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Abstract: This paper explores the potential of using the SAM (Segment-Anything Model) segmentator

to enhance the segmentation capability of known methods. SAM is a promptable segmentation

system that offers zero-shot generalization to unfamiliar objects and images, eliminating the need

for additional training. The open-source nature of SAM allows for easy access and implementation.

In our experiments, we aim to improve the segmentation performance by providing SAM with

checkpoints extracted from the masks produced by mainstream segmentators, and then merging the

segmentation masks provided by these two networks. We examine the “oracle” method (as upper

bound baseline performance), where segmentation masks are inferred only by SAM with checkpoints

extracted from the ground truth. One of the main contributions of this work is the combination (fusion)

of the logit segmentation masks produced by the SAM model with the ones provided by specialized

segmentation models such as DeepLabv3+ and PVTv2. This combination allows for a consistent

improvement in segmentation performance in most of the tested datasets. We exhaustively tested our

approach on seven heterogeneous public datasets, obtaining state-of-the-art results in two of them

(CAMO and Butterfly) with respect to the current best-performing method with a combination of

an ensemble of mainstream segmentator transformers and the SAM segmentator. The results of our

study provide valuable insights into the potential of incorporating the SAM segmentator into existing

segmentation techniques. We release with this paper the open-source implementation of our method.

Keywords: segmentation; deep learning; ensemble; zero-shot segmentator

1. Introduction

Semantic image segmentation aims to assign each pixel in an image to a specific
object class, enabling a more fine-grained understanding of visual content. Over the years,
deep learning models have significantly advanced the field, demonstrating remarkable
achievements in accurately segmenting objects within complex scenes. Among these
models, DeepLabv3+ [1] has garnered substantial attention due to its ability to capture
detailed object boundaries while maintaining computational efficiency.

However, a fundamental challenge faced by DeepLabv3+ and other mainstream
models lies in their ability to generalize to unfamiliar objects and images. In these cases,
these models often struggle to produce accurate segmentations, as they lack the necessary
knowledge to recognize and segment such objects effectively. This limitation restricts the
practical deployment of segmentation models in real-world scenarios, where encountering
novel objects is a common occurrence. Recently, two cutting-edge promptable segmentation
systems, SAM [2] and SEEM [3], have been proposed. They offer zero-shot generalization
capabilities to unfamiliar objects and images without requiring additional training. SAM
and SEEM leverage the powerful concept of prompting, which allows users to input
specific instructions or hints to guide the model’s behavior. We propose to leverage SAM
and SEEM alongside DeepLabv3+ to extend their segmentation accuracy when dealing
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with novel, unconventional objects belonging to known classes. Although DeepLabv3+
may not currently represent the state-of-the-art (SOTA) in semantic segmentation (the
current SOTA is obtained by transformers like [4]), it remains a highly popular and widely
used segmentator, serving as a valuable baseline for evaluating the performance of the
SAM and SEEM models.

Broadly speaking, our approach involves extracting checkpoints from the segmen-
tation masks produced by mainstream models such as DeepLabv3+ and utilizing them
as prompts for zero-shot segmentators such as SAM and SEEM. We see two fundamental
reasons why zero-shot segmentators can improve the quality of segmentation with respect
to mainstream models, including specialized models trained for a specific task.

1. Zero-shot segmentators are trained on more images (billions of them, in the case of
SAM) than mainstream and specialized models. This fact may allow them to beat the
SOTA in some circumstances.

2. Differences in the architecture and training set of the zero-shot segmentator with
respect to the mainstream and/or specialized models are a source of diversity, which
is the ideal prerequisite for a strong ensemble. The literature shows that ensemble
models have repeatedly improved the SOTA on several tasks. Indeed, in this paper our
approach allows us to improve the SOTA with an ensemble, as better explained later.

In addition, zero-shot segmentators are trained on images belonging to several dif-
ferent classes. As a consequence, in principle, our approach should provide acceptable
performance, even when not beating the SOTA, in many scenarios, particularly those
involving unfamiliar objects, and without the need of retraining/fine-tuning the models,
which is a benefit in real-world situations.

In this paper, we present a comprehensive analysis of the proposed approach, assessing
its impact on segmentation quality, generalization to unfamiliar objects, and computational
efficiency. As a noteworthy contribution, we propose to fuse the logit segmentation mask
provided by SAM with the logit mask provided by the segmentation model exploited to
extract the checkpoints. This fusion configuration produces consistently better results than
the base models. To provide a baseline for comparison, we also investigate the method of
using checkpoints extracted from ground truth segmentation masks, which we refer to as
the “oracle” method. We carry out experiments on seven heterogeneous benchmark datasets,
comparing the performance of DeepLabv3+ with and without SAM and SEEM integration.
The best performance is obtained by combining SAM with DeepLabv3+ using the proposed
mask fusion strategy. Only for some datasets, due to computational problems, we also run
an ensemble of PVTv2 transformers [4], whose fusion with SAM obtains the new SOTA for
CAMO and Butterfly datasets. Additionally, we evaluate the effectiveness of the “oracle”
method to provide insights into the potential benefits of leveraging ground truth information.

The contributions of this paper are the following: (i) we empirically prove that a
careful combination of a specialized segmentation model with a zero-shot segmentator like
SAM can generally improve the segmentation results at no cost, obtaining in some cases
SOTA results; (ii) we report an extensive performance evaluation on seven heterogeneous
datasets that support our claims, where we used two different segmentation models and
two alternative zero-shot segmentators; (iii) among other outcomes, our experiments
demonstrate how the fusion of a zero-shot segmentator with a specialized model can rival
and even surpass the fusion of two state-of-the-art specialized models, with the difference
that in the latter case, a double train is required in the training subset of the target dataset;
(iv) we release with this paper the open-source implementation of our method, freely
available at https://github.com/LorisNanni (accessed on 23 July 2023).

The remainder of the paper is organized as follows. Section 2 provides an overview
of related work in the field of semantic segmentation and zero-shot learning. Section 3
outlines the methodology, including the architecture of DeepLabv3+, the promptable
segmentation systems SAM and SEEM, and the proposed integration approach. Section 4
presents the experimental setup. Section 5.1 displays the results of the different methods
and a discussion of these results is carried out. Section 6 concludes the paper.

https://github.com/LorisNanni
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2. Related Work

The related work section provides an overview of the existing literature in the field
of semantic segmentation, focusing on three key aspects: deep learning-based segmen-
tation methods, zero-shot learning in segmentation, and combining continuous outputs
of different classifiers to improve performance. These areas of research have contributed
significantly to the advancement of the field, addressing challenges related to accurate and
efficient segmentation.

2.1. Deep Learning-Based Segmentation Methods

Deep learning-based segmentation methods have emerged as powerful techniques for
pixel-level object classification in images. These methods capitalize on the capabilities of
deep neural networks to capture intricate details and contextual information, allowing the ac-
curate segmentation of objects within complex scenes. U-Net [5] is a pioneering architecture
for image segmentation. It comprises a contracting path, which captures context information,
and an expansive path, which refines spatial details. U-Net’s skip connections facilitate the
fusion of feature maps from different resolutions, aiding in accurate pixel-wise predictions
and enabling its successful application in medical image segmentation tasks. SegNet [6] is
another popular semantic segmentation model, designed to balance segmentation accuracy
with computational efficiency. It uses an encoder-decoder architecture with a trainable
decoder for pixel-wise predictions. SegNet is known for its compact structure, which makes
it suitable for real-time applications in various domains. DeepLabv3+ [1] is an extension of
the DeepLab family, featuring Atrous Spatial Pyramid Pooling (ASPP) and encoder-decoder
modules. ASPP captures multi-scale contextual information, while the encoder-decoder
module refines segmentation boundaries. DeepLabv3+ is widely recognized for its strong
performance in large-scale and real-world segmentation tasks. HRNet [7] is a recent model
that retains high-resolution representations of the input throughout the network, thus cap-
turing fine-grained details in addition to global contextual information. This is achieved by
maintaining parallel sub-networks that process the input image at different scales, allowing
the network to effectively integrate features from various levels of granularity. HRNet has
demonstrated notable performance on various benchmarks for semantic segmentation. By
preserving high-resolution details, it excels at distinguishing fine-grained object boundaries
and accurately capturing object shapes, even in challenging scenarios.

