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Abstract

Scattered data approximation in multiple dimensions based on the positive definite kernels,
especially Radial Basis Functions (RBFs), is frequently used in the modern approximation the-
ory. RBF methods are known for their strong performance in function approximation and
interpolation problems. This research addresses key challenges in multivariate approximation
by utilizing the properties of RBFs, offering new insights and methodologies that improve the
accuracy and conditioning of approximation processes. Specifically, it is known that the ac-
curacy of the approximation depends on the selected set of bases with which the underlying
function is reconstructed. Therefore, in this thesis, we follow the idea of finding a new set of
bases that can improve the accuracy of the approximation, either through improving the condi-
tioning of the interpolationmatrix or by incorporating the features of the underlying function
into the selected bases, such as discontinuities.

To be more detailed, to overcome the ill-conditioning of the interpolation matrix resulting
from the conditionally positive definite kernels, we present various sets of bases constructed by
different types of decomposition applied in the interpolation matrix. Another class of bases is
constructed using the Mercer expansion of the reproducing kernel corresponding to any con-
ditionally positive definite kernels.

Secondly, we design a moving least-squares approach for scattered data approximation that
incorporates the discontinuities of the underlying functions into the weight functions. Thus,
the newly constructed basis measures the influence of the data sites on the approximant, not
only with regard to their distance from the evaluation point but also with respect to the discon-
tinuities of the underlying function.

Eventually, we useDirect RBFPartition ofUnity to set up the differentiationmatrix to solve
the time-dependent PDEs intrinsic to the surface. Taking this approach, the bases aremodified
depending on the patches that include the evaluation points. Combinedwith the closest point
representation of the surface, the preliminary results show an improvement in terms of accu-
racy.

The findings of this research contribute to the broader understanding of kernel methods
in approximation theory, offering valuable perspectives for future research and development.
By advancing the methodologies and applications of RBFs, this thesis paves the way for more
accurate and efficient approximation techniques that can be applied across various scientific
and engineering disciplines.
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1
Preliminaries

Truth is much too complicated to allow anything but approximations.

John von Neumann

1.1 Historical Background

The fundamental problem of approximation theory is to reconstruct a possibly complicated
function, called the target function, bymore straightforward, easier-to-compute functions called
the interpolants or approximants. The origin of approximation theory can be traced back to an-
cient times, say, the formula for approximating the square root of a number, usually attributed
to the Babylonians or the Greek mathematicians, such as Euclid and Archimedes, who made
the foundation for geometric approximations and methods for calculating areas and volumes.
Their work set the stage for later developments in the field. In the 17th century, Lagrange and
Newton independently developed interpolation methods using polynomials, providing pow-
erful tools for estimating functions between given data points. This era laid the groundwork
for subsequent polynomial approximation techniques. The 18th and 19th centuries marked
a shift toward harmonic analysis, with Fourier’s groundbreaking work on representing func-
tions as infinite series of sines and cosines. This period also saw the emergence of wavelet the-
ory, offering a powerful alternative to traditional Fourier methods. The development of fast
Fourier transform (FFT) algorithms in the 20th century greatly enhanced computational ef-
ficiency in approximation tasks. The mid-20th century witnessed the integration of approxi-
mation theory with functional analysis, yielding powerful insights into the convergence prop-
erties of approximation methods. Contributions from luminaries like Bernstein, Tchebycheff,
andKolmogorovpaved theway for understanding the limitations and possibilities of various ap-
proximation techniques. To mention a selection of classical sources on approximation theory
(from the second half of the last century), we refer to [CL09, Dav75, Mal99, Pow81, DeV98].
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The latter half of the 20th century and the 21st century witnessed a surge in computational
power, enabling the application of approximation theory to real-world problems in diverse
fields. In particular, in the present age, computers are applied almost anywhere in computa-
tional science, engineering, andfinance. Thus, it becomes increasingly important to implement
mathematical functions for efficient evaluation in computer programs. Such a needmotivated
using and analyzing non-polynomial approximation techniques, including splines, wavelets,
and radial basis functions (RBFs). Specifically, RBFs gained prominence for their ability to
handle complex data structures. The readers can find vast discussion about mentioned ap-
proximation techniques in [DB78,HH13,Chu97,Dau92, I+18, Buh03, Fas07, FM15, FF15a,
Wen04].

Regardless of which kind of approximation is employed, various reasons justify why approx-
imations of functions are preferred over its exact mathematical form. A simple one is that, in
many instances, it is not possible to implement the functions precisely because, for example,
they are only represented by an infinite expansion. Furthermore, the function we want to use
may not be completely known to us, maybe too expensive, or may require computer time and
memory to compute in advance. This is another typical, important reasonwhy approximations
are needed. This is true even in the face of ever-increasing speed and computer memory avail-
ability, given that additional memory and speed will always increase the demand of the users
and the size of the problems to be solved. Finally, the data that defines the function may have
to be computed interactively or using a step-by-step approach, making it suitable to compute
approximations. With those, we can then pursue further computations, for instance, or fur-
ther evaluations that the user requires or displays data or functions on a screen. Such cases are
standard in mathematical methods for modeling and analyzing functions. To illustrate, imag-
ine that we are given a set of data (such as measurements along with locations at which these
measurements were obtained), andwewant to find a rule that allows us to deduce information
about the process we are studying also at locations different from those at which we obtained
ourmeasurements. Typical examples could be a series ofmeasurements taken over a specific pe-
riod, weather data collected at weather stations, or data obtained via some physical or computer
experiment involving many different input parameters (i.e., the problem is high-dimensional).

Having the applications mentioned above in mind, it immediately follows that any com-
peting method has to be capable of dealing with a vast number of data points in an arbitrary
number of space dimensions, such that the data pointsmight bear no regularity at all, that is the
data is scattered, and which might even change position with time. The first and fundamental
mathematical challenge is to ensure that the scattered data fitting problem (to be formulated
shortly) has a well-posed problem formulation in the sense ofHadamard, i.e., that it not only
has a solution but that this solution is also unique and that small changes in the data lead only
to small changes in the solution.

Mathematically speaking, let f : Ω → RwithΩ ⊂ Rd. One generally takes the assumption
that f lies in a (probably infinite-dimensional) linear space F , i.e., f ∈ F . For the construc-
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tion of a concrete approximation method for elements f ∈ F , we first fix a suitable finite
dimensional subset S ⊂ F , from which we seek an approximation sf ∈ S to f. Therefore, if
{s1, . . . , sn} is a set of basis for S, the interpolation sf is represented as sf =

∑n
i=1 cisi. Therefore,

the first question is how these bases must be selected.
We will see that the selected basis must depend on the given data location. This enters us into
the realmofmeshfreemethods, which have gainedmuch attention in recent years. Thus,much
of the work concerned withmeshfree approximationmethods is interdisciplinary - at the inter-
face betweenmathematics and numerous application areas. Meshfreemethods are often better
suited to cope with changes in the geometry of the domain of interest (e.g., free surfaces and
large deformations) than classical discretization techniques such as finite differences, finite ele-
ments, or finite volumes. Another obvious advantage of meshfree discretizations is - of course -
their independence from amesh. Mesh generation is still themost time-consuming part of any
mesh-based numerical simulation. Since meshfree discretization techniques are based only on
a set of independent points, these costs ofmesh generation are eliminated. Therefore,meshfree
approximation methods can be seen to provide a new generation of numerical tools.

1.2 Linear spaces

This chapter mainly discusses basic mathematical methods and numerical algorithms for in-
terpolation and approximation of functions in one variable. Therefore, all materials of this
chapter can be found in the textbooks mentioned in the previous chapter.
LetV be a linear space over the set of scalarsK, with v1, . . . , vn being vectors belonging toV.

Definition 1. We say {vi}ni=1 ⊂ V are linearly dependent if there are scalars αi ∈ K, 1 ≤ i ≤
n, with at least one nonzero αi such that

n∑
i=1

αivi = 0. (1.1)

We say v1, . . . , vn are linearly independent if they are not linearly dependent; in other words, if
(1.1) implies αi = 0 for i = 1, 2, . . . , n.

This suggests that v1, . . . , vn demonstrate linear independence if and only if no vector can
be expressed as a linear combination of the others, highlighting the lack of redundancy within
the set.

Definition 2. The span of v1, . . . , vn ∈ V is defined to be the set of all the linear combinations
of these vectors:

span{v1, . . . , vn} =

{
n∑

i=1

αivi|αi ∈ K, 1 ≤ i ≤ n

}
.

If W = span{v1, . . . , vn} ⊆ V, then {vi}ni=1 forms a set of bases for the linear space W.
Obviously, the set of bases is not unique. However, the dimension ofW, that is, n, is always
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the same. Furthermore, the linear spaceV is said to be finite dimensional if there exists a finite
maximal set of independent vectors that reproduce V. Conversely, if such a finite set of bases
forV does not exist, thenV is considered infinite-dimensional.

The norm function defined on the V can be viewed as a mean to measure the distance be-
tween two elements ofV.

Definition 3. For a linear space V, a mapping ‖·‖: V → [0,∞) is said to be a norm for V, if
the following properties are satisfied for any v ∈ V.

• ‖v‖= 0 if and only if v = 0 (definiteness),

• ‖αv‖= |α|‖v‖ for all v ∈ V and all α ∈ R.

• ‖u+ v|≤ ‖u‖+‖v‖ for all u, v ∈ V.

The space V equipped with the norm ‖·‖ is called a normed linear or normed space.

In particular, a sequence un in a normed spaceV is called Cauchy sequence if and only if for
every ε > 0 there exists an integer N such that ‖um − un‖< ε holds whenever m, n > N.
Besides, a subset W of normed space V is said to be dense in V if each v ∈ V is the limit
of a sequence of elements of W. Moreover, the normed space V is called separable if it has a
countable dense subset.

Definition 4. A normed space V is said to be complete and a Banach space if every Cauchy
sequence in V converges to a limit in V.

Remark 1. [AF03, Chap. 1] Every normed space V is either a Banach space or a dense subset of
Banach space S called the completion of V whose norm satisfies

‖v‖S= ‖v‖V v ∈ V

It is important to note that defining different norms on any arbitrary linear space is possible.
Each norm offers a unique size measure for a given vector within the space, leading to varying
forms of convergence. Consequently, there is an interest in investigating whether these diverse
norms can be interconnected or related. To this end, consider two different norms ‖·‖(1) and
‖·‖(2), defined on the linear spaceV.

Definition 5. We say, two norms ‖·‖(1) and ‖·‖(2) are equivalent if there exist positive constants
c1, c2 such that

c1‖v‖(1)≤ ‖v‖(2)≤ c2‖v‖(1) ∀v ∈ V. (1.2)

With two such equivalent norms, a sequence {u}n converges in one norm if and only if it
converges in the other norm:

lim
n→∞

‖un − u‖(1)= 0 ⇐⇒ lim
n→∞

‖un − u‖(2)= 0. (1.3)

4



Theorem1. [AH05, Theorem1.2.13]Over afinite-dimensional space, any two norms are equiv-
alent

Notice that over an infinite dimensional space, however, such a statement is no longer valid
(see [AH05, Chap. 1.2]).

Among all normed spaces, we turn our attention towards a specific type of normed space,
known asHilbert spaces. To this end, we review the concept of inner product spaces, where a
norm can be established through the inner product, and the concept of orthogonality between
two elements can be introduced.

Definition 6. Let V be a linear space overK. An inner product (·, ·) is a function from V × V
toK with the following properties.

• For any v ∈ V, (v, v) ≥ 0 and (v, v) = 0 if and only if v = 0.

• For any u, v ∈ V, (u, v) = (v, u).

• For any u, v,w ∈ V , any α, β ∈ K, (αu+ βv,w) = α(u,w) + β(v,w).

The spaceV together with the inner product (·, ·) is called an inner product space. In partic-
ular, moreover, an inner product (·, ·) induces a norm through the formula

‖v‖=
√

(v, v) v ∈ V. (1.4)

It is easy to verify that such a norm satisfies the required properties. As an example, the inner
product for the spaceRd is

(x, y) =
d∑
i=1

xi, yi = yTx, x = (x1, ..., xd)T, y = (y1, ..., yd)T ∈ Rd,

which induces the norm

‖x‖=
√
(x, x) =

( d∑
i=1

|xi|2
)1/2

.

Such a norm is known as the Euclidean norm, and the linear space equipped with a norm de-
fined in (1.4), is called Euclidean space.

Theorem 2. [I+18, Thm 3.9] Let V be a Euclidean space with inner product (·, ·) and norm
‖·‖= (·, ·)1/2. Then the parallelogram identity

‖u+ v‖2+‖u− v‖2= 2‖u‖2+2‖v‖2 ∀u, v ∈ V (1.5)

holds. Besides, If V is a Euclidean space over the real numbersR, then the polarization identity
holds:

(u, v) = 1/4(‖u+ v‖2+‖u− v‖2) ∀u, v ∈ V. (1.6)
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For the statement in the above theorem, the converse is also true, known as the theorem of
Jordan and von Neumann.

Theorem 3. [I+18, Thm 3.10] Let V be a linear space with norm (·, ·), for which the parallelo-
gram identity (1.5) holds. Then there is an inner product (·, ·) on V, so that

(v, v) = ‖v‖2 ∀v ∈ V, (1.7)

that is, V is an Euclidean space.

The two theorems above imply that within any normed linear space, there can be only one
inner product that generates the norm. Conversely, it’s important to note that not every norm
can be derived from an inner product. With the concept of an inner product at our disposal,
we are able to define the angle between two non-zero vectors u and v.

θ = arccos

[
(u, v)
‖u‖‖v‖

]
. (1.8)

Definition 7. Two vectors u and v are said to be orthogonal if (u, v) = 0. An element v ∈ V is
said to be orthogonal to a subset U ⊂ V if (u, v) = 0 for any u ∈ U.

This notion leads us to an important set of bases:

Definition 8. Let V be an inner product space. We say {vi}i≥1 ⊂ V forms an orthonormal
system if

(vi, vj) = δi,j, i, j ≥ 1. (1.9)

If the orthonormal system is a basis of V, then it is called an orthonormal basis for V.

In case the basis is not of length 1, they are called orthogonal basis instead. Equipped with
the inner product spaces concept, we are now ready to define theHilbert space.

Definition 9. A complete inner product space is called aHilbert space.

Employing either orthogonal or orthonormal bases for a Hilbert space, we can decompose a
vector as the linear combination of the basis elements.

Theorem 4. [AH05, Theorem1.3.11] Suppose {vj}∞j=1 is an orthonormal basis in aHilbert space
V. Then, we have the following conclusions.

(a) For any v ∈ V, the series
∑∞

j=1(v, vj)vj converges in V.

(b) if v =
∑∞

j=1 ajvj ∈ V then, aj = (v, vj).

(c) A series
∑∞

j=1 converges in V if and only if
∑∞

j=1|a2j |< ∞.

6



The expansion expressed in b is called the Fourier series for v. There is a detailed discussion
regarding this subject in any numerical analysis textbooks, including [Dav75, AH05, Lin19].
In what follows, we introduce some particular spaces that later appear necessary in this text.

1.3 Important function spaces

As the primary objective of approximation theory is to reconstruct unknown functions, it is
essential to determine the space towhich the target functionbelongs. To achieve this, we briefly
introduce some well-known function spaces.

1.3.1 Spaces of continuously differentiable functions

Among these spaces, those of continuous and continuously differentiable functions hold sub-
stantial importance in approximation theory. In numerous instances, the underlying function
that requires reconstruction belongs to one of these spaces.

Let Ω be an open, bounded, connected subset of Rd. Recall that, a generic point in Rd is
denoted by x = (x1, ..., xd)T. Amulti-index is an ordered collection of d non-negative integers,
δ = (δ1, . . . , δd). The quantity |δ|=

∑d
i=1 δi is said to be the length of δ. Consequently, If v is

an m-times differentiable function, then for any δwith |δ|≤ m,

Dδv(x) =
∂|δ|v(x)

∂xδ11 . . . ∂x
δd
d

(1.10)

is the δ−th order partial derivative. This will appear as a handy notation for partial derivatives.
For example,

∂v
∂x1

= Dδv for δ = (1, 0, ..., 0). (1.11)

Correspondingly, the set of all the derivatives of order m of a function v can be written as
{Dδv | |δ|= m}.

The space C(Ω) consists of all real-valued continuous functions on Ω. However, since Ω
is open, a function from the space C(Ω) is not necessarily bounded. Thus, in many cases, one
prefers to deal with C(Ω̄), which is the space of continuous functions that are continuous up
to the boundary,meaning that any function inC(Ω̄) is bounded. So, the spaceC(Ω̄) equipped
with its canonical norm

‖v‖C(Ω̄)= sup{|v(x)| | x ∈ Ω} = max{v(x) ∈ Ω̄},

forms a normed space. Accordingly, take anym ∈ Z+, Cm(Ω̄) denotes the space of functions
which, together with their derivatives of order less than or equal to m, are continuous and
bounded:

Cm(Ω̄) = {v ∈ C(Ω̄)|Dδv ∈ C(Ω̄) for |δ|≤ m}.
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The space Cm(Ω̄) is a Banach space with the norm

‖v‖Cm(Ω̄)= max
|δ|≤m

‖Dδv‖C(Ω̄). (1.12)

Generally, for m = 0, C(Ω̄) is used rather than C0(Ω̄). Besides, the space of bounded and
infinitely differentiable functions is defined as ∩∞

m=0Cm(Ω̄) and is denoted by C∞(Ω̄). For
more information regarding these spaces, see [AF03, Chap. 1]. To proceed further, we need
the following notions.

Given a function v on Ω, its support is defined to be

supp v = {x ∈ Ω|v(x) 6= 0¯ }.

Definition 10. A subset S on a normed space V is called compact if every sequence of points in S
has a subsequence converging in V to an element S. Compact sets are closed and bounded, but the
converse is true only in case V is finite-dimensional

Consequently, the subspace C0(Ω) and C∞
0 (Ω) consist of all those functions in C(Ω) and

C∞(Ω), respectively, that have compact support in Ω. We end this subsection with the follow-
ing lemma, which is the result of Stone–Weierstrass theorem (see [AF03, Thm 3.1.2]).

Lemma 1. IfΩ is bounded inRd, then the set P of all d−variate polynomials having rational-
complex coefficients is dense in C(Ω̄).

Intuitively, this means that any continuous function f on a closed interval can be approxi-
mated arbitrarily well by algebraic polynomials no matter how badly f behaves. Mathemati-
cally speaking for any f ∈ C[a, b] and ε > 0 there is a polynomial p ∈ P satisfying ‖p− f‖∞< ε.

1.3.2 Lp spaces

Thenext classes of linear spaces, which are important in approximation theory, are theLp spaces.
Note that we do not introduce formally and rigorously the concepts of measurable sets and
functions, as they are out of the scope of this text; instead, the readers can find a complete
development of Lebesgue measure and integration in any standard textbook on real analysis;
for example, see [RF10, Rud87].

Let Ω ⊂ Rd be a non-empty open set and p be a positive real number. We denote by Lp(Ω)

the class of all measurable functions u defined on Ω for which∫
Ω
|u(x)|pdx < ∞. (1.13)

In the study of Lp(Ω) spaces, we identify functions that are equal almost everywhere in Ω. It
means that the elements of Lp(Ω) are thus equivalence classes of measurable functions satisfy-
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ing (1.13). Now the functional ‖·‖ defined

‖v‖Lp(Ω)=

[∫
Ω
|v(x)|pdx

]1/p
< ∞ (1.14)

is a norm on Lp(Ω) provided 1 ≤ p < ∞. It is clear that ‖u‖≥ 0 and ‖u‖p= 0 if and only if
u = 0. Besides, ‖cu‖p= |c|‖u‖p, c ∈ R. The triangle inequality is the result of the following
lemma.

Lemma 2. (Minkowski inequality) If 1 ≤ p < ∞

‖u+ v‖Lp(Ω)≤ ‖u‖Lp(Ω)+‖v‖Lp(Ω) ∀u, v ∈ Lp(Ω), (1.15)

This implies that for any p ∈ [1,∞), ‖·‖Lp is indeed a norm. Moreover, a function u that
is measurable on Ω is said to be essentially bounded on Ω if there is a constant K such that
‖u(x)‖≤ K almost everywhere on Ω. The greatest lower bound of such constants K is called
the essential supremum of |u| on Ω and is denoted by ess supx∈Ω|u(x)|. We denote by L∞(Ω)

the vector space of all functionsu that are essentially boundedonΩ, functions beingonce again
identified if they are equal almost everywhere onΩ. It is easy to verify that the functional ‖·‖∞
defined by

‖u‖∞= ess sup
x∈Ω

|u(x)|

is a norm on L∞(Ω).

Theorem 5. [AF03, Theorem 2.16] For p ∈ [1,∞], LP(Ω) is a Banach space.

Specifically, L2(Ω) is aHilbert space with respect to the inner product

(u, v) =
∫
Ω
u(x)v(x)dx.

Theorem 6. [AH05, Theorem 1.5.6] Let Ω ⊂ Rd be an open set, 1 ≤ p < ∞. Then the
space C∞

0 (Ω) is dense in Lp(Ω); in other words, for any v ∈ Lp(Ω), there exists a sequence
{vn} ⊂ C∞

0 (Ω) such that

‖vn − v‖Lp(Ω)→ 0 as n → ∞, (1.16)

For any m ∈ Z+, the inclusions C∞
0 ⊂ Cm(Ω̄) ⊂ Lp(Ω) hold, meaning that the space Cm(Ω̄)

is also dense in Lp(Ω).
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1.3.3 ℓp space

We denote by ℓp the set of doubly infinite sequence v = {vi}∞i=1 for which

‖v‖ℓp=


(

∞∑
i=−∞

|vi|p
)1/p

if 0 < p < ∞

sup
−∞≤i≤∞

|vi| if p = ∞

is finite. If 1 ≤ p ≤ ∞, then ℓp is Banach spacewith respect to its norm. Moreover, the ℓp spaces
are embedded into one another as follows. If 0 < p ≤ ∞, then ℓp → ℓq and ‖v‖ℓq≤ ‖v‖ℓp .
For more information about discrete norm ℓp, see [AF03, Chap. 2].

1.4 Operators on normed spaces

In formulating mathematical problems, one often needs to solve or minimize a linear system.
Therefore, to assess the theoretical solvability of the obtained linear system, one should know
the properties of the linear operators inherent in the problem.

1.4.1 Linear operators

Given two sets V andW, an operator T from V toW is a rule that assigns to each element in
a subset of V a unique element inW. In addition, an operator is sometimes called a mapping,
a transformation, or a function. Generally, it is assumed that both V andW are linear spaces.
Besides, addition and scalarmultiplication of operators are defined similarly to that of ordinary
functions. Here, we focus on a particular type of operators, called linear operators.

