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Abstract
Hailstorms pose a direct threat to agriculture, often causing yield losses and worsening 
farmers’ agricultural activity. Traditional methods of hail damage estimation, conducted by 
insurance field inspectors, have been questioned due to their complexity, partial subjectiv-
ity, and lack of accounting for spatial variability. Therefore, remote sensing integration in 
the estimation process could provide a valuable aid. The focus of this study was on winter 
wheat (Triticum aestivum L.) and its response to damage in the near-infrared (NIR) spec-
tral region, with a particular emphasis on the study of brown pigments as a proxy for yield 
damage estimation and mapping. An experiment was conducted during two cropping sea-
sons (2020–2021 and 2021–2022) at two sites, simulating hail damage at critical flowering 
and milky stages using a specifically designed prototype machinery with low, medium, and 
high damage gradients compared to undamaged conditions in plots with a minimum of 400 
m2 area. After the damage simulation, hyperspectral visible-NIR reflectance was measured 
with Unmanned Aerial Vehicle (UAV) flights, and measurements of chlorophyll and of leaf 
area index (LAI) were contextually taken. Final yield per treatment was recorded using a 
combine. An increase in absorbance in the NIR region (780–950 nm) was observed and 
evaluated using a spectral mixture analysis (SMA) after selecting representative damaged 
and undamaged vegetation spectra to map the damage. The abundance of damaged end-
member pixels per treatment resulted in a good relationship with the final yield (R2 = 0.73), 
identifying the most damaged areas. The absorbance feature was further analysed with a 
newly designed multispectral index (TAI), which was tested against a selection of indices 
and resulted in the highest relationship with the final yield (R2 = 0.64). Both approaches 
were effective in highlighting the absorbance feature over different dates and development 
stages, defining an effective mean for hailstorm damage mapping in winter wheat.
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 Introduction

Extreme weather events can cause significant economic losses worldwide in the agricul-
tural sector, with hailstorms being responsible for a considerable portion of reductions in 
crop yield and forage quality (de Leeuw et al., 2014; Mahul & Stutley, 2010). Defoliation, 
stem breakage, and direct grain loss are typical damages caused by hail in winter wheat 
(Triticum aestivum L.) (Counce et  al., 1994; USDA, 2010). The degree of yield loss is 
mainly related to the timing of the damage event, resulting in a greater reduction during 
reproductive stages (Counce et al., 1994; Furlanetto et al., 2021; Zhao et al., 2012). As of 
now, yield loss estimates are mainly done on field by insurance inspectors, but this pro-
cess has limitations such as small-scale assessment compared to the hail swath (Bell et al., 
2020), strong spatial variabilities (Nisi et al., 2016), time-consuming inspections (Furlan-
etto et al., 2023), and a degree of subjectivity in the evaluations (Zhou et al., 2016). Optical 
remote sensing can help overcome these limitations and provide wide-area coverage, con-
sistent revisit time, and repeatable measurements. Remote sensing applications from both 
satellites and unmanned aerial vehicles (UAVs) have been proven effective in aiding dam-
age assessment (de Leeuw et al., 2014; Schillaci et al., 2022). Unmanned aerial vehicles 
(UAVs) stand out with their high ground sampling capacity (Furlanetto et al., 2023) allow-
ing vegetation study at the microscale. They nonetheless have limitations in terms of area 
coverage and potential uncertainties related to variable illumination conditions (Abdelbaki 
et al., 2021; Zhang et al., 2021).

The optical properties of vegetation in the visible and near-infrared region (VIS-NIR) 
have long been recognized as a valuable tool for assessing various crop parameters, includ-
ing chlorophyll (Filella & Peñuelas, 1994), leaf area index (LAI) (Fang et al., 2019), can-
opy water content (Peñuelas et  al., 1997), and general stress/senescence (Carter, 1994; 
Guyot & Baret, 1988; Tucker, 1979). While these parameters may be useful for estimat-
ing hail damage in crops whose productivity loss is mainly related to defoliation, some 
limitations may apply when it comes to winter wheat. Defoliation is one of the most visible 
damages caused by hailstones on crops at the canopy level. It is often associated with yield 
decreases, such as in maize (Gobbo et al., 2021; Shapiro et al., 1986), although in other 
crops the relationship between defoliation and loss is not always linear (Lauer et al., 2004). 
For instance, defoliation in winter wheat has been reported to be not strictly related to yield 
losses, both in early (Zhu et al., 2004) and later plant development stages (Holmes, 1973). 
On the contrary, depending on its degree, it may not have a detrimental effect on the final 
yield, or, in some cases, it may even increase plant water use efficiency (Ahmadi et  al., 
2009). Defoliation in winter wheat can also increase the chlorophyll concentration both in 
the remaining leaves/leaf portions (Macedo et al., 2006) or in the inflorescence (Holmes, 
1973). Although Macedo et al. (2007) found differences in the photosynthetic rate between 
defoliation and non-defoliation treatments, these were related to the leaf-level pattern of 
defoliation rather than its degree.