Vision transformers [8] introduced the transformer architecture to image classification
tasks and have since been adapted to image segmentation. ViT models process images
in a patch-based manner and employ self-attention mechanisms to capture long-range
dependencies. Despite being designed for classification, they have also shown promising
results in semantic segmentation. Many transformer-based segmentation methods have been
proposed in recent years. For instance, the Object-Contextual Representation (OCR) model [9]
exhibits two transformer-based branches: one branch for object recognition and another
for contextual understanding. By considering the relationships between objects and their
context, OCR can distinguish between objects with similar features, leading to more accurate
segmentation results, e.g., for objects that are partially occluded or tightly packed together.
The SegFormer model [10] brings transformer-based models originally developed for natural
language processing to the domain of image segmentation. Transformers are adopted to
capture long-range dependencies and contextual relationships. Pyramid Vision Transformer
(PVT) v2 [4] is an extension of the ViT architecture designed to improve efficiency and
scalability. PVTv2 combines the advantages of both convolutional and transformer models,
leveraging multi-scale representations through pyramid structures. This allows PVTv2 to
achieve competitive performance in various vision tasks, including semantic segmentation.

It should also be mentioned that several works improve the performance of the models
mentioned above by considering additional information (for instance, the semantic relations
between pixels across different images [11] or the statistical distribution of pixels in each
class [12]) while building the models themselves.
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2.2. Zero-Shot Learning in Segmentation

Zero-shot learning plays a crucial role in segmentation tasks, especially when faced
with unfamiliar objects during inference. Traditional segmentation models often struggle
to generalize to novel or unseen object classes, as they lack the necessary knowledge to
effectively recognize and segment such objects. SAM, an image segmentation model [2],
stands out as an innovative approach to promptable image segmentation. Trained on a vast
dataset comprising more than one billion segmentation masks, SAM exhibits impressive
zero-shot generalization capabilities. It excels in producing high-quality masks even from a
single foreground point. The HQ-SAM model [13] is an extension of SAM that introduces a
learnable high-quality output token. This addition improves the effectiveness of the model
in various segmentation domains, resulting in improved performance. Although SAM may
not provide high-quality segmentation directly for medical image data [14–17], its masks,
features, and stability scores can be utilized to improve medical image segmentation models.
SAMAug [18] is a method that leverages SAM to augment image input for commonly-
used medical image segmentation models, boosting the performance of both CNN and
transformer models. Another work focusing on performance for medical images is [19],
which modifies only the SAM conditioning encoder part (mask or set of points). A new
encoder is placed at the beginning, trained using the gradients provided from the frozen
SAM subsequent architecture, and SOTA levels are reached in many datasets.

2.3. Combining Continuous Outputs

Several approaches have been proposed to combine continuous outputs in the field of
image segmentation. For a comprehensive list of combined approaches, please refer to [20,21].

One commonly used technique is the weighted rule, which aggregates the predicted
probability maps or logits from multiple models or methods. This rule has shown effec-
tiveness in various segmentation tasks. Many fusion-based methods have been proposed
in recent years; here, we describe two to elucidate how they work. In [22], a multi-label
classifier system based on CNN and LSTM networks for ATC prediction is employed. A 1D
feature vector from a compound is extracted and transformed into 2D matrices. A CNN
model is trained using these matrices to extract a set of new features. In parallel, an LSTM
model is trained on the original 1D vector to extract complementary features. These fea-
tures are then fed into two general-purpose classifiers specifically designed for multi-label
classification. Finally, the outputs of the classifiers are fused using the average rule to
generate the final prediction results. The average rule is a weighted rule in which each
classifier has the same weight.

Another study [23] focuses on the classification of pedestrians using deep learning
techniques with data from a monocular camera and a 3D LiDAR sensor. The outputs
from individual different CNNs are combined through learning and non-learning (average,
minimum, maximum, and normalized-product) approaches. From the experimental results,
fusion strategies obtain better results compared to individual CNNs. In particular, the
average rule obtains promising results.

3. Methodology

Motivated by the challenges of the datasets used and the capabilities of the zero-
shot semantic segmentation methods SAM and SEEM, we study how these methods can
improve the performance of mainstream segmentation approaches on such datasets. In this
section, we first illustrate the architecture of all the segmentators we use. Then, we describe
the methods we consider to generate prompts for the zero-shot segmentators.

3.1. DeepLabv3+ Architecture

DeepLabv3+ is a popular semantic segmentation model that has demonstrated impres-
sive performance in accurately segmenting objects within images. At its core, DeepLabv3+
utilizes a Fully Convolutional Network (FCN) structure, enabling end-to-end training
and inference on arbitrary-sized images. The network architecture consists of an encoder-
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decoder structure that leverages atrous convolutions and Atrous Spatial Pyramid Pooling
(ASPP) to capture multi-scale contextual information. DeepLabv3+ also introduces a
skip connection from the encoder to the decoder module to incorporate low-level details
from early layers of the network. This skip connection helps to refine the segmentation
boundaries and improve the localization accuracy of the segmented objects.

Overall, DeepLabv3+ combines the strengths of atrous convolutions, ASPP, and skip
connections to achieve SOTA segmentation results. Its architecture makes it possible to
capture detailed object boundaries while maintaining computational efficiency, making it
an excellent candidate for integration with the SAM segmentator.

3.2. Pyramid Vision Transformer Architecture

The Pyramid Vision Transformer (PVT) [4] stands as a transformer network devoid of
convolutions. Its core concept revolves around acquiring high-resolution representations
from finely-detailed input. The network’s depth is paired with a progressively narrowing
pyramid, enabling a reduction in computational burden. Additionally, to further curtail
computational overhead, the system incorporates a Spatial-Reduction Attention (SRA)
layer. Each PVT network is trained for 50 epochs with a batch size of 8. AdamW is used as
the optimizer. In this work, we use an ensemble of six networks, combined by average rule,
constructed as follows:

• we apply two different data augmentation, defined in [24]: DA1, a base data augmen-
tation consisting in horizontal and vertical flip, 90° rotation; DA2, which applies a rich
set of diverse operations to derive new images from the original ones. These operations
encompass shadowing, color mapping, vertical or horizontal flipping, and others.

• we apply three different learning strategies: learning rate of 1× 10−4; learning rate of

5× 10−4 decaying to 5× 10−5 after 10 epochs; learning rate of 5× 10−5 decaying to
5× 10−6 after 15 epochs and to 5× 10−6 after 30 epochs.

The six networks are obtained by coupling the two DA methods with the three
strategies to determine the learning rate.

3.3. SAM Architecture

SAM (Segment-Anything Model) [2] is a SOTA vision foundation model specifically
designed for promptable image segmentation. It has been trained on the extensive SA-1B
dataset, which includes 11 million images and more than 1 billion masks, making it the
largest segmentation dataset to date. This vast training set enables SAM to demonstrate
exceptional zero-shot generalization capabilities when applied to new data. SAM has
proven its ability to generate high-quality masks even with just a single foreground point
and has shown robust generalization across various downstream tasks, such as edge
detection, object proposal generation, and instance segmentation.

The SAM model consists of three main components: an image encoder, a flexible
prompt encoder, and a fast mask decoder. The image encoder utilizes a Vision Transformer
(ViT) backbone to process high-resolution 1024× 1024 images and generate a 64× 64 image
embedding. The prompt encoder handles both sparse prompts (e.g., points, boxes, text)
and dense prompts (e.g., masks) by converting them into c-dimensional tokens. Finally,
the lightweight mask decoder combines the image and prompt embeddings to produce
segmentation masks in real-time. This design allows SAM to efficiently handle diverse
prompts with minimal computational overhead.

In our study, we evaluated two versions of the SAM model: ViT-Huge (ViT-H) and
ViT-Large (ViT-L). The models vary in the complexity of the input image vision transformer-
based encoder, with the former model having 632 M parameters and the latter having
307 M parameters.

3.4. SEEM Architecture

SEEM is a promptable, interactive model for Segmenting Everything Everywhere all
at once in an image, as described in [3]. The system aims to predict masks and semantic
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concepts based on the interactions between the input image and multi-modal prompts. To
do this, it encodes points, masks, text, boxes, or even a similar referred region of another
image in the same joint visual-semantic space.

SEEM employs a generic encoder-decoder architecture, which consists of an image
encoder that extracts features from the input image, which are then used by the SEEM
decoder to predict masks and semantic concepts. Learnable queries interact with visual,
text, and memory prompts through a self-attention mechanism.

It is important to note that the panoptic and interactive segmentation parts of the
SEEM model are trained with COCO2017 [25] with panoptic segmentation annotations.