Definition 11. Let V andW be two linear spaces. An operator L : V → W is said to be linear
if

L(α1v1 + α2v2) = α1L(v1) + α2L(v2) ∀v1, v2 ∈ V,∀α1, α2 ∈ R, (1.17)

For instance, it can be verified that the identity operator I : V → V, defined as I(v) = v for
all v ∈ V, is a linear operator.
Let L(V,W) denote the set of all continuous linear operators from a normed space V to an-
other normed space W. When W = V, we use L(V) instead of L(V,V). Particularly, if
L ∈ L(V,W), it is meaningful to define the norm ‖L‖V,W as follows:

‖L‖V,W= sup
0 ̸=v∈V

‖Lv‖W
‖v‖V

(1.18)

This definition allows us to verify that the set L(V,W) forms a linear space, and the norm
(1.18) establishes a norm over this space. Commonly referred to as the operator norm of L, it
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possesses the following compatibility property:

‖Lv‖W≤ ‖L‖V,W‖v‖V ∀v ∈ V. (1.19)

As an example, letV = Rn,W = Rm, and L(v) = Av, whereA = (aij) ∈ Rm×n. In this case,
if the norms onV andW are ‖·‖∞ then the operator norm is the matrix∞−norm,

‖A‖∞= max
1≤i≤m

n∑
j=1

|aij|. (1.20)

Moreover, if ‖·‖1 is chosen instead, then the operator norm is the matrix 1−norm,

‖A‖1= max
1≤j≤n

m∑
i=1

|aij|. (1.21)

In particular, if ‖·‖2 is taken, then the operator norm is known as the spectral norm that is

‖A‖2=
√
rσ(AA∗),

where A∗ denotes the conjugate transpose of A. For a square matrix B, rσ(B) denotes the spec-
tral radius of the matrix B, rσ(B) = maxλ∈σ(B)|λ|, and the σ(B) denotes the spectrum of B, the
set of all the eigenvalues of B.

A significant aspect of operator theory comes into sight in approximation theory when solv-
ing the equation Lv = w, where L ∈ L(V,W).

Theorem 7. [AH05, Theorem2.4.3] Let V and W be Banach spaces. If L ∈ L(V,W) is a
bijection, then L−1 ∈ L(W,V).

This implies that the solution v can be derived as L−1w. Consequently, the existence and
uniqueness of solutions v ∈ V for all w ∈ W suggests the stability of the solution v. This
suggests that slight changes in the input data w lead to only minor adjustments in the solution
v. To be more precise, let Lv = w and Lv̂ = ŵ. We then have

v− v̂ = L−1(w− ŵ),

and then
‖v− v̂‖≤ ‖L−1‖‖w− ŵ‖. (1.22)

As w− ŵ becomes small, so must v− v̂.
Specifically, the expression ‖L−1‖ in (1.22) establishes a connection between the magnitude
of the error in the data w and the magnitude of the error in the solution vMore significantly,
an important approach involves examining the relative changes in the two errors, guiding us
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towards:
‖v− v̂‖
‖v‖

≤ ‖L−1‖‖L‖‖w− ŵ‖
‖w‖

.

Thequantity‖L−1‖‖L‖ is called the conditionnumberof the equation and is denotedby cond(L)
and links the relative errors in the data w and in the solution v. Specifically, we always have
cond(L) ≥ 1 as

‖L−1‖‖L‖≥ ‖L−1L‖= ‖I‖= 1.

Problems with a minor condition number are calledwell-conditioned, whereas those with a sig-
nificant condition number ill-conditioned. In a related vein, problems inwhichL−1 is bounded
(along with L) are called well-posed or stable; they can still be ill-conditioned, however. Later,
we will see that such ill-conditioning can lead to inaccurate solutions; therefore, an important
issue is finding proper ways to overcome ill-conditioning.

1.4.2 Riesz representation theorem

An important special class of linear operators is when they take on scalar values. Let V be a
normed space, andW = K, the set of scalars associated withV. The elements inL(V,K) are
called linear functionals. This space is usually denoted as V∗, which is called the dual space of
V. Usually, we use lowercase letters, such as ℓ, to denote a linear functional. Specifically, on
Hilbert spaces, linear functionals are limited in the forms they can take.

Theorem 8. (Riesz representation theorem) Let V be a real Hilbert space, ℓ ∈ V∗. Then there is
a unique u ∈ V for which

ℓ(v) = (u, v) ∀v ∈ V.

In addition,
‖ℓ‖= ‖u‖.

Let Ω ⊂ Rd be open bounded. V = L2(Ω) is a Hilbert space. By the Riesz representation
theorem, there is a one-to-one correspondence between V and V∗, meaning that ℓ ∈ V∗ with
u ∈ V. In this sense, (L2(Ω))∗ = L2(Ω).

1.5 Function approximation

Equipped with the notions reviewed in the previous sections, we can represent the interpola-
tion problem in an abstract setting. An abstract approximation problem can be stated in the
following setting. Suppose Vn is an n−dimensional subspace of V , with a basis {v1, . . . , vn}.
Let ℓi ∈ V′

, 1 ≤ i ≤ n, be n linear continuous functionals. Given n data ℓif ∈ R, 1 ≤ i ≤ n,
we look for a function sf such that

sf =
n∑

i=1

civi, (1.23)
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with the property
ℓisf = bi 1 ≤ i ≤ n. (1.24)

In this, we say sf interpolates f, and the property in (1.24) is known as interpolation conditions.
Note that, we used the notation sf instead of s to underline that it is an interpolant to the un-
known function f. The coefficients ci in (1.23), are determined by solving the linear system
resulted from (1.24) i.e., ℓ1v1 · · · ℓ1vn

... . . . ...
ℓnv1 · · · ℓnvn


c1

...
cn

 =

ℓ1f
...
ℓnf

 . (1.25)

The following theorem states when the final linear system is uniquely solvable.

Theorem 9. [Dav75, Theorem 2.2.2] Let a linear space V have dimension n and let ℓ1, . . . , ℓn
be n elements of V∗. The above interpolation problem possesses a solution for arbitrary values
b1, . . . , bn if and only if the ℓi are independent in V∗. The solution will be unique

The question of an error analysis in the abstract framework is rather difficult. For a general
discussion of such error analysis, see [Dav75, Chap. 3]. Instead, in order to simplify the prob-
lem let X = {x1, ..., xn} ⊂ Ω ⊂ Rd be pairwise distinct points known as interpolation point
or data site, and ℓi, 1 ≤ i ≤ n be the point evaluation functionals w.t.r to X meaning that
ℓisf = sf(xi)with collected function values ℓif = f(xi), 1 ≤ i ≤ n in one data vector, denoted
by fX = (f1, . . . , fn)T ∈ Rn, where fi = f(xi), 1 ≤ i ≤ n. Now, the interpolation system in
(1.25) can be rewritten asv1(x1) · · · vn(x1)

... . . . ...
v1(xn) · · · vn(xn)


c1

...
cn

 =

f(x1)
...

f(xn)


or in the short form

Vc = fX, (1.26)

with V referred as the interpolationmatrix. We shall investigate the conditions that ensure the
solvability of (1.26).

Remark 2. In case ℓi 1 ≤ i ≤ n differ from the point evaluation functionals, and the given
interpolation points are not necessarily distinct, we enter the realm of Hermite interpolation. The
exact formulation of Hermite interpolation is out of the scope of this thesis, and the readers are
referred to [Lin19, Chap 2] for more information.
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1.5.1 Linear least squares

Let us begin with a more general setting, where the number of bases is less than the given data,
meaning that we have Vm = span{v1, . . . , vm} with m ≤ n. In the linear least squares ap-
proximation problem, we look for the best sf ∈ Vm which minimizes among all v ∈ Vm the
pointwise sum of square errors on X, so that

‖sf − fX‖22≤ ‖v− fX‖22 ∀v ∈ Vm. (1.27)

To solve the minimization problem, we represent sf as a unique linear combination of the basis
functions in Vm, similar to (1.23) with the difference that now 1 ≤ i ≤ m. Thereby, the
linear least squares approximation problem can be reformulated as an equivalentminimization
problem of the form

min
c∈Rm

‖Vc− fX‖ (1.28)

where c = (c1, . . . , cm)T ∈ Rm, and V ∈ Rm×n is known as the generalized Vandermonde
matrix. The solution of the linear equation system is obtained via

VTVc = VTfX (1.29)

referred asGaussiannormal equation. IfVhas full rank, i.e., rank(V) = m, then the symmetric
matrix VTV is positive definite, (see definition (16)), meaning that the existence of the unique
solution is guaranteed. This gives us more freedom compared with (1.26) when it comes to
selecting the set of bases since the solvability was ensured regardless of the {v1, . . . , vm}.

We mention that finding the coefficients c either through solving the linear system in (1.26)
or (1.29) poses numerical challenges due to the ill-conditioning of the linear system. For amore
in-depth error analysis on linear least squares approximation, see the textbook [Bjö96].
Inwhat follows, we briefly review the required criteria of the approximation space and its norm,
which guarantees thewell-posedness of the problem (1.25), regardless of the selected set of basis
{vi}.

1.5.2 Best approximations

Let F be a linear space, equipped with a norm ‖·‖, and S be a non-empty subset of F . To
approximate one f ∈ F\Sby elements from S, we are interested in finding an approximant sf ∈
S, whose distance to f is minimal among all elements from S. The existence and uniqueness of
sf is known as the best approximation problem. We will see that it is the properties of the linear
space F , its defined norm, and the approximation space S that are determinant. In particular,
we restrict ourselves to the best approximation problem only in theHilbert spaces.
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Definition 12. LetF and S be as above. The set S is said to be convex if

u, v ∈ S → λu+ (1− λ)v ∈ S ∀λ ∈ (0, 1).

Informally, the convexity of the set S is characterized by the property that the line segment
joining any two elements of S is also contained in S.

Definition 13. Let S be a convex set in a linear space F . A function f : S → R is said to be
convex if

f(λu+ (1− λ)v) ≤ λf(u) + (1− λ)f(v) ∀u, v ∈ S,∀λ ∈ [0, 1]. (1.30)

The function f is strictly convex if the above inequality is strict for u 6= v and λ ∈ (0, 1).

Now, we are ready for the following theorem.

Theorem 10. [I+18, Theorem3.14] LetF be aHilbert space with inner product (·, ·) andnorm
‖·‖= (·, ·)1/2. Moreover, let S ⊂ F be a closed and convex subset ofF . Then there exists for any
f ∈ F a best approximation sf ∈ S to f.

Proof. Let (sn)n∈N ⊂ S be a minimal sequence in S, i.e.,

‖sn − f‖→ inf
s∈S

(f, S) for n → ∞

with the minimal distance η = infs∈S(f, S). From the parallelogram identity (1.5), we obtain
the estimate

‖sn − sm‖2 = 2‖sn − f‖2+2‖sm − f‖2−4‖ sn + sm
2

− f‖2

≤ 2‖sn − f‖2+2‖sm − f‖2−4η2.

Therefore, for any ε > 0 there is oneN = N(ε) ∈ N satisfying

‖sn − sm‖< ε for all n,m ≥ N,

i.e., (sn)n∈N is aCauchy sequence in theHilbert spaceF , and therefore convergent inF . Since
S is a closed set, the limit element s∗ lies in s, and we have

η = lim
n→∞

‖sn − f‖= ‖s∗ − f‖,

i.e., s∗ = sf ∈ S is a best approximation to f.

We see that the parallelogram identity must hold; otherwise, the proof’s scheme is under
question. This highlights why approximation in Euclidean spaces fundamentally differs from
other inner product spaces.
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In the following discussion, we briefly review the uniqueness of the best approximant.

Definition 14. Anorm ‖·‖ is called strictly convex onF , if the unit ballB = {u ∈ F | ‖u‖≤
1} ⊂ F is strictly convex.

One should notice that not every norm is strictly convex. However, we can formulate those
which are induced an inner product as follows

Theorem 11. [I+18, Theorem 3.28] Every Euclidean norm is strictly convex.

The following theorem states sufficient conditions for the uniqueness of the best approxima-
tion.

Theorem 12. [I+18, Theorem 3.37] Let F be a linear space, equipped with a strictly convex
norm ‖·‖. Moreover, assume S ⊂ F is convex and f ∈ F . If there exists a best approximation
sf ∈ S to f, then sf is unique.

Given the preceding discussion, the following theorem is an immediate conclusion.

Theorem 13. [AH05, Theorem 3.4.3] Assume S ⊂ F is a non-empty, closed, convex subset of a
Hilbert spaceF . Then for any f ∈ F , there is a unique element sf such that

‖f− sf‖= inf
s∈F

‖f− s‖

i.e., sf is the best approximation to f.

Before ending this subsection, we present the following theorems regarding the Lp and ℓp

norms.

Theorem 14. [I+18, Theorem 3.32&Corollary 3.35] For 1 < p < ∞, the Lp− and ℓp−norms
are strictly convex on Lp andRd.

Subsequently, we explore how to construct the best approximant.

1.5.3 Reconstruction of the Best Approximant

In this subsection, we intend to explain further advantages of inner product space to charac-
terize and construct the best approximation. So the main purpose of this subsection is to yield
for finite-dimensional approximation spaces S ⊂ F constructive methods to compute best ap-
proximations by orthogonal projection Π : F → S of f ∈ F on S.
Intuitively speaking, assume s1 and s2 be two non zero and independent elements of S. We look
for the scalar λ ∈ R such that λs2 is the projection of s1 on s2. Then

λs2 ⊥ s1 − λs2.
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Considering (1.8), this means
(λs2, s1 − λs2) = 0.

Therefore, we have λ = (s2,s1)
(s2,s2) . This means that if s2 6= 0,

projection of s1 on s2 =
(s2, s1)
(s2, s2)

s2.

Consequently, it seems reasonable to expect the approximation error, i.e., |f − sf|, to be an
orthogonal projection onto the approximation space. Without going into details, we immedi-
ately represent the following theorem, which characterizes the best approximation,

Theorem 15. [AH05, Theorem 3.4.6] Assume S is a complete subspace of an inner product space
F . Then for any f ∈ F , there is a unique element sf ∈ S such that

‖f− sf‖= inf
s∈S

‖f− s‖

Moreover, the best approximation sf ∈ S is characterized by the property

(f− sf, s) = 0 ∀s ∈ S, (1.31)

In other terms, the best approximation sf ∈ S to f ∈ F is the unique orthogonal projection
of f onto S. Fixing {s1, . . . , sn} as a set of bases for S, and employing the representation in (1.23)
for sf, we have

(f−
n∑

i=1

cisi, sj) = 0 1 ≤ j ≤ n

n∑
i=1

ci(si, sj) = (f, sj) 1 ≤ j ≤ n

Therefore, the vector of the coefficients can be obtained by solving the following linear system.

Gc = b, (1.32)

with the Gram matrix G = ((sj, si))1≤i,j≤n ∈ Rn×n, the unknown coefficient vector c =

(c1, . . . , cn)T ∈ Rn and the right hand side b = ((f, s1), . . . , (f, sn))T ∈ Rn. In particular, due
to the existence and uniqueness of the best approximation, the linear system (1.32) must be
uniquely solvable. We specialize this statement onG as follows.

Theorem 16. [I+18, Theorem 4.4] The Grammatrix G is symmetric positive definite (see defi-
nition (16)).

Though we do not mention the exact proof, we highlight that the symmetry of G is con-
cluded from the symmetry of the inner product. At the same time, the positive definiteness

17



of G is an immediate result of the properties of the inner product. Given our investigations
in this, the problem of Euclidean approximation by finite-dimensional approximation spaces
S seems to be solved. But note that we have not posed any essential or preferred conditions on
the set of basis {s1, . . . , sn}, yet.

1.5.4 Orthogonal approximation

Now we discuss a particular case when the set of basis poses the property of orthogonality.
For an orthogonal basis {s1, . . . , sn} of S, i.e.,

(si, sj) =

0 for i 6= j

‖si‖2 for i = j
(1.33)

the GrammatrixG is a diagonal matrix,

G = diag(‖s1‖2, . . . , ‖sn‖2), (1.34)

in which case, the solution

c =
(
(f, s1)
‖s1‖2

, · · · , (f, sn)
‖sn‖2

)
∈ Rn.

Notice that if {s1, . . . , sn} are orthonormal instead, ‖si‖2= 1, 1 ≤ i ≤ n; therefore the
inner product of the function values and the bases functions would be enough to compute the
approximant. We formulate our discussion in the following theorem, similar to Theorem (4).

Theorem 17. [I+18, Theorem 4.5] LetF be an Euclidean space with inner product (·, ·). More-
over, let S ⊂ F be a finite-dimensional linear subspace with orthogonal basis {s1, . . . , sn}. Then,
for any f ∈ F ,

sf =
n∑

i=1

(f, sj)
‖sj‖

si ∈ S (1.35)

is the unique best approximation to f.

Generally speaking, obtaining the interpolant representation as in (1.35), i.e., choosing a set
of basis functions with orthogonality properties, is not always straightforward. For instance,
applying the Gram–Schmidt procedure yields the familiar Legendre polynomials when utiliz-
ing monomials as the bases. However, constructing orthonormal polynomials through this
method can be cumbersome in numerous scenarios. Thus, in many cases, the linear system
(1.26) is preferred over dealing with (1.35). Consequently, the existence, uniqueness, and op-
timality of the approximation hinge on the invertibility and conditioning of the interpolation
matrix in (1.26). Hence, the following chapter identifies bases that ensure the appropriate so-
lution of equation (1.26).
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1.6 Thesis outline

In this direction, in the second next 2, we review a specific type of function approximation,
known as kernel-based approximation, particularly with Radial Basis Functions (RBF). We
mainly focus on the properties and characteristics of such an approximation rather than the
construction of these radial kernels. The last three chapters describe my research and new con-
tributions to the field during my Ph.D.
In Chapter 3, we explored two potential methods for finding data-dependent orthonormal
bases that are orthonormal for both discrete and native space norms. The first method involves
kernel matrix factorization, while the second is based on approximating the eigenpairs of the
linear operator linked to the reproducing kernel, as Mercer’s theorem states. To identify an
optimal low-rank basis, we use the truncated Singular Value Decomposition technique with a
coefficientmatrix whose rank is lower than the originalmatrix. Our study also delves into error
analysis, duality, and stability and includes several numerical experiments.
Chapter 4 is dedicated to developing a new numerical scheme based on the Moving Least
Squares approach to approximate the discontinuous underlying function, such that the dis-
continuities are incorporated into the approximant. We also provide an error estimate on a
suitable piecewise Sobolev Space. The numerical experiments comply with the theoretical con-
vergence rate.
Finally, in Chapter 5, we suggest a new numerical scheme based on the closest point represen-
tation of a surface to solve time-dependent PDE problems intrinsic to the surfaces.
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2
Kernel Based ApproximationMethods

Mathematics may be defined as the subject in which we never know what we are
talking about, nor whether what we say is true.

Bertrand Russell

2.1 Kernels as Basis function

This chapter discusses a class of basis functions known as Radial Basis Functions to construct
the approximation. Afterward, we investigate the relation of these bases with the reproducing
kernel of Hilbert spaces. The materials of this chapter are mainly derived from [Fas07,Wen04,
Buh03, FM15].
We continue to use our assumptions i.e., S ⊂ Ω ⊂ Rd where S = span{s1, . . . , sn} for

n ∈ N, and X = {x1, . . . , xn} and fX = (f1, . . . , fn) are the given data. As mentioned before,
the unique solution of linear system (1.26) exists if and only if the interpolation matrixVij =

si(xj) is non-singular. Consequently, we look for the bases that ensure this for any data sites X.
By introducingHaar spaces, we specialize our assumptions on S and {s1, . . . , sn} as follows.

Definition15. Let thefinite-dimensional linear function space S ⊂ C(Ω)have abasis{s1, . . . , sn}.
Then S is aHaar space onΩ if

detV 6= 0

for any set of distinct points X. (V is defined as (1.26)).

Note that the existence of aHaar space guarantees the invertibility of the interpolation ma-
trix. Now, we express the well-known theorem referred to asMairhuber-Curtis theorem.

Theorem 18. IfΩ ⊂ Rd, d ≥ 2, contains an interior point, then there exist no Haar spaces of
continuous functions except for one-dimensional ones.
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Proof. Let d ≥ 2 and assume that S is a Haar space with basis {s1, . . . , sn} with n ≥ 2. We
need to show that this leads to a contradiction. Then, by the definition of a Haar space, we
have

detV 6= 0.

Consider a closedpathP inΩ that connects onlyx1 andx2. This is feasible since, by assumption,
Ω contains an interior point. By moving x1 and x2 continuously along the path P without
disturbing any of the other xj , we effectively swap the positions of x1 and x2. This swap causes
the first and second rows of the determinant of V to be exchanged, thus changing the sign of
the determinant. Given that the determinant is a continuous function of x1 and x2, it follows
that detV must be zero at some point along the path P. This contradicts the assumption of
detV 6= 0.

The Mairhuber-Curtis theorem states that to guarantee the well-posedness of a multivari-
ate scattered data interpolation problem, one cannot pre-select a set of basis functions to solve
the interpolation problem for arbitrary scattered data. For instance, it is not feasible to achieve
unique interpolation using (multivariate) polynomials of degree m for data provided at arbi-
trary locations inR2. Instead, the basis must be chosen based on the locations of the data. To
represent such a class of basis, we begin with the following definition,

Definition 16. A real symmetric matrix A ∈ Rn×n is called positive definite if its associated
quadratic form is positive for any nonzero coefficient vector c = (c1, . . . , cn)T ∈ Rn, i.e.,

n∑
i=1

n∑
j=1

cjciAi,j > 0.

The matrix is called positive semi-definite if the quadratic form is allowed to be nonnegative.

A significant characteristic of positive definite matrices is that all of their eigenvalues are
positive; hence, a positive definite matrix is always non-singular. Consequently, our focus will
primarily be kernels that produce positive definite matrices.

Definition 17. A symmetric kernel Φ is called positive definite on Ω × Ω if its assocciated
interpolationmatrix V with entries Vij = Φ(xi, xj), i, j = 1, . . . , n is positive definite for any
n ∈ N and X of distinct points.

From now on, we use the notation VΦ,X instead of V for the interpolation matrix to insist
that this matrix has resulted from kernel Φ and not any arbitrary set of basis. In this particular
case (1.26) could be rewritten as

VΦ,Xc = fX. (2.1)

In the literatureVΦ,X is also called the kernelmatrix.
Besides, knowing that the interpolantmust depend on the data sites, we denote the interpolant
with sf,X instead of sf. Now, we summarize the properties of kernel interpolation.
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Theorem 19. [I+18, Theorem 8.3] For Φ being a PD (positive definite) kernel, and X =

{x1, . . . , xn} ⊂ Rd, the following statements are true.

1. The interpolation matrix VΦ,X is positive definite i.e., linear system in (1.26) is uniquely
solvable.

2. If sf,X ∈ S vanishes on X, i.e., if sf,X(X) = 0, then sf,X = 0.

3. The interpolation problemhas aunique solution sf,X ∈ S representedas sf,X =
∑n

i=1 ciΦ(·, xi),
whose coefficient vector c = (c1, . . . , cn)T ∈ Rn is determined by the unique solution of the
linear system VΦ,Xc = fX.

Before continuing, we investigate another class of kernels known as conditionally positive
definite (CPD) kernels. To pave the way, we need the following notion. Besides, we denote the
space of d−dimensional polynomial of degree at mostm− 1 by Pd

m−1.

Definition 18. We call a set of points X = {x1, . . . , xn} ⊂ Rd, Pd
m−1−unisolvent if the only

polynomial of total degree at most m− 1 interpolating zero data on X is the zero polynomial.

