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Abstract

Original Article

IntroductIon

Visual inspection of tissue samples is currently the standard 
method to diagnose a considerable number of diseases and to 
grade/stage most types of cancer.[1,2] In recent years, various 
pathology departments have started a digitization of patient 
data and stored samples.[3] Whole slide image (WSI) scanning 
now enables the on-screen visualization of high-resolution 
images from patient tissue slides. This opens the door to a 
wide range of image navigation and analysis solutions for 
histopathology practice.[4] For instance, a full implementation 
of digital pathology allows making diagnoses out of the 
laboratory, facilitate online consultations, and browsing 
cases,[5] enable faster access to pathology services in remote 
areas and promote the development of novel computer vision 
and artificial intelligence (AI) algorithms. In the future, AI 
tools may modify the workflow of pathologists in fundamental 

ways, i.e., through computer-aided diagnosis, or simply by 
speeding up time-consuming manual tasks (such as relying 
on automatic mitosis counting algorithms).[6]

One of the main challenges in this digitization process is how 
to store and structure the patient studies together with their 
diagnostic metrics and metadata.[7] The increasing amount of 
generated patient data and a larger variety and complexity of 
diagnostic tests requires efficient storage and access techniques 
and a logical structuring of health repositories. Pathologists 
should then gain faster and more direct access to relevant 
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patient data stored in these hospital repositories[8] and also 
links between several data sources based on visual similarity. 
Over the past 20 years, many domains have embraced specific 
information retrieval systems as a solution for this problem. 
A retrieval system is an approach for browsing, searching, 
and retrieving relevant data from structured data, free text, 
or unstructured data such as images, signals, or videos. For 
example, web search engines allow browsing the internet and 
quickly accessing many kinds of information, using keywords 
or images to find similar content. Available retrieval systems 
are commonly based on these two main search strategies: text 
search and visual search (based on visual features such as 
texture, color, and shape).

Medical retrieval of images and patient cases was evaluated 
using radiology data with good results in its contribution to 
differential diagnosis and for education.[9,10] A few retrieval 
algorithms have been proposed using pathology data.[11-14] 
Caicedo et al.[11] used matrix factorization algorithms for 
fusing multimodal information of histopathology patches into 
a joint semantic space. This multimodal fusion embedding 
increased the overall performance of the method. Qi et al.[15] 
proposed a content-based image retrieval system (CBIR) in 
which region of interest (ROI) localization was performed 
using multiple scales and annular histograms. A hierarchical 
search with relevance feedback further improved the quality 
of the results. In Zhang et al.,[13] a scalable algorithm was 
presented to retrieve histopathology breast cancer images. The 
approach compressed high-dimensional feature vectors into a 
few hashing bits, thus computing similarities in near real-time 
using lookup tables.

The main application of the system presented here is thus the 
use for teaching and clinical decision making. Teaching can 
well be supported by supplying cases with visually similar 
regions and different or the same diagnosis/grading/staging. 
In clinical decision-making, a comparison with rare or unusual 
cases from the medical literature allows the clinician to visually 
compare a case to examples that are rare in clinical practice, 
and that can thus easily be misinterpreted.

Deep learning (DL) methods have in recent years outperformed 
traditional machine learning algorithms in many applications 
and have been adopted broadly by the biomedical image 
analysis community, also for a wide array of digital pathology 
tasks.[7] Recently, multimodal queries coming from pathology 
reports and WSIs were evaluated using DL features by 
Jimenez-del-Toro et al.[8] Automatically generated ROIs in 
WSIs from dense cell areas were fused with the free text of 
pathology reports to retrieve cases with similar Gleason scores. 
This approach was initially evaluated for classifying Gleason 
grades in prostate cancer, relying only on weakly annotated 
data, i.e., only using the global cancer grading of WSIs without 
any additional manual annotations in images.[16]

An essential requisite to introduce these and other AI 
algorithms into the digital workflow is the development of 
dynamic and user-friendly platforms dealing with large-scale 

WSIs in real time. Several pathology image platforms have 
been proposed in the literature [Table 1].[17-19] Many of these 
platforms target a specific research topic, i.e., Drosophila 
research.[28] On the other hand, some of the recent approaches 
have a flexible design that allows the inclusion of several data 
models and extensions for multiple applications.[19] The more 
recent platforms are web based,[17] which facilitates online 
sharing of large-scale imaging datasets[26] and collaborative 
research.[20] Nevertheless, few of these platforms handle 
WSI in an interactive and dynamic way, as the images 
are extremely large and not easy to visualize on-screen. 
Moreover, most of these systems only deal with predefined 
ROIs, usually analyzing selected areas in an offline fashion. 
Such constraints reduce the applicability of the platforms in 
real applications, where queries are arbitrarily selected over 
WSI areas.