3.5. Checkpoint Engineering

We devised several methods to generate checkpoints (prompts). The goal of checkpoint
engineering is to investigate whether a specific prompt generation method can enhance the
performance of a prompt-based segmentator. Our system (see Figure 1 for an illustration of
the architecture) takes as input an image along with its segmentation mask. The segmenta-
tion mask specifically identifies a particular class of objects by separating them from the
remaining pixels, which represent the background. Note that in this work we are dealing
with only two classes of data (background and foreground). This segmentation mask can be
either the ground truth mask or the output of a segmentation model. Throughout this paper,
we will refer to this segmentation mask as the “source image mask.” It is important to note
that source image masks may be composed of several regions (“blobs”), disconnected from
each other, masking several portions of the image belonging to the same class of interest.

Figure 1. Visual scheme of the architecture of our system. An input RGB image is firstly processed

by a segmentator, e.g., DeepLabv3+. It produces in output a segmentation mask of scores. From

this mask we extract checkpoints. These checkpoints will be the input, along with the original RGB

image, of a zero-shot segmentator such as SAM or SEEM. This model will in turn produce another

segmentation mask of scores. Through the fusion process we condensate the two segmentation masks

of scores of the first segmentator and the zero-shot segmentator. The final segmentation mask is

obtained by thresholding the fused mask.

We devised four different methods to generate checkpoints starting from a source
image mask, which we refer to as “A”, “B”, “C”, and “D”.

A selects the average coordinates of the blob as the checkpoint. While simple and
straightforward, a drawback of this method is that checkpoints may occasionally fall
outside the blob region.

B determines the center of mass of the blob as the checkpoint. It is similar to Method A
and is relatively simple, but we observed that the extracted checkpoints are less likely
to lie outside the blob region.

C randomly selects a point within the blob region as the checkpoint. The primary
advantage of this method is its simplicity and efficiency. By randomly selecting a
point within the blob, a diverse range of checkpoints can be generated.

D enables the selection of multiple checkpoints within the blob region. Initially, a grid
is created with uniform sampling steps of size b in both the x and the y directions.
Checkpoints are chosen from the grid if they fall within the blob region. We also applied
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a modified version of this method that considers eroded (smaller) masks. In Table 2,
this modified version is referred to as “bm” (border mode). Erosion is a morphological
image processing technique used to reduce the boundaries of objects in a segmentation
mask. It works by applying a predefined kernel, in our case an elliptical-shaped kernel
with a size of 10 × 10 pixels, to the mask. The kernel slides through the image, and for
each position, if all the pixels covered by the kernel are part of the object (i.e., white), the
central pixel of the kernel is set to belong to the output eroded mask. Otherwise, it is set
to background (i.e., black). This process effectively erodes the boundaries of the objects
in the mask, making them smaller and removing noise or irregularities around the edges.
In certain cases, this method (both eroded and not) may fail to find any checkpoints
inside certain blobs. To address this, we implemented a fallback strategy: the grid of
checkpoints is shifted horizontally and then vertically, continuing this process while no
part of the grid overlaps with the segmentation mask. The pseudo-code for Method D,
including the fallback strategy, is provided in Algorithm 1.

Algorithm 1 Method D with mask erosion and fallback strategy.

Input:

mask ; // segmentation mask from which to sample the checkpoints
dp ; // grid sampling step
es ; // erosion size
Result: checkpoints
checkpoints← empty list ; // List to store the selected checkpoints
dx = dy = 0 ; // offsets along x and y directions

/* count the number of non trivial blobs in mask */
blobs_num = count_blobs(mask) ;

while checkpoints is empty AND dy < dp do

/* create a uniformly spaced grid of checkpoints with step dp, horizontal offset dx
and vertical offset dy */

grid← create_uniform_grid(dp, dx, dy) ;
while checkpoints is empty AND es > 0 do

/* erode mask with elliptical-shaped kernel of size of 10x10 px */
eroded_mask← erode_mask(mask, 10) ;
checkpoints← grid∩ eroded_mask ;
/* count the number of blobs having at least a checkpoint inside */
extracted_blob_idxs = count_blobs_spanned(checkpoints, mask) ;
if extracted_blob_idxs 6= blob_idxs then

checkpoints← empty list ;
es← es− 1

end

end

dx ← dx + 10 ;
if dx ≥ dp then

dx ← dx mod dp ;
dy← dy + 10 ;

end

end

An example of the checkpoints produced by the four methods is reported in Figure 2.
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(a) (b) (c) (d)

Figure 2. An example from the Portrait dataset showing the checkpoints extracted by the four

methods we consider in this paper. The mask overlaid in orange is provided by DeepLabv3+

and, of course, is the same in the four cases shown. (a) Method A places a checkpoint at the

average coordinates of each blob. (b) Method B puts a checkpoint at the center of mass of each blob.

(c) Method C randomly selects a point within each blob. (d) Method D provides a grid of checkpoints.

4. Experimental Setup

4.1. Datasets

In our experiments, we employed seven different datasets to evaluate the performance
of our segmentation methods: CAMO, Portrait, Locust-mini, VinDr-RibCXR, SKIN, Butter-
fly, and a subset of COCO2017. Each dataset offers unique characteristics and challenges,
which ensures a comprehensive evaluation. For each dataset, we use split training tests as
reported in the literature, except for COCO2017 (please refer to the description).

The CAMO dataset [26] consists of images with diverse natural scenes containing
objects of interest camouflaged in the background. It encompasses various challenging
scenarios, such as objects with complex textures and occlusions, making it suitable for
evaluating segmentation performance in real-world scenarios. The dataset contains a total
of 1250 images, of which 1000 were used for training and 250 for testing.

The Portrait dataset [27] focuses specifically on portrait images of humans. It is
designed to evaluate segmentation performance in the context of portrait photography,
considering factors such as facial features, skin tones, and background elements. This
dataset includes 1447 images for training and 289 images for validation; it can be accessed
on https://github.com/HYOJINPARK/ExtPortraitSeg (accessed on 23 July 2023).

The Locust-mini dataset [28] contains a collection of 874 images in the training set and
120 test images featuring camouflaged locusts and grasshoppers on various backgrounds.
This dataset poses unique challenges due to the complex color patterns and textures of
the insects, making it suitable for evaluating segmentation performance in the context of
camouflage detection.

The VinDr-RibCXR dataset [29] comprises chest X-ray images to detect and segment rib
structures. Although it is intended primarily for rib segmentation, we utilized this dataset
to evaluate the generalization capability of our proposed methods to medical imaging tasks.
This dataset includes a training set of 196 images and a test set of 49 images.

The SKIN dataset is a collection of many skin segmentation datasets. A brief descrip-
tion of each is given in Table 1; for an in-depth analysis, please refer to [30].

The Butterfly dataset [31] is a public dataset (http://www.josiahwang.com/dataset/
leedsbutterfly/) (accessed on 23 July 2023) for butterfly identification. For a fair comparison
with previous results, we used the same testing protocol proposed by the authors of
the dataset, that is, a four-fold cross-validation; each fold includes 208 test images and
624 training images. In this dataset we use resized images of size 513 × 513.

https://github.com/HYOJINPARK/ExtPortraitSeg
http://www.josiahwang.com/dataset/leedsbutterfly/
http://www.josiahwang.com/dataset/leedsbutterfly/
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Table 1. Description of the different skin datasets. ECU datasets are split into 2000 images for training

and 2000 as a further test set.

Short Name Complete Name Num of Samples

CMQ Compaq 4675

ECU ECU Face and Skin Detection 2000

HGR Hand Gesture Recognition 1558

MCG MCG-skin 1000

Prat Pratheepan 78

Sch Schmugge dataset 845

SFA SFA 1118

UC UChile DB-skin 103

VMD Human activity recognition 285

VT VT-AAST 66

The COCO 2017 Panoptic Image Segmentation dataset [25] is a comprehensive collection
of images with pixel-level annotations that classify objects into categories, providing both
object instance masks and semantic segmentation labels. We used the COCO 2017 Training
and Validation version, and used the validation part for testing. The dataset provides many
different supercategories and categories, but we selected the supercategory “animal” and
extracted all the images from the train/validation folders in which the supercategory label
was present. In this way we produced a binary ground truth (background/animal) to
train/test the different methods. The training folder contains 23,977 samples and the test
folder contains 1016 samples. We refer to this dataset as COCO_animals.