Definition 19. Let Φ : Ω × Ω → R be a continuous symmetric kernel. It is said that Φ is a
conditionally positive semi-definite kernel of order m onΩ ⊂ Rd if, for all n ∈ N, all pairwise
distinct centers X = {x1, . . . , xn} ⊂ Ω, and all α ∈ Rn satisfying

n∑
j=1

αjp(xj) = 0, p ∈ Pd
m−1,

the quadratic form
n∑

i,j=1

αiαjΦ(xi, xj) ≥ 0.

Moreover, Φ is said to be conditionally positive definite (CPD) of order m if equality holds only
for α = 0. Notice that letting m = 0 thenΦ is positive (semi)-definite

In this case letting p1, ..., pq be a basis for the polynomial space Pd
m−1, the interpolant can be

represented as

sf,X(x) =
n∑

j=1

cjΦ(x, xj) +
q∑

j=1

djpj(x), ∀ x ∈ Rd. (2.2)

In order to compute the coefficients cj and dj in (2.2), the interpolation condition leads us to
the linear system [

VΦ,X P
PT 0

][
c
d

]
=

[
fX
0

]
, (2.3)

withVΦ,X = [Φ(xi, xj)]1≤i,j≤n, Pij = pj(xi), 1 ≤ i ≤ n, 1 ≤ j ≤ q, and fX = [f(xi)]1≤i≤n.
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Theorem 20. [Wen04, Theorem 8.21] Suppose that Φ is CPD kernel of order m and X is a
Pd
m−1−unisolvent set of centers. Then the system (2.3) is uniquely solvable.

It is obvious that the addition of polynomial terms to the expansion guarantees polynomial
reproduction, i.e., if the data come from a polynomial of total degree less thanm, then they are
fitted by that polynomial.
Now, we classify the general notion of kernel functions with some additional structure.

Definition 20. A kernel is called

• translation-invariant if it depends only on the difference of the two arguments, i.e., if there
is a function φ(x, y) : Rd → R such that

Φ(x, y) = ϕ(x− y) for all x, y ∈ Ω. (2.4)

• zonal if it depends only on the inner product of the two arguments, i.e., if there is a function
φ(x, y) : R → R such that

Φ(x, y) = ϕ (〈x, y〉) for all x, y ∈ Ω. (2.5)

• radial if it depends only on the Euclidian norm of the difference of the two arguments, i.e.,
if there is a function φ(x, y) : [0,∞) → R such that

Φ(x, y) = ϕ(‖x− y‖2) for all x, y ∈ Ω. (2.6)

Here,wedelve into the special case of radial kernel referred to as radial basis functions (RBFs),
whichmay be one of themost popular types of kernels discussed in the literature. In particular,
for a radial function Φ and three distinct points z1, z2, xwe have

‖z1 − x‖= ‖z2 − x‖→ Φ(z1, x) = Φ(z2, x), x, z1, z2 ∈ Rd.

In other words, the value of Φ at any point at a certain fixed distance from the origin (or any
other fixed center point) is constant.

2.2 Radial Basis Functions

Employing the Radial Basis Function, the approximation space can be spanned by {ϕ(‖· −
xi‖); i = 1, . . . , n}, possibly added by polynomial space, that is generating the basis function
usingonebasic functionϕ. Radial function interpolants are invariant under all Euclidean trans-
formations (i.e., translations, rotations, and reflections). Moreover, the application of RBFs to
the interpolation problembenefits from the fact that the interpolation problembecomes insen-
sitive to the dimension d of the space in which the data sites lie because we work with the same
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Table 2.1: Matérn functions for various choice of β, [Fas07, Table 4.3]

β = d+1
2 β = d+3

2 β = d+5
2

e−εr (1+ εr)e−εr (3+ 3εr+ ε2r2)e−r

univariate function ϕ for all choices of d. Here, we avoid the fundamental discussion regarding
the constructionof the radial basis function, andwe refer the readers to [Fas07,Wen04,Buh03].
Instead, we recall some of the most common and well-known PD and CPDRBFs. Before pro-
ceeding, we underline the additional parameter ε > 0 known as shape parameter appearing in
some of the introduced RBFs. We shall discuss its effects on both the accuracy and stability of
RBF approximations. Letting r = ‖x− y‖ for any x, y ∈ Ω, we list some globally supported
RBFs :

• TheGaussian function
ϕε(r) = exp(−ε2r2),

which is positive definite (and radial) onRd for any d.

• The generalized inverse multiquadrics

ϕε(r) = (1+ (εr)2)−β β > 0,

which are positive definite onRd for all d and infinitely differentiable.

• Another example of PD kernels is given by the class ofMatérn function,

ϕε(r) =
Kβ− d

2
(εr)(εr)β− d

2

2β−1Γ(Β)
β >

d
2
.

HereKν is themodified Bessel function of the second kind of order ν. Some simple rep-
resentatives of the family of Matérn functions are listed in Table(2.1).

To proceed, we investigate another critical class of positive definite RBFs: compactly sup-
ported Radial Basis Functions. Similarly, we avoid the characterization and construction of
these functions.

Definition 21. Let ϕ be such that t → tφ(t) ∈ L1[0,∞). Then we define the integral operator
I via

(Iϕ)(r) =
∫ ∞

r
tϕ(t)dt, r ≥ 0.

Employing the operatorI represented firstly in [Zm95], thewell-known and popular family
ofWendland’s compactly supported functions [Wen95, Wen98] is obtained accordingly,

Definition 22. Let ϕℓ(r) = (1− r)ℓ+ with ℓ ≥ bd
2c+ 1, one can define

ϕd,k = Ikϕ⌊d/2⌋+k+1.
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It turns out that the functions ϕd,k are all supported on [0, 1] and have a polynomial repre-
sentation there.

Theorem 21. [Fas07, Theorem 11.4] The functions ϕd,k, k = 0, 1 have the form

ϕd,0,ε(r) = (1− εr)ℓ+,

ϕd,1,ε(r) = (1− εr)ℓ+1[(ℓ+ 1)(εr) + 1]

Formore information regarding other classes of CS functions (e.g., Wu’s CS functions), see
([Wen04, Chap. 9]) or [Fas07, Chap. 11].

In what follows, we list some of the most commonly used CPDRBFs.

• generalizedMultiquadrics (MQ)

ϕε(r) = (−1)⌈β⌉
(
1+ (εr)2

)β
which are conditionally positive definite of order dβe for 0 < β /∈ N.

• Radial powers
ϕ(r) = (−1)⌈

β
2 ⌉rβ

which are conditionally positive definite of order dβ/2e for 0 < β /∈ 2N.

• Thin-plate splines (TPS)
ϕ(r) = (−1)β+1r2β log(r)

which are conditionally positive definite of order β+ 1 with β ∈ N.

Back to the shape parameter ε, generally speaking, it can be thought of as an inverse length
scale, meaning that a smaller value of ε (i.e., larger variance) causes the function to becomeflat-
terwhile increasing ε leads to amore peakedRBF and therefore localizes its influence. In a nut-
shell, in the framework of RBF approximation, optimizing the shape parameter value is always
required as it affects both the accuracy and stability of the approximant. However, in many
cases, finding the best value for the shape parameter can become a challenging task. See, e.g.,
[FZ07] and the reference therein. To illustrate, it is known (see, e.g., [Fas07, Chap. 16]) that
employing Gaussian RBFs, the best accuracy is obtained when ε → 0. On the other hand, for
small values of ε, the basic functions increasingly resemble constant functions. Consequently,
both the rows and columns of the matrix VΦ,X in equation (2.1) tend to become more similar
so that the matrix becomes almost singular - even for well-separated data sites, which leads to
an ill-conditioned linear system. This phenomenon, firstly mentioned in [S+95], can be gener-
alized to the other types of RBFs and is known as the uncertainty or trade-off principle.
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2.3 Native spaces of kernels

In this subsection, we collect some basic facts regarding a specific space of functions associated
with each PD or CPD radial basis function, called the native space, and establish a connection
to reproducing kernel Hilbert spaces. We will not give any proof but refer to the literature
instead. Fundamental is the monograph [Wen04], which contains most of the facts collected
here and offers some broader background.

Definition 23. LetH be a real Hilbert space of functions f : Ω ⊂ Rd → R with inner product
〈·, ·〉H· A function K : Ω ×Ω → R is called reproducing kernel forH if

1. K(·, x) ∈ H for all x ∈ Ω,

2. f(x) = 〈f,K(·, x)〉H for all f ∈ H and all x ∈ Ω.

The second property in the above definition inspires the name reproducing kernel, yielding
its uniqueness.

Theorem 22. The reproducing kernel in a reproducing kernel Hilbert space is uniquely defined.

Proof. Assume there are two reproducing kernelsK1,K2. By reproducing property, we have

〈f,K1(·, y)− K2(·, y)〉H = 0

for all f ∈ H(Ω) and all y ∈ Ω. Inserting f = K1(·, y)− K2(·, y) concludes the proof.

Theorem 23. [Wen04, Theorem. 10.2] Suppose that H(Ω) is a Hilbert space of functions f :
Ω → R. The following statements are equivalent:

• The point evaluation functionals are continuous, i.e., δx ∈ H(Ω) for all x ∈ Ω.

• H(Ω) has a reproducing kernel.

It is possible to show that there is a one-to-one correspondence between reproducing ker-
nelHilbert spaces and positive semi-definite kernels. We shall explain this connection in more
detail. Recall thatH∗ is the dual ofH; the space of bounded linear functionals onH.

Theorem24. [Wen04, Theorem. 10.4] SupposeH is a reproducing kernelHilbert function space
with reproducing kernel K : Ω × Ω. Then K is semi-positive definite. Moreover, K is positive
definite if and only if the point evaluation functionals δx are linearly independent inH∗.
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This theorem provides one direction of the connection between positive definite kernels
and reproducing kernels. Since in this thesis, we mainly work with the RBFs, either PD or
CPD radial functions; we want to know how to construct a reproducing kernel Hilbert space
associated with those basic functions. This opens up our way to the notion of native space.
Thus, we replace the kernelKwith PD radial function Φ. Consequently, we start by:

HΦ(Ω) := span{Φ(·, y) : y ∈ Ω}, (2.7)

equipped with the bilinear form

〈
N∑
j=1

αjΦ(·, xj),
M∑
k=1

βkΦ(·, yk)〉Φ :=
N∑
j=1

M∑
k=1

αjβkΦ(xj, yk),

where N,M = ∞ are allowed. By this construction HΦ(Ω) forms a pre-Hilbert space con-
cerning the norm ‖·‖Φ. As a result, one should look for the completion of HΦ(Ω) denoted
byHΦ(Ω), i.e., the Hilbert function space with reproducing kernel Φ. To this end, it can be
shown [Wen04, Lemma 10.8] that the map

R : HΦ(Ω) → C(Ω), R(f)(x) := (f,K(· − x))Φ (2.8)

is well-defined and injective.

Definition 24. The native spaceNΦ(Ω) of positive definite kernelΦ is given by

NΦ(Ω) = R(HΦ(Ω)) (2.9)

equipped with the inner product

(f, g)NΦ(Ω) := (R−1f,R−1g)Φ. (2.10)

Accordingly, Theorem [Wen04, Theorem10.10] states thatNΦ is indeed aHilbert function
space with reproducing kernel Φ. As a result, we have

‖f‖Φ= ‖f‖NΦ , for all f ∈ HΦ(Ω),

where HΦ(Ω) is defined as in (2.7). The following theorems are related to the uniqueness of
native space associated with Φ.

Theorem 25. [Wen04, Theorem 10.11] Suppose that Φ is a symmetric positive definite kernel.
Suppose further that G is a reproducing kernel Hilbert space of functions onΩ with reproducing
kernelΦ. Then G is the native spaceNΦ(Ω) forΦ, and the inner products are the same.

As in the case of a positive definite kernel, we proceed to construct the native space of a con-
ditionally positive kernel. However, since this discussion is very technical, we only mentioned
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a few results. Similar to (2.7), we start with the linear space

HΦ(Ω) :=span{
N∑
j=1

αjΦ(·, xj) : N ∈ N, α ∈ RN, x1, . . . , xN ∈ Ω,

with
N∑
j=1

αjp(xj) = 0 for all p ∈ Pd
m−1}.

Notice that such a linear space is different from (2.7). However, we keep using the same nota-
tion,HΦ, for the sake of simplicity. Analogous to (2.8), let

R : HΦ(Ω) → C(Ω),

R(f(x)) = f(x)−Πf(x) = f(x)−
q∑

k=1

f(ξk)lk(x),

where lk, 1 ≤ k ≤ q, are the Lagrange basis of Pd
m−1 for the points Ξ = {ξ1, . . . , ξq} which is

assumed to be a Pd
m−1-unisolvent subset of Xwith dim(Pd

m−1) = q

Definition 25. The native space corresponding to a symmetric kernelΦ that is CPD of order m
onΩ is defined by

NΦ(Ω) = R(HΦ(Ω))⊕ Pd
m−1,

equipped with the inner product

〈f, g〉NΦ = 〈f, g〉+
q∑

k=1

f(ξk)g(ξk),

where

〈f, g〉 =
〈
R−1(f−Πf),R−1(g−Πg)

〉
Φ .

With this inner product, NΦ(Ω) becomes a reproducing-kernel Hilbert space with the re-
producing kernel

K(x, y) = Φ(x, y)−
q∑

k=1

lk(x)Φ(ξk, y)−
q∑

r=1

lr(y)Φ(x, ξr)

+

q∑
k=1

q∑
r=1

lk(x)lr(y)Φ(ξk, ξr) +
q∑

k=1

lk(x)lk(y). (2.11)

We underline that the kernel K used here is a PD kernel (since it is a reproducing kernel) with
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built-in polynomial precision. Thus we have

NΦ(X) = span{K(·, xj) : xj ∈ X} ⊂ NΦ(Ω).

Itmeans that starting from aCPD radial kernel, we find another PDkernel such that the native
space of Φ can be spanned by its translation over the given data sites X.

2.3.1 Properties of the Native Spaces

Here, we briefly review some properties of the native spaces. To keep our notation consistent,
we let Φ be a PD radial function that is a reproducing kernel for its native space according to
the above discussion; however, notice that, in general, the reproducing kernel is not necessarily
a radial function.
Webeginbynoticing that point evaluation functionals in a reproducing kernelHilbert space,

including the native space, is bounded, i.e., for every f ∈ NΦ(Ω) and x ∈ Ωwe have

|f(x)|≤
√

Φ(x, x)‖f‖NΦ(Ω).

Moreover, using the previous notation for X and fX, we can characterize the interpolant by
variational principles (recall the property in equation (1.31)).

Theorem 26. [Wen04, Lemma 10.24]With the notation from above, we get

(f− sf,X, s)NΦ(Ω) = 0 for all s ∈ NΦ(Ω). (2.12)

This yields an important lemma in the native space.

Lemma 3. [Wen04, Corollary 10.25] Under the assumption in Theorem (26), we get

‖f‖2NΦ(Ω)= ‖f− sf,X‖2NΦ(Ω)+‖sf,X‖2NΦ(Ω) (2.13)

for all f ∈ NΦ(Ω), This yields immediately

‖f− sf,X‖NΦ(Ω)
≤ ‖f‖NΦ(Ω)

, and ‖sf,X‖NΦ(Ω)≤ ‖f‖NΦ(Ω). (2.14)

The following theorems present the optimality property.

Theorem 27. [Fas07, Theorem 18.1] SupposeΦ is a CPD kernel of an arbitrary orderm and X
is Pd

m−1−unisolvent. Then the interpolant sf,X to function values fX is the minimum-(semi)norm
interpolant i.e., we have:

|sf,X|NΦ(Ω)= min
s∈NΦ(Ω)

‖s‖NΦ(Ω), (2.15)

for all s such that s(X) = fX i.e., the interpolation condition is satisfied.
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Notice that, in case m = 1 that is Φ is a PD kernel, the semi-norms in (2.15) become the
norm.

Theorem 28. [Fas07, Theorem 18.2] Let

HΦ(X) = {h =
n∑

j=1

cjΦ(·, xj) + p : p ∈ Pd
m−1

and
n∑

j=1

cjq(xj) = 0 ∀q ∈ Pd
m−1}

where Φ is a CPD kernel of an arbitrary order m with X being Pd
m−1−unisolvent set. Then the

interpolant sf,X to fX is the best approximation to f from HΦ(X) inNΦ(Ω), i.e.,

|f− sf,X|NΦ(Ω)≤ |f− h|NΦ(Ω)

In what follows, we briefly investigate the error bounds of RBF interpolation.

2.4 Error Bounds in Terms of Power Function

Various error estimate types are suggested for RBF interpolation, each possessing different pro-
prieties (see, e.g., [S+95, WS93, NWW05, NWW06]). Here, we mainly focus on error esti-
mates given in the native space corresponding to the RBF employed for the interpolation pro-
cess.

Let Φ be an arbitrary PD radial kernel. The matrix form of the interpolant can be repre-
sented as

sf,X(x) = ΦX(x)Tc, x ∈ Ω ⊂ Rd, (2.16)

with ΦX(x)T = [Φ(x, x1), . . . ,Φ(x, xn)], c = [c1, . . . , cn]T be the vector of coefficients as
before, and x be an arbitrary point in the domain referred as the evaluation point. Recalling
(2.1), we know that the c = V−1

Φ,XfX with VΦ,X being the kernel matrix. Substituting this in
(2.16), we have

sf,X(x) = ΦX(x)T(V−1
Φ,XfX)

= fTX(V−1
Φ,XΦX(x)) (2.17)

We underline that (2.17) can be viewed as the cardinal form of the interpolant with the term
V−1

Φ,XΦX(x) being the cardinal basis function. Moreover, notice that

fTX = f(x1), . . . , f(xn)) = (〈f,Φ(·, x1)〉NΦ(Ω), . . . , 〈f,Φ(·, xn〉NΦ(Ω))

= 〈f, (Φ(·, x1), . . . ,Φ(·, xn))〉NΦ(Ω)

= 〈f,ΦT
X(·)〉NΦ(Ω). (2.18)
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Substituting (2.18) in (2.17) and using the reproduction property of the reproducing kernel
Hilbert space, we have

|f(x)− s(x)| = |〈f,Φ(·, x)〉NΦ(Ω) − 〈f,ΦX(·)TV−1
Φ,XΦX(x)〉NΦ(Ω)|

=
∣∣∣〈f,Φ(·, x)− ΦX(·)TV−1

Φ,XΦX(x)〉NΦ(Ω)

∣∣∣
≤ ‖f‖NΦ(Ω)‖Φ(·, x)− ΦX(·)TV−1

Φ,XΦX(x)‖NΦ(Ω)

= ‖f‖NΦ(Ω)PΦ,X(x), (2.19)

with the power function PΦ,X(x) =
√

Φ(x, x)− ΦX(x)TV−1
Φ,XΦX(x).

Due to the error bound provided in (2.19), the impact of data smoothness, measured by the
native space norm, is evaluated independently of the chosen basis function and the data site
distribution. However, notice that the shape parameter ε can still affect both terms since the
native space norm is affected by the shape parameter.

The error bound in (2.19) can be improved to a more straightforward formula. To express
this, we begin with the following definition.

Definition 26.

1. The fill distance is defined as

hX,Ω = sup
x∈Ω

min
1≤j≤n

‖x− xj‖2.

2. The separation distance
qX =

1
2
min
i ̸=j

‖xi − xj‖.

3. The set of data sites X is said to be quasi-uniform with respect to a constant cqu > 0 if

qX ≤ hX,Ω ≤ cquqX. (2.20)

According to [Wen04], the power function can be bounded in terms of the fill distance, so
we have

|f(x)− s(x)|≤ ChβX,Ω‖f‖NΦ(Ω), (2.21)

for someappropriate exponentβwhichdependson the smoothness of the kernelΦ; see [Wen04,
Chap. 11].

One drawback of this power function approach is that error bounds apply only for the func-
tions f that belong to the native space of Φ but not to the functions that belong to larger classes
of functions. Besides, the error bounds suggested in either (2.19) or (2.21) can servemostly for
theoretical use. Note that we do not know the function f as it is supposed to be approximated,
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and so, right-hand side norm ‖f‖NΦ(Ω) can not be computed directly. Therefore, it might be
more appropriate to address the error analysis of the RBF interpolation via the sampling in-
equalities in the Sobolev spaces since these estimates use the whole range of Lp norms and do
not need the power function approach. Here, we avoid further discussion regarding the sam-
pling inequalities as they are out of the context of this thesis. However, we shall return to the
Sobolev spaces in chapter (4), where we discuss the error bounds of our suggested approxima-
tion scheme. We end this section by referring the interested readers to [NWW06] or [Wen04,
chap. 11] for a detailed discussion regarding Sobolev bounds for functionswith scattered zeros.
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3
Full-rank orthonormal bases for

conditionally positive definite kernel-based
spaces

There is no sense inbeingprecisewhenyoudonot evenknowwhat youare talking
about

John von Neumann

3.1 Introduction

According to our discussion in the previous chapter, we saw that the interpolation linear sys-
tems either in (2.1) or (2.3) are built to be well-posed for every data distribution, but yet we
did not discuss the condition number of this system. It is well-known (see e.g [DMS10]) that
the interpolation problem in the subspace NΦ(X) = span{Φ(·, xj) : xj ∈ X} ⊂ NΦ(Ω)

spanned by the basis of translates Φ(·, xj), 1 ≤ j ≤ n, is numerically unstable due to the ill-
conditioning of the kernel matrix VΦ,X. Therefore, it is natural to devise strategies to prevent
such instabilities by either preconditioning the system (see, e.g., [BLM11]) or by finding a bet-
ter basis for the approximation space we are using. The latter case gives rise to stable algorithms
introduced in [FW04] for the particular case of multiquadric kernels, the RBF-QR algorithm
of [FP08], and its extension in [FLF11], and RBF-GA algorithm introduced in [FLP13]. Dif-
ferent approach was taken in [FM12] to to find L2(Rd, ρ) followingMercer’s theorem. How-
ever, such an idea could be restricted only toGaussianRBFs or any other PD radial kernel such
that their eigenfunction expansion is known. Another approach for the construction of better
alternate bases for PD kernels has been introduced in [MS09] andwas extended later in [PS11].
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Their main idea is to produce NΦ-orthonormal and discretely orthonormal data-dependent
bases in the subspace NΦ(X) based on numerical using different matrix factorizations of the
kernel matrix, such as SVD or Cholesky factorization. This has led to different bases with dif-
ferent properties, but all of them are data-dependent since one needs to form the kernel matrix,
which is dependent on the given data site X. Stability issues, recursive compatibility, duality,
and orthogonality properties were investigated for these new bases. Following such an idea, in
[DMS13], a particular orthonormal basis built on a weighted singular value decomposition of
the kernel matrix has been introduced. These bases are also related to a discretization of the
compact integral operator TΦ given by Mercer’s theorem and provide a connection with the
continuous bases that arise from an eigendecomposition ofTΦ.Although effective, this basis is
computationally expensive to compute, so in [DMS15], the authors discussedmethods related
toKrylov subspaces to compute this basis in a fast way. Coming back to the CPD kernels, the
linear system (2) may also suffer from ill-conditioning for some constellations of the interpola-
tion points (see [11]). However, in contrast with the PD case, the literature contains very few
contributions that address finding more stable bases for CPD kernels. An exception is [PS13]
in which the authors tried to extend the previous work in [PS11] to the CPD case. But in their
idea, having a full orthonormal basis of n functions is impossible. Explicitly, it is shown that
one cannot simply use factorization techniques due to the augmented polynomial space, and
therefore, some care needs to be taken. Another approach was taken in [BCM99] to find bases
that are, in a certain sense, homogeneous, meaning that they are not sensitive to poorly scaled
problems. Some numerical results regarding these homogeneous bases have also been reported
in [Fas07, Chap. 34].

