterisation of the categorical version of the Dialectica Interpretation, to complete Hofstra’s 
work. Hofstra studied the principle of Skolemisation showing that the Dialectica can be seen as a double completion of a 
cartesian category, under simple coproducts and products. We complete the work of Hofstra, by showing that the two 
other non-intuitionistic principles in the Dialectica interpretation, i.e. IP and MP can also be seen as instances of categorical 
constructions. Then we make sure that all the logical principles involved in the interpretation are precisely represented in 
the categorical models obtained.

Since the work on the purely fibrational setting seemed too abstract and hard to grasp, especially for our target audience 
of logicians, we opted for descriptions at the level of hyperdoctrines in [39,40]. These doctrines are the poset reflections of 
the fibrations used early on. This crystallised our understanding of the issue of quantifier-free formulae in the categorical 
setting, but also made clear the import of non-intuitionistic principles such as Independence of Premise and the Markov 
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Principle. These principles had been discussed by logicians, but not in categorical terms, as far as we are aware. Our investi-
gation is, so far, restricted to the environment of the Dialectica interpretation, but it has a wider reach, helping to complete 
the program of categorification of logic, originally suggested by Lawvere.

We hope to carry on exploring other issues of this investigation. We started connecting this work to the work on 
categorical realisability and computability, as described by Pitt’s tripos theory and the tripos to topos construction [33] in 
the final section of this article. Much remains to be done. A different direction that we have not even started to explore is 
the extension of our work to generalised versions of the Dialectica interpretation, as already hinted in the text, to dependent 
type theory in the style of [29]. Finally, the work in the original Dialectica category model [7] has had several applications 
to computer science problems like concurrency theory, in the shape of Petri Nets [9] and others [41]. We plan to investigate 
if these and other applications can be improved by our doctrinal version of the models.
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