4.2. Performance Metrics

To assess the segmentation performance, we employed two commonly used metrics:
Intersection over Union (IoU ) and Dice similarity coefficient (Dice). For the CAMO dataset
we also computed the Mean Average Error (MAE), weighted F-measure, and E-measure,
since many papers that segment that dataset also report these performance indicators.

IoU, which was introduced in [32], is defined as

IoU(P, T) =
P ∩ T

P ∪ T
, (1)

where P is the predicted segmentation mask, T is the ground-truth mask, and the cardinality
is the number of pixels. An IoU of 1 corresponds to a perfect prediction, that is, a pixel-
perfect overlap between the predicted segmentation mask and the ground truth.

The Dice coefficient [33] is defined as

Dice(P, T) =
2P ∩ T

P + T
(2)

and it measures the overlap between the predicted segmentation mask and the ground
truth mask.

The Mean Absolute Error (MAE) metric [34] for 2D image semantic segmentation is a
measure of the average absolute difference between the predicted segmentation masks and
the ground-truth masks at the pixel level. It is defined as

MAE(P, T) =
∑

n
i=1 Pi − Ti

n
, (3)

where n is the number of pixels of an image, and with Xi we indicate the i-th pixel of
image X. It quantifies the accuracy of the segmentation model by calculating the average
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pixel-wise absolute difference between the predicted and true masks for each class in
the image. A lower MAE value indicates a better-performing segmentation model with
higher accuracy in predicting the correct segmentation boundaries and class labels. MAE
is commonly used to evaluate the performance of image segmentation models and to
compare different approaches in the field of computer vision.

The weighted F-measure [35] is used to capture the relationship between precision
and recall. This means that the F-measure considers the imbalance between classes and
provides a more comprehensive evaluation of the segmentation model’s performance on
different categories. A higher weighted F-measure indicates better overall segmentation
accuracy, considering the varying class proportions. We use the weights suggested by the
authors of CAMO.

The E-measure [36], also known as the Enhanced Dice Coefficient, is a performance
metric used in binary semantic segmentation tasks to evaluate the accuracy of the pre-
dictions. It is an extension of the Dice coefficient and incorporates an additional term to
penalize false positives and false negatives differently. This adjustment provides a more
balanced evaluation, especially in cases of class imbalance, where the standard Dice coeffi-
cient might be biased towards the majority class. A higher E-measure value indicates better
segmentation accuracy, considering both precision and recall of the predictions.

4.3. Baseline Extraction

The baseline performance in our experiments is established by evaluating the results
of the DeepLabv3+ model, which was trained end-to-end on each of the datasets in this
study. In addition, the PVTv2 segmentator ensemble is applied to the CAMO dataset.

For our experiments, we employed a DeepLabv3+ model with ResNet101 as the
backbone architecture. The model was not trained from scratch. We started the training
process from pre-trained weights on the Pascal VOC2012 Aug dataset [37], which consists of
513 × 513 RGB images from various categories (airplanes, buses, cars, trains, persons, horses,
and more) of the original Pascal VOC2012 dataset augmented with extra annotations.

The hyperparameters for the training phase (DeepLabv3+) were as follows: an initial
learning rate of 0.01, a total of 10 epochs for training, a momentum value of 0.9, L2
regularization with a coefficient of 0.005, a learning rate drop period of 5 epochs, a learning
rate drop factor of 0.2, shuffling of training images at every epoch, and the adoption of the
SGD (Stochastic Gradient Descent) optimizer. To increase the diversity and generalization
capability of the model, data augmentation techniques were employed. Three operations,
namely horizontal flip, vertical flip, and 90° rotation, were applied to augment the training
set. These augmentation operations create additional variations of the training samples,
thereby improving the robustness and adaptability of the trained network.

The baseline performance provided by the DeepLabv3+ model trained on each dataset
offers a reference point for evaluating the effectiveness and enhancements achieved by our
proposed methods.

4.4. Implementation Details

The pre-trained weights for SAM and SEEM were acquired from the official reposito-
ries of the projects (https://segment-anything.com/ (accessed on 23 July 2023) and https:
//github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once (accessed on
23 July 2023)), hosted on the popular software development platform GitHub.

To evaluate the effectiveness of our proposed methods, checkpoints were calculated
for every mask in the datasets utilized in this study. In this way, exactly the same checkpoint
prompts were employed for each model to produce segmented masks, enabling a consistent
and fair comparison across the different segmentation models.

4.5. Refinement Step Description

To further improve the segmentation results, we incorporated a final refinement step.
This step involves combining the logit segmentation masks produced by the SAM model

https://segment-anything.com/
https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once
https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once
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and the DeepLabv3+ model using a weighted-rule approach to obtain a final segmentation
mask. For the sake of computation time, only for some datasets we also combine the logit
masks produced by the SAM model and by the SOTA PVTv2 model.

The weighted rule combines the pixel-wise logit values from both models and applies a
thresholding operation to generate a binary mask. The fusion process is formally described
in Algorithm 2. We adjusted the weight of the segmentator model to 2. This modification
helps balance the influence of the segmentator in the overall system.

Algorithm 2 Combining continuous outputs of SAM and segmentator model.

Input:

SAM_mask_path ; // path to logit mask produced by SAM
P_mask_path ; // path to logit mask produced by a segmentator model
/* binary segmentation mask produced by the fusion procedure */
Result: F_mask
/* load and scale SAM_mask */
SAM_mask← load(SAM_mask_path)× 255 ;
/* load and scale segmentator’s mask */
P_mask← load(P_mask_path)× 255 ;
/* convert to single precision and normalize SAM_mask */
SAM_mask← single(SAM_mask)− 255 ;
SAM_mask← abs(SAM_mask) ; // apply absolute value
SAM_mask← uint8(SAM_mask) ; // convert to uint8 precision

F_mask←
SAM_mask + 2 · P_mask

3
; // apply fusion

/* binarize */
foreach F_maski ∈ F_mask do

if F_maski < 128 then

F_maski ← 1 ;
else

F_maski ← 0 ;
end

end

This refinement step is performed for several reasons.

• Combining complementary information: SAM and DeepLabv3+ have different strengths
and weaknesses in capturing certain object details or handling specific image char-
acteristics. By combining their logits through the weighted rule, we can leverage
the complementary information captured by each model. This can lead to a more
comprehensive representation of the object boundaries and semantic regions, resulting
in a more accurate final segmentation.

• Noise reduction and consensus: the weighted-rule approach helps reduce the impact
of noise or uncertainties in individual model predictions. By combining the logits,
the noise or errors inherent in one model’s prediction may be offset or diminished by
the other model’s more accurate predictions. This consensus-based aggregation can
effectively filter out noisy predictions.

• Addressing model biases: different models can exhibit biases or tendencies in their
predictions due to architectural differences, training data biases, or inherent limitations.
The refinement step enables the combination of predictions from multiple models,
mitigating the impact of any model biases and enhancing the overall robustness of
the segmentation.

• Enhanced object boundary localization: the weighted rule of logits can help improve
the localization and delineation of object boundaries. As the logits from both models
contribute to the final segmentation, the refinement step tends to emphasize areas of
high consensus, resulting in sharper and more accurate object boundaries. This can be
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particularly beneficial in cases where individual models may struggle with precise
boundary detection.

It is important to note that to make the outputs of SAM and the other segmentators
compatible, we scale them all to the same intensity range (0 to 255), making them suitable
for direct comparison and further analysis. After scaling, we save them as gray levels
and in .jpg format, for the sake of storage space. Another implementation detail of the
refinement step is the inversion of SAM output masks values. SAM considers values near
zero as background and values near 255 as objects, while our DeepLabv3+/PVTv2 code
follows the opposite convention. To ensure compatibility between the models, we invert
the SAM mask values.

5. Results and Discussion

5.1. Results

In this section we report and briefly analyze the results of the experiments, reported in
Tables 2 and 3. First, from the first group of experiments (Table 2, where we used the CAMO,
Portrait, Locust-mini, and VinDr-RibCXR datasets) we noticed that the scores obtained by
SEEM with all our checkpoint prompting strategies are lower than those obtained from
SAM, or, at best, comparable. The only exception is the Dice score on the VinDr-RibCXR
dataset, where SEEM overtakes SAM ViT-H by a small margin. However, the score remains
markedly lower than the baseline. All in all, we can say that SEEM is less promising than
SAM, at least with the prompting strategies and datasets we considered. This is the reason
why SEEM was not included in the second group of experiments.

On average over all datasets, neither SAM (SAM ViT-L, SAM ViT-H) nor SEEM
outperform DeepLabv3+, regardless of the prompts we provided. Not surprisingly, SEEM
is worse on average than both SAM ViT-L and SAM ViT-H.