Contribution : In this chapter, we work with the reproducing kernel K given in equation
(2.11) for the associated native Hilbert spaceNΦ(Ω) with Φ being a CPD radial kernel, and
Ω being non-empty subset of Rd. We give a well-organized matrix formulation of the kernel
matrix denoted byK by constructing the matrices corresponding to cardinal basis frommono-
mials. Then, we present two possible ways to find full-rank data-dependent orthonormal bases
that are discrete ℓ2 andNΦ-orthonormal. The kernel matrixK factorization gives the first ap-
proach, and the next one is based on the eigenpairs approximation of the linear operator asso-
ciated with the reproducing kernelK given byMercer’s theorem. In the sequel, we employ the
truncated singular value decomposition technique to find an optimal low-rank basis with the
coefficient matrix whose rank is less than that of the original matrix. Special attention is also
given to error analysis, duality, and stability. Some numerical experiments are also provided.

3.2 Matrix formulation

We start by providing an explicit representation of the matrix K by considering a cardinal ba-
sis of the polynomial-based space. Let X be the set of data sites as before. Any set of bases
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u0, . . . , un of d−variate polynomials up to degreem− 1 can be arranged into a row vector

U(x) = (u0(x), . . . , uq(x))

for any evaluation point x ∈ Ω. Recall that q was the dimension of Pd
m−1. In this case, it

makes sense to expect that new set of bases U can be expressed by the monomials m̃(x) =[
m̃1(x), . . . , m̃q(x)

]
; which are the common bases for Pd

m−1. Therefore,

uk =
q∑

k=0

m̃j(x)cjk, 0 ≤ k ≤ q.

One can let U to be the Lagrange basis for Pd
m−1 denoted by l(·) =

[
l1(·), . . . , lq(·)

]
, con-

structed via (cf. e.g. [MB19])

l(x) = m̃(x) · Cl, ∀x ∈ Ω, (3.1)

where Cl ∈ Rq×q is known as the construction matrix. In this setting, let [lj(ξi)]1≤i,j≤q = I,
andV = [m̃j(ξi)]1≤i,j≤q be the Vandermondematrix. Recalling (3.1), the constructionmatrix
is obtained by Cl = V−1. Besides, if the Lagrange basis is needed at another set of evaluation
points, say Y = {y1, . . . , ys}, by equation (3.1) we get

VTLT
Y = VT

Y,

where LY = [lj(yi)] andVY =
[
m̃j(yi)

]
with 1 ≤ i ≤ s and 1 ≤ j ≤ q. Hence, for the kernel

matrixK = K(xi, xj)with

K(xi, xj) = Φ(xi, xj)−
q∑

k=1

lk(xi)Φ(ξk, xj)−
q∑

r=1

lr(xj)Φ(xi, ξr) (3.2)

+

q∑
k=1

q∑
r=1

lk(xi)lr(xj)Φ(ξk, ξr) +
q∑

k=1

lk(xi)lk(xj), ij = 1, . . . ,

we get
K = VΦ,X − L1 · A1 − A2 · LT

1 + L1 · A3 · LT
1 + L1 · LT

1 ,

withVΦ,X as in equation (2.3) and

L1 = [lk(xi)]1 ≤ i ≤ n
1 ≤ k ≤ q

, A1 =
[
Φ(ξk, xj)

]
1 ≤ k ≤ q
1 ≤ j ≤ n

,

A2 = [Φ(xi, ξr)]1 ≤ i ≤ n
1 ≤ r ≤ q

, A3 = [Φ(ξk, ξr)]1 ≤ k ≤ q
1 ≤ r ≤ q

.

We recall that the points Ξ = {ξ1, . . . , ξq}must be Pd
m−1-unisolvent subset of X.
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3.3 Full-rank orthonormal bases

In what follows, we investigate suitable bases for subspaces of NΦ(Ω) when Φ is CPD. The
bases will be given in different forms, and we will explore their variety and prove the results of
their connection. Hence, letΦbe afixedCPDkernelwith corresponding reproducing kernelK
in (3.2), X = {x1, ..., xn} a fixed set of centers, andU = [u1, . . . , un] a general data-dependent
basis such that

NΦ(X) = span{K(·, xj) : xj ∈ X} = span{u1, ..., un} ⊂ NΦ(Ω).

Following [PS11], any element of the basis U can be written as a linear combination of the
translatesK(·, xj), j = 1, ..., n via the construction matrix C

ui =
n∑

j=1

K(·, xj)cji, 1 ≤ i ≤ n, (3.3)

or in matrix form

E = KC, (3.4)

where E = [uj(xi))]1≤i,j≤n and C = [cji]1≤i,j≤n. Therefore, the construction matrix enables
us to shift from one set of bases to another while each possesses various properties. For the
sake of simplicity, instead ofNΦ(Ω) and discrete ℓ2(X), we use the shorter notationNΦ and
ℓ2, respectively.

Theorem 29. The NΦ and ℓ2 Gramian matrices associated with the general basis U are sym-
metric and positive definite with full-rank n.

Proof. The Gramian matrices associated with the basisU corresponding toNΦ and ℓ2 are

GNΦ = [〈ui, uj〉NΦ ]1 ≤ i, j ≤ n = CTKC,

Gℓ2 = [〈ui, uj〉ℓ2 ]1 ≤ i, j ≤ n =

(
n∑

k=1

ui(xk)uj(xk)

)
1 ≤ i, j ≤ n

= ETE = CTK2C.

The evaluation matrix E is necessarily full-rank because the basis must allow unique interpo-
lation on X. Since C = K−1E the construction matrix C is also full-rank, resulting the same
for GNΦ and Gℓ2 .The matrices GNΦ and Gℓ2 are clearly symmetric. Now, since K is a positive
definite matrix then, for all nonzero vectors z ∈ Rn, we have

zT · GNΦ · z = (Cz)TK(Cz) > 0,
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and since E is a full-rank matrix similarly

zT · Gℓ2 · z = 〈Ez,Ez〉 = ‖Ez‖22 > 0.

We have then show thatGNΦ andGℓ2 are positive definite.

Remark 3. Suppose that we construct the evaluation matrix E through the augmented system[
En×n

0q×n

]
=

[
An×n Pn×q

PT
q×n 0q×q

][
C̃n×n

D̃q×n

]
.

The moment conditions PTC̃ = 0, reveals that the n × n matrix C̃ has rank n − q and the
evaluation matrix E is necessarily rank n, since the basis must allow unique interpolation on X.
Then the Gramianmatrix GNΦ = C̃TE is symmetric and positive semi-definite with rank n− q.
So, it is impossible to have a full orthonormal basis if q > 0.

The above remark highlightswhyweprefer reproducing kernels over the standard baseswith
augmented polynomials. Besides, one should note that the spaceNΦ(X) is fixed, meaning that
the new bases are given with respect to the data sites X. This clarifies why the new bases U are
data-dependent.

In the following, we address two possible ways to find data-dependent orthonormal bases
corresponding to the CPD kernel Φ on a domain Ω ⊂ Rd.

3.3.1 Matrix decomposition approach

According to [PS11], equation (3.4) reveals that one can find data-dependent basis U from
the decomposition of the symmetric and positive definite matrixK corresponding to the CPD
kernel Φ as

K = EC−1.

The kind of matrix decomposition depends on the Hilbert space in which we are looking for
orthonormal bases. We can characterizeNΦ and discretely ℓ2 orthonormal bases based on the
Gramian matrices as follows:

1) ForNΦ−orthonormal bases, we have

GNΦ = I ↔ CTKC = I ↔ K = (C−1)TC−1 ↔ E = (C−1)T.

Then, there are two important cases.

i) The Choleskey decompositionK = LLT with a nonsingular lower triangular ma-
trix Lwhich leads to the Newton basis with a different normalization [MS09]. In
this case E = L and C = (LT)−1.
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ii) The singular value decomposition (SVD) decomposition of the formK = QDQT

with an orthogonal matrixQ and a diagonal matrixD having the eigenvalues ofK
on its diagonal. In this case E = Q

√
D and C = Q

(√
D
)−1

.

2) For ℓ2−orthonormal bases, we have

Gℓ2 = I ↔ CTKTKC = I ↔ KC = Q ↔ K = QC−1 ↔ E = Q.

Also, here, there are two important special cases.

i) The standard QR decomposition K = QR into an orthogonal matrix Q and an
upper triangular matrixRwill lead to a basis with E = Q and C = R−1.

ii) The SVD ofK = QDQT which leads to E = Q and C = QD−1.

3.3.2 Eigenpairs approximation approach

We discuss another family of orthonormal bases based on the eigenvalues and eigenfunctions
ofHilbert-Schmidt operator [FM15, Chap 2] associated with the reproducing kernel K given
in (2.11). Mercer’s theorem expresses the connection of such a linear operator with the infinite
series representation of a positive definite kernel.

Theorem 30. (Mercer’s theorem) Let K be a continuous positive definite kernel that satisfies∫
Ω
K(x, y)v(x)v(y)dxdy ≥ 0, ∀v ∈ L2(Ω), x, y ∈ Ω.

Then K can be represented by

K(x, y) =
∞∑
j=1

λjũj(x)ũj(y), (3.5)

where λj are the eigenvalues such that λj → 0 as j → ∞, and ũj are the L2-orthonormal eigen-
functions of the operator TK : L2(Ω) → L2(Ω) given by

TK(v)(x) =
∫
Ω
K(x, y)v(y)dy, v ∈ L2(Ω), x ∈ Ω.

Moreover, this representation is absolutely and uniformly convergent.

Theorem (30) can lead to another characterization of the Native spaceNΦ(Ω) as

NΦ(Ω) =

f : f =
∞∑
j=1

cjũj

 ,
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where the kernelK itself is inNΦ(Ω) because of the eigenfunction expansion (3.5). The repro-
ducing property of the kernelK should be checked by the following equation

〈f(·),K(·, x)〉NΦ =

〈
∞∑
j=1

cjũj(·),
∞∑
i=1

λiũi(·)ũi(x)

〉
NΦ

=
∞∑
j=1

ciũi(x) = f(x),

which leads to theNΦ-orthogonality of the eigenfunctions

〈ũi, ũj〉NΦ =
δij√
λi
√

λj
. (3.6)

The inner product forNΦ(Ω) is then given by

〈f, g〉NΦ =

〈
∞∑
j=1

cjũj,
∞∑
i=1

diũi

〉
NΦ

=
∞∑
j=1

cjdj
λj

.

Equation (3.6) reveals two important cases for the basis functions.

i) Basis functions{
uj
}∞
j=1 =

{√
λjũj
}∞

j=1
, ‖uj‖2NΦ

= 1, ‖uj‖2L2 = λj, (3.7)

which is orthonormal inNΦ(Ω) and orthogonal in L2(Ω).

ii) Basis functions{
vj
}∞
j=1 =

{
ũj
}∞
j=1 , ‖vj‖2NΦ

=
1
λj
, ‖vj‖2L2 = 1, (3.8)

which is orthogonal inNΦ(Ω) and orthonormal in L2(Ω).

Unfortunately, in most cases, eigenpairs of the operator TK are not known analytically. The
exception is the Gaussian kernel, which is a PD kernel by definition. On the other hand, to
our knowledge, no research has been conducted on investigating the analytical form of the
eigenpairs related to CPD kernels in (2.11). Thus it will be required to approximate them
using numerical schemes. This leads to the following eigenvalue problem on X∫

Ω
K(xi, y)ũj(y)dy = λjũj(xi), i = 1, . . . , n,∀j > 0,

which can be discretized by using the symmetric Nyströmmethod [AH05] which is a cubature
rule (X,W)n, n ∈ N, for the set of distinct pointsX and a set of positiveweightsW = {wr}nr=1

such that ∫
Ω
f(y)dy ≈

n∑
r=1

f(xr)wr, ∀f ∈ NΦ(Ω).
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This leads to

n∑
r=1

K(xi, xr)ũj(xr)wr ≈ λjũj(xi), i, j = 1, . . . , n, (3.9)

with a set of positive weights {wr}nr=1. Now, it suffices to solve the following discrete eigenvalue
problem in order to find the approximation of the eigenvalues and eigenfunctions (evaluated
on X) of TK. In other terms, we have

(KW)̃e(j) = λj̃e(j), j = 1, . . . , n,

with

W = diag(wr),

ẽ(j) =
[
ũj(xi))

]
1 ≤ i ≤ n . (3.10)

Then, the continuum eigenvalue problem reduces to the solution of an unsymmetric eigen-
value problem

(KW)̃e = λẽ, (3.11)

for the unsymmetricmatrixKW. One possible way to deal with (3.11)would be tomake some
manipulation to convert the unsymmetric problem of (3.11) to the following symmetric one

(
√
WK

√
W)(

√
W · ẽ) = λ(

√
W · ẽ).

Now, the SVD decomposition for the symmetric matrices, which is nothing but a unitary di-
agonalization, leads to

√
WK

√
W = QDQT, (3.12)

whereD = diag(λj),

Q =
[√

Wẽ(1), . . . ,
√
Wẽ(n)

]
,

is an orthogonal matrix w.r.t the Euclidean norm. Equations (3.7), (3.8), and (3.10) lead to the
evaluation matrices

i) E1 = [uj(xi))]1≤i,j≤n =
[√

λjũj(xi))
]
1≤i,j≤n =

[√
λ1ẽ(1), . . . ,

√
λnẽ(n)

]
=
(√

W
)−1 Q

√
D,

ii) E2 = [vj(xi))]1≤i,j≤n = [ũj(xi))]1≤i,j≤n =
[̃
e(1), . . . , ẽ(n)

]
=
(√

W
)−1 Q,

According to (3.4) and (3.12), the corresponding construction matrices can be derived
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i) CU = K−1E1 =
√
WQD−1QT

√
W
(√

W
)−1 Q

√
D =

√
WQ

(√
D
)−1.

ii) CV = K−1E2 =
√
WQD−1QT

√
W
(√

W
)−1 Q =

√
WQD−1.

By considering the discretized scaled inner product

〈f, g〉2ℓ2,w =
n∑
j=1

wjf(xj)g(xj) ≈ 〈f, g〉2L2(Ω) =

∫
Ω
f(x)g(x)dx,

we haveNΦ−orthonormal and ℓ2,w−orthogonal basis functions

uj(x) =
n∑
i=1

K(x, xi)cij =
n∑

i=1

K(x, xi)
√wi√
λj
Q(i, j)

=
n∑

i=1

K(x, xi)
√wi√
λj

√wi√
λj
E1(i, j) =

1
λj

n∑
i=1

wiK(x, xi)uj(xi),

with ‖uj‖2ℓ2,w = λj, andNΦ−orthogonal and ℓ2,w−orthonormal basis functions

vj(x) =
n∑
i=1

K(x, xi)cij =
n∑
i=1

K(x, xi)
√wi

λj
Q(i, j)

=
n∑
i=1

K(x, xi)
√wi

λj
√
wiE2(i, j) =

1
λj

n∑
i=1

wiK(x, xi)vj(xi),

with ‖vj‖2NΦ
= 1

λj , for 1 ≤ j ≤ n.

Remark 4. According to this theory, we can deduce that all data-dependent bases, which are both
discretely andNΦ-orthogonal, are scaled SVD bases derived from the eigenpairs approximation
approach. It is also clear that the SVD bases given in section 3.3.1 are special cases of the general
bases given in this section.

Remark 5. The reader should note that the expansion series in (3.5) is valid only for the PD ker-
nels. So, workingwith the associated reproducing kernel of aCPDkernel rather than the standard
bases enables us to useMercer’s theorem and find two additional classes of bases.

Remark 6. We point out that to construct the new bases; we require that at least the weights

{wr}nr=1 are positive and able to reproduce constants that is
n∑
j=1

wj = |Ω|. Obviously, a higher

order cubature formula will lead to a better approximation of the eigenbasis
{
ũj
}
j>0, so in the

limit; we could expect that our basis will be able to reproduce
{
ũj
}
j>0 and each function inNΦ(Ω).

Nevertheless, at a finite stage with fixed n, also assuming that we know an almost exact cubature
formula, we are still approximating f ∈ NΦ(Ω) with a projection intoNΦ(X). In principle, it
is also possible to use weights not related to a cubature rule. Still, in this way, no connection can be
expected betweenNΦ(Ω) and the eigenbasis

{
ũj
}
j>0.
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3.3.3 Low-rank approximation

As previously mentioned, a vital characteristic of a reproducing kernel, which is the inevitabil-
ity of the kernelmatrix, has been compromised in the transition from theory to practical imple-
mentation. This is primarily because the numerical rank ofK is frequently significantly lower
thann, making the kernelmatrixK ill-conditioned. In otherwords, formany kernels, the eigen-
values in (3.5) decrease rapidly toward zero, implying a very good low-rank approximation to
the kernel. Notice that vectors involved in kernel representation in (3.5) are of infinite size and
so need to be truncated at some finite lengthM, possibly much smaller than n. Thus, in many
cases, linear systems arising from kernels are ill-conditioned, but they also have a low-rank sub-
system that performs like the full system. Considering (3.5), we have the following theorem
from [NW08].

Theorem 31. Let K : Ω × Ω → R be a PD kernel with Mercer series (3.5). Then, M-term
truncation

KM(x, y) =
M∑
n=1

λnũj(x)ũj(y), (3.13)

for a fixed x provides the best M-term least squares approximation of K(x, y) from L2(Ω).

The summation (3.13) yields the best M−term approximation of each kernel matrix in
L2(Ω) norm, but this is not necessarily the best low-rank approximation in the 2-norm sense.
Therefore, we consider SVD low-rank representation (truncated SVD) of the kernel matrixK,
which is obtained by discarding all but the k largest eigenvalues and the corresponding eigen-
vectors and is represented as

Kk = QkDkQT
k , (3.14)

where Qk ∈ Rn×k and Dk ∈ Rk×k. It means that Kk is the projection of K onto the space
spanned by the top k eigenvectors ofK. The following states that the above approximation is
the best rank-k approximation in both Frobenius and spectral norm.

Theorem32. (Eckart-Young [EY36])LetAk be the rank-kapproximation ofA∈ Rn×n achieved
by the truncated SVD. Then Ak is the closest rank-k matrix to A, i.e.

min
rank(G)=k

‖A− G‖F = ‖A− Ak‖F =
√

σ2k+1 + · · ·+ σ2n,

where σi’s denote singular values of A and G is an arbitrary rank-k matrix.

Remark 7. We remark that the SVD also gives the best low-rank approximation in the spectral
norm, i.e.

min
rank(G)=k

‖A− G‖2 = ‖A− Ak‖2 = σk+1.
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So, the rank-reduced system will be very close to the exact system but with a more well-
behaved linear system with a better-conditioned value matrix [GVL13]. Accordingly, the eval-
uation matrix of the new bases can be represented as

E1k = Qk
√

Dk,

E2k = Qk, (3.15)

such that E1k,E2k ∈ Rn×k.

Remark 8. One should notice that in order to consider the truncated SVD, it requires that there
exists a well-defined gap in the singular values, i.e., σk+1

σk
must be large enough. Otherwise, the

determination of the optimal rank k would be complicated, and the low-rank approximation of
matrixK is meaningless. A detailed discussion is available in [GVL13, Chap 12.2].

Although we know from Theorem 30 that the continuous eigenvalues accumulate to zero,
the speed with which they decay is clearly not the same for the different kernels. Although
depending on the choice of the shape parameter ε, they present a fast decay to zero (Gaussian),
a medium decay (inverse multiquadric), and a slow decay (cubic Matérn kernel).

3.4 Application to interpolation

3.4.1 General interpolant

Havingderiveddifferent types of data-dependent basesU, the interpolant sf ∈ NΦ(X) to vector
values f of some function f, can be represented as

sf(x) =
n∑
j=1

αjuj(x), (3.16)

where the coefficients αj are determined by solving the linear system

Eα = f, (3.17)

where α = [αj]1≤j≤n and E =
[
uj(xi))

]
1≤,i,j≤n can be one of the evaluation matrices obtained

in Subsections 3.3.1 or 3.3.2. Once the coefficient vector α is calculated through (3.17), one
can obtain the approximate function values FY ≈ fY = [f(yi)]1≤i≤s at the set of test points
Y = {y1, . . . , ys} by

FY = EY · α, (3.18)

45



where EY = [uj(yi)]with 1 ≤ i ≤ s and 1 ≤ j ≤ n is obtained by (3.4) as

EY = KYC,

where C is the corresponding construction matrix andKY = [K(yi, xj)] can be computed via
the same procedure explained at the end of Section (3.2).

Theorem 33. The evaluation matrices of the NΦ and ℓ2,w−orthonormal basis functions are
better conditioned than the kernel matrixK.

Proof. If E is the evaluation matrix corresponding to a ℓ2,w−orthonormal basis then it is an
orthogonal matrix and so cond2,w(E) = 1.Now let E be the evaluation matrix corresponding
to aNΦ−orthonormal basis derived from the general scaled SVD bases, then

E =
(√

W
)−1

Q
√
D.

Moreover according to (3.12), we have

K = (
√
W)

−1
Q
√
D
√
DQT(

√
W)

−1
= EET,

and

(
√
D)

−1
QT

√
WEET

√
WQ(

√
D)

−1
= I.

Therefore
Q̂ = (

√
D)

−1
QT

√
WE,

is an orthogonal matrix w.r.t the norm ‖ · ‖ℓ2,w , which in turn gives

E =
(√

W
)−1

Q
√
DQ̂,

that is nothing but the SVD of the matrix E. Therefore the spectral condition number of E is
the square root of the spectral condition number of K. The same theory can be used for the
Newton basis functions given in 3.3.1.

Remark 9. If linear mapsL like derivatives have to be evaluated, we use the system

LEY = LKYC,

where LEY = [Luj(yi)] and LKY = [LK(yi, xj)] with 1 ≤ i ≤ s, 1 ≤ j ≤ n is given by
applying the operatorL to the reproducing kernel (3.2) anddoing the the sameprocedure explained
at the end of Section 3.3.
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3.4.2 Error bound

In this section, we provide the error estimate for the approximation given in (3.18). First, the
following stability issue is proved.

Theorem 34. For a fixed CPD kernel Φ, fixed set of center points X = {x1, . . . , xn}, general
data-dependent basis U, and f ∈ NΦ, the following stability estimate holds for the approximate
function valuesFY at the set of test points Y = {y1, . . . , ys},

‖FY‖22 ≤ s · ρ(K̃) · cond2(GNΦ) · ‖f‖2NΦ
,

where cond2(GNΦ) is the spectral condition number of theNΦ−Gramian, ρ is the spectral radius,
and K̃ = [K(yi, yj)]1≤i,j≤s for the corresponding reproducing kernel K.

Proof. Since Frobenius norm is compatible with the Euclidean norm, according to (3.18), we
have

‖FY‖22 = ‖EY · α‖22 ≤ ‖EY‖2F ‖α‖
2
2 . (3.19)

Now according to (3.16), we get

αTGNΦα = ‖sf‖2NΦ
≤ ‖f‖2NΦ

.