Finally, to the best of our knowledge, the development of these 
platforms has lacked a relevance feedback process involving 
pathologists and their user experience. Therefore, addressing 
the pathologists’ needs from an early development phase is 
crucial to better understand which functions are most useful 
and how pathologists can interact with such tools.

In this article, we propose a digital pathology system with an 
embedded WSI viewer with fast scale changes that retrieve 
visually similar local areas within the same image, as well as 
in other images from large databases and scientific literature. 
This dynamic histopathology image retrieval system is built 
using DL and classical handcrafted features and can also 
retrieve relevant documents from the scientific literature using 
multimodal queries (including text and visual information).

The methods used are based on quantitative features extracted 
from the pathological samples at several magnification levels. 
The viewer/annotation tool and the retrieval system were 
developed using modern web technologies and several existing 
software tools and libraries.

The code for the developed components, as well as instructions for 
starting a new instance of the platform, can be found at the following 
repository: https://c4science.ch/source/desuto-platform. The 
following sections present an overview of how the platform was 
built, its functions, a qualitative assessment obtained with user 
tests performed by pathologists and a quantitative evaluation of 
the system’s retrieval performance.

System description
Programming languages and technologies
The viewer/annotation tool was developed as a “Node.js” 
(http://nodejs.org, as of October 25, 2018, v8.x) application 
using the “Express” (http://expressjs.com, as of October 
25, 2018, v4.x) web framework, with JavaScript as the 
programming language for both front and backend code.

All data relative to annotations made by pathologists were 
stored using “CouchDB” (http://couchdb.apache.org, as of 
October 25, 2018, v2.x), a document-oriented database system 
designed for the web: It uses JavaScript Object Notation as a 
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data format and the HyperText Transfer Protocol (HTTP) for 
communication.

The retrieval system is based on a client-side only frontend 
developed with HyperText Markup Language 5 (HTML5) 
and JavaScript, communicating with a Java-based retrieval 
backend using Representational State Transfer web services.

No web framework (e.g., Angular, React) was used in the 
development of these tools, but rather a plain JavaScript 
approach with the use of libraries for specific features.

Libraries and tools
Several existing libraries and software components were 
combined to develop the viewer/annotation tool, outlined 
below and shown in Figure 1:
● jQuery (http://jquery.com/, as of March 29, 2018, v2.1.3) 

was used as the base for interactions with HTML 
elements, event handling, and asynchronous HTTP calls 
on the client side

● OpenSeaDragon (http://openseadragon.github.io, as of 
October 25, 2018, v2.2.1) was used as the viewer for the 
high-resolution histopathology images. It allows loading, 
zooming and panning around high-resolution images 
while dynamically loading image tiles from a given 
tile source. Several plugins for OpenSeaDragon were 
also used, such as the “Scalable Vector Graphics (SVG) 
Overlay for OpenSeaDragon” (https://git.io/vA0tP, as of 
October 25, 2018) plugin for integrating the annotation 
tool with the viewer

● IIPImage (http://iipimage.sourceforge.net/, as of October 
25, 2018, v1.0) was used as the image server generating 
the tiles loaded by the OpenSeaDragon viewer. It is a fast 
server that supports various high-resolution formats and 
protocols, including “DeepZoom” (https://en.wikipedia.
org/wiki/Deep_Zoom, as of October 25, 2018), which 
was used for interacting with the viewer

● OpenSlide (http://openslide.org, as of October 25, 2018, 

v3.4.0) was used to read WSIs from various proprietary 
formats (e.g., Aperio, Hamamatsu)

● The VASARI Image Processing System (VIPS) 
(http://jcupitt.github.io/libvips, as of October 25, 2018, 
v8.2.2) was used in combination with OpenSlide to 
convert WSIs to a standard pyramidal Big Tagged Image 
File Format image that can be served by IIPImage, using 
the DeepZoom image protocol