The A, B, and C prompt generation methods are never the top performers, except for
SAM ViT-L on the VinDr-RibCXR dataset. One reason for this fact is shown in Figure 3.
The reason for including methods A to C in this paper is to document our experiments and
discuss their points of failure.

(a) (b) (c)

Figure 3. An example from the Portrait dataset demonstrating method A can fail to provide SAM

with a prompt that is strong enough. (a) Ground truth. (b) Output of SAM with prompt extracted

from the DeepLabv3+ mask by method A: a single checkpoint on the nose results in a segmentation

output that can be considered semantically valid, but does not capture what was intended. (c) Output

of SAM with prompt extracted from the DeepLabv3+ mask by method D (b = 100, no mask erosion):

a higher number of checkpoints pushes SAM to provide the intended segmentation mask.
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Table 2. Experimental results of different methods on four datasets using the Intersection over Union (IoU) and Dice similarity coefficient (Dice) as evaluation

metrics. The methods compared in the table include variations of the ViT-H and ViT-L models, as well as the SEEM method. In the top the results of the DeepLabv3+

model (our baseline) and the SOTA method PVTv2 are reported. In the “Method” column, the number represents the grid sampling step size that we call b in

Section 3.5. The FUSION method represents either SAMw©DLV3+ or SAMw©PVTv2. We always use the SAM ViT-H variant. The word “bm” denotes whether the

masks from which the checkpoints were extracted were eroded (to avoid checkpoints too close to the borders) or not.

CAMO Portrait Locust-Mini VinDr-RibCXR

IoU Dice IoU Dice IoU Dice IoU Dice

Baseline (DLV3+) 60.63 71.75 97.01 98.46 74.34 83.01 63.48 77.57

PVTv2-Ensemble 71.75 81.07

Oracle DLV3+ PVTv2 Oracle DLV3+ Oracle DLV3+ Oracle DLV3+

Model Method IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice

S
A

M
-V

iT
-L

A 51.26 60.42 47.96 58.36 49.95 59.97 57.31 67.96 55.50 66.49 48.43 59.56 35.45 46.15 37.30 53.96 30.00 45.76
B 50.57 59.66 48.10 58.49 49.73 59.72 57.43 68.04 55.48 66.41 48.55 59.81 35.53 46.22 37.30 53.96 29.98 45.73
C 44.30 53.50 44.06 54.53 44.21 53.89 55.24 65.20 52.28 62.57 36.50 45.77 34.10 44.36 31.43 47.45 28.83 44.41
D 10 37.87 51.54 38.01 51.03 36.64 49.93 77.59 85.96 77.64 86.01 21.47 33.22 23.14 35.02 25.66 40.65 25.64 40.62
D 30 62.75 73.61 58.81 69.45 59.31 69.95 91.99 95.55 91.87 95.47 48.05 59.62 51.93 63.56 26.77 42.06 26.97 42.34
D 50 67.29 76.93 59.84 69.62 62.89 72.49 95.97 97.91 95.72 97.77 56.46 66.97 59.48 69.88 28.24 43.76 27.96 43.51
D 100 61.74 69.92 53.23 61.73 57.00 65.52 96.31 98.09 96.16 98.00 50.67 59.70 51.89 60.66 29.99 45.80 29.62 45.40
D 10 bm 44.42 57.99 41.11 53.92 40.29 53.31 78.09 86.34 78.15 86.39 35.42 48.34 27.33 39.73 26.57 41.82 25.75 40.77
D 30 bm 67.17 77.44 60.13 70.47 60.98 71.25 92.41 95.81 92.23 95.71 59.11 70.08 54.32 65.73 29.26 45.01 26.96 42.32
D 50 bm 69.40 78.71 60.89 70.73 63.02 72.67 96.01 97.93 95.79 97.81 61.89 72.28 59.74 70.21 30.19 46.04 28.01 43.58
D 100 bm 62.80 71.67 54.05 62.91 58.01 66.98 96.26 98.06 96.16 98.01 53.09 62.34 52.69 61.77 31.86 47.82 29.39 45.03

S
A

M
-V

iT
-H

A 50.87 59.77 50.56 60.62 52.49 62.07 54.24 64.63 51.42 62.35 48.83 60.11 40.09 51.05 33.78 50.10 31.21 47.23
B 50.55 59.44 50.57 60.61 52.42 61.99 54.33 64.79 51.75 62.67 48.91 60.21 40.89 51.80 33.76 50.08 31.14 47.14
C 45.68 54.43 47.32 57.34 49.14 58.63 48.83 59.31 48.01 58.49 42.46 52.03 34.21 44.30 29.23 44.76 30.37 46.24
D 10 60.80 72.85 53.53 66.36 54.86 67.40 77.19 86.11 76.91 85.88 40.50 55.19 40.18 54.47 28.94 44.73 29.01 44.80
D 30 78.49 86.37 65.44 75.46 70.19 79.28 92.73 96.14 92.24 95.85 70.81 80.78 68.64 78.43 37.79 54.65 38.17 55.07
D 50 77.93 85.81 63.46 73.00 69.83 78.49 96.38 98.14 95.98 97.92 67.85 77.92 68.89 78.69 37.89 54.61 38.67 55.48
D 100 66.65 73.95 55.45 63.55 59.97 67.94 95.01 97.40 94.76 97.26 51.64 60.55 53.54 62.14 31.22 47.18 31.37 47.41
D 10 bm 65.27 76.57 55.01 67.53 56.71 68.86 77.31 86.18 77.00 85.93 57.04 70.34 45.88 59.23 35.79 52.51 29.46 45.36
D 30 bm 78.12 86.46 64.95 75.18 69.81 79.10 92.96 96.27 92.54 96.02 71.51 81.53 68.67 78.58 39.41 56.23 38.16 55.05
D 50 bm 76.02 84.26 63.37 73.21 69.00 77.98 96.38 98.14 95.98 97.92 68.05 78.34 68.53 78.46 35.53 51.95 38.45 55.22
D 100 bm 67.02 75.45 56.22 64.67 61.75 70.10 94.99 97.38 94.74 97.25 53.26 62.54 54.56 63.44 31.13 46.99 31.28 47.28

S
E

E
M

A 48.24 55.46 38.58 44.58 38.12 44.52 93.52 95.73 92.94 95.23 39.20 47.81 35.87 43.31 32.13 48.42 32.12 48.41
B 48.24 55.46 38.37 44.38 37.82 44.21 93.52 95.73 92.94 95.23 39.20 47.81 35.87 43.31 32.13 48.42 32.12 48.41
C 44.64 51.09 41.65 47.76 33.97 39.67 92.31 94.45 89.84 92.14 32.98 40.61 26.25 32.73 31.58 47.78 31.90 48.18
D 10 57.77 65.56 53.82 61.56 45.39 52.46 95.90 97.88 95.87 97.86 63.93 72.13 58.21 65.93 32.15 48.46 32.05 48.35
D 30 57.18 64.76 53.37 61.08 52.74 60.16 95.89 97.87 95.86 97.86 61.97 69.96 59.54 67.14 32.13 48.43 32.12 48.42
D 50 55.09 62.23 51.64 58.74 50.91 58.10 95.85 97.85 95.84 97.84 59.30 67.12 58.35 65.94 31.98 48.26 32.05 48.33
D 100 51.92 58.68 49.14 55.89 50.38 57.16 95.80 97.83 95.80 97.82 47.42 55.07 43.45 50.74 31.79 48.03 31.83 48.08
D 10 bm 58.89 66.79 54.26 62.11 52.97 60.75 95.92 97.89 95.91 97.88 62.39 70.80 57.33 65.59 32.17 48.48 32.12 48.42
D 30 bm 57.57 65.25 53.27 61.03 52.87 60.29 95.92 97.89 95.91 97.88 60.79 68.74 58.10 65.68 32.07 48.35 32.11 48.42
D 50 bm 55.11 62.38 51.62 58.65 51.55 58.77 95.89 97.87 95.89 97.87 58.16 66.20 57.05 64.71 31.94 48.19 32.05 48.33
D 100 bm 51.78 58.62 48.83 55.53 49.86 56.67 95.81 97.83 95.79 97.82 47.67 55.43 43.82 51.14 31.71 47.94 31.82 48.06