The microscale study of pigments other than chlorophyll may offer a feasible way to 
detect hail damage. Hailstones cause wounds to the leaf tissue, which leads to biochemi-
cal changes visible in dead plant portions resulting from the hail impact (Fernandes et al., 
2011). For instance, when leaf tissue is disrupted and/or senescent, the polyphenol oxidase 
(PPO) and the polyphenols are mixed together (Vaughn & Duke, 1984), producing qui-
nones. Quinones are often considered as a defence mechanism against herbivores, as they 
reduce protein assimilability and act as a physical barrier against pathogens (Mohammadi 
& Kazemi, 2002; Queiroz et al., 2008). Quinones are also associated with the browning 
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observed in wounded or senescent leaf tissue (Bittner, 2006; Queiroz et al., 2008; Richard-
Forget & Goupy, 1994; Vaughn & Duke, 1984). Peñuelas et al. (2004) proposed linking 
quinones with the concept of brown pigments, but the definition of this latter term remains 
elusive. Initially included in the PROSPECT model (Jacquemoud & Baret, 1990), brown 
pigments were associated with the broad notion of polyphenols absorbing light at wave-
lengths shorter than 1300 nm (Baret & Fourty, 1997). Nonetheless, Peñuelas et al. (2004) 
linked them with quinones, and linked their browning feature to the PPO activity, as also 
suggested by Bittner (2006). This browning feature was also suggested by Richard-Forget 
and Goupy (1994) and Ustin and Jacquemoud (2020), and is consistent with the physiolog-
ical processes described by Queiroz et al. (2008) and Vaughn and Duke (1984). However, 
most quinones have absorbance peaks in the UV-blue region (Bittner, 2006; Nicolas et al., 
1994), while brown pigments are reported to absorb light in the NIR region. Interestingly, 
Pierpoint (1969) originally reported absorbance feature of certain quinones molecules in 
the far-red region of the spectrum.

Recently, the definition of brown pigments has been expanded to include decay pig-
ments, which comprise a variety of compounds that appear during plant tissue decomposi-
tion and increase absorbance, particularly in the NIR region, with a peak at approximately 
800 nm (Proctor et al., 2017). This unique absorbance behaviour tends to flatten the red-
NIR region, making the vegetation spectrum similar to soil features. Such a physiologi-
cal response seems plausible in a hail-damaged canopy, given that hailstones can defoliate 
and crush plant organs, compromising tissue functions and possibly leading to necrosis 
and activation of plant defence mechanisms (Holman et al., 2023). Moreover, Proctor et al. 
(2017) pointed out the high complexity of decay pigments resulting from the interaction 
of quinones with phenols and amino acids (Bittner, 2006; Nicolas et al., 1994), which can 
produce a variety of molecules that eventually affect the NIR region. This suggests that 
brown pigments are not directly responsible for browning but appear in brown areas as a 
result of cellular dismantling. Therefore, studying the effects of brown pigments on plant 
NIR reflectivity may provide new insights into detecting stress in winter wheat following 
hail damage alongside with traditional canopy level analysis (e.g., defoliation).

From this perspective, the use of hyperspectral imaging from UAV provides unprec-
edented insight into the reflectivity characteristics of plants at the microscale in open field 
situations, enabling a detailed snapshot of plant status following extreme weather events 
such as hailstorms. Furthermore, UAV hyperspectral data can serve as a precursor for 
detailed studies later to be extended to multispectral sensors, which are currently less com-
putationally demanding, easier to use, and more commonly employed in out-of-research 
applications (Adão et al., 2017). The objectives of this study were to: (1) investigate winter 
wheat response to hail damage in the NIR region at the microscale, (2) investigate a link 
between the NIR changes and the damage in terms of yield drops, and (3) possibly extend 
the findings to applications at the multispectral level.

 Materials and methods

 Experimental site and design

A two-year experiment was conducted on winter wheat (Triticum aestivum L., var. Bal-
neo in 2021 and Rubisko in 2022) at two different locations during the 2020–2021 and 
2021–2022 cropping seasons. The first site, VL21, was located at a farm in Meolo within 
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the Venice Lagoon watershed (NE Italy, 45°33’20’’ N, 12°25’50’’ E) in 2021, while the 
second site, LT22, was located at the University of Padova’s experimental farm “L. Ton-
iolo” in Legnaro (45°35’01’’ N, 11°94’92’’ E) in 2022 (Fig. 1). VL21 has a subhumid cli-
mate with an average temperature of 14 °C and an annual rainfall of 1080 mm, with a mean 
reference evapotranspiration (ET0) of 996 mm year−1. The soil at VL21 is an Endogleyic 
Calcisol (IUSS Working Group WRB, 2015), silty-clay-loam, with low SOC (1.52 ± 0.20 
g 100 g−1) and low total nitrogen (0.21 ± 0.02 g 100 g−1) in the tilled layer (0–30 cm). 
LT22 also has a subhumid climate with an average temperature of 14 °C and annual rain-
fall of 836 mm, with a mean reference ET0 of 992 mm year−1. The soil is a Fluvi-Calcaric 
Cambisol (IUSS Working Group WRB, 2015), silty-loam, with SOC and total nitrogen 
even lower than VL21 (SOC = 0.91 ± 0.06 g 100 g−1; total N = 0.11 ± 0.01 g 100 g−1) in the 
0–30 cm layer (Dal Ferro et al., 2020). Agronomic field operations included a 30 cm-deep 
moldboard ploughing followed by seedbed preparation with a disc harrow. Fertilization 
was done following the crop specific requirements per site, that is 305 kg N ha−1 in 2021 
and 178 kg N ha−1 in 2022.

Hail damage was simulated at both locations during both years of the experiment. A 
prototype specifically designed at the University of Padova was used to simulate the hail 
damage, consisting of a 6 m long horizontal rotating pole driven by the tractor’s power take 
off (Fig. 2). Ropes, 0.35 m long knotted at the end, were attached to the pole and rotated 
at different speeds to vary the damage level. Three damage intensities were simulated, 
including low damage, medium damage, and high damage, respectively an estimated 20%, 
50% and 80% of yield loss, which were compared with undamaged conditions (control 
treatment, hereafter Ctrl). Insurance field inspectors assisted in calibrating the prototype 
to closely resemble real hailstorm effects on crops. The damage intensity (i.e., yield loss) 
was evaluated based on the number of kernels that were damaged or lost, as well as leaf 

Fig. 1   Location and aerial map of the experimental sites VL (2021) and LT (2022)
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shredding/removal and stem breakage. The prototype rotating speed was therefore adjusted 
to achieve the planned 20%, 50% and 80% yield losses.