● SVG‑Edit (http://github.com/SVG‑Edit/svgedit, as of 
October 25, 2018, v2.8.1) was used as the tool for drawing 
annotations on the images. It is a full-featured drawing 
application that was simplified for the needs of the project

● The Shambala retrieval interface (http://shambala.
khresmoi.eu, as of October 25, 2018, v1.0) was used as 
the basis for the development of the retrieval system’s 
frontend.[9] The main objective of the interface is to 
provide an easy-to-use and intuitive search interface for 
images

● The Parallel Distributed Image Search Engine (ParaDISE)
 (http://paradise.khresmoi.eu, as of October 25, 2018, 

v0.0.1) was used as the backend for the retrieval system.[29] 
The main objectives of ParaDISE are to enable indexing 
and retrieval of images using several types of visual 
features (both local features and global descriptors) in a 
simple and efficient manner.

Design process
The platform was developed in an iterative way, with short 
iterations followed by user feedback and adjustments, 
especially in the beginning of the process. The various 
features (viewer, annotation tool, and retrieval) were built up 
step-by-step, taking into account the user comments, ensuring 
that the final product would fit their needs.

Features
This section presents an overview of the main features 
implemented in the platform. It details the workflow of the 

Table 1: Pathology image analysis platforms

Platform Basic image 
analysis

Web‑based Dynamic 
WSI

WSI 
retrieval

Scientific 
literature retrieval

Deep learning 
analysis

CellProfiler[18] ✔ - - - - ✔

CATMAID[20] ✔ ✔ - ✔ - -
Bisque[19] ✔ ✔ ✔ ✔ - -
PIIP[21] ✔ - ✔ - - -
Ilastik[22] ✔ - - - - -
Icy[23] ✔ - - - - -
Fiji[24] ✔ - - - - -
OMERO[25] ✔ ✔ - ✔ - -
BigDataViewer[26] ✔ ✔ - - - -
Cytomine[17] ✔ ✔ ✔ ✔ - -
Luigi[27] ✔ ✔ - ✔ - ✔

DESUTO ✔ ✔ ✔ ✔ ✔ ✔

-: Missing feature, ✔: Included feature. CATMAID: Collaborative Annotation Toolkit for Massive Amounts of Image Data, Pathology Image Informatics 
Platform, DESUTO: Decision Support Tools, OMERO: Open Microscopy Environment Remote Objects, WSI: Whole slide image, Fiji: Fiji is just ImageJ, 
PIIP: Pathology image informatics platform
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user and illustrates how the system can help in fulfilling the 
pathologists’ information needs.

Workflow
This section shows an overview of the workflow of a 
pathologist using the platform [Figure 2 and Table 2].

User interface
This section presents an overview of the user interface that was 
developed and it details each function. The main user interface, 
as shown in Figure 3, can be split into three principal areas:
1. The navigation bar provides access to the various pages 

of the interface, including the homepage, a page with 
more information about the platform and a page allowing 
authorized users to upload new images to the platform

2. The database/feature selection and annotation edition 
zone allows switching between images contained in 
different datasets, as well as selecting feature overlays to 
display on top of an image (see section “Visual Feature 
Selection” below). In the same space, the annotation 
edition zone appears, as detailed in Figure 4

3. The viewer is the main section where users can interact 
with images, zoom in and out quickly, create and edit 
annotations.

Visual feature selection
One of the developed functions is the ability to activate feature 
overlays to superimpose visual information on top of the WSI, 
aiming to help pathologists with identifying ROIs that warrant 
closer inspection more easily, for example, regions with the 
highest cancer grades. An example of a feature overlay using 
a clustering algorithm is shown in Figure 5. The opacity of the 
feature overlay can be adjusted by the user.

Image viewer
The OpenSeaDragon viewer provides several functions and 
plugins, detailed below and shown in Figure 6:
●	 The smooth zooming and panning with dynamic loading 

of image tiles from the IIPImage server
●	 The viewport navigator [top right corner of the viewer in 

Figure 6] that shows the position of the currently shown 
portion of the image within the whole slide

●	 The scalebar plugin that shows a customizable 
scalebar [bottom left corner in Figure 6]. The correct 
scale is computed using pixel size information extracted 
from the WSI with OpenSlide.