F
U

S
IO

N D 30 - - 63.87 74.41 73.31 82.02 - - 97.13 98.53 - - 75.99 84.21 - - 60.96 75.64
D 50 - - 62.95 73.36 73.46 82.02 - - 97.18 98.55 - - 75.74 84.07 - - 60.65 75.41
D 30 bm - - 63.48 74.18 73.13 81.92 - - 97.14 98.53 - - 76.01 84.23 - - 60.95 75.63
D 50 bm - - 63.03 73.54 73.27 81.94 - - 97.17 98.55 - - 75.74 84.07 - - 60.67 75.43
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From the results of the first group of experiments, no single variation of method D
consistently provides the best performance. Sometimes (e.g., with the CAMO dataset) a
low value of the sampling step b works best. Sometimes (e.g., with the Portrait dataset)
a higher value of b, which produces fewer checkpoints, is beneficial. Sometimes the
best results are obtained with mask erosion and sometimes not, albeit in these cases
the difference is smaller and, in some of them, comparable with measurement noise.
If a single value of the parameters must be chosen, then b = 50 and no mask erosion
provide good results on average. This is the value we adopt in the remaining experiments
(Tables 3–6). SAM overcomes DeepLabv3+ on the CAMO (Table 6) and COCO_animals
(Table 3) datasets, performs similarly on the Portrait (Table 2) and Butterfly (Table 4)
datasets, and is significantly worse than the baseline on the Locust-mini, VinDr-RibCXR
(Table 2), and SKIN (Table 5) datasets. This is basically true for both the ViT-L and ViT-
H models and for all the methods considered (oracle, DLV3+, PVTv2, and, on Butterfly,
the SOTA ensemble introduced in [24]). Interestingly, in the COCO_animals dataset,
SAMw©DLV3+ significantly improved the baseline results, although the provided ground
truth masks are not always accurate. This is why we also provided results in which
the binarization of the DeepLabv3+ output mask, as described in Section 2, utilizes a
stricter margin, specifically 32 instead of 128. By depending on a more robust response
area of the source mask, it becomes more likely to exclude outlier checkpoints that could
lead to incorrect SAM predictions. Subsequently, we integrate these results with the
original DeepLabv3+ output logit mask, resulting in further enhancements in line with
our expectations as shown in Table 3. Overall, remarkable results are obtained when
using the fusion process described in Section 4.5 and Algorithm 2, for both the settings
SAMw©DLV3+ and SAMw©PVTv2, where we always use the SAM ViT-H variant: in most
datasets, the fusion method overcomes the corresponding baseline methods DLV3+ and
PVTv2, sometimes by a large margin.

Table 3. IoU and Dice results on the COCO dataset. A metric is on each row, while the columns report

the metric value of the different methods. From left to right: DeepLabv3+, SAM ViT-H with prompts

obtained from DeepLabv3+ masks (method D, b = 50, no mask erosion), fusion of the masks just

mentioned with DeepLabv3+ masks, DeepLabv3+ (here indicated with the asterisk, *DeepLabv3+, or

in the table with *DLV3+) masks but with a different binarization threshold, i.e., 32 instead of 128,

SAM ViT-H with prompts obtained from *DeepLabv3+, fusion of the masks just mentioned with

*DeepLabv3+ masks. The up-arrow ↑means that higher is better. b is the grid sampling step size.

SAM SAM
COCO_animals DLV3+ SAM-DLV3+ w© *DLV3+ SAM-*DLV3+ w©

DLV3+ *DLV3+

IoU ↑ 66.04 67.45 69.15 54.61 65.59 68.24

Dice ↑ 75.93 75.19 77.93 66.53 73.17 77.26

In particular, the strongest results of this article are obtained with the CAMO dataset,
as highlighted in Table 6. The prompts we extract from DeepLabv3+ masks with method D
allow SAM to outperform DeepLabv3+, that is, to provide a better mask than the one of
DeepLabv3+ itself. Most importantly, the fusion between SAM and the ensemble of PVTv2
outperforms the ensemble of PVTv2, which is a current SOTA segmentation approach.
For comparison, we report the performance of Explicit Visual Prompting v2 (EVPv2) [38],
which has the best SOTA metrics that are available on the famous benchmark dataset shar-
ing platform Papers With Code (https://paperswithcode.com/sota/camouflaged-object-
segmentation-on-camo (accessed on 01 July 2023)). In other words, the fusion between
PVTv2 and SAM-based segmentators becomes, to the best of our knowledge, the new SOTA
on the CAMO dataset. Significant results are also obtained with the SKIN and Butterfly
datasets. On SKIN (Table 5), the ensembles (fusions between SAM and DeepLabv3+ or
PVTv2) beat the baselines (masks calculated by DeepLabv3+ or PVTv2) on many of the

https://paperswithcode.com/sota/camouflaged-object-segmentation-on-camo
https://paperswithcode.com/sota/camouflaged-object-segmentation-on-camo
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subsets of images that comprise the dataset. On Butterfly (Table 4), the ensemble of SAM
with the SOTA model mostly overcomes the SOTA model itself, although by a small mar-
gin; SOTA is an ensemble of PVTv2 and CNN-based segmentators. On COCO_animals
(Table 3), the already good results obtained by SAM are further improved when merged
with DeepLabv3+. Moreover, we observe that changing the fusion segmentator’s mask
weight (2) reported in Algorithm 2 to different values, i.e., increasing it (e.g., to 3), brings
slightly better results in both IoU and Dice scores. We postpone this observation as a future
work to investigate the tuning of the fusion weight.

Table 4. IoU and Dice results on the Butterfly dataset. A subset of the dataset is on each row, while

the columns report the results of the different methods. From left to right: DeepLabv3+, SAM ViT-H

with prompts obtained from DeepLabv3+ masks (method D, b = 50, no mask erosion), fusion of the

masks just mentioned with DeepLabv3+ masks, SOTA [24], SAM ViT-H with prompts obtained from

SOTA masks (method D, b = 50, no mask erosion), fusion of the masks just mentioned with SOTA

masks. The up-arrow ↑means that higher is better. b is the grid sampling step size.

SAM SAM
DLV3+ SAM-DLV3+ w© SOTA SAM-SOTA w©

DLV3+ SOTA

Io
U
↑

Fold_1 95.57 92.57 96.11 96.95 93.85 96.92

Fold_2 95.68 93.28 96.13 97.13 93.52 97.15

Fold_3 95.26 92.81 95.71 97.00 93.92 97.04

Fold_4 95.37 92.55 96.07 96.90 94.09 96.92

D
ic

e
↑

Fold_1 97.72 95.80 98.01 98.44 96.73 98.43

Fold_2 97.78 96.44 98.01 98.54 96.57 98.55

Fold_3 97.53 96.13 97.77 98.47 96.81 98.49

Fold_4 97.62 95.75 97.98 98.42 96.91 98.43

Table 5. IoU and Dice results on the SKIN dataset. A subset of the dataset is on each row, while the

columns report the results of the different methods. From left to right: DeepLabv3+, SAM ViT-H

with prompts obtained from DeepLabv3+ masks (method D, b = 50, no mask erosion), fusion of the

masks just mentioned with DeepLabv3+ masks, PVTv2, SAM ViT-H with prompts obtained from

PVTv2 masks (method D, b = 50, no mask erosion), fusion of the masks just mentioned with PVTv2

masks. The up-arrow ↑means that higher is better. b is the grid sampling step size.

SAM SAM
DLV3+ SAM-DLV3+ w© PVTv2 SAM-PVTv2 w©

DLV3+ PVTv2

Io
U
↑

CMQ 73.58 68.22 74.37 76.62 68.09 76.75

ECU 90.34 86.26 90.31 91.30 86.38 91.34

HGR 94.32 94.42 94.73 94.34 94.35 94.64

MCG 79.81 79.34 80.67 80.74 79.70 81.33

Prat 85.75 73.81 86.63 86.16 74.85 87.14

Sch 63.72 52.02 63.07 66.15 53.68 65.51

SFA 90.72 91.58 91.56 91.25 91.72 91.80

UC 84.71 67.00 85.67 87.49 62.89 82.99

VMD 59.49 33.51 60.86 59.78 33.33 59.31

VT 65.96 47.28 69.48 74.59 47.65 76.64
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Table 5. Cont.