Treatments were performed during two different plant development stages: flowering 
(F) and milky (M), according to the BBCH phenological scale, BBCH 61–69 and BBCH 
75 (Lorenz et al., 2001), respectively. In 2021, damages were simulated on May 18th (F) 
and May 31st -June 3rd (M), while in 2022, treatments were done on May 11th (F) and 
May 26th (M). Treatments were performed in triplicate in plots measuring either 20 × 20 
m or 60 × 60 m at VL21 and 20 × 20 m at LT22. The large plot size at VL21 derived from 
their inclusion in a wider experimentation, which also included satellite imagery whose 
image resolution was lower than that of UAV. No natural hailstorm events occurred over 
the sites during the experiment.

 Ground measurements

Chlorophyll and LAI measurements were conducted 7–10 days after damage was inflicted 
to the crops. This allowed the plants to fully exhibit their morphological and physiological 
responses (such as leaf drying and necrosis). Four points per plot were sampled, with three 

Fig. 2   The designed prototype used for simulating the hail damage at different intensities during the experi-
mentation (above). Below, detail of the rotating ropes system in action during a low damage simulation
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replicates per point, along with remote measurements. Chlorophyll was measured on the 
flag leaf using a DUALEX active handheld optical pigment detector (FORCE-A, Orsay, 
France). The LAI was measured from mid-morning to mid-afternoon on clear-sky days 
using an Accupar LP-80 (Decagon Devices Inc., Pullman, WA, USA). To minimize the 
effect of accidental movements (Pokovai & Fodor, 2019), each reading was calculated as 
an average of five individual measurements taken in different probe positions, scanning an 
area of approximately 1 m2.

Yield measurements were obtained using a CX 5090 combine (New Holland, Torino, 
Italy) equipped with a yield monitor and a differential global positioning system. The com-
bine was calibrated after measuring a “ground truth” load weight at a weigh station. Raw 
yield data were then cleaned to exclude field-edge effects and harvester manoeuvres using 
the methodology described in Ping and Dobermann (2005). Yield data were expressed as 
grain dry matter per hectare (t DM ha−1).

 Remote sensing monitoring

Unmanned Aerial Vehicle (UAV) flights were performed over the experimental plots after 
each damage simulation, using a Matrice 600 Pro drone (DJI, Shenzhen, China). The UAV 
was equipped with a nanoHyperspec hyperspectral camera (Headwall Photonics, Bolton, 
MA, USA) mounting a 12 mm lens and stabilized with a Ronin MX Gimbal system (DJI, 
Shenzhen, China). The camera works as a push and broom sensor recording 640×n pixels 
images. It detects incoming radiation in the 400–1000 nm range, with a FWHM of 6.6 nm 
and a dispersion/pixel of 2.2 nm resulting in 273 bands. In 2021 flight height was 70 m 
-ground sample distance (GSD) of 4.4 cm-, while in 2022 it was 50 m -GSD of 3.5 cm-. 
Flights were completed between 11 a.m. and 15 p.m. on clear sky days. Prior to each flight 
a dark reference image was acquired, accounting for the camera self-noise. Two reference 
reflectance calibration tarps (Group 8 Technology, Provo, UT, USA) were placed on the 
scene, plainly visible to the sensor and free from shadows.

 Hyperspectral image elaboration

Hyperspectral image pre-processing and processing steps were conducted as described by 
Adão et al. (2017), with few changes described below. The images were pre-processed and 
orthorectified using the SpectralView software (Headwall Photonics, Bolton, MA, USA). 
The pre-processing of the full recorded spectrum included non-uniformity correction, con-
version to radiance, conversion to reflectance, and orthorectification of the single flight 
swaths. A mean white reference spectrum was selected for each image using the Spectral 
Angle Mapper (SAM) classification tool included in the software. The classification was 
based on a manually selected pure white pixel over the calibration tarp. Subsequent image 
processing steps were completed while keeping the single flight swaths separated, avoid-
ing the merging of overlapping areas wherever possible. This made it possible to work on 
“pure pixels” at all stages, thus avoiding spectral resampling in imperfectly overlapping 
pixels between swaths that would have resulted in raw spectral contamination. The final 
output was merged to create a full map. The spectra were smoothed using a Savitzky-Golay 
filter (window size = 11, polynomial order = 3) as implemented in the QGIS EnMAP-Box 
Plugin (EnMAP-Box Developers, 2019) to reduce signal noise while preserving the full 
spectral resolution.
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 Linear spectral unmixing

Linear spectral mixture analysis (SMA) was performed using the ENVI software (Exelis 
Visual Information Solutions, Boulder, CO, USA) to monitor the effect of simulated 
hailstorm on winter wheat tissues. This technique proved to be effective to describe 
vegetation reflectance from remote sensing multispectral and hyperspectral imagery 
in every pixel described as combinations of different factors called spectral endmem-
bers (e.g., Dawelbait et al. (2017); Yuan et al. (2021)). Two endmembers were selected, 
i.e., damaged and undamaged vegetation. The endmembers were selected on the LT22-
19/05 image and used for classification on the three other dates as well. The selection 
focused on the distinctive features in the 780–950 nm range, opting for spectra that dif-
fered mostly on that region. Endmembers were selected using a hybrid method based on 
principal component discrimination and image visual inspection. A number of ten spec-
tra was selected as representative, and these were averaged to obtain a final reference 
endmember. The undamaged vegetation endmember was selected on undamaged plots, 
while the damaged endmember was selected among the damage treatment plots, thus 
well identifying damaged vegetation and minimizing the incidence of undamaged veg-
etation features. The image analysis was conducted at the native image resolution and 
only on pixels fully representing vegetation, meaning that areas including bare soil and 
tractor prints caused during the damage simulation were masked out and not included in 
the analysis.