Since

αTGNΦα = 〈α,GNΦα〉 ≤ ‖α‖2‖GNΦα‖2 ≤ ‖α‖22‖GNΦ‖2 = ρ(GNΦ)‖α‖22,

then

ρ(GNΦ)‖α‖22 ≤ ‖f‖2NΦ
.

Therefore

‖α‖22 ≤ ‖f‖2NΦ
ρ(G−1

NΦ
). (3.20)

Moreover, we have

K(i)
Y K−1

(
K(i)

Y

)T
= K(yi, yi)− P2

Φ,X(yi), i = 1, . . . , s,

where K(i)
Y is the i−th row of the matrix KY and PΦ,X is the so-called power function. Now

according to (3.4), we get

E(i)
Y C−1K−1 (C−1)T (E(i)

Y

)T
= K(yi, yi)− P2

Φ,X(yi), i = 1, . . . , s,
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where E(i)
Y is the i-th row of the matrix EY. Therefore

E(i)
Y (GNΦ)

−1
(
E(i)
Y

)T
= K(yi, yi)− P2

Φ,Xyi) ≤ K(yi, yi), i = 1, . . . , s,

which leads to

‖E(i)
Y ‖22 ≤ K(yi, yi)ρ(GNΦ), i = 1, . . . , s,

Now since

‖EY‖2F =
s∑

i=1

‖E(i)
Y ‖22,

we have

‖EY‖2F ≤ tr(K̃)ρ(GNΦ) ≤ s · ρ(K̃) · ρ(GNΦ). (3.21)

So by substituting (3.20) and (3.21) in (3.19), the proof is completed.

Theorem 35. For a fixed CPD kernel Φ, general data-dependent basis U, and f ∈ NΦ, the
following error bound holds

‖fY −FY‖22 ≤
(
s · ρ(K̃)− ρ(G−1

NΦ
) ‖EY‖2F

)
‖f‖2NΦ

.

Proof.

‖fY −FY‖22 =
s∑

i=1

|f(yi)− sf(yi)|2

≤
s∑

i=1

P2
Φ,X(yi)‖f‖2NΦ

=
s∑

i=1

(
K(yi, yi)− E(i)

Y (GNΦ)
−1
(
E(i)
Y

)T)
‖f‖2NΦ

≤

(
tr(K̃)−

s∑
i=1

(
ρ(G−1

NΦ
)‖E(i)

Y ‖22
))

‖f‖2NΦ

≤
(
s · ρ(K̃)− ρ(G−1

NΦ
) ‖EY‖2F

)
‖f‖2NΦ

.

Remark 10. For the pointwise behaviour of theNΦ−orthonormal basis U, the bounds obtained
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above become

|sf(y)| ≤
√

K(y, y) · ‖f‖NΦ ,

|f(y)− sf(y)| ≤
√

K(y, y)− ‖U(y)‖22 · ‖f‖NΦ ,

for fixed y ∈ Ω.

3.5 Duality

The goal of this section is to construct new class of bases that are dual to the general data-
dependent bases U = [u1, . . . , un] , proposed for the finite-dimensional inner product sub-
spaceNΦ(X) of the native spaceNΦ(Ω) associated to the CPD kernel Φ. The dual spaceNΦ

∗

consists of all linear functionals onNΦ. Consider the dual functionals ηi such that

ηi(α1u1 + · · ·+ αnun) = αi, αi ∈ R, i = 1, . . . , n,

which in turn leads to

ηi(uj) = δij.

Then any linear functional η ∈ NΦ
∗ can be written as

η = η(u1)η1 + η(u2)η2 + · · ·+ η(un)ηn.

Nowby theRieszRepresentationTheorem (8), every linear functional onNΦ
∗ has a representer

inNΦ. That is, for each ηi, there exists di ∈ NΦ such that

ηi(uj) = 〈uj, di〉 = δij. (3.22)

Therefore, we associate Λ =
[
η1, . . . , ηn

]
with the representersD = [d1, . . . , dn]. Since Λ is

linearly independent inNΦ
∗ and dual toU, then the so-called dual basisD is linearly indepen-

dent inNΦ and also dual toU. Now let (NΦ,U,D)with basisU = [u1, . . . , un] and dual basis
D = [d1, . . . , dn], then we can view the basisU as the map

U : Rn → NΦ

α 7→ U(α) =
n∑

j=1

αjuj,
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and likewise, the dual basisD as

D : Rn → NΦ

α 7→ D(α) =
n∑

j=1

αjdj.

Also the following dual map for identifying the dual spaceNΦ
∗ withNΦ

D∗ : NΦ → Rn

f 7→ D∗(f) = [〈f, d1〉, . . . , 〈f, dn〉]T .

Then according to (3.22),D is dual toU exactly when

D∗(U) = [〈uj, di〉NΦ ]1≤i,j≤n = I.

Theorem 36. Let U be a general data-dependent basis, then for (NΦ,U,D), the dual basisD
can be expressed in terms of the basis U as

D = UC,

where

C = (U∗(U))−1,

is a symmetric, positive definite, and full-rank n× n matrix.

Proof. LetD = UC, then by applyingU∗ to both sides, we get

U∗(D) = U∗(U)C,

which leads to
C = (U∗(U))−1U∗(D).

SinceD is dual to U, this reduces to C = (U∗(U))−1, which is nothing but the inverse of the
NΦ-Gramian matrix as

C =
(
[〈ui, uj〉NΦ ]1≤i,j≤n

)−1
= (GNΦ)

−1 ,

that is symmetric and positive definite with rank n.

Remark 11. For (NΦ,T,D), with the basis of translates

T = [K(·, x1), . . . ,K(·, xn))] ,

50



we have
C = (T∗(T))−1 = K−1,

then
D = TK−1.

So, the Lagrange bases and the bases T of translates are a dual pair.

Remark 12. Among all data-dependent bases, theNΦ-orthonormal bases are exactly those which
are self-dual, since C = I.

Theorem 37. Let U be a general data-dependent basis, then for (NΦ,U,D), the dual basisD
can be expressed in terms of the basis T of translates as

D = T(ET)−1,

where E is the evaluation matrix.

Proof. According to Theorem 36 and equation (3.3), we have

D = UC = TC(CTKC)−1 = TK−1(CT)−1 = T(ET)−1.

Theorem 38. Let V be the ℓ2,w−orthonormal basis functions proposed in Section 3.3.2, then for
(NΦ,V,D), the dual basisD can be expressed in terms of the basis T of translates as

D = T
√
WQ.

Proof. According to the above theorem, we get

D = T(ET
2 )

−1 = T(QT(
√
W)−1)−1 = T

√
WQ.

3.6 Numerical Experiments

For the numerical experiments, we consider three different underlying functions and three dif-
ferent types of CPD kernels, all of order 2, namely

• GeneralizedMQRBF with β = 3
2 ,

• Cubic RBF, ϕc(r) = r3, which is shape parameter free,

• Thin plate spline RBF, ϕtps(r) = r2 log(r), which is shape parameter free too,
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n standard gMQ Reproducing Kernel SVD basis
20 1.9687e +17 1.5468e+17 3.9330e+08
50 9.3105e+17 2.3023e+18 1.0946e+08
80 1.2990e+19 5.5690e+18 1.0174e+08
110 1.2637e+19 3.0754e+18 1.2553e+08
150 5.0118e+19 1.911e+19 1.3472e+08

Table 3.1: 2‐norm condition number of the interpolation matrix for different bases; Test problem 1.

where r = ‖x − y‖2 with x, y ∈ Ω ⊂ Rd. In the following subsection, standard basis
refers to any of the aboveRBFs appended by polynomial space of the required degree (2.2), and
Reproducing kernel refers to the corresponding PD kernel in (2.11). Besides, by truncated
SVD basis, we mean the basis explained in subsection 3.3.3 such that the evaluation is selected
to be E1k in (3.15).

Moreover, working with generalized MQ RBF, one always needs to find the optimal value
of shape parameter ε, which depends on the number and constellation of the data sites. In
particular, ε values significantly affect the accuracy and stability of the interpolation process.
However, we skip this task and always let ε = 1 since our numerical experiments show that
with the suggested alternate bases, we obtain good accuracy evenwithout optimizing the shape
parameter. Moreover, in order to compute the accuracy of the interpolation, the root mean
square error (RMSE) is computed as

RMSE =

√√√√1
s

s∑
i=1

(f(zi)− sf(zi))2, (3.23)

where {zi}si=1 is the set of evaluation points.

3.6.1 Test problem 1

Let us consider theRunge function

f(x) =
1

1+ 25x2
, x ∈ [−1, 1].

We reconstruct f using of uniformly distributed center points with different sizes
n = {20, 50, 80, 110, 150}. Regarding the size of data sites, our interpolant is evaluated over
an equispaced point set on Ω with size s = 5n. To evaluate the reproducing kernel (2.11),
we let Ξ = {0, 1} form the Lagrange linear basis for the polynomial space. Here we use
NΦ−orthonormal SVD bases, i.e., evaluation matrix E = Q

√
D. Table 3.1 shows the ℓ2 con-

dition number of the interpolation matrix using different bases. It is observable that the SVD
bases lead to better conditioning. Figure 3.1(left) shows how more stable bases lead to better
accuracy, particularly for an underlying function that is prone to inaccurate interpolation due
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n standard gMQ Reproducing Kernel Truncated SVD
9 2.5275e+05 7.5530e+04 274.8278
25 9.9028e+08 4.5283e+08 2.1280e+04
81 2.7716e+15 1.4380e+15 2.4357e+05
289 2.8478e+19 8.9075e+18 5.1423e+05
1089 5.6001e+20 6.1388+19 9.5946e+05
4225 3.9644e+21 1.1233e+22 1.9277e+06
10000 5.5799e+22 3.2801e+21 2.8522e+06

Table 3.2: 2‐norm condition number of interpolation matrix for different bases; Test problem 2.

to its intrinsic oscillatory behavior.

Figure 3.1: RMSE of Runge’s (left) and Franke’s functions (right) approximants using different bases; Test problems 1 and 2.

3.6.2 Test problem 2

For the second test problem, we take the Franke function, [Fas07, Chap 2] defined on Ω =

[0, 1]2 ⊂ R2 as the target function. The interpolation this time is done at the sequence ofHal-
ton center points with different sizes n = {9, 25, 81, 289, 1089, 4225, 10000}. Moreover, let
Ξ = {(0, 0), (0, 1), (1, 0)} representing the Lagrange linear polynomials. Similarly, for each n,
the interpolant is evaluated over a uniform grid with size s = 2n on the domain of interest. We
consider truncatedNΦ−orthonormal SVD basis, with threshold δ = 10−9, obtained by trial
and error. It means zeroing all the eigenvalues of the interpolationmatrixK, which are smaller
than δ. Table 3.2 shows the ℓ2 condition number of the interpolationmatrix for different bases.
In Figure (3.1)(left), we show the RMSE of the interpolation using these three different bases.
Once more, we recall that we avoided any shape parameter value optimization algorithm, and
we just let ε = 1.

3.6.3 Test problem 3

Here, we reconstruct the oscillatory function f(x, y) = cos(20(x+y)) defined on the unit disk
with center (0, 0). To do so, consider the data set X consisting of 3000 Halton points on the
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unit disk (see Figure 3.2(left)), Ξ as in the previous example, and the truncation sequence k =
{20, 100, 500, 1100, 1800, 2400} meaning that, in the first experiment, we take 20 singular
values resulted from the SVD decomposition of the kernel matrix K in (3.2). We use ϕc and
ϕtps RBFs to approximate f(x, y). To measure the accuracy of the reproduction process, we
computed the RMSE on an equally spaced grid of evaluation points with size s = 6000 on
the domain. The right plot in Figure 3.2) shows that, indeed, there is an excellent low-rank
approximation to the problem.

Figure 3.2: Data sites X (left), and the RMSE resulted from Truncated SVD approximation for two different bases (right);
Test problem 3.

Remark 13. We have to highlight that according to our discussion in 2.3, one always needs to
make sure that the set Ξ ⊂ X, meaning that the subset used to build the Lagrange polynomials
must belong to the set of data sites.

Remark 14. All three experiments show that theRMSEresulting from suggested better-conditioned
bases, SVD bases, is improved compared with standard bases; however, increasing the number of
data sites does not increase accuracy,meaning that theRMSE is stuck after some steps. Thismight
be due to the shape parameter tuning being removed. Moreover, after some steps, the singular val-
ues of the kernel matrix are too small, so they only have subtle effects on the interpolation.

3.7 Conclusion

Two different approaches have been presented to construct new stable bases for CPD kernel-
based spaces. Both of these approaches are based on working with reproducing kernels of the
corresponding Native Hilbert Space of CPD kernels. Inspired by [PS11], we used different
factorizations of the kernel matrix to obtain other bases with various features. We also inves-
tigated the ”natural” class of bases by the eigenpairs approximation of the linear operator as-
sociated with Mercer’s theorem. The dual bases of the general data-dependent bases are also
introduced.

Regarding stability, the experiments confirm the good behavior of the new bases expected
from the analysis conducted in the previous sections. More precisely, employing a low-rank ap-
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proximation of the kernel matrix enables the handling of approximations involving a relatively
large number of points, also for not optimized shape parameters, and on quite general sets.
From a numerical point of view, this procedure can be accomplishedwithout thinning the data
sites X ⊂ Ω, but simply checking if the singular values of the kernel matrix decay under a cer-
tain tolerance. In this case, as a future work, one can consider a cost comparison and highlight
the trade-off between cost and stability in a detailedmanner. Another point worth considering
is employing theNystrommethod in the eigenpairs approximation approachwhich poses new
computational costs. The cubature rules to discretize the integrals in eigenpairs approximation
can relate to this aspect of the problem.

Another facet of the newly established foundation through SVD factorization is its inabil-
ity to employ an adaptive algorithm for singular value computation, necessitating a complete
matrix factorization for every fixed point distribution. In this case, we can refer to optimized
eigenvalue algorithms for finding only a subset of the full spectrum of the kernel matrix such
as those presented, for example, in [DMS15, MB19]. Last but not least, as future work, one
may consider Remark 9 in order to employ all these new stable bases to solve PDE problems.
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4
Moving Least Squares Approximation using

Variably Scaled DiscontinuousWeight
Functions

The purpose of computing is insight, not numbers.

Richard Hamming

4.1 Introduction

Discontinuous functions are widespread in various fields, including image reconstruction, sig-
nal processing, and engineering applications. Therefore, it is crucial to approximate and inter-
polate these functions accurately. In this chapter, we aim to develop a Moving Least Squares
method for scattered data approximation that accounts for these discontinuities in the weight
functions. The concept involves managing the impact of data points on the approximant, con-
sidering not only their distance to the evaluation point but also the discontinuities present in
the underlying function.

Recall that f : Ω → R is a function sampled at some finite set of data sites X = {xi}N1=1 ⊂
Ω ⊂ Rd with corresponding data values fi = f(xi). Notice that in this chapter, we slightly
changed our notation to use N for the number of data sites instead of n used in the previous
chapters. We look to reconstruct f using the given function values, that is

sf,X(x) =
N∑
i=1

αi(x)fi, (4.1)

with αi, 1 ≤ i ≤ N known as generating or shape functions. In this case, one asks sf,X to exactly
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reproduce a set of functions, let say radial basis functions. This leads to α = [α1, . . . , αN]T =

(V−1
Φ,XΦX(x))which is the cardinal basis discussed in (2.17). However, now sf,X interpolates the

data i.e. sf,X(xi) = fi, 1 ≤ i ≤ N. Instead, here we consider amore general framework known
as quasi-interpolation inwhich sf,X only approximates the data, i.e., sf,X(xi) ≈ fi. The latter case
means that we prefer to let the approximant sf,X only nearly fits the function values, recall our
discussion in subsection (1.5.1). This is useful, for instance, when the given data contains some
noise or the number of data is too large. The standard approach to deal with such a problem is
to compute the Least-Squares (LS) solution, recall (1.28), i.e., oneminimizes the error (or cost)
function

N∑
i=1

[sf,X(xi)− fi]2. (4.2)

An alternative setting of LS is known as the weighted LS, in which (4.2) turns to

N∑
i=1

[sf,X(xi)− fi]2w(xi), (4.3)

which is ruled by the weighted discrete ℓ2 inner product. In practice, the function w(xi) is
incorporated to enhance the least squares (LS) formulation for data points fi, especially those
influenced by factors such as noise. However, these methods operate globally, meaning all the
data sites influence the solution at any evaluation point x ∈ Ω. Alternatively, one can opt for a
localized approach by considering only the n closest data sites xi, i = 1, . . . , n to x, where n �
N, for a fixed evaluation point x. Following this idea, theMovingLeast Squares (MLS)method,
a local adaptation of the classical weighted least-squares technique, has been developed. To be
more precise, in the MLS scheme, for each evaluation point x, one needs to solve a weighted
least-squares problem, minimizing

N∑
i=1

[sf,X(xi)− fi]2w(x, xi) (4.4)

by choosing the weight functions w(x, xi) : Rd × Rd −→ R to be localized around x, so
that only few data sites are taken into account. The key difference with (4.3) lies in the fact
that now the weight function is indeedmoving with respect to the evaluation point, meaning
that it depends on both the xi and x. Consequently, for each evaluation point x, a small linear
system needs to be solved. Additionally, one can letw(·, xi) be a radial function i.e.,w(x, xi) =
ϕ(‖x−xi‖2) for some non-negative univariate function ϕ : [0,∞) → R. Using this approach,
w(·, xi) inherits the translation invariance property of radial basis functions. We mention that
(4.4) could be generalized as well by letting wi(·) = w(·, xi)moves with respect to a reference
point y such that y 6= x.(see e.g [Fas07, Chap 22]).
The inception of the MLS approximation technique can be attributed to Shepard’s pio-
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neering work [She68], where he explored approximation using constants. Subsequently, Lan-
caster and Salkauskas introduced the general framework of MLS in [LS81], offering an analy-
sis of its application in smoothing and interpolating scattered data. Building upon this foun-
dation, Bos investigated the relationship between MLS and the Backus-Gilbert approach in
[BS89], demonstrating its efficacy in approximating derivatives. Since then, the MLS method
has demonstrated its utility across various domains [MSD12, MS13]. Error analyses of MLS
approximation have been conducted by several researchers, with Levin’s work [Lev98] serving
as a pivotal reference point. Wendland provided error bounds, considering the fill distance, as
outlined in [Wen04, Chap. 3 & 4] and [Wen01]. Armento et al. explored theoretical aspects
in [AD01], presenting L∞ error estimates for one-dimensional cases, later extending their find-
ings to multi-dimensional scenarios in [Arm01], focusing on the support of weight functions
rather than the fill distance. More recently,Mirzaei derived error estimates forMLS approxima-
tion of functions belonging to integer or fractional-order Sobolev spaces in [Mir15], echoing
the findings previously studied in [NWW05] for kernel-based interpolation.

TheMLSmethod has rarely been used to approximate piecewise-continuous functions, i.e.,
functions with some discontinuities or jumps. In this case, it would be essential that the ap-
proximant takes into account the location of the discontinuities. To address these challenges
in this chapter, we let the weight function be a Variably Scaled Discontinuous Kernel (VSDK)
[DMMP20]. VSDK interpolants have been employed tomitigate theGibbs phenomenon, out-
performing classical kernel-based interpolation in [DMEM+20]. Similarly, in theMLS approx-
imation framework, the usage of VSDKweights allows the construction of data-dependent ap-
proximants (as discussed in [Lev98]) that are able to overcome the performances of classical
MLS approximants, as indicated by careful theoretical analysis and then assessed by various
numerical experiments.

This chapter is organized as follows. Section 4.2 recalls necessary notions of the MLS, VS-
DKs, and Sobolev spaces. Section 4.3 presents this work’s original contribution, consisting of
variably scaled discontinuous weights for reconstructing discontinuous functions in the frame-
work of MLS approximation. The error analysis shows that the MLS-VSDKs approximation
can outperform classical MLS schemes as the discontinuities of the underlying function are
assimilated into the weight function. In Section 4.4, we discuss some numerical experiments
that support our theoretical findings, and in Section 4.5, we draw some conclusions.

4.2 Preliminaries onMLS and VSKs

This section reviews the basic concepts and notions required in this chapter.

4.2.1 Moving Least Squares (MLS) approximation

In this subsection, we introduce theMLSmethodmore precisely and investigate its properties.
To this end, let Pd

m indicates the space of d-variate polynomials of degree at mostm ∈ N, with
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basis {p1, ..., pq} and dimension q =
(m+d

d

)
. Notice that we used m − 1 instead of m in the

previous chapters. This change will appear useful to have simpler notation later.

As the standard formulation, the MLS approximant looks for the best-weighted approxi-
mation to f at the evaluation point x in Pd

m, concerning the discrete ℓ2 norm induced by the
weighted inner product

〈f, g〉wx =
N∑
i=1

w(xi, x)f(xi)g(xi). (4.5)

Mathematically speaking, theMLS approximant will be the linear combination of the polyno-
mial basis, i.e.,

sf,X(x) =
q∑

j=1

cj(x)pj(x), (4.6)

where the coefficients are obtained by solving by constructing the Grammatrix concerning the
inner product in (4.5) and solving the linear system in (1.32). The dependency of cj(x) to the
evaluation point x highlights the local nature of the approximant sf,X given in (4.6). Moreover,
from (4.5) we observe that the weight function wi(x) = w(x, xi) controls the influence of
the center xi over the approximant, so it should be small when evaluated at a point that is far
from x, that is it should decay to zero fast enough. So, compactly supported RBFs, or decaying
globally supportedRBFs likeGaussianRBFs, introduced in the subsection (2.2), can be a good
candidate for the weight function.

To relate the representation in (4.6) to quasi interpolant of the form (4.1), let I(x) = {i ∈
{1, . . . ,N}, ‖x − xi‖2≤ r} be the family of indices of the centers X, for which wi(x) > 0,
with |I|= n � N. Therefore, only the centers xi ∈ I influence the approximant sf,X(x).
Consequently, we can reformulate (4.4) as

min
αi

∑
i∈I(x)

[sf,X(xi)− fi]2w(x, xi)

 (4.7)

Theorem 39. [Wen04, Theorem 4.3] Suppose that for every x ∈ Ω the set {xj : j ∈ I(x)} is
Pd
m-unisolvent. In this situation, problem (4.7) is uniquely solvable and the solution sf,X = p∗(x)

can be represented as
sf,X =

∑
i∈I(x)

αi(x)f(xi) (4.8)

where the coefficients αi(x) are determined by minimizing the quadratic form

∑
i∈I(x)

α2i (x)
1

w(xi, x)
(4.9)
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subject to the polynomial reproduction constraints∑
i∈I(x)

p(xi)αi(x) = p(x), for all p ∈ Pd
m.