SAM SAM
DLV3+ SAM-DLV3+ w© PVTv2 SAM-PVTv2 w©

DLV3+ PVTv2

D
ic

e
↑

CMQ 84.78 81.11 85.30 86.77 81.01 86.85

ECU 94.92 92.63 94.91 95.45 92.69 95.48

HGR 97.08 97.13 97.29 97.09 97.09 97.25

MCG 88.77 88.48 89.30 89.34 88.70 89.71

Prat 92.33 84.93 92.84 92.57 85.62 93.13

Sch 77.84 68.44 77.35 79.63 69.86 79.16

SFA 95.13 95.61 95.59 95.42 95.68 95.73

UC 91.72 80.24 92.28 93.33 77.22 90.70

VMD 74.60 50.20 75.67 74.83 50.00 74.46

VT 79.49 64.21 81.99 85.45 64.54 86.78

Table 6. Complete results on the CAMO dataset. Line 1: DeepLabv3+. Line 2: PVTv2. Line 3: EVPv2

(current State of the Art method on CAMO dataset). Line 4: SAM with prompts obtained from

DeepLabv3+ masks (method D, b = 50, no mask erosion). Line 5: fusion of the masks just mentioned

with DeepLabv3+ masks. Line 6: SAM with prompts obtained from PVTv2 masks (method D, b = 50,

no mask erosion). Line 7: fusion of the masks just mentioned with PVTv2 masks. ↑means that higher

is better, ↓ means that lower is better. The number represents the grid sampling step size that we call

b in the description Section 3.5.

IoU ↑ Dice ↑ MAE ↓ F-Score ↑ E-Measure ↑

DLV3+ 60.63 71.75 8.39 75.57 83.04

PVTv2-ensemble 71.75 81.07 5.74 82.46 89.96

EVPv2 (current SOTA) - - 5.80 78.60 89.90

SAM-DLV3+ 63.46 73.00 9.78 74.25 81.90

SAM w© DLV3+ 62.95 73.36 8.02 76.92 83.49

SAM-PVTv2 69.83 78.49 7.67 78.96 86.21

SAM w© PVTv2 73.46 82.02 5.45 83.56 90.00

5.2. Discussion

In this section, we supplement the summary of the results provided in Section 5.1 with
some general remarks about the strengths and failure modes that we encountered in our
experiments. The analysis includes a collection of figures that illustrate our assertions, of-
fering a visual demonstration of the capabilities and drawbacks of the proposed prompting
methods and the zero-shot segmentators we consider.

The oracle method, included in the first group of experiments, provides a significant
performance boost on the CAMO and Locust-mini datasets, but not on the Portrait and
VinDr-RibCXR datasets. This is true for both the SAM and SEEM models. We think the
reason may be the same for Portrait and VinDr-RibCXR. The performance on the former
dataset is so good that the improvement in prompting with the oracle method produces
negligible effects. The performance on the latter dataset is so poor, that is, the models are
so inadequate to segment anatomical structures such as ribs (Figure 4), that changes in
prompting do not make a difference. At present, it is unclear if the issue is simply due to
the lack of medical images in the training set of the models, or to the very structures of
the models.
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(a) (b) (c)

Figure 4. A typical failure mode of SAM on the VinDr-RibCXR dataset: basically, SAM does not

capture any anatomical structure. (a) Ground truth and corresponding checkpoints extracted by

method D (oracle method, b = 50, no mask erosion). (b) Mask from DeepLabv3+ and corresponding

checkpoints extracted by method D (b = 50, no mask erosion). (c) The output of SAM-DLV3+ when

prompted with oracular checkpoints from (a). It is apparent that the mask is much worse than that

provided by DeepLabv3+.

According to the results in Table 2, the added complexity of the SAM ViT-H model
compared to the SAM ViT-L model does not make a radical difference in the Portrait dataset.
As a matter of fact, the smaller model performs slightly better than the larger one. We
believe that, similarly to the case we previously discussed, performance on the Portrait
dataset is already so high with ViT-L that a wall has been hit. It is difficult to overcome
such a wall by simply increasing the complexity of the model. However, if we look at
the other three datasets, we observe that SAM ViT-H performs significantly better than
SAM ViT-L. It is important to note that the combination (FUSION method in Table 2) of
the logit masks provided by SAM and the segmentation model (either DeepLabv3+ or
PVTv2) used to extract checkpoints consistently exceed the performance achieved by SAM
alone in almost all datasets. Only in the CAMO dataset with checkpoints extracted by
DeepLabv3+ the performance of SAM is slightly better than the fusion SAMw©DLV3+,
while in the same dataset the SAMw©PVTv2 fusion obtains results which, to the best of
our knowledge, represent the new state-of-the-art for this dataset. In other datasets, the
improvement of the SAMw©DLV3+ combination is substantial with respect to SAM, e.g.,
in VinDr-RibCXR, Locust-mini, and Butterfly datasets. A final observation concerns the
quality of the ground truth of the datasets, which sometimes limits the possibility of
effective performance improvement but, on the other hand, provides further motivation
for the use in the segmentation pipelines of zero-shot segmentators such as SAM and
SEEM. Indeed, we found images in which the ground truth is wrong. We encountered
this issue in the SKIN (Figure 5, first row of images: one of the two hands is missing from
the ground truth), COCO (Figure 6) and Portrait (see, e.g., Figure 7a, swimming cap and
beard) datasets.

In other images, the ground truth is, at least, semantically questionable (Figure 8a, belts
and blanket). In these cases, SAM or SEEM typically provides a mask that is more accurate
than the ground truth (see, e.g., Figures 7b and 8c, and the aforementioned Figures 5 and 6).
The net result is that these images erroneously lower the IoU and Dice scores for SAM
and SEEM.
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img GT PVTv2 SAM-PVTv2 SAM w©PVTv2

Figure 5. Examples from the SKIN and Butterfly datasets. Arranged from left to right are: the source

image (img), the ground truth mask (GT), the mask predicted by PVTv2 (PVTv2), the binary mask

produced by SAM using checkpoints from the PVTv2 mask (SAM-PVTv2), and the binary mask

obtained by fusing SAM and PVTv2 masks (SAMw©PVTv2). From top to bottom: examples from

SKIN CMQ, SKIN UC, and Butterfly (Folder 3).

img GT DLV3+ SAM-DLV3+ SAM w©DLV3+

Figure 6. Examples from the COCO 2017 dataset. Arranged from left to right are: the source image

(img), the ground truth mask (GT), the mask predicted by DeepLabv3+ (DLV3+), the binary mask

generated by SAM using checkpoints from the DeepLabv3+ mask (SAM-DLV3+), and the binary

mask obtained by fusing SAM and DeepLabv3+ masks (SAMw©DLV3+). The first row illustrates one

of the many cases in which the ground truth exhibits lack of details, that is, not all birds are segmented
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and even the masks for big animals are far from perfect. The second row depicts a good catch of

SAM: the predicted segmentation mask is much more detailed than the ground truth. In the third

row, both DeepLabv3+ and SAM perform a very detailed segmentation but miss the cat’s tail.

(a) (b)

Figure 7. An example from the Portrait dataset that shows method A operating under the same

conditions described in Figure 3, but providing a strong enough hint. (a) Ground truth. (b) Output of

SAM-DLV3+ with prompt extracted from the DeepLabv3+ mask by method A: in this case, a single

checkpoint on the nose results in the correct segmentation output by SAM-DLV3+. Indeed, the mask

provided by SAM-DLV3+ is better than the ground truth in the beard region.

(a) (b) (c)

Figure 8. An example from the Portrait dataset where the output of SAM-DLV3+, with suitable

prompting obtained from the DeepLabv3+ mask, is arguably better than the DeepLabv3+ mask itself.

(a) Ground truth. (b) Mask from DeepLabv3+ and checkpoints extracted from such mask by method

D (b = 100, no mask erosion). (c) Mask provided by SAM-DLV3+. It can be seen that SAM-DLV3+

ignores the belts, albeit hinted to include them, and the blanket. It can be argued that this choice is

semantically better than the output of DeepLabv3+ and the ground truth, where the mask includes

objects that are not part of the person.

Finally, we investigate the option to fuse two specialized models such as DLV3+ and
PVTv2 to assess the effectiveness of our insights. In Table 7, we compare the standalone
DLV3+ and PVTv2 methods, two different ensembles of them (using the average rule
and weighted rule, with PVTv2 weighed twice as much), and our method, which can be
ensembled with either DLV3+ or PVTv2. This evaluation is carried out on CAMO, SKIN and
Butterfly datasets. It is important to note that PVTv2 is SOTA in these datasets. As shown
in the table, SAMw©PVTv2 exhibits better performance than the other models on CAMO
and Butterfly, with occasional outperformance by DLV3+ a©PVTv2 or DLV3+w©PVTv2 in
some SKIN subsets. This outperformance comes at the cost of a double training, i.e., two
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specialized models must be trained on the target dataset. In our method, the fusion of SAM
with a specialized model comes at no additional cost.