 Definition of the newly proposed index

A new index aimed at detecting changes in the NIR region (i.e., brown pigments) was 
designed and named TAI (Triangular Area Index). The TAI is therefore a simple and easy 
to apply geometric index defining the triangular area constrained between the near-infrared 
(NIR) and the red-edge (RE) regions. The general formulation is as follows:

where �
NIR

 is the reflectance value of the NIR band, �
RE

 is the reflectance value of the RE 
band, NIR

CW
 and RE

CW
 are the corresponding central wavelengths. The used central wave-

lengths were 865 nm (NIR) and 783 nm (RE), with a bandwidth comparable with the MSI 
Sentinel-2 (approximately 20 nm). The index value increases as the difference in reflec-
tance between 865 nm and 783 nm increases, while it approaches the zero value the flatter 
the NIR region is. A visual representation of the index is reported in Fig. 3.

 Stress indices considered in the study

Six other stress indices were also considered in this study (Table 1). They were selected 
after scrutiny of suitable indices addressing comparable plant physiological responses as of 
this study and focusing on similar spectral features. Among the indices, BPI (Brown Pig-
ment Index) (Peñuelas et al., 2004) stands out for its design meant at capturing brown pig-
ment presence in green vegetation. Its computation relies on the second derivative of the 
spectrum, calculated according to the indications provided by Rinnan et al. (2009), using a 

(1)TAI =

(

�
NIR−�RE

)

× (NIR
CW

− RE
CW

)

2
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Savitzky-Golay filter aimed at smoothing the second derivative to reduce its noise-enhanc-
ing behaviour.

 Results

 Weather

The mean temperature remained relatively stable during the winter and early spring 
between the two  years. However, during late spring and early summer of 2022, the 

Fig. 3   Visual representation of the TAI in case of an undamaged (upper) and damaged (lower) spectrum

Table 1   Selected indices used in the study and respective formulation and references

Index Formula References

BPI Wavelength difference where 2nd derivative crosses 0 in the NIR and far-red 
regions

(Peñuelas et al., 
2004)

Carter2 �
698∼694

�
762∼758

(Carter, 1994)

NDVI �
875∼855−�680∼650

�
875∼855+�680∼650

(Tucker, 1979)

PSRI �
683∼678−�503∼499

�
753∼749

(Merzlyak et al., 
1999)

REIP
740 ×

�672∼667−�782∼778

2
−�

702∼698

�
742∼738−�702∼698

(Guyot & Baret, 
1988)

TAI (�875∼855−�793∼773)×(865−783)

2

This study

TTVI 0.5 × (783 − 740) ×
(

�
875∼855 − �

742∼738

)

− (865 − 740) × (�
793∼773 − �

742∼738) (Xing et al., 2020)
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temperature was higher than that of 2021, as shown in Table 2. In particular, the aver-
age monthly temperature in May 2022 was 4.2 °C higher than in 2021. Precipitation was 
notably low during winter-spring 2022, with a relative difference of − 77 and − 76% 
observed during the flowering and milky stages in May and June 2022 compared to 
2021. The total precipitation recorded was 724.8 mm in VL21 and 291.4 mm in LT22, 
as shown in Table 2.

 Ground measurements

Chlorophyll content exhibited mixed behaviour following damage, with visible differ-
ences observed between the two sites (Table 3). Specifically, little to no differences were 
observed in VL21, where damage treatments often resulted in higher chlorophyll con-
tent than the control, particularly in F-medium damage in VL21-09/06. In contrast, in 
LT22, chlorophyll content exhibited lower values in the damage treatments at all dates. 
This behaviour did not strictly follow damage intensity, often leading to larger chlo-
rophyll decreases in lower damage levels. LAI measurements in both VL21 and LT22 
often showed little to no difference compared to Ctrl (Table  3). Generally lower val-
ues were observed as damage increased in LT22-19/05 survey. However, these results 
were not similarly found during the survey conducted on LT22-08/06, when the high 
damaged plots did not show the greatest LAI reduction compared to other less intense 
damages. 

The hail damage treatments caused a significant reduction (p < 0.05) in wheat yield 
compared to undamaged plots at both VL21 and LT22. The average yield in Ctrl was 7.41 t 
ha−1 in VL21 and 7.44 t ha−1 in LT22. As damage intensity increased, the yield decreased 
accordingly, consistently with a negative gradient (Table 4). In particular, VL21 exhibited 
a significant difference among treatments, revealing a strong negative correlation between 
the level of damage and yield. The highest level of damage in the milky stage (M) resulted 
in a peak loss of 69%. Conversely, in LT22, only the control exhibited a significant differ-
ence from the other treatments, despite an observed negative trend in line with the level of 
damage (Table 4).