Annotation tool
A layer allowing to draw annotations (with the help of 
the SVG‑Edit drawing library) using several shapes is 
superimposed on top of the image viewer. Several drawing 
tools are provided, allowing pathologists to highlight areas 
of any shape, including lines, rectangles, ellipses, and 
freehand drawings. In addition, a dropdown list is provided 
for indicating the severity of the selected region (based 
on the Gleason grading system in the example shown). 
Each major group of Gleason grades has a different color, 
allowing pathologists to quickly find severe regions that 
were annotated in the past. These tools are illustrated 
in Figure 7.Figure 1: Libraries and software components used in the retrieval system

Figure 2: Illustration of a typical user workflow within the platform showing the options and possibilities that are available in terms of search
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Once a shape is drawn, it can be edited directly. Furthermore, 
any shape can be selected using the selection tool 
[arrow icon in Figure 7]. Selected shapes can be resized, 
rotated, and moved easily.

When a single annotation is selected, a textbox allows to write 
a description of the region. In addition, characteristics of the 
region (the size in millimeters for example) and a preview of 
the selected region, based on a rectangular bounding box are 
shown [Figure 4].

Two more functions can be found in the same zone below 
the preview. The first is a link that opens the retrieval system 
interface, allowing pathologists to search for similar regions in 
other images, within the same or a different dataset. The second 
is a list showing similar patches found within the currently 
displayed image [Figure 8].

Retrieval interface
The retrieval interface is tightly integrated with the viewer 
and opens in a popup window when the “Search for 
similar images” link is clicked in the annotation zone of a 
selected region. It is composed of the following two main 
sections [Figure 9]:

●	 The query section contains a list of relevant query images 
and/or keywords

●	 The results list shows the retrieved results.

It is flexible and supports multiple search modalities and 
options:
●	 CBIR: By default, the region selected in the viewer 

appears in the “Relevant images” column in the 
retrieval interface, and visually similar patches 
are retrieved from the selected dataset. Any of the 
retrieved results can be dragged to the same column, in 
order to refine the search. Various distance/similarity 
measures provided by ParaDISE (Euclidean distance, 
Canberra distance, Histogram Intersection, and Cosine 
similarity) are supported for the visual comparison of 
images[29]

●	 Text-based retrieval: If text information regarding the 
query images or the search results (e.g., figure captions) is 
available, it is possible to add text search terms (keyword 
search). This is the case for the PubMed Central dataset, 
where each image has an associated caption that can be 

Figure 3: Overview of the main user interface. The three following sections 
are highlighted: (1) The navigation bar, (2) the database/feature selection 
panel and annotation edition zone and (3) the main viewer container

Figure 4: Annotation edition zone. From left to right: Annotation description 
textbox, region characteristics and region preview

Figure 5: Coloured feature overlay of several types of computed features
Figure 6: Image viewer showing a zoomed in portion of a whole slide 
image. Top right corner: the viewport navigator. Bottom left corner: the 
scalebar

Figure 7: Drawing tool selection. From left to right: region severity 
dropdown list, selection tool, line tool, rectangle tool, ellipse tool and 
freehand drawing tool

Figure 8: List of similar patches found within the same whole slide image
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used for retrieval, using keywords or a combination of 
visual and text retrieval [Figure 10]

●	 Dataset and magnification options: The user can choose 
among the available datasets (e.g. ContextVision AB, 
PubmedCentral), magnification levels and visual features 
used for the retrieval.

Once the results list is displayed, the user can click on a result 
to see a more detailed view. The exact information shown 
depends on the type of dataset used.

In the case of a WSI dataset, the selected patch is shown in its 
parent image, highlighted with a square to help users understand 
in which context a given patch is located. From there, users 
can also link back to the viewer, opening the currently shown 
image (centered on the highlighted patch) for further inspection.

If the dataset is a repository of figures with captions (e.g., the 
PubMed Central database), the result is displayed alongside 
basic image editing tools for modifying contrast and brightness. 
Furthermore, a link to the article containing the image is shown 
under the image, as well as the image caption [Figure 11]. The 
automatically extracted image modality is shown as a four-letter 
code following an ad hoc image type classification hierarchy.[30]

Backend and image processing pipeline
This section explores the various processes and features that 
were implemented in the backend of the platform.