Table 7. IoU and Dice results on the datasets that were tested using PVTv2 model, from the top:

CAMO, SKIN and Butterfly. From the third column, left to right: DeepLabv3+, PVTv2, ensemble

between DeepLabv3+ and PVTv2 using the average rule, ensemble between DeepLabv3+ and PVTv2

using the weighted rule (the latter weighed twice as much), ensemble of SAM ViT-H with prompts

obtained from DeepLabv3+ (method D, b = 50, no mask erosion) and DeepLabv3+ masks, ensemble

of SAM ViT-H with prompts obtained from PVTv2 (method D, b = 50, no mask erosion) and PVTv2

masks. The up-arrow ↑means that higher is better. b is the grid sampling step size.

DLV3+ DLV3+ SAM SAM
Dataset Metric DLV3+ PVTv2 a© w© w© w©

PVTv2 PVTv2 DLV3+ PVTv2

CAMO
IoU ↑ 60.63 71.75 69.32 71.23 62.95 73.46

Dice ↑ 71.75 81.07 79.16 80.60 73.36 82.02

CMQ
IoU ↑ 73.58 76.62 77.09 77.30 74.37 76.75

Dice ↑ 84.78 86.77 87.07 87.20 85.30 86.85

ECU
IoU ↑ 90.34 91.30 91.55 91.54 90.31 91.34

Dice ↑ 94.92 95.45 95.59 95.58 94.91 95.48

HGR
IoU ↑ 94.32 94.34 94.66 94.55 94.73 94.64

Dice ↑ 97.08 97.09 97.26 97.20 97.29 97.25

MCG
IoU ↑ 79.81 80.74 80.85 80.85 80.67 81.33

Dice ↑ 88.77 89.34 89.41 89.41 89.30 89.71

Prat
IoU ↑ 85.75 86.16 86.80 86.66 86.63 87.14

Dice ↑ 92.33 92.57 92.93 92.85 92.84 93.13

Sch
IoU ↑ 63.72 66.15 66.88 67.27 63.07 65.51

Dice ↑ 77.84 79.63 80.15 80.43 77.35 79.16

SFA
IoU ↑ 90.72 91.25 91.55 91.47 91.56 91.80

Dice ↑ 95.13 95.42 95.59 95.55 95.59 95.73

UC
IoU ↑ 84.71 87.49 88.88 88.92 85.67 82.99

Dice ↑ 91.72 93.33 94.11 94.13 92.28 90.70

VMD
IoU ↑ 59.49 59.78 63.51 63.41 60.86 59.31

Dice ↑ 74.60 74.83 77.68 77.61 75.67 74.46

VT
IoU ↑ 65.96 74.59 71.73 73.04 69.48 76.64

Dice ↑ 79.49 85.45 83.54 84.42 81.99 86.78

Fold_1
IoU ↑ 95.57 96.95 96.83 96.94 96.11 96.92

Dice ↑ 97.72 98.44 98.38 98.44 98.01 98.43

Fold_2
IoU ↑ 95.68 97.13 97.00 97.13 96.13 97.15

Dice ↑ 97.78 98.54 98.47 98.54 98.01 98.55

Fold_3
IoU ↑ 95.26 97.00 96.67 96.86 95.71 97.04

Dice ↑ 97.53 98.47 98.29 98.39 97.77 98.49

Fold_4
IoU ↑ 95.37 96.90 96.77 96.90 96.14 96.95

Dice ↑ 97.62 98.42 98.35 98.42 97.98 98.43

In Table 8 we report summary results obtained by averaging various subsets within
each dataset used in this paper. The ensemble of SAM with DLV3+ or PVTv2 is con-
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sistently the best performing, except for the VinDr-RibCXR and SKIN datasets. These
findings demonstrate the effectiveness of the SAM method in enhancing the accuracy of
other predictors.

Table 8. IoU and Dice summary results computed by averaging various subsets within each dataset

used in this paper. Please refer to Table 7 for the legend explaining the order from left to right.

DLV3+ DLV3+ SAM SAM
Dataset Metric DLV3+ PVTv2 a© w© w© w©

PVTv2 PVTv2 DLV3+ PVTv2

CAMO
IoU ↑ 60.63 71.75 69.32 71.23 62.95 73.46

Dice ↑ 71.75 81.07 79.16 80.60 73.36 82.02

Portrait
IoU ↑ 97.01 - - - 97.18 -

Dice ↑ 98.46 - - - 98.55 -

Locust-mini
IoU ↑ 74.34 - - - 75.74 -

Dice ↑ 83.01 - - - 84.07 -

VinDr-RibCXR
IoU ↑ 63.48 - - - 60.65 -

Dice ↑ 77.57 - - - 75.41 -

SKIN
IoU ↑ 78.84 80.84 81.35 81.50 79.73 80.74

Dice ↑ 87.67 88.99 89.33 89.44 88.25 88.92

Butterfly
IoU ↑ 95.47 97.00 96.82 96.96 96.02 97.02

Dice ↑ 97.66 98.47 98.37 98.45 97.94 98.48

COCO animals
IoU ↑ 66.04 - - - 69.15 -

Dice ↑ 75.93 - - - 77.93 -

6. Conclusions

Our experiments demonstrate that exploiting a state of the art zero-shot segmenta-
tor as SAM alongside specialized segmentation models can lead to general segmentation
improvements. We have also shown that a combination of segmentators at the logit level
(i.e., SAMw©DLV3+ or SAMw©PVTv2) can lead to segmentation improvements over the
original masks obtained by mainstream segmentators, even beating the SOTA in the CAMO
and Butterfly datasets. Sometimes, the zero-shot segmentator is even resilient to errors in
prompting caused by inaccuracies in the original mask (see, e.g., Figure 8). These findings
highlight the potential of zero-shot segmentators such as SAM and SEEM to advance the
state of the art for semantic segmentation. However, current zero-shot segmentators are
no panacea. Sometimes, a similar prompt produces different results in different images
(Figures 3b and 7b). Sometimes, the output mask is not semantically acceptable despite
what we already believe to be a strong prompt (Figures 9 and 10). Sometimes, the results
are bad on whole datasets: we encountered this issue with SKIN and VinDr-RibCXR. As
discussed in Section 2.2, there is evidence that the accuracy of SAM in medical image
segmentation tasks is not excellent. In any case, the failure modes we encountered in our
experiments provide valuable insights for further analysis. To this aim, future work should
consider a larger number of datasets, especially from additional domains, to determine
when performance issues are domain-specific. Other prompting strategies must be investi-
gated, chiefly those based on bounding boxes and text prompts. We remark that prompting
SAM with text, although explored in [2], is currently inaccessible with the source code
that is publicly available. Moreover, future work also need to investigate the tuning of the
fusion weight parameter, in order to optimize the contributions of the segmentator’s mask
and the SAM’s predicted mask. Of course, a long-term objective is to identify variations in
the architecture of the model that make the final result more resilient to weak prompting.
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Variations include both the substitution of DeepLabv3+ and PVTv2 with other models and
modifications to zero-shot segmentators (see Figure 11).

(a) (b) (c)

Figure 9. A failure mode of SAM-DLV3+ on the CAMO dataset: despite strong prompting, SAM-

DLV3+ fails to segment a common pet. (a) Ground truth. (b) Mask from DeepLabv3+ and correspond-

ing checkpoints extracted by method D (b = 30, no mask erosion). (c) The output of SAM-DLV3+

when prompted with the aforementioned checkpoints (not shown).

Figure 10. Further examples from the CAMO dataset. Arranged from left to right are: the source

images, the ground truth masks, the binary masks obtained by the PVTv2 method, the binary

masks obtained by fusing the logit masks output by SAM when prompted with the aforementioned

checkpoints (SAM-PVTv2). The first two rows demonstrate significant improvements in segmentation,

while the last two rows illustrate instances where the fusion process did not yield the desired results.
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(a) (b) (c)

Figure 11. An example from the CAMO dataset where SAM provides a better mask than DeepLabv3+.

(a) Ground truth. (b) Mask from DeepLabv3+ and corresponding checkpoints extracted by method D

(b = 30, no mask erosion). (c) The output of SAM-DLV3+ when prompted with the aforementioned

checkpoints (not shown for clarity).
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