Table 2   Weather data for the 
two sites at Venice Lagoon 
Watershed 2021 (VL21) 
and Padova 2022 (LT22) 
for the winter wheat season 
from seeding to harvesting 
(November–July)

VL21 LT22

Mean T (°C) Precipitation
(mm)

Mean T (°C) Precipitation
(mm)

 Nov 10.6 199.0 9.3 95.2
 Dec 6.0 98.6 3.9 36.2
 Jan 3.0 87.6 3.0 20.4
 Feb 7.0 30.8 6.2 10.2
 Mar 8.1 6.6 8.2 13.8
 Apr 11.5 114.2 12.0 39.8
 May 15.8 142.0 20.0 32.8
 June 23.8 45.4 24.5 11.0
 July 24.6 0.6 26.2 32.0

 Total 724.8  Total 291.4
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Table 3   Chlorophyll content and LAI measured on field for the two sites of VL21 and LT22

a Δ%: percentage variation of each damaged treatment compared with the control treatment
Post-hoc Tukey test letters of significance are reported (α = 0.05)

Year and site Stage of damage Treatment Chlorophyll (µg 
cm−2)

Δ%a LAI Δ%a

VL21-20/05 F Ctrl 29.71± 1.85 5.28± 0.20
Low 30.81± 0.27 3.7 5.64± 0.35 6.8
Me 29.12± 1.93 − 2.0 5.11± 0.27 − 3.2
Hi 30.57± 1.47 2.9 5.34± 0.40 1.1

VL21-09/06 Ctrl 31.08± 3.01 4.56± 0.21
F Low 32.24± 2.51 3.7 4.94± 0.10 8.3

Me 35.08± 3.31 12.9 4.72± 0.13 3.5
Hi 32.03± 2.02 3.1 4.75± 0.17 4.2

M Low 32.51± 0.49 4.6 4.53± 0.17 − 0.7
Me 30.10± 1.19 − 3.2 4.46± 0.44 − 2.2
Hi 29.64± 2.64 − 4.6 4.30± 0.26 − 5.7

LT22-19/05 Ctrl 47.36± 0.45 6.02± 0.45
F Low 42.68± 0.53 − 9.9 5.47± 0.53 − 9.1

Me 40.95± 0.43 − 13.5 5.29± 0.43 − 12.1
Hi 41.88± 0.50 − 11.6 5.14± 0.50 − 14.6

LT22-08/06 Ctrl 35.49± 0.42 (a) 4.62± 0.42
F Low 23.86± 0.46 (b) − 32.8 4.46± 0.46 − 3.5

Me 26.15± 0.30 (b) − 26.3 4.69± 0.30 1.5
Hi 27.61± 0.31 (ab) − 22.2 4.53± 0.31 − 1.9

M Low 29.37± 0.44 (ab) − 17.2 4.40± 0.44 − 4.8
Me 32.07± 0.12 (ab) − 9.6 4.11± 0.12 − 11.0
Hi 27.96± 0.25 (ab) − 21.2 4.17± 0.25 − 9.7

Table 4   Yield outputs per treatment at the two experimental sites VL21 and LT22. Post-hoc Tukey test let-
ters of significance are reported (α = 0.05)

Year and site Stage of damage Treatment Yield (t ha−1) Δ% with Ctrl

VL21 Ctrl 7.41± 0.08 (a)
F Low 5.50± 0.30 (b) − 25.8

Me 4.28± 0.32 (bc) − 42.2
Hi 3.17± 0.12 (cde) − 57.2

M Low 4.12± 0.58 (bd) − 44.4
Me 3.04± 0.46 (cde) − 59.0
Hi 2.29± 0.48 (e) − 69.1

LT22 Ctrl 7.44± 0.35 (a)
F Low 4.11± 0.41 (b) − 44.8

Me 3.78± 0.32 (b) − 49.2
Hi 3.37± 0.24 (b) − 54.7

M Low 4.62± 0.17 (b) − 37.9
Me 4.48± 0.28 (b) − 39.8
Hi 3.99± 0.07 (b) − 46.4
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Yield and LAI showed a poor correlation (not significant) in both VL21 and LT22 
(R2 = 0.11) (Fig. 4). Yield differences between damage levels were hardly captured by LAI, 
remarking its lack of differentiation between treatments reported in Table 3.

Fig. 4   Regression between yield 
and LAI including both sites 
VL21 and LT22

Fig. 5   Selected spectra endmem-
bers for undamaged and damaged 
winter wheat plants. The area 
with strips indicates the object 
of the study, the NIR shoulder 
reflectance dissimilarity between 
the two
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 Endmembers definition

Two average representative spectra were selected as endmembers for wheat, that 
is undamaged and damaged (Fig.  5). A different pattern is clear in the NIR-shoulder 
region, approximately from 760 to 950 nm, where damaged relative reflectance was 
− 9% on average compared to the undamaged spectra. The highest difference (− 15%) 
was observed at 760 nm, while the lowest (− 2%) at 868 nm.

 Spectral unmixing

The spectral unmixing technique was effective in distinguishing between damaged and 
undamaged plots, and in mapping the hail damage level in both VL21 and LT22. As 
an example, the classified map of VL21-09/06 (Fig.  6) clearly differentiated between 
damaged and undamaged areas. Control plots were also clearly distinguishable from the 
other treatments, which had damaged endmember abundance ranging from 0 to 30%. 
Notably, also control plots showed some slight degree of damaged endmember presence 
as well, particularly in the larger 60 × 60 m plot. Treatment plots that were damaged 
during the flowering (F) and milky (M) stages showed an increasing abundance of the 
damaged endmember as the damage intensity increased, as well as intra-plot variability.