According to [Wen04, Corollary 4.4]) the basis αi can be obtained as follows:

Lemma 4. The basis functions αi are given by

αi(x) = w(x, xi)
q∑

k=1

λk(x)pk(xi), i ∈ I(x), (4.10)

where λk(x) are the unique solution of

q∑
k=1

λk(x)
∑
i∈I(x)

w(x, xi)pk(xi)ps(xi) = pℓ(x), 1 ≤ ℓ ≤ q. (4.11)

Furthermore, thanks to equation (4.10), it is observable that the behavior of αi(x) is heavily
influenced by the behavior of the weight functions wi(x), in particular it includes continuity
and the support of the basis functions αi(x). In other terms, {αi(x)} depends on the setX, but
they might not even be continuous. Another significant feature is that the weight functions
wi(x), which are singular at the data sites, lead to cardinal bases functions, meaning that the
MLS scheme interpolates the data (for more details, see [Lev98, Theorem 3]). Consequently,
the matrix representation of (4.10) and (4.11) is

α(x) = W(x)PTλ(x),

λ(x) = (PW(x)PT)−1p(x),

where α(x) = [α1(x), ..., αn(x)]T, W(x) ∈ Rn×n is the diagonal matrix carrying the weights
wi(x) on its diagonal, P ∈ Rq×n such that its k-th row contains pk evaluated at data sites in I(x),
and p(x) = [p1(x), ..., pq(x)]T. More explicitly, the basis functions are given by

α(x) = W(x)PT(PW(x)PT)−1p(x). (4.12)

In the MLS literature, it is known that a local polynomial basis shifted to the evaluation point
x ∈ Ω leads to a more stable method (see, e.g., [Wen04, Chap. 4]). Accordingly, we let the
polynomial bases be {1, (· − x), (· − x)2, . . . , (· − x)m}, meaning that different bases for each
evaluation point are employed. In this case, since with standard monomials bases, we have
p1 ≡ 1 and pk(0) = 0 for 2 ≤ k ≤ q, then p(x) = [1, 0, . . . , 0]T.

We shall review some technical notions concerning the geometry ofΩ thatwill appear useful
in the error analysis of the MLS scheme.

1. A set Ω ⊂ Rd is said to satisfy an interior cone condition if there exists an angle Θ ∈
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(0, π/2) and a radius r > 0 so that for every x ∈ Ω a unit vector ξ(x) exists such that
the cone

C(x, ξ,Θ, r) = {x+ ty : y ∈ Rd, ‖y‖2= 1, cos(Θ) ≤ yTξ, t ∈ [0, r]}

is contained in Ω.

2. A domainD ⊂ Rd is said to be star-shapedwith respect to a ball B = B(y, ρ) = {x ∈
Rd : ‖x−y‖≤ ρ} if for every x ∈ D the closed convex hull of x∪B is contained inD.If
Ω is bounded, i.e., Ω ⊂ B(y,R) for some R > 0, then the chunkiness parameter γ is
defined to be the ratio of the diameter diamΩ to the radius ρΩ of the largest ball relative
to which is star-shaped, i.e., γ = diamΩ

ρmax
.

Equipped with the above notions, we express the following theorem

Theorem 40. [Wen04, Theorem 4.7] Suppose thatΩ ⊂ Rd is compact and satisfies an interior
cone condition with angle θ ∈ (0, π/2) and radius r > 0. Fix m ∈ N. Let h0, C1 and C2

denote the constants. Suppose that X = {x1, . . . , xN} ⊂ Ω satisfies (2.20) and hX,Ω < h0. Let
δ = 2C2hX,Ω. Then the bases functions aj(x) from the Lemma (4) provide local polynomial
reproduction, i.e.

1.
∑N

j=1 αj(x)p(xj) = p(x) , for all p ∈ Pd
m, x ∈ Ω,

2.
∑N

j=1|αj|≤ C̃1,

3. α(x) = 0 if ‖x− xj‖2> C̃2hX,Ω,

with certain constants C̃1, C̃2 that can be derived explicitly.

The crucial point in the definition is that the constants involved are independent of the data
sites. The first and the third conditions justify the name local polynomial reproduction. In
particular, the third condition is a consequence of the compact support of w. The second con-
dition is important for the approximation property of the associated quasi-interpolant.

Since the MLS scheme reproduces polynomials at least locally, one expects that the MLS
scheme’s approximation order inherits the order of polynomial approximation.

Theorem41. [Wen04, Corollary 4.8] In the situation ofTheorem (40)defineΩ∗ to be the closure
of
⋃

x∈Ω B(x, 2C2h0). Then, there exists a constant c > 0 that can be computed explicitly, such
that for all f ∈ Cm+1(Ω∗) and all quasi-uniform X ⊂ Ω with hX,Ω < h0 the approximation
error is bounded as follows:

‖f− sf,X‖L∞(Ω) ≤ chm+1
X,Ω max

|δ|=m
‖Dδf‖Cm+1(Ω∗). (4.13)

The norm on the right-hand side of inequality (4.13) implies that the target function f is
continuous of orderm, i.e., f ∈ Cm+1(Ω∗), but here we are looking to approximate the func-
tions that possess some discontinuity. Thus, it makes sense that f lies in another function space.
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With thismotivation,we reviewbasic notions of Sobolev spaces and investigate the error bounds
in such spaces.

4.2.2 Sobolev spaces and error estimates forMLS

For any positive integer k and 1 ≤ p ≤ ∞ the Sobolev space is defined as

Wk
p(Ω) = {u ∈ Lp : Dδu ∈ Lp for 0 ≤ |δ|≤ k}

whereDδu is the weak distributional (weak) derivative of u. Equipped with norms

‖u‖wk
p(Ω) :=

(∑
|δ|≤k

‖Dδu‖pLp(Ω)

)1/p
. 1 ≤ p < ∞ (4.14)

‖u‖wk
∞(Ω) := max

0≤δ≤k
‖Dδu‖∞ (4.15)

Wk
p is called Sobolev space overΩNotice that,W0

p(Ω) = Lp(Ω). Moreover, letting 0 < s < 1,
the fractional-order Sobolev space Wk+s

p (Ω) is the space of the functions u for which semi-
norm and norm are defined as

‖u‖Wk+s
p (Ω) :=

(
‖u‖Wk

p(Ω)+|u|Wk+s
p (Ω)

)1/p
,

with |u|wk+s
p (Ω):=

(∑
|δ|=k

∫
Ω

∫
Ω

|Dδu(x)−Dδu(y)|p
|x−y|d+ps dxdy

)1/p
.

The spaces Wk
p(Ω) were introduced by Sobolev [Sob38]. Afterward, many related spaces

under different symbols and names were studied. The readers can find a vast discussion in
[Sob08, AF03]. We will not investigate these generalizations as they are unrelated to this work,
but we will only review some basic properties and definitions regarding these spaces.

Theorem 42. [Bre08, Theorem 3.3] The Sobolev spaceWk
p(Ω) is a Banach space.

Theorem 43. [AF03, Theorem 3.6] The Sobolev spaceWk
2(Ω) is a separable Hilbert space with

inner product
(u, v)k =

∑
0≤|δ|≤k

(Dδu,Dδv),

where (u, v) =
∫
Ω u(x)v̄(x)dx is the inner product on L2(Ω).

Moreover, given the number of indices defining Sobolev spaces, it is natural to expect that
there are inclusion relations to provide some ordering among them.

Theorem 44. [AF03, Prop 1.4.1] Suppose thatΩ is any domain, k and z are non-negative inte-
gers satisfying k ≤ z, and p is any real number satisfying 1 ≤ p ≤ ∞. ThenWz

p(Ω) ⊂ Wk
p(Ω).

Theorem 45. [AF03, Prop 1.4.2] Suppose that Ω is a bounded domain, k is a non-negative
integer, and p and q are real numbers satisfying 1 ≤ p ≤ q ≤ ∞. ThenWk

q(Ω) ⊂ Wk
p(Ω).
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If u lies in a Sobolev space,Dδmaynot exist in the usual (pointwise) sense. Now,we turn our
attention to introducing a polynomial approximation of degreem for a function in a Sobolev
space. Let B be a ball with respect to which D is star-shaped[Bre08, Def 4.2.2] having radius
ρ ≥ 1

2ρmax. Then

Qmu(x) :=
∑
|δ|≤m

1
δ!

∫
Dδu(y)(x− y)δφ(y)dy, (4.16)

where φ(y) ≥ 0 is a C∞ bump function supported in B satisfying both
∫
B φ(y)dy = 1 and

maxφ ≤ Cρ−d. Sobolev error bounds for a function approximated by the averaged Tay-
lor polynomial defined in (4.16), on a star-shaped domain are discussed in [Bre08, NWW05,
NWW06]. These bounds are usually used for analyzing the finite element method (FEM);
however, in [Mir15], the author suggested Sobolev error bound for the MLS scheme.

Consequently, letDδ be a derivative operator such that |δ|≤ m (we recall thatm is the maxi-
mumdegree of the polynomials). Under somemild conditions regarding theweight functions,
[Mir15, Theorem 3.11] shows that {Dδαi(x)}1≤i≤n forms a local polynomial reproduction in a
sense that there exist constants h0, C1,δ, C2 such that for every evaluation point x

•
∑N

i=1Dδαi(x)p(xi) = Dδp(x) for all p ∈ Pd
m

•
∑N

i=1|Dδαi(x)|≤ C1,δh−|δ|
X,Ω

• Dδαi(x) = 0 provided that ‖x− xi‖2⩾ 2C2hX,Ω

for all Xwith hX,Ω ≤ h0.

Theorem 46. [Mir15, Theorem 3.12] Suppose thatΩ ⊂ Rd is a bounded set with a Lipschitz
boundary. Let m be a positive integer, 0 ≤ s < 1, p ∈ [1,∞) , q ∈ [1,∞] and let δ be a
multi-index satisfying m > |δ|+d/p for p > 1 and m ⩾ |δ|+d for p = 1. If f ∈ Wm+s

p (Ω),
there exist constants C > 0 and h0 > 0 such that for all X = {x1, . . . , xN} ⊂ Ω which are
quasi-uniform with hX,Ω ≤ min{h0, 1}, the error estimate holds

‖f− sf,X‖W|δ|
q (Ω)

≤ Chm+s−|δ|−d(1/p−1/q)+
X,Ω ‖f‖Wm+s

p (Ω). (4.17)

when the polynomial bases are shifted to the evaluation point x and scaled with respect to the fill
distance hX,Ω, and wi(·) is positive on [0, 1/2], supported in [0, 1] such that its even extension is
non-negative and continuous onR.

Remark 15. The above error bound holds also when s = 1. However, recalling the definition of
(semi-)norms in fractional-order Sobolev space, we see that in this case, we reach an integer-order
Sobolev space of m + 1. Therefore, it requires that m + 1 > |δ|+d/p for p > 1 or m + 1 ⩾ |δ|
for p = 1 in order that (4.17) holds true. The key point is that in this case, the polynomial space is
still Pd

m and not Pd
m+1.
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4.2.3 Variably Scaled Discontinuous Kernels (VSDKs)

Recalling the shape parameter ε in subsection (2.2), onemight be interested in applying a differ-
ent shape parameter to each basis function in the RBF interpolation expansion. Taking Gaus-
sian RBF as an example, the approximant (interpolant) can be represented as

sf,X =
N∑
i=1

ci exp(−ε2i‖· − xi‖2).

However, in such instances, the interpolant is not created using a single kernel, requiring a
reevaluation of the theoretical framework. As far aswe are aware, themost promising approach
to explore this approach, particularly from a theoretical standpoint, is [BLRS15], where Vari-
ably ScaledKernels (VSKs)were first introduced. The basic idea behind them is tomap the data
sites fromRd toRd+1 via a scaling function ψ : Ω −→ R and to construct an augmented ap-
proximation space in which the data sites are {(xi,ψ(xi)) i = 1, ...,N} (see [MS13, Def. 2.1]).
Though the first goal of doing so was getting a better nodes distribution in the augmented
dimension, later on in [DMMP20], the authors came up with the idea of also encoding the
behavior of the underlying function f inside the scale function ψ. To be more precise, the key
idea for the target function f that possesses some jumps is as follows.

Definition 27. LetP = {Ω1, ...,Ωn} be a partition ofΩ and let β = (β1, ..., βn) be a vector of
real distinct values. Moreover, assume that all the jumpdiscontinuities of the underlying function
f lie on

⋃n
j=1 ∂Ωj . The piecewise constant scaling functionψP,β with respect to the partitionP and

the vector β is defined as
ψP,β(x)|Ωj

= βj, x ∈ Ω.

Successively, let Φε be a positive definite radial kernel on Ω × Ω that depends on the shape pa-
rameter ε > 0. A variably scaled discontinuous kernel on (Ω × R) × (Ω × R) is defined as

Φε
ψ(x, y) = Φε

(
Ψ(x),Ψ(y)

)
, x, y ∈ Ω. (4.18)

such thatΨ(x) = (x,ψ(x)).

Moreover, we point out that if Φε is (semi-)positive definite then so is Φε
ψ, and if Φ

ε and ψ
are continuous then so is Φε

ψ [BLRS15, Theorem 2.2]. Figure 4.1 shows two different choices
for the discontinuous scale function for the univariate case. In any case, it matters that the
discontinuities of the target function f are assimilated into the kernel Φε

Ψ.
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Figure 4.1: Discontinuous scale functions.

4.3 MLS-VSDKs

Let f be a functionwith some discontinuities defined onΩ,P andψP,β as inDefinition 27. We
look for the MLS approximant with variably scaled discontinuous weight function such that

wψ(x, xi) = w(Ψ(x),Ψ(xi)), (4.19)

wherew canbe anydecaying globally supportedor compactly supportedRBF.Taking the latter,
let B(x, r) and I(x) as before. Now, the MLS-VSDK approximant is represented as

sΨf,X(x) =
∑
i∈I(x)

αΨi (x)fi, (4.20)

where the shape functions are decided by solving

min
αi

∑
i∈I(x)

[sΨf,X(xi)− fi]2wψ(x, xi)

 . (4.21)

Notice that I(x) is defined with respect to the non-scaled weight function w, meaning that the
scale function applies after selecting the xi that influences the approximante. In this case, the
weight function is not necessarily radial now. Thus we define IΨ(x) to be the set of indices for
which wψ(x, xi) > 0.

Theorem 47. Let w be as (4.19), such that for every evaluation point x ∈ Ω, the set {xi : i ∈
I(x)} is Pd

m−unisolvent. In this setting, theMLS-VSDK scheme in (4.21) is uniquely solvable if
for the augmented data sites {(xi,ψ(xi)}Ni=1, we have wψ(·, xi) > 0 for all i ∈ I(x).

Proof. Considering that we are looking for the best approximation in polynomial space, one
must be able to find a representation for sf,X such that sf,X =

∑q
j=1 cjpj . Let us fix the following
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notation,

c = (c1, . . . , cq)T

f = (f(xi); i ∈ I(x))

P = (pj(xi))i∈I(x),1≤j≤q.

W(x) = diag(wψ(x, xi) : i ∈ I(x))

p(x) = (p1(x), . . . , pQ(x))T.

Now, we have to minimize the equation (4.21), which leads us to

C(c) = fTW(x)f− 2fTW(x)Pc+ cTPTW(x)Pc. (4.22)

Since C(c) is a quadratic function in c, we get the unique solution if PTW(x)P is positive defi-
nite. We notice that,

cTPTW(x)Pc = ‖W1/2(x)Pc‖2.

Consequently, PTW(x)P is positive semi-definite. Since W(x) carries only positive weights,
cTPTW(x)Pc = 0 implies that Pc = 0. The unisolvency of I(x) forces c to be zero. So,
PTW(x)P is positive definite, and the solution uniquely exists. Besides, to treat the Backus-
Gilbert representation of MLS in (4.20), it requires that (W(x))−1 exists and be positive defi-
nite. This is guaranteed since wψ are positive.

Remark 16. Some remarks are in order:

• The shape functions in (4.21) are indeed data-dependent thanks to (4.19) since they are
modified with respect to the underlying function f.

• In case that the weight function w is radial, then it is straightforward to verify IΨ(x) ⊆
I(x). By definition, we have

‖Ψ(x)− Ψ(xi)‖2= ‖x− xi‖2+‖ψ(x)− ψ(xi)‖2,

which is obviously greater than
‖x− xi‖2.

On the other hand, the requirement in Theorem (47), wψ(·, xi) > 0 for all i ∈ I(x),
requires that |I(x)|= |IΨ(x)|. These imply I(x) = IΨ(x).

The last remark poses a significant interpretation that is, the value of the scaling function ψ
must be selected in away that ‖Ψ(x)−Ψ(xi)‖ remains inB(x, r) so thatW(x) in (4.22) carries
only positive values.

Lemma 5. Under the assumption of Theorem (40), theMLS-VSDK scheme (4.21) satisfies poly-
nomial reproduction property.
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Proof. Since polynomials are continuous functions, then wψ(·, xi) = w(·, xi) for any x ∈ Ω
and I(x). Then, according to Theorem (40), the polynomial reproduction property is con-
cluded.

Since the bases functions are data-dependent, one might expect that the space in which we
express the error bound should also be data-dependent. Towards this idea, for k ∈ Z, 0 ≤ k,
and 1 ≤ p ≤ ∞, we define the piecewise Sobolev Spaces

Wk
p (Ω) = {f : Ω → R s.t. f|Ωj

∈ Wk
p(Ωj), j ∈ {1, ..., n}},

where f|Ωj
denotes the restriction of f toΩj , andWk

p(Ωj) denote the Sobolev space onΩi. We
endowWk

p (Ω)with the norm

‖f‖Wk
p (Ω)=

n∑
j=1

‖f‖Wk
p(Ωj)

. (4.23)

Theorem 48. ‖·‖Wk
p (Ω) defined in (4.23) defines a norm.

Proof. Let u ∈ Wk
p (Ω). Since ‖u‖Wk

p
is a nonnegative value, then ‖u‖Wk

p
= 0 implies u = 0.

The second property of Definition (3) holds obviously. For the third property let v ∈ Wk
p (Ω),

‖u+ v‖Wk
p (Ω) =

n∑
j=1

‖u+ v‖Wk
p(Ωj)

≤
n∑

j=1

(
‖u‖Wk

p(Ωj)
+‖v‖Wk

p(Ωj)

)
≤

n∑
j=1

(
‖u‖Wk

p(Ωj)

)
+

n∑
j=1

(
‖v‖Wk

p(Ωj)

)
= ‖u‖Wk

p (Ω)+‖v‖Wk
p (Ω)

which concludes the proof.

In particular, Lp(Ω) denotes the special case ofW0
p (Ω) by Lp(Ω). Moreover, it could be

shown that for any partition of Ω, the standard Sobolev spaceWk
p(Ω) is contained inWk

p (Ω)

(see [DMEM+20] and reference therein).
For the error analysis of MLS-VSDK, we require the concept of Lipschitz boundary condi-

tions. See [AF03] for the exact definition.

Proposition 1. Assume, that every setΩj ∈ P satisfies Lipschitz boundary conditions. LetP be
as in Definition 27 and set the derivative order δ = 0. Then, by using Theorem (46), the error
satisfies the inequality

‖f− sψf,X‖L2(Ωj)≤ Cjh
m+1−d(1/p−1/2)+
Ωj

‖f‖Wm+1
p (Ωj)

, for all Ωj ∈ P (4.24)
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with hΩj
the fill distance with respect toΩj .

Proof. Recalling Definition 27 we know that the discontinuities of f and subsequently wi(·)
are located only at the boundary and not on the domain Ωj , meaning thatwi(·) is continuous
inside Ωj . Furthermore, the basis {αi(x)}1≤i≤n forms a local polynomial reproduction, i.e.,
there exists a constant C such that

∑N
i=1|αi|≤ C. Letting s = 1 and q = 2, by noticing that

W0
q(Ωj) = Lq(Ωj), then the error bound (4.24) is an immediate consequence of Theorem

(46).

From the above proposition, it could be understood that sψf,X behaves similarly to sf,X in the
domain Ωj , where there is no discontinuity. This agrees with Definition (27). Consequently,
it is required to extend the error bound (4.24) to the whole domain Ω.

Theorem 49. Let f, P , ψP,β be as before, and the weight functions as in (4.19). Then, for m >

|δ|+d/p (equality also holds for p = 1), and f ∈ Wm+1
p (Ω), for the MLS-VSDK approximant

sψf,X the error can be bounded as follows:

‖f− sψf,X‖L2(Ω)≤ Chm+1−d(1/p−1/2)+‖f‖Wm+1
p (Ω) (4.25)

Proof. By Proposition (1), we know that (4.24) holds for each Ωj . Let hX,Ωi
and Ci be the fill

distance and a constant associated with each Ωi, respectively. Then, we have

n∑
j=1

‖f− sψf,X‖L2(Ωj)≤
n∑

j=1

Cjh
m+1−d(1/p−1/2)+
X,Ωi

‖f‖Wm+1
p (Ωj)

.

Bydefinitionweget
∑n

j=1‖f−sψf,X‖L2(Ωj)= ‖f−sψf,X‖L2(Ω). Moreover, lettingC = max{C1, ...,Cn}
and h = max{hX,Ω1 , ..., hX,Ωn} then the right hand side can be bounded by

Chm+1−d(1/p−1/2)+‖f‖Wm+1
p (Ω).

Putting these together, we conclude.

Some remarks are in order.

1. One might notice that the error bound in (4.17) is indeed local (the basis functions are
local by assumption), meaning that if f is less smooth in a subregion ofΩ, say it possesses
onlym′ ≤ m continuous derivatives there, then the approximant (interpolant) has or-
derm′

+ 1 in that region and this is the best we can get. On the other hand, according to
(4.25), thanks to the definition of piecewise Sobolev space, the regularity of the under-
lying function in the interior of the subdomain Ωj matters. In other words, as long as f
possesses regularity of orderm in subregions, say Ωj and Ωj+1, the approximant order
ofm+1 is achievable, regardless of the discontinuities on the boundary ofΩj andΩj+1.

2. Another interestingpropertyof theMLS-VSDKscheme is that it is indeeddata-dependent.
To clarify, for the evaluation point x ∈ Ωj take two data sites xi, xi+1 ∈ B(x, r) with
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the same distance from x such that xi ∈ Ωj and xi+1 ∈ Ωj+1. Due to the definition
(4.18), wψ(x, xi+1) decays to zero faster than wψ(x, xi) i.e., the data sites from the same
subregion Ωj pay more contribution to the approximant (interpolant) sψf,X, rather than
the one from another subregion Ωj+1 beyond a discontinuity line. On the other hand,
in the classical MLS scheme, this does not happen as the weight function gives the same
value to both xi and xi+1.

3. We highlight that in the MLS-VSDK scheme, we do not scale polynomials, so the poly-
nomial spacePd

m is not changed. We scale only theweight functions, and thus, in case the
given function values bear discontinuities, the basis functions {αi(·)}ni=1 are modified.

We end this section by recalling that, to achieve theMLS approximation convergence order,
it is necessary to operate in a stationary setting where the shape parameter ε is scaled relative to
the fill distance. This leads to peaked basis functions for densely spaced data and flat basis func-
tions for more widely spaced data. In other words, the weight functions’ local support and the
basis functions must be adjusted based on the hX,Ω using the shape parameter ε. This require-
ment also applies to the MLS-VSDK scheme, which means that even after scaling wi, we still
need to consider the shape parameter’s effect. This is different from theVS(D)Ks interpolation,
where ε = 1 was kept fixed [DMMP20, BLRS15].

4.4 Numerical experiments

In this section, we compare the performance of theMLS-VSDKand the classicalMLSmethods.
We consider the polynomials up to degree 1 in all numerical tests. Considering the evaluation
points asZ = {z1, ..., zs}we compute rootmean square error as in (3.23), andmaximum error
by

MAE = max
zi∈Z

|f(zi)− sf,X(zi)|.

We consider four different weight functions to verify the convergence order of sψf,x to a given f,
as presented in Theorem 49.