Fig. 6   Linear spectral unmixing results from the VL experimental field on June 9th, 2021. The colour gra-
dient ranges from 0 (0% abundance of damaged spectrum in the pixel) to 1 (100% abundance of damaged 
spectrum in the pixel). Red straight lines in between plots (value = 1) represent tractor tire prints, thus com-
pletely dead vegetation (Color figure online)
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When analyzing the normalized percentage of pixels per treatment that exceeded 
increasing damaged spectrum abundance thresholds (Table  5), a clear gradient was 
observed. For this analysis, tractor prints (Fig.  6) and visible soil were masked out. 
VL21-20/05 and LT22-19/05 exhibited comparable values of damaged spectrum pixels 
during the flowering stage, across all thresholds. For instance, when considering the 
50% threshold, the differences in percentage points between VL21-20/05 and LT22-
19/05 were only 0.6, 2.5, and − 6.1% respectively, in low, medium, and high damages 
during the flowering stage. Nevertheless, a higher difference was observed between the 
control treatments, up to 10.1%. In June, the agreement between the two sites was less 
consistent. The difference between the abundance of damaged spectrum pixels in plots 
damaged during the flowering and milky stages was larger, ranging from 4.1% in milky 
(medium damage) to 23.3% in flowering (high damage). Notably, LT22-08/06 showed 
a lack of response to the damage level across all selected thresholds, not following a 
clear gradient in the plots damaged during flowering (lower > higher) and during milky 
(medium > higher). However, all damage treatments yielded a higher abundance of the 
damaged feature at all thresholds compared to the control.

 A strong relationship between yield and the 50% damaged endmember abundance 
threshold was observed, with the exception of LT22-08/06, as shown in Table  6. The 

Table 5   Percentage of pixels with damaged endmember abundance above a specific threshold (50–90%), 
per treatment. Data is reported for each sampling date and for each site

Sampling date Stage of damage Treatment Damaged endmember fraction (% of pixels) above abun-
dance threshold

50% 60% 70% 80% 90%

20/05/2021 F Ctrl 13.7 ± 2.5 8.7 ± 1.8 5.3 ± 1.2 3.2 ± 5.6 2 ± 3.5
Low 22.6 ± 7 14.4 ± 4.6 8.6 ± 2.8 4.9 ± 8.5 2.6 ± 4.4
Me 32.2 ± 8.6 21.3 ± 5.9 13.1 ± 3.6 7.6 ± 13.1 4.1 ± 7
Hi 37.1 ± 7.9 25.1 ± 5.6 16 ± 3.7 9.4 ± 16.3 5 ± 8.7

09/06/2021 Ctrl 21.4 ± 7.6 13.4 ± 5.1 7.9 ± 3.1 4.5 ± 7.9 2.7 ± 4.6
F Low 34.9 ± 4 23.6 ± 3.3 15 ± 2.4 9.1 ± 15.8 5.5 ± 9.5

Me 41.1 ± 3.1 29.2 ± 2.8 19.4 ± 2.3 12.3 ± 21.3 7.7 ± 13.3
Hi 47.5 ± 7.7 35.7 ± 7.5 24.6 ± 6.1 15.5 ± 26.9 9.2 ± 15.9

M Low 33.8 ± 10.2 24.2 ± 8.4 16.6 ± 6.5 11.3 ± 19.5 7.6 ± 13.2
Me 41.4 ± 10.1 30.9 ± 8.9 21.6 ± 7.1 14.7 ± 25.5 10 ± 17.2
Hi 48.6 ± 7.3 38.1 ± 6.9 28.4 ± 6.1 20.4 ± 35.3 14.4 ± 24.9

19/05/2022 Ctrl 3.6 ± 0.6 1.9 ± 0.3 0.8 ± 0.1 0.4 ± 0.7 0.2 ± 0.3
F Low 22 ± 8.3 13.7 ± 6 6.7 ± 3.3 4.7 ± 8.1 2.1 ± 3.7

Me 29.7 ± 2.9 18.5 ± 2.3 9 ± 1.4 6 ± 10.5 2.7 ± 4.6
Hi 38.4 ± 7.5 25.7 ± 6.5 13.3 ± 4.2 9.5 ± 16.4 4.5 ± 7.7

08/06/2022 Ctrl 15 ± 2 8.3 ± 1.1 4.1 ± 0.6 1.8 ± 3.1 0.7 ± 1.3
F Low 25.9 ± 5.1 15.5 ± 3.5 8.5 ± 2.3 4.1 ± 7 1.8 ± 3.1

Me 22.6 ± 3.3 13.2 ± 2.3 6.9 ± 1.5 3.4 ± 5.8 1.5 ± 2.6
Hi 24.1 ± 3.9 14.2 ± 2.7 7.7 ± 1.7 3.7 ± 6.4 1.6 ± 2.8

M Low 24.4 ± 5.2 14.4 ± 3.5 7.9 ± 2.2 4 ± 6.9 1.9 ± 3.2
Me 37.3 ± 9.6 23.7 ± 6.8 13.8 ± 4.5 7.4 ± 12.9 3.8 ± 6.5
Hi 32.6 ± 7.2 20.5 ± 5 11.9 ± 3.1 6.4 ± 11 3.1 ± 5.4
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highest R2 values were obtained using the 50% threshold for VL21-20/05, and 70% and 
80% for VL21-09/06. For both LT22-19/05 and LT22-08/06, the 50% threshold also 
resulted in high R2 values. Overall, the 50% threshold was the most strongly related 
with yield, with an R2 value of 0.60. When excluding LT22-08/06, this relationship was 
improved, with an R2 value of 0.73, highlighting its distinct response and lack of discrimi-
nation between damage levels (as described in Table 5). The R2 values decreased notice-
ably when more selective abundance thresholds were applied in all cases.

Table 6   R2 coefficients between 
yield and pixel frequency (in 
%) with damaged endmember 
fraction above the threshold

Sampling date % of pixels with damaged endmember 
fraction above threshold

50% 60% 70% 80% 90%

VL21-20/05 0.99 0.98 0.97 0.96 0.92
VL21-09/06 0.87 0.91 0.93 0.93 0.90
LT22-19/05 0.91 0.88 0.86 0.84 0.82
LT22-08/06 0.29 0.27 0.24 0.21 0.17
Overall 0.60 0.55 0.45 0.43 0.33
Overall (no LT22-08/06) 0.73 0.71 0.60 0.63 0.50

Fig. 7   Map of TAI index over VL21 site on June 9th, 2021. Labels in the plot refer to the control and simu-
lated hailstorm event intensity and period of occurrence
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 Multispectral indices

The capability of different indices to map the damage varied, as indicated by the differ-
ences observed when comparing the maps generated using the newly designed TAI with 
NDVI (see Figs.  7 and 8). The TAI was able to detect local scale differences not only 
between control and damaged plots but also within individual plots (see Fig. 7), often cor-
responding to the SMA maps (see Fig. 6). The index demonstrated greater sensitivity to 
subtle changes in the vegetation response in the NIR shoulder region. In contrast, NDVI 
exhibited relatively homogenous mapping results, detecting fewer differences between 
treatments, mostly noticeable in the flowering damaged plots (Fig. 8). Moreover, little to no 
variability was observed within single plots.

The newly designed TAI effectively captured the damage gradient across all dates and 
experimental fields, with the exception of LT22-08/06. In VL21-19/05, TAI ranged from 
0.47 in the control to 1.03 in higher damage (Table 7). Subsequent analysis conducted in 
June (VL21-09/06) reported comparable values in the flowering-damaged plots, while the 
control almost doubled. In VL21-09/06, the milky damaged plots ranged from 0.89 to 1.20. 
A similar trend was observed in LT22-19/05, albeit with lower differences between dam-
age treatments. Nevertheless, TAI showed higher variability compared to the other indi-
ces, especially when compared to NDVI, particularly at the VL21 site. A stronger average 
NDVI gradient was observed only in LT22. Particularly on LT22-19/05, a clear difference 
between the undamaged and the higher damage treatment (0.91 vs. 0.84) appeared, with a 
consistent gradient between damage levels. Such a pattern was less clear on LT22-08/06, 
notably leading to higher NDVI values in high damage flowering plots compared to the 

Fig. 8   Map of NDVI index over VL21 site on June 9th, 2021. Labels in the plot refer to the control and 
simulated hailstorm event intensity and period of occurrence
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lower damage treatments. A similar lack of differentiation was observed for the milky dam-
aged plots. The red-edge inflection point (REIP) index only slightly captured average dif-
ferences between the damage levels at all sites and dates. REIP only highlighted differences 
between the control and the damages, with the exception of VL21-09/06. TTVI, a geomet-
ric index like TAI, was similarly able to capture an average gradient across the experi-
ments, with the notable exception of VL21-20/05, where no clear pattern was visible. It 
particularly discriminated between damage and non-damaged and within damage in VL21-
09/06, where a clear gradient was observed. Carter2 highlighted average gradients mostly 
on VL21-20/05 and on LT22-19/05 but led to weaker differences in both VL21-09/06 and 
LT22-08/06. No differentiation was highlighted by PSRI in VL21-20/05, while generally 
lower values were observed for Ctrl in VL21-09/06 and LT22-08/06, where a gradient fol-
lowing damage intensity was generally present. The BPI yielded little to no average gra-
dient in all examined dates but LT22-19/05. Moreover, in VL21-09/06 the BPI showed 
a relatively higher amount of variability compared to the other dates. Notably, all tested 
indices showed a weaker capability in capturing the damage gradient on LT22-08/06, often 
resulting in an inverse trend following damage and on uneven results compared to the pre-
vious observations. In most cases, higher damage plots in both flowering and milky treat-
ments showed less apparent stress conditions than lower damage or control on this date.

The UAV hyperspectral-derived indices were finally used in a regression analysis to 
evaluate the explained yield variability (Table 8). Generally, a poor relationship between 
indices and yield across all sites and dates was found, with the exception of TAI. In fact, 
TAI was the only index that was able to explain some yield variability, even if lower than 
30%. In contrast, all other indices were not able to capture the yield variability as affected 
by hail damage. Strong increase in the explained yield variability was found when data 
from LT22-08/06 were excluded from the analysis. In fact, a strong differentiation in crop 
reflectance behaviour in late season 2022 was observed compared to the previous one and 
from other survey dates, that was due to extraordinary dry conditions (Table 2). Neverthe-
less, the indices from the literature were still far from the explained variability of the TAI, 
which was able to capture 64% of yield variability between sites and dates, excluded LT22-
08/06 (R2 = 0.64). It follows that indices generally failed to capture the variability between 
the different sites, dates and phenological stages concerning hail damage, apart for TAI.

 Discussion

Spectral mixture analysis is commonly used in satellite imagery, whereas its application in 
UAV systems has so far not been widely used, given the already high specificity of reflec-
tance at the centimetre-level resolution. However, even at such micro-scale, pixel mixture 
is present (Sankey et al., 2017), and the integration of this technique in crop yield predic-
tion has been shown to improve estimates (Yuan et  al., 2021). Our study highlights the 
robustness of spectral mixture analysis through the endmember selection method. End-
members were indeed selected on LT22-19/05 and applied to all other surveys. The clas-
sification was consistent over two years and sites, demonstrating the method sensitivity in 
mapping stressed vegetation at the micro-scale and responding to an increasing abundance 
of the damaged spectrum feature, i.e., a pronounced increase in absorbance between  780 
and  950 nm.