1. w1(x, xi) = (1−ε‖x−xi‖)4+ · (4ε‖x−xi‖+1), which is the well-knownC2 Wendland
function. Since each w1

i is locally supported on the open ball B(0, 1), then it verifies the
conditions required by Theorem (49).

2. w2(x, xi) = exp(−ε‖x − xi‖2), i.e. the Gaussian RBF. We underline that when Gaus-
sian weight functions are employed, with decreasing separation distance of the approxi-
mation centers, the calculation of the basis functions in (4.12) can be badly conditioned.
Therefore, to make the computations stable, in this case, we regularize the system by
adding a small multiple, say λ = 10−8, of the identity to the diagonal matrixW.

3. w3(x, xi) = exp(−ε‖x− xi‖)(15+ 15‖x− xi‖+6‖x− xi‖2+‖x− xi‖3), that is a C6

Matérn function.

4. w4(x, xi) = (exp (ε‖x− xi‖)2−1)−1, suggested in [Lev98], which enjoys an additional
feature which leads to interpolatory MLS, since it possesses singularities at the centers.
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One might notice that w2, w3, and w4 are not locally supported. However, the key point
is that they are all decreasing with the distance from the centers, and so, in practice, one can
overlook the data sites that are so far from the center x. As a result, one generally considers
a local stencil containing n nearest data sites of the set Z of evaluation points. While there is
no clear theoretical background concerning the stencil size, in MLS literature, one generally
lets n = 2 × q (see, e.g., [Bay19]). However, it might be possible that in some special cases,
one could achieve better accuracy using different stencil sizes. This aspect is covered by our
numerical tests, which are outlined below.

1. In Section 4.4.1, we present an example in the one-dimensional framework, where the
stencil size is fixed to be n = 2× q. Moreover, we consider w1, w2, and w3.

2. In Section 4.4.2, we move to the two-dimensional framework, and we keep the same
stencil size. Here, we restrict the test to the weight function w1 and verify Theorem
(49).

3. In Section 4.4.3, we remain in the two-dimensional setting, but the best accuracy is
achieved with n = 20. Moreover, in addition to w2 and w3, we test the interpolatory
case by considering w4 as a weight function.

4. In Section 4.4.4, we present two-dimensional experimentswhere the data sites have been
perturbed via some white noise. We fix n = 25 and w2,w3 are involved.

4.4.1 Example 1

OnΩ = (−1, 1), we assess MLS approximant for

f1(x) =


e−x, −1 < x < −0.5

x3, −0.5 ≤ x < 0.5,

1, 0.5 ≤ x < 1

with discontinuous scale function

ψ(x) =

1, x ∈ (−1, 0.5) and [0.5, 1)

2, x ∈ [−0.5, 0.5) .

We note that the function ψ is defined only by two cases. The important fact is that it has
a jump as f1. To evaluate the approximant, consider the evaluation grid of equispaced points
with a step size of 5.0e− 4. Tables 4.1 and 4.2 include RMSE of f1 approximation using w1 as
the weight function.

Again, in order to investigate the convergence rate, consider two sets of uniform and Hal-
ton nodes with the size from Table 4.1. To generalize our results to globally supported weight
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number of centers ε value RMSEMLS-VSDK RMSE classic MLS
9 0.25 3.58e-1 3.95e-1
17 0.5 1.99e-1 3.02e-1
33 1 3.10e-3 2.17e-1
65 2 8.42e-4 1.54e-1
257 4 5.67e-5 7.68e-2
513 8 1.43e-5 5.35e-2

Table 4.1: Comparison of the RMSE for f1 approximation at uniform data sites.

number of centers ε value RMSEMLS-VSDK RMSE classic MLS
9 0.25 3.53e-1 3.77e-1
17 0.5 1.99e-1 3.01e-1
33 1 3.08e-3 2.17e-1
65 2 8.39e-4 1.54e-1
257 4 5.67e-5 7.73e-2
513 8 1.43e-5 5.41e-2

Table 4.2: Comparison of the RMSE for f1 approximation at Halton data sites.

functions, we consider w2 and w3, Gaussian and Matérn C6 radial functions, respectively. For
the uniform data sites, let the shape parameter values be εUGA = [5, 20, 40, 80, 160, 320] and
εUMat = [5, 10, 20, 40, 80, 160] for w2 and w3. Our computation shows convergence rates of
2.54 and 2.26 for the MLS-VSDK scheme, shown in Figure 4.2. Accordingly, for Halton
points, let εHMat = [5, 10, 20, 50, 200, 400], εHGA = [10, 20, 30, 50, 100, 200]. The corre-
sponding convergence rates are 2.38 and 2.33. On the other hand, in both cases, the standard

Figure 4.2: Convergence rates for approximating f1 with MLS‐VSDK and MLS‐Standard schemes using uniform data sites
(left) and Halton data sites (right).

MLS scheme can hardly reach an approximation order of 1 using non-scaled weight functions.
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4.4.2 Example 2

Consider on Ω = (−1, 1)2 the discontinuous function

f2(x, y) =

exp(−(x2 + y2)), x2 + y2 ≤ 0.6

x+ y, x2 + y2 > 0.6

and the discontinuous scale function

ψ(x, y) =

1, x2 + y2 ≤ 0.6

2, x2 + y2 > 0.6

We take the grid of equispaced points withmesh size 1.00e−2 for the evaluation points. Figure
4.3 shows both the RMSE and absolute error for the classicalMLS andMLS-VSDK approx-
imation of f2 sampled from 1089 = 332 uniform data sites taking w1 as the weight function.
Figure 4.3 shows that using classical MLS, the approximation error significantly increases near
the discontinuities, while using the MLS-VSDK scheme, the approximant can overcome this
issue.

Figure 4.3: RMSE and abs‐error of f2 the MLS (left) and the MLS‐VSDK (right) approximation schemes using w1 weight
function

We consider increasing sets of {25, 81, 289, 1089, 4225, 16641}Halton and uniform points
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as the data sites to investigate the convergence rate. To find an appropriate value for the shape
parameter, we fix an initial value and multiply it by a factor of 2 at each step. Thus, let ε =

[0.25, 0.5, 1, 2, 4, 8] be the vector of the shape parameter, which is modified concerning the
number of the centers in both cases of uniformandHaltondata sites. The left plot of Figure 4.4
shows a convergence rate of 2.58 for theMLS-VSDK and only 0.66 for classicalMLSmethods,
while these values are 2.04 and 0.70 in the right plot.

Figure 4.4: Convergence rates for approximation of function f2 with MLS‐VSDK and MLS standard schemes using Uniform
data sites (left) and Halton data sites (right).

4.4.3 Example 3

Consider the following function

f3(x, y) =


2
(
1− exp(−(y+ 0.5)2)

)
, |x|≤ 0.5, , |y|≤ 0.5.

4(x+ 0.8), −0.8 ≤ x ≤ −0.65, |y|≤ 0.8.

0.5, 0.65 ≤ x ≤ 0.8, |y|≤ 0.2

0, otherwise.

defined on Ω = (−1, 1)2. Regarding the discontinuities of f3, the scale function is considered
to be

ψ(x, y) =


1, |x|≤ 0.5, , |y|≤ 0.5.

2, −0.8 ≤ x ≤ −0.65, |y|≤ 0.8.

3, 0.65 ≤ x ≤ 0.8, |y|≤ 0.2

0, otherwise.

Moreover, let the centers and evaluation points be the same as the Example 4.4.1. Table 4.3 and
4.4 shows RMSE of MLS-VSDK and conventional MLS approximation of f3 using w4 which
interpolates the data. We underline that our experiments show that the stencil of size n = 20
leads to the best accuracy. Figure 4.5 shows RMSE and Absolute Error for standard MLS
andMLS-VSDK approximation of f3 sampled from 1089 uniform points using w4 as weight
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number of centers ε value RMSEMLS-VSDK RMSE classic MLS
25 1 3.67e-1 1.47e+0
81 2 3.68e-1 8.86e-1
289 4 1.49e-2 7.44e-1
1089 8 4.23e-3 7.72e-1
4225 16 1.06e-3 6.64e-1
16641 32 2.65e-4 5.25e-1

Table 4.3: RMSE of f3 interpolation with uniform data sites.

number of centers ε value RMSEMLS-VSDK RMSE classic MLS
25 1 8.84e-1 1.53e+0
81 2 8.95e-2 1.05e+0
289 4 1.42e-2 8.74e-1
1089 8 4.18e-3 6.48e-1
4225 16 1.09e-3 6.68e-1
16641 32 3.02e-4 7.07e-1

Table 4.4: RMSE of f3 interpolation with Halton data sites.

function. Once again, Figure 4.5 shows how theMLS-VSDK scheme can improve the accuracy
by reducing the error near the jumps.

Figure 4.5: RMSE and abs‐error of f3 MLS(left) and MLS‐VSDK(right) approximation (interpolation) schemes using w4

weight function
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Eventually, letting εUGA = [2, 4, 8, 16, 32, 64] and εUMat = [10, 20, 40, 80, 160, 320], Figure
4.6 shows that h2 convergence is achievable. To be more precise, the rate of convergence in
the left plot is 2.54 and 2.69 for w2 and w3, respectively. On the other hand, letting εHGA =

[1, 2, 4, 8, 16, 32] andεHMat as theUniformcase, convergence rates of 2.50 and2.73 is achievable
whenHalton data sites are employed.

Figure 4.6: Convergence rates for approximation of function f3 with MLS‐VSDK and MLS standard schemes using Uniform
data sites (left) and Halton data sites (right).

4.4.4 Example 4

In applications, the discontinuities are likely to be unknown. To overcome this problem, one
can consider the edge detector method to extract the discontinuities. However, in this way, the
approximationdepends alsoon theperformanceof the edgedetectormethodaswell [DMEM+20].
Toward this direction, in our last experiment, we assume the location of the discontinuities is
not precisely known. This is modeled by adding some noise drawn from the standard nor-
mal distribution multiplied by 0.01 to the edges of Ωi ∈ P . We take the test function f2
and the data sites in Section 4.4.2. We fix n = 25, and εGA = [0.25, 0.5, 1, 2, 4, 8], εMat =

[1, 2, 4, 816, 32] for both Halton and uniform centers. Figure 4.7 shows that the suggested
MLS-VSDK can still obtain a reasonable convergence rate compared to the classicalMLS, even
when the discontinuities are not known precisely.

4.5 Conclusions

To approximate a discontinuous function using scattered data values, we studied a new tech-
niquebasedondiscontinuously scaledweight functions,whichwecalled theMLS-VSDKscheme,
which is the application of discontinuous scaled weight functions to the MLS. It enabled us
to move toward a data-dependent scheme, meaning that MLS-VSDK can encode the behav-
ior of the underlying function. We obtained a theoretical Sobolev-type error estimate, which
justifies whyMLS-VSDK can outperform conventionalMLS. The numerical experiments con-
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Figure 4.7: Convergence rates for approximation of function f2, based on noisy given data values, with MLS‐VSDK and
MLS standard schemes using Uniform data sites (left) and Halton data sites (right).

firmed the theoretical convergence rates. Besides, our numerical tests showed that the suggested
scheme can reach high accuracy even if the position of the data values is slightly perturbed.
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5
Direct RBF Partition of Unity scheme for
solving time-dependent PDEs on surfaces
using closest point surface representation

The more I think about language, the more it amazes me that people ever under-
stand each other at all.

Kurt Gödel

5.1 Introduction

Many applications in the natural and applied sciences require the solutions of partial differen-
tial equations (PDEs) on surfaces or more general manifolds. Because analytical solutions are
rarely possible, onemust approximate the solution using numerical schemes. A great effort has
been made to develop numerical methods for many important classes of PDEs. Most existing
surface PDE solvers can be classified into two types. The first, referred to intrinsic methods,
solves the PDE directly on the manifold using either a mesh [Hol01, DGJ03], a parametriza-
tion of the manifold [FH05], or an explicit reconstruction of the manifold [LZ13]. Another
category of methods, referred to as embedding methods, involves the extension of the surface
PDE to a PDE defined on a small region surrounding the surface. This new PDE is formulated
to match the original problem on the surface; see, e.g., [BCOS01, CT18].
The closest point representation of the surface is a method that practices the latter idea (see, e.g.,
[MM12] about the theoretical foundation of closest point methods). To be more precise, the
Closest Point (CP) methods decouple surface geometry and PDE evolution via a closest point
extension step, yielding a method that involves standard Cartesian grid methods in the embed-
ding space. In the classical formulation of the CP method [RM08, MR08], the discretization
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is carried out in a neighborhood of the surface using standard finite difference (FD) schemes
and barycentric Lagrangian interpolation. Followingly, in [MR10], the authors proposed the
implicit closest point method to provide a stable approximation of the Laplace–Beltrami and
other higher-order surface differential operators. Besides, it iswell-known the issue arising from
the multivariate polynomial Finite Difference (FD) scheme can be bypassed by using the Ra-
dial Basis Function to generate stencil weights in the FD formulas [FLB+12, FF15b, SK19]. As
a result, further research includes an explicit CP formulation using finite difference schemes
derived from RBFs [PLR18] and a least-squares implicit formulation of the CP method in
[PLPR19].

Another approach for localization and evolvingRBF into a fast technique applicable to large-
scale problems is the RBF partition of unity (RBF-PU) method. The first combination of
a PU method with RBF interpolation goes back to [Wen04, Wen02]. For more about RBF-
PU, we refer the readers to [DMMP19, DMMPR19] and the reference inside. In a recent
paper [Mir21], a new method, Direct RBF Partition Unity (D-RBF-PU), was introduced to
simplify the implementation and increase the efficiency of the standardRBF-PUmethod. This
method directly approximates PDE operators, bypassing the need to differentiate against PU
weight functions and enabling some useful discontinuous weight functions. Although related
to the RBF-FD method, this method is much faster at setting up stiffness and mass matrices.
This approach is particularly efficient for studying PDEs, where computing and implementing
surface derivatives of PU weight functions is a challenging problem.

This chapter suggests a fresh numerical approach to tackling partial differential equations
intrinsic to smooth orientable surfaces. The method employed is the direct radial basis func-
tion partition of unity (D-RBF-PU), which incorporates the Closest Point function. Our pre-
liminary results show that it can overcome the existing RBF-FD CP method. In section (5.2),
we review basic notions regarding the surface intrinsic differential geometry and cosest point
functions. Section (5.3) is dedicated to two explicitCPmethods existing in the literature. After-
ward, in section (5.4), we suggest a newnumerical scheme based on solving the time-dependent
PDE problems intrinsic to an arbitrary surface, and in section (5.5) includes some preliminary
numerical results.

5.2 Preliminaries

This section reviews the concepts of surface intrinsic differential operators, closest point surface
representation and functions extension, and several closest point principles.

5.2.1 Surface intrinsic differential operators

Suppose there is a smooth surface S embedded inR3 and a scalar function u(y) defined on it.
Let ũ(x) be an extension of u(y) defined inR3, such that ũ(y) = u(y) for any y ∈ S . In this
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case, the surface gradient of u at y ∈ S , is defined as follows:

∇Su(y) = ∇S ũ(y) = ∇ũ(y)−
(
n(y).∇ũ(y)

)
n(y), (5.1)

withn(y) being the unit normal vector toS at y. Accordingly, letP(y) = I−n(y)n(y)T be the
projection matrix at y ∈ S where I is the identity matrix. Consequently, the surface gradient
∇Su(y) in (5.1) can be rewritten as

∇Su(y) = ∇S ũ(y) = P(y)∇ũ(y).

We can also denote the surface gradient in components by

∇Su(y) =
(
D1u(y),D2u(y),D3u(y)

)
, y ∈ S,

whereDi, i = 1, 2, 3 are the components of the surface gradient. Following such an idea, the
surface Laplacian, or the Laplace-Beltrami function of a scalar function u(y) with extension
ũ(y) is defined as

ΔSu(y) = ΔS ũ(y) = ∇S .∇S ũ(y) =
3∑

i=1

DiDiũ(y) y ∈ S.

After some manipulations (see [Che15]) we get

ΔS ũ(y) = Δũ(y)− κ(y)
∂ũ
∂n

(y)− ∂2ũ
∂n2 (y) y ∈ S,

where κ(y) = ∇.n(y) is the mean curvature at y, ∂ũ
∂n(y) = ∇ũ(y).n(y), and ∂2ũ

∂n2 (y) =

∇
(
∇ũ(y).n(y)

)
.n(y).

Such an idea can be generalized to intrinsic differential operators on manifolds of any dimen-
sion and co-dimension; see, e.g., [MM12].

5.2.2 Closest Point Surface Representation

When dealing with numerical methods for solving partial differential equations on surfaces, it
is crucial to have an accurate representation of the surface. One common approach for repre-
senting a surface involves using two local parameters (or one in the case of a curve). For instance,
a circle with radius R can be represented using the arc length s as a parameter, resulting in the
following parametrization: S(s) = R

(
cos( s

R), sin(
s
R)
)
. However, obtaining an appropriate

parametrization is significantly more challenging for more complex surfaces.
An alternative approach is to embed S in a higher dimensional space Rd. For example, a

curve can be embedded in R2 or R3, while a surface can be embedded in R3 or higher. This
technique allows us to solve numerical problems, such as PDEs, on the surface by computing

81



the points belonging to the embedding spaceRd, rather than the surface itself. To accomplish
this, we need a representation of the surface inRd, which leads us to the closest point represen-
tation of the surface, defined as follows:

Definition 28. For a given surfaceS , the closest point function cp : Rd → Rd takes point x ∈ Rd

and returns a point cp(x) ∈ S ⊂ Rd which is closest in Euclidean distance to x. In other words,
cp(x) = min

q∈S
‖q− x‖2.

If the surfaceS is smooth, there exists a neighborhoodB(S)ofS such that∀x ∈ B(S), cp(x)
is unique; see e.g., [Hir12, MM12]. Later, in our numerical scheme, we refer to this neighbor-
hood as the computational tube. For points that are not inB(S), theremight bemultiple points
on the surface S that is equidistant from x; in this way, the function cp(x) is defined to return
an arbitrarily chosen closest point. For further details, please refer to [MR10].

The closest point representation of a surface S refers to the knowledge of cp(x) value for all
x ∈ Rd or at least on those points utilized in a computation. So, this representation is implicit,
as the surfaceS is knownonly through the closest point function. In particular, unlike the level
set representation, the CP representation does not require any knowledge of the interior or
exterior of the surface, making it easier to represent surfaces with boundaries or non-orientable
surfaces. As a result, we see that this representation is not limited by the geometry or dimension
of the surfaces, making it a highly advantageous feature of the closest point representation.

Depending on the grid points, different techniques can be applied to obtain a CP repre-
sentation for computation. Analytical formulae are an option for simple geometries such as
spheres or tours. Another approach is to minimize the square distance function by Newton’s
method for parametrized surfaces [CM15, MBR11], or compute the closest points from other
representations of the surface such as a triangulation [MR10], a point cloud [LLZ11], or a
level set function [CM15]. For more regarding the literature, refer to [MR08,MR10] and the
reference therein.

The closest point representation of a surface leads to a natural extension of surface data,
namely the closest point extension. As we shall see later, the method extends the surface func-
tion to a narrow band B(S) so that the extended function is constant along the normals to the
surface. Therefore, considering the discussion in the subsection (5.2), we can replace the sur-
face intrinsic differential operators with the corresponding Cartesian differential operators to
formulate an embedding equation in the narrow band inRd.

Definition 29. Let S be a smooth surface embedded in Rd, and let B(S) ⊂ Rd be a tubular
neighborhood of S in which the closest point function is uniquely defined. Then the closest point
extension of a scalar function u : S → R is function ũ : B(S) → R so that ũ(x) = u(cp(x))
for x ∈ B(S). The closest point extension of a vector field v : S → Rd is ṽ : B(S) → Rd so that
ṽi(x) = vi(cp(x)) for x ∈ B(S) and i = 1, . . . , d.

The closest point extensions ũ and ṽ defined in Definition (29) are constant in the normal

82



directions to the surface, at least within a neighborhood of a smooth surface. This leads to
simplified derivative calculations in the embedding space, [MM12, RM08].

Gradient principle : For a scalar function u defined on S ⊂ Rd, let ũ(x) = u(cp(x)) defined
in B(S) ⊂ Rd be the closest point extension of u, then∇Su(y) = ∇ũ(y) for y ∈ S .

Divergence principle : For a vector field v defined on S ⊂ Rd, let ṽ(x) = v(cp(x)) defined
in B(S) ⊂ Rd be the closest point extension of v, then∇S .v(y) = ∇.ṽ(y) for y ∈ S .

Laplacian principle : For a scalar function u defined onS ⊂ Rd, let ũ(x) = u(cp(x)) defined
in B(S) ⊂ Rd be the closest point extension of u, ΔSu(y) = Δũ(y) for y ∈ S .

Asmentioned before, for a scalar functionu, since its closest point extension ũ is constant along
the normals to S , we have (n.∇ũ) = 0. The extended proof for the general manifolds with
arbitrary dimension and co-dimension could be found in [MM12].

Remark 17. We highlight that ũ can be defined in the whole embedding space Rd. Still, for
theoretical and practical reasons, it is preferred to do so in a narrow band B(S) surrounding the
surface.

5.3 Closest Point Numerical Scheme

Let S be a surface and a PDE defining a flow on the surface over time in terms of intrinsic
in-surface differential operators. For example, the diffusion equation on a surface S ,

ut(t, y) = ΔSu(t, y)

u(0, y) = u0(y) (5.2)

where y ∈ S and t ≥ 0.
This PDE is time-dependent, and we wish to propagate its solution on the surface over time.

Using the Laplace principle, we extend the surface PDE to the following embedding equation,

ũt(t, x) = Δũ(t, cp(x))

ũ(0, x) = u0(cp(x)), (5.3)

where x ∈ B(S) and t ≥ 0 and ũ is the CP extension of u.
Here, we review two explicit CP methods to deal with (5.2) investigated in [RM08] and

[PLR18] respectively. We refer the readers to [MR10, vGMM13] for other CP implicit meth-
ods.
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5.3.1 ExplicitRuuth-MerrimanCP Approach

Considering our discussion in section (5.2), we know that the solution of the (5.2) and (5.3)
agree at the surface. In more detail, if u(t, y) is the solution (5.2) for y ∈ S and ũ(t, x) is a
solution of (5.3) for x ∈ B(S), then u(t, y) = ũ(t, y) for t ≥ 0 and points on the surface
y ∈ S . Therefore, it appears that we only need to solve the embedding equation (5.3).
Starting from initial conditions ũ(0, x) = u0(cp(x)), which corresponds to the closest point

extension of the surface data u0, we have

Δũ(0, cp(x)) = Δũ(0, x), (5.4)

which means that at t = 0, we can evolve equation (5.3) simply by

ũt(t, x) = Δũ(t, x). (5.5)

However, after t > 0, as ũ(t, x) is evolved by (5.5), it no longer equals ũ(t, cp(x)); so we need to
compute the closest point extension ũ(t, x) := ũ(t, cp(x)) again if we still want to evolve equa-
tion (5.3) simply by (5.5). We remark that here, the closest point extension is an interpolation
step, and the order of the interpolation should be sufficiently high so that interpolation errors
do not dominate the solution.

Wemust still discretize in the spatial direction for a complete numerical scheme. Discretizing
the above idea along the time direction by the forward Euler scheme leads to the explicit Ruuth-
Merriman approach. Thus, starting from the closest point extension of the initial data, we
perform the following two steps at each time step.