Despite this effectiveness, LT22-08/06 showed little to no differentiation in the damaged 
spectrum abundance between treatments, and particularly between control and damages. 
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This behaviour raised questions about the suitable time and conditions for a red-NIR analy-
sis based on the brown pigments concept. As suggested by Proctor et al. (2017), brown pig-
ments could be broadly defined as decay pigments, which are reported to naturally increase 
in senescent vegetation (brown areas). The LT22-08/06 survey occurred shortly after the 
milky stage, nonetheless it showed visible signs of senescence, i.e., yellowing/browning. 
This behaviour was not observed to such an extent in VL21-09/06, as also highlighted by 
the better classification performance observed in the latter. This discrepancy is possibly the 
result of the different amount of precipitation between the two years, with 2022 resulting 
in − 84% of precipitation volume during the critical months of April, May and June over 
the two sites. This could have accelerated the senescence process in winter wheat (Stasik 
et al., 2020), thus masking the effect of the hail damage and levelling the amount of brown 
pigments between treatments. Moreover, lower NDVI and slightly higher PSRI values were 
found on LT22-08/06 compared to VL21-09/06, possibly indicating an advanced senescing 
stage.

As pointed out by Adão et  al. (2017), the implementation of hyperspectral data and 
analysis outside of research settings, or in cases of technical/economic constraints, may 
currently be challenging. Additionally, although SMA seems effective, prior endmember 
selection may lead to inconsistency or arbitrary decisions. Therefore, multispectral indices 
approaches are a viable option to overcome these limitations. In this study, most of the 
tested indices exhibited low relationship with the final yield, especially when LT22-08/06 
was included. This variability may be due to differences in precipitation, soil characteris-
tics, and management practices between the two sites. Regressions between indices and 
yield at the LT22-08/06 site behaved similarly to SMA, supporting the hypothesis that a 
lack of precipitation and early senescence may hinder analysis. Thus, an approach incor-
porating information from various sources, such as weather stations and different indices, 
could aid in selecting suitable time windows for damage assessment. This may be particu-
larly critical since flowering and milky stages proved effective in assessing hail damage 
and are among the most sensitive stages in rainfed wheat conditions (Holman et al., 2023), 
but offer a relatively short time frame for analysis before winter wheat naturally becomes 
senescent.

Overall, the TAI index proposed in this study demonstrated the most stable perfor-
mance across both sites and appeared to be less affected by site-specific conditions influ-
encing hail damage on yield, as noted by Holman et al. (2023). Additionally, the damage 
distribution in TAI maps closely resembled the SMA maps, possibly due to the index’s 
specific focus on the NIR area affected by the decaying wounded tissue caused by the 
damage. In contrast, despite being designed to capture the same feature (Peñuelas et al., 
2004), the BPI index had a lower performance. This may be because the BPI was origi-
nally intended for laboratory spectrometer measurements, whose data are usually char-
acterized by a higher signal-to-noise ratio than UAV hyperspectral values. The latter are 
usually more noisy, as also noted by Adão et al. (2017) and Rossiter et al. (2020), due to 
varying illumination conditions over the canopy, pixel spectral mixing, and UAV move-
ments. These factors may have limited BPI’s effectiveness despite noise reduction being 
applied during computation, since second derivatives are sensitive to small variations 
in the data (Rinnan et al., 2009). The TTVI index, which is similar in design to the TAI 
but includes an additional band at 740 nm and is mainly aimed at LAI prediction (Xing 
et al., 2020), yielded similar results to the TAI in capturing average differences between 
damages, but had a lower overall performance, failing in encompassing different dates 
and site conditions. Among the other tested indices, NDVI showed a poor performance. 
This might possibly be explained by the chlorophyll behaviour, being it not consistent 
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among the two years and sites and thus possibly affecting the NDVI results. In fact, the 
chlorophyll content in stressed vegetation does not necessarily follow a decrease pat-
tern (Holmes, 1973; Macedo et  al., 2006), and thus it might also have confounded the 
results obtained from other indices sensitive to chlorophyll content such as REIP (Gitel-
son et al., 1996) when multiple dates are considered together.

 Conclusion

This study demonstrated the effectiveness of spectral mixture analysis in detecting hail 
damage in winter wheat and in differentiating damage intensity at both flowering and milky 
stages. The hail treatments affected the NIR region between  780 and  950 nm, revealing a 
characteristic absorbance feature associated with the presence of brown/decay pigments, 
which served as a viable proxy for mapping the occurrence and degree of the damage. The 
linear spectral unmixing technique highlighted a noticeable increase of damaged endmem-
ber abundance in accordance with damage intensity. The newly designed TAI index effec-
tively characterized the absorbance feature and proved to be more flexible than other tested 
indices in handling heterogeneous conditions, such as different years and sites. Both the 
spectral unmixing and index analysis demonstrated promising relationships with the final 
yield, highlighting the link between NIR changes (e.g., brown/decay pigments) and grain 
output in winter wheat. However, these approaches appeared to be limited to phenological 
stages before winter wheat natural senescence. Therefore, it is suggested that an approach 
combining information from multiple indices and integrating data from weather stations 
could help identify the most suitable time windows for this type of analysis. Further stud-
ies are needed to assess the effectiveness of the multispectral approach across a larger 
dataset, including various site-specific conditions. Additionally, the TAI index response to 
hail damage could be tested against other plant stress factors such as droughts, pests, and 
diseases.
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