1. (Evolving step) Perform a forward Euler time step with step size Δt in the embedding
space:

wn+1 = ũn(x) + Δt.Δũn(x), x ∈ Rd; (5.6)

2. (Extension step) Perform a closest point extension for each point in the embedding
space:

ũn+1(x) = wn+1(cp(x)), x ∈ Rd. (5.7)

In [RM08], both of these steps are done using barycentric Lagrange interpolationwith poly-
nomial up to degree p = q + r − 1, where q is the order of finite differences schemes, and r is
the order of the derivatives. Another approach is taken in [PLR18] where the RBF-generated
FiniteDifference (RBF-FD) schemewas applied to perform these two steps. Tomake this work
self-contained, we briefly review this method as well.

5.3.2 Explicit RBF-CPMMethod

The general idea of the RBF-FD method was first developed in [TS03, WF06]. Suppose we
are provided with data of the form Z = {zi}Ni=1 ⊂ Ω and corresponding function values
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{f(zi)}Ni=1, with f being the target function defined on Ω ⊂ Rd. We wish to find the value
of (Lf)(ξ), where L is the linear differential operator defined on some normed linear space
and ξ ∈ Ω being the evaluation point. For local approximation of (Lf)(ξ) with the RBF-FD
method, letZξ = {zj}j∈Jξ ⊂ Z denote the set of n nearest data sites of ξ where Jξ is the set of
indices such that

Jξ = {j ∈ {1, ...,N}; zj ∈ Zξ}.

Analogous to (4.1), we intend to find (Lf)(ξ) by calculating a linear combination of the func-
tion values belonging to the stencil associated with ξ, i.e.,

Lf(ξ) =
∑
j∈Jξ

wjf(zj), (5.8)

where theweightswj are known as thedifferentiationweights. For the sake of simplicity, follow-
ing (4.1) instead of Lsf,X(ξ) we use the notation Lf(ξ). Obtaining the differentiation weights
wT = [w1, . . . ,w|Zξ|] is done similarly to the generating functions in (4.1) so,

wT = LΦT
Zξ
(ξ)V−1

Φ,Zξ
, (5.9)

with ΦZξ(ξ) defined analogously to (2.16) i.e., the basis Φ is translated overZξ and is evaluated
at ξ, but now the operator L is applied to each basis function Φ. Given a set of evaluation
points Ξ = {ξ1, ..., ξM} the final linear system would be

WfZ ≈ fLΞ (5.10)

where fZ and fLΞ are the column vectors of the function values and the approximated solution
respectively,W ∈ RM×N is the differentiation matrix such that its rows contain the differen-
tiation weights from (5.9) associated to each {ξk}Mk=1.
Notice that the RBF-FD is one of the ways to generate the differentiation weights. Another
approach to do so is the MLS scheme, which is investigated in [MSD12, MS13].

Remark 18. Regarding the linear system (5.10) some remarks are in order:

• Recalling (4.1), the differential operator is not applied directly to the shape functions. It
means that one does not first form the interpolant sf,X and then apply the linear operator
L. Such an idea is related to the direct discretization explained in [Sch13].

• Since the stencil weights are computed locally, they need to be mapped into the appropriate
columns of the differentiation matrixW.

• Depending on the value of shape parameter ε, the interpolation matrix VΦ,Zξ could be
highly ill-conditioned. So, theRBF-FD scheme couldbe very inaccurate. See, e.g., [FFBB16].
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• Given a PDE problem, the right-hand-side of (5.10) is known, and fZ is desired, so one
needs to compute the inverse of the differentiationmatrixW, requiringWto be sparse and
well-conditioned.

• Last but not least, one can let Z be the same as Ξ, since on one side, we have the function
values and on the other, the operatorL applied to the function values.

Having introduced theRBFD-FDmethod, we now review theRBF-FD-CPmethod investi-
gated in[PLR18]. To keep our notation in harmonywith the explainedRBF-FDmethodology,
we use z and ξ instead of x and y in (5.2) and (5.3).
Let Z = {zj}Nj=1 ⊂ Ω be a collection of Cartesian grid points on a small tubular domain
B(S) containing the surface S . Then, we define surface data points via ξj = cp(zj) to form a
set Ξ = {ξj}Nj=1 ⊂ S ; see Figure (5.1) for a schematic demonstration.

Figure 5.1: Cartesian grid and its closest point on the surface; unit circle (left) and unit sphere (right).

Applying the equivalence of the Laplacian property yields the relation

ΔSu(Ξ) = Δũ(Ξ) (5.11)

where ũ is the constant-along-normal extension of u. Now, the RBF-FD method gives the
approximation as follows:

Δũ(ξj) ≈ wTũ(Zξj).

The differentiation matrix can be assembled analogous (5.10) i.e.,

ΔSu(Ξ) = Δũ(Ξ) ≈ Wũ(Z). (5.12)

We are now ready to discretize the initial equation (5.2), intrinsic to the surface. Using the
forward Euler schemewith spatial discretization at Ξ ⊂ S as before, we have

u(Ξ, tn+1) = u(Ξ, tn) + ΔtΔSu(Ξ, tn) +O(Δ2), (5.13)

86



for tn = nΔt. Recall that, in the proposed setup of [PLR18], the initial grid pointsZ ⊂ B(S)
is regular, whereas Ξ = cp(Z) could be highly nonuniform. Considering (5.12), we know that
(5.13) is equivalent to the discrete equation of the constant-along-normal extended function,
and therefore (5.13) becomes

u(Ξ, tn+1) = ũ(Ξ, tn) + ΔtΔũ(Ξ, tn) +O(Δ2). (5.14)

In [PLR18] the authors do not use pointwise projection, i.e., ũ(Ξ, tn) = ũ(Z, tn) due to in-
stability issues. Instead, they let u(Ξ) = ũ(Ξ) ≈ Pũ(Z) where P is a projection (extension)
matrix. Putting all these together, the approximate solution can be updated from time tn to
tn+1 by

ũ(Ξ, tn+1) = (P+ Δt W)ũ(Z, tn). (5.15)

Notice that the projection matrix P is nothing but the RBF interpolation matrix.

Remark 19. We highlight that the explicit closest point method explained in the previous subsec-
tion evaluates the derivatives of the function u on the grid points {xj} in the embedding space. On
the other hand, the RBF-FDmethod calculates the derivatives directly on the closest points {yj} on
the surface. This eliminates the interpolation step in evaluating derivatives, thereby eliminating
a potential source of error and computational cost.

5.4 Direct RBF-PU CP method

An alternative approach for generating the differentiation weights in (5.8) is the partition of
unity (PU)method, first discussed in [BM97,MB97]. The basic idea is to start with a partition
of the open and bounded domain Ω ⊂ Rd intoM subdomains Ωj such that Ω ⊂ ∪M

j=1Ωj

with somemild overlap among the subdomains. Associatedwith these subdomains, we choose
a partition of unity, i.e., a family of compactly supported, non-negative, continuous functions
ω supported on the closure of Ωj such that at every point ξ in Ω we have

∑M
j=1 ωj(ξ) = 1.

Now, the global approximant of f is formed by joining the local approximant, belonging to
each subdomain, via the weight associated with each subdomain. Letting Zj = Z

⋂
Ωj , we

have

sf,Z =
M∑
j=1

ωjsf,Zj
, (5.16)

such that by sf,Zj
wemean an approximant restricted toΩj . In the classical PUmethod, apply-

ing any linear differential operatorL to sf,Z leads to

Lsf,Z =
M∑
j=1

L
(
ωjsf,Zj

)
. (5.17)
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For more information on PDE’s solution using the RBF-PU method, see, e.g., [DMMPR19]
and the reference therein. To make (5.17) well-defined, it is essential that both ωj and sf,Zj

are
smooth enough. In particular, in contrast to the RBF-FD method, here in the classical PU
scheme, the approximant (interpolant) was constructed first, and then the linear operator was
applied. It means, recalling (4.1), the linear operator is acting on the shape functions directly.
Consequently, computing (5.17) will be challenging as it requires applying a kind of Leibniz’s
rule for the operators L on the PU weights and the local approximate. Such a challenge may
be why the PU approach has rarely been employed for surface PDEs.

To overcome such an issue, theDirect PUmethod for solving boundary value problems was
first investigated in [Mir21] and then was employed to deal with surface PDEs in [MM23].
The first notable difference is that the PU weights are not required to be differentiated using
the direct method. In other words, instead of working with a global interpolant and applying
the linear operator, one applies the operator directly to the local interpolant and then joins all
these local interpolants together using the PU weights.

Inwhat follows, we describe our suggested numerical scheme to solve time-dependent PDEs
intrinsic to a surface, employing CP representation of the surface and Direct RBF-PU to dis-
cretize the problem.

5.4.1 Description of the method

In this section, we introduce an explicit Direct RBF-PU closest pointmethod for solving PDEs
on the surfaces.

Again, consider the diffusion problem in (5.2) and its correspondence embedded equation
in (5.3). Like the previous section, let Z and Ξ be a collection of Cartesian grid points and
their associated closest points on the surface. The main difference compare to the RBF-FD-
CP methods is that now, we need another set of points denoted by C = {ζ1, ..., ζM} ⊂ Ω
which are the centers of the patches {Ωℓ}Mℓ=1 that makes a covering for the Ω. Figure (5.2)
shows two different types of domain decomposition; while the number of patches is fixed, the
radius of patches is different. Even though in Figure (5.2) the patch centers are distributed in
the computational tube, this is not necessary, so instead, one can let the patch centers on the
surface so we have C ⊂ S . In both cases, one must always check that the patches contain at
least one surface data point. Otherwise, considering such a patch would not be very sensible;
see the right plot in Figure (5.2). We shall return to the explanation of grid and surface point
generation later.

Now, we deploy the methodology to obtain a D-RBF-PU approximation. Analogous to
(5.16), let Zj = Z ∩ Ωj , and Ξj = Ξ ∩ Ωj i.e., the Cartesian grid points and the surface
closest points inside the j−patch Ωj, 1 ≤ j ≤ M. In D-RBF-PU, the value Δũ is directly
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Figure 5.2: Domain decomposition with cell radius r = 1/2 (left), and cell radius r = 1/4 (right).

approximated by the PUmethod without any detour via local approximants sΔf,Zj
of ũ, say

Δũ(Ξ) ≈
M∑
j=1

ωj(Ξj)sΔf,Zj
(Ξj) := sΔf,Z , (5.18)

where sΔf,Zj
are the local approximants of Δũ on patches Ωj . The resulting global approxima-

tion is denoted by sΔf,Z , which is different from what is obtained in the classical RBF-PU.
To compute the local approximant sf,Zj

, we fix r to be the radius of each patch. Followingly,
let Jj and Ij be the set of indices of the data sites and the surface points in the j−th patch,
respectively, i.e.

Jj = {i ∈ {1, 2, . . . ,N} : zi ∈ Zj}.

and
Ij = {i ∈ {1, 2, . . . ,N} : ξi ∈ Ξj}.

Now, the local interpolant on j−th patch is represented as

sΔf,Zj
(Ξj) =

(
ΔΦT

Zj
(Ξj)V−1

Φ,Zj

)
ũ(Zj) (5.19)

=: wTũ(Zj). (5.20)

One might notice that for a single surface point ξ ∈ Ξℓ on the surface, Direct RBF-PU can be
viewed as the RBF-FD method with the stencil Zj . However, the main difference here is that
each patch can containmore than one surface point; ΔΦT

Zj
(Ξj) ∈ R|Ij |×|Jj| such that each row

is defined as in (5.9). Also, the patches can have some overlap, meaning that one surface point
can belong tomore than one patch. In the latter case, when assembling the final differentiation
matrix, onemust add the differentiationweights derived fromdifferent patches for each surface
point ξ. Taking all these into consideration, the global interpolant (5.18) can be written

Δũ(Ξ) =
M∑
ℓ=1

Wℓ

(
ΔΦT

Zℓ
(Ξℓ)V−1

Φ,Zℓ

)
ũ(Zℓ), (5.21)
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where Wℓ ∈ R|Iℓ|×|Iℓ| is a diagonal matrix carrying the PU weights ω(ξi, ζℓ), ξi ∈ Ξℓ on
its diagonal. Eventually, considering the global indices of differentiation weights obtained in
(5.21), one can assemble the final differentiation matrix:

ΔSu(Ξ) = Δũ(Ξ) = Wũ(Z). (5.22)

Time discretization can be done using a forward Euler scheme as in (5.13). Similar to the RBF-
FD-CPM, the extension matrix in equation (5.15) is required to keep the scheme stable.

5.4.2 Node Generation

To obtain efficient algorithms, any embedding method should treat the embedding PDE on a
narrow band

B(S) = {x : ‖x− cp(x)‖≤ γ} (5.23)

surrounding the surface, where γ is the bandwidth. There are several reasons why limiting
the computation to a narrow band considerably complicates the solutions. For instance, to
solve the embedding PDE on the band, artificial boundary conditions must be applied at the
boundaries of the computational band. However, the choice of the bandwidth, denoted as
γ, remains unclear and lacks justification through analytical arguments. On the other hand,
using the closest point method within the evolution strategy can simplify narrow banding by
avoiding the introduction of artificial boundaries. This approach allows for a clear separation
of the evolution at the surface and its extension throughout space. For further information,
please refer to [MM12]. Specifically, in [RM08] and later in [PLR18], the bandwidth γ is
obtained via dealing with the Gauss circle problem [Wei04], which is finding the number of
integer lattice pointsm inside a circle with radius R centered at the origin. Table 5.1, derived
from [PLR18], shows the bandwidth and the stencil size in the RBF-FD-CPmethod.

As stated, in practice, to generate the computational domain, one needs to maintain a uni-
formmesh of grid nodes in the embedding space, i.e., a domainΩ that encompasses the surface
S . Then, it onlymatters to find those grid points at a distance atmost γwith the surface bound-
ary S . The final step is to project the selected points on the surface of interest using the closest
point function. It can be done via optimization techniques or a closed form of the CP func-
tion. To illustrate, assume the surface of the interest is a circle with radius R centered at the
origin, meaning that it can be expressed with the parametric form

S = {x : x(θ) = R
(
cos(θ), sin(θ)

)
, 0 ≤ θ ≤ 2π} (5.24)

Thus, we can find a closed formula for the closest point function that projects an arbitrary
point x ∈ Ω on S , defined as

cp(x) =
R
R′ (R

′ cos(θ),R′ sin(θ)) (5.25)
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whereR′ is the distance of ξ from the origin in the polar coordinate system. Such a procedure
can be extended to the sphere of radiusR or an ellipse. In the first case, the surface is expressed
as

S = {x : x(θ,φ) = R
(
cos(θ) cos(φ), sin(θ) cos(θ), sin(φ)

)
, −π ≤ θ ≤ π,−π

2
≤ φ ≤ π

2
}

(5.26)
while in the latter, we have

S = {x : x(θ) =
(
a cos(θ), b sin(θ)

)
, 0 ≤ θ ≤ 2π} (5.27)

where a, b are the radius on the X and Y axes respectively.

γ (2D) m (2D) γ (3D) m (3D)

(
√
2+

√
2/2) Δx 9 (

√
3+

√
3/2) Δx 27

(
√
4+

√
2/2) Δx 13 (

√
4+

√
3/2) Δx 33

(
√
5+

√
2/2) Δx 21 (

√
5+

√
3/2) Δx 57

(
√
8+

√
2/2) Δx 25 (

√
6+

√
3/2) Δx 81

Table 5.1: Computational tube radius γ for anm‐point RBF‐FD stencil in two and three dimensions

5.5 Numerical results

Inwhat follows, we present two numerical experiments, its D-RBF-PU-CP solution compared
with the RBF-FD-CPmethod.

5.5.1 Test problem 1

In this experiment, we consider the heat equation

ut = ΔSu

intrinsic to the unit circle S centered at the origin. Following [RM08], for an initial profile
u(θ, 0) = sin(θ), the exact solution is

u(θ, t) = e−t sin(θ).

Using an analytic closest point representationof the unit circle (5.25), the surface heat equation
is discretized and solved using the proposed Direct-RBF-PU closest points method and RBF-
FD-CPM scheme of [PLR18]. We work with unscaled (shape parameter ε = 1) C4 Matérn
RBF in both cases.
Following [PLR18], we let computational tube radius γ to be (

√
4 +

√
2/2) (see Table 5.1)

withm = 13. In order to generate the Cartesian grid around S, we begin by generating a grid
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on the square Ω = (−2, 2) × (−2, 2). Then, we select the grid points inside the tubular
domain and the closest points onS , according to the methodology explained in 5.4.2. We con-
sider different grid sizes Δx = {0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625}. Figure 1 (left)
shows the computational domain with grid size Δx = 0.2.
For employing theDirect-RBF-PUCPmethod, wemust create another Cartesian grid around
S to decide our patch centers. We use another mesh with a different grid size on Ω to ensure
that patch centers differ from the RBF centers. In our numerical test the second grid contains
{62, 122, 242, 482, 962, 1922}patcheswith corresponding cell radius{1, 1/2, 1/4, 1/8, 1/16, 1/32}.
Eventually, the C2 Wendland compactly supported function is used as the weight function.
The left plot in Figure 5.3 shows the ∞− norm error for different grid sizes. Moreover, Fig-

Figure 5.3: Relative error against the grid spacing Δx for the approximation of the Laplace–Beltrami operator on the unit
circle (left) and sphere (right).

ure (5.4) shows the sparsity of the final differentiationmatrix. Although the nonzero elements
in RBF-FD are much smaller, our experiment shows that even increasing the stencil size to
m = 50 (nz would be almost equal), the Direct-RBF-PU method still outperforms the RBF-
FDmethod. In both cases, one should notice that optimizing different parameterize, such as ε,

Figure 5.4: Sparsity of the final differentiation matrix for D‐RBF‐PU‐CP method (left) and RBF‐FD‐CP method (right); Test
problem 1

cell radius, number of patches, or stencil size, could lead to different (possibly better) accuracy.
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5.5.2 Test problem 2

As the second test, we apply the D-RBF-PUmethod to a three-dimensional problem: the heat
equation on the sphere

ut = ΔSu

intrinsic to the unit sphere S centered at the origin. For an initial profile u(θ,φ, 0) = sin(φ),
the exact solution for all times t is given by,

u(θ,φ, 0) = e−2t sin(φ).

In this problem, we employ discontinuous weight functions such that

ωj(ξ) =

1, if j-th patch is the nearest patch to ξ

0, otherwise
(5.28)

which gives the total weight 1 to the nearest patch and null weights to the others. With such
a weight function, the D-RBF-PU method gets very similar to the RBF-FD scheme, with the
difference that the center of the patch (stencil) is not ξ necessarily. In this test, the radius of
the patches is selected to be 4max(D)whereD is the distance of surface data points with their
nearest patch centers. Another difference with our previous example is that now we let the
patch centers on the surface S rather than in the computational tube around it. This is possi-
ble simply by generating a grid around the surface and then projecting them on the surface.
In this example, we employ Gaussian RBF with shape parameter ε = 0.05; however, to avoid
any potential problem of ill-conditioning, we use the stable RBF-GAmethod, which provides
an accurate and stable algorithm and is a cheaper stabilizationmethod over RBF-QR [FLP13].
It appears that it is of essential importance to use such stabilization methods to obtain good
results in terms of accuracy. Otherwise, good accuracy is not obtainable. We let the computa-
tional tube radius γ to be (

√
5+

√
2/2) (see Table 5.1) withm = 57 for the RBF-FDmethod.

An analytic closest point representation of the unit sphere is used, and the surface heat equa-
tion is discretized and solved; the right plot of Figure5.3 shows the comparison of the accuracy
between the proposed method and the RBF-FD method. Moreover, Table (5.2) shows the
number of nonzero elements of the differentiationmatrix associated with each grid size Δx for
D-PU and RBF-FD schemes.

Δx N M nnz.D− PU nnz.RBF− FD
0.2 2240 1304 42, 448 127, 680
0.1 8072 5072 159, 016 460, 104
0.05 31416 18824 829, 608 1, 790, 712
0.025 125216 72680 5, 403, 184 7, 137, 312

Table 5.2: Number of nonzero elements of differentiation matrix associated to each grid sizeΔx, total number of pointsN,
and number patchesM (only for D‐RBF‐PU‐CP scheme).
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Although the number of patches is relatively high, compared with the RBF-FD scheme, the
final differentiation matrix is more sparse, and the accuracy is higher.

5.6 Conclusion

This chapter reviewed the closest point method for embedding the PDE problems intrinsic to
the surface into a higher dimension. The Direct RBF-PU scheme was employed to solve the
new embedded PDE. Although more test problems are required, the preliminary results show
an improvement in accuracy compared with the RBF-FDmethod.

To continue, one can consider using PHS with appended polynomials instead of other ker-
nels since this strategy might help overcome the instability and remove the RBF-GA strategy.
Another approach is considering the eigenvalues of the operators and then, considering SVD
truncated bases, removing those that are too small.

Another direction to develop this work is to consider the MLS-VSDK approach suggested
in chapter (4) to generate differentiation weights instead of the suggested D-RBF-PU and deal
withmore complex PDEproblems that could also be discontinuous. Generating the differenti-
ationweights with the better-conditioned kernels, as outlined in the remark (9), can be another
interesting direction toward the extension of this chapter.
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6
Conclusion

In the first chapter, we presented the idea of function approximation in the most general set-
ting. We confine ourselves to RBF approximation and interpolation to answer the question
of which set of bases is appropriate for function approximation, especially in the multidimen-
sional framework. We provided a reasonable connection between RBF interpolation and gen-
eral interpolation, for instance, Fourier interpolation in Chapter 2. Our first contribution
starts in Chapter 3 where we show how to find a new set of bases that are better conditioned
compared to the standard translated RBFs. In Chapter 4 we present our answer to the natural
question of whether it makes sense to approximate discontinuous functions with continuous
bases. Toward this idea, we incorporated the discontinuities into the bases to achieve a better
approximation scheme in terms of accuracy. Thus, we would rather consider the third and
fourth chapters general works, meaning they can be applied to various problems in different
frameworks. Indeed, the PDE problems intrinsic to the surface investigated in Chapter 5 are
one of those.

To continue this thesis work, apart from the new suggested method based on the Direct
RBF-PU method, we would like to consider the MLS-VSDK approach suggested in Chapter
4 to generate differentiation weights and deal with more complex PDE problems, those with
discontinuity and in particular, the PDEs with Neumann boundary conditions. Besides, our
numerical tests in Chapter 5 show the necessity of employing a stabilization method, recalling
that RBF-GA was used to avoid the ill-conditioning of the final linear system. Thus, another
possible approach to generating the differentiationweights can be using the better-conditioned
bases outlined in Chapter 3 joined with the remark 9. Moreover, in the framework of Chapter
3, it is also worth investigating the new bases that span the native space and areL2 orthonormal.
These bases can be seen as alternate bases for the eigenfunctions associated withMercer’s series,
which are not straightforward to obtain. Also, using L2 orthonormal bases, one should be able
to connect the RBF interpolation with the generalized Fourier function approximation.
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A
Appendix:

All the MATLAB codes required for reproducing the numerical results reported in this thesis
are available at the repository provided by the author on GitHub: https://github.com/
Mohes7395.

The readers can use all the codes for personal use, but please mention them.
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