Image processing
Currently, the process of including new images in the platform 
is split into two processes:
●	 Uploading and converting WSIs to make them available 

for viewing and annotating
●	 Extracting patches from WSIs, indexing their visual 

features, and making them available for retrieval.

The first process is largely automated, as illustrated in 
Figure 12. The process consists of three steps:
1. A user imports a WSI file using the web interface
2. Once the image is successfully uploaded, the VIPS 

tool is automatically started, converting the image to 
a pyramidal format that can be used by the IIPImage 
server (when necessary). This process typically takes 
around 4–5 min, even for very large images (e.g., ~20GB, 
~80,000 × 80,000 pixels)

3. The file can then be accessed by the OpenSeaDragon 
viewer using the DeepZoom image protocol.

The second process currently requires several manual steps:
1. The patch extraction process consists of two steps, 

depending on whether the WSI has manual segmentations 
or not. When there are manual annotations, a Python 
script (using the “scikit,” “Pillow,” and “openslide” libraries) 
is run to compute the overlap of the segmentation with the 
annotated areas and then extract nonoverlapping patches. 
When there are no annotations, a uniform extraction of 
patches is performed over the entire WSI. An upper bound 
of 2000 patches per WSI was set due to storage constraints. 
An important factor that affects the quality of the results is 
the quality of the annotations made by the pathologists, as 
some of them draw very precise areas and others mark only 
a rough region consisting of several classes and background

2. For each magnification level, sets of visual features 

Figure 9: Retrieval interface. Query images on the left, results list on the right. The Gleason grade of results is shown when a patch has a Gleason 
annotation (example shown with a blue box)

Table 2: Description of user workflow within the platform

Step Description
Step 1: Login The user accesses the Web interface and logs in with his account, then accesses existing datasets and images
Step 2: Upload The user can upload a new image, which triggers the image processing pipeline (described in section “image processing”)
Step 3: Explore Once the image is processed, it is available for viewing, exploring t panning and zooming into various regions
Step 4: Overlays The user can choose to activate one or more “feature overlays,” that superimpose visual information on top of the WSI, e.g., 

highlighting automatically segmented and classified ROIs
Step 5: Annotate The user can then create new annotations by drawing a ROI with one of several drawing tools (rectangle, ellipse, freehand, etc.)
Step 6: Search within 
WSI

The user can then search for similar patches within the same WSI. When a ROI is selected, the system retrieves similar 
patches from the same image at the same scale. The user can click on the results to navigate to the relevant section of the WSI 
for further inspection

Step 7: Retrieval interface The user can also decide to click on a link to open the retrieval interface, allowing to perform a search of similar patches 
contained in other images. Two datasets are available in the current prototype (see section “datasets”)

Step 8: PubMed central The user can search for similar patches contained in scientific articles and navigate to those articles by following a link
Step 9: ContextVision AB The user can search for similar patches contained in WSIs of the same dataset and navigate to the retrieved patch in the viewer
ROIs: Regions of Interest, WSIs: Whole slide images, AB: Aktiebolag
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and the quantitative evaluation (targeting the retrieval 
performance itself, i.e., how good the system is to retrieve 
relevant images from the database).

Datasets
The main dataset used is a proprietary database of ContextVision 
AB (CVDB), including 112 WSIs of the prostate that were 
uploaded to the viewer with ROIs of healthy tissue (manually 
annotated by two pathologists) and Gleason patterns graded 
from three to five according to the Gleason grading system.[31,32] 
This dataset highlights the capability of the retrieval system 
to manage proprietary datasets (such as the ones owned by 
research groups or clinical pathology departments). Since 
some of the annotations were in disagreement at the moment 
of writing the manuscript, we did not evaluate our system at 
the Gleason level but just at the healthy tissue versus tissue 
containing an annotated Gleason pattern. One of the goals was 
to evaluate the ability of the system to retrieve similar patterns 
in the WSI database given a query. Such patterns can arise at 
different magnification levels, for example, a mitotic cell is 
better observed at ×40 magnification, whereas a Gland pattern 
can be seen in any magnification from ×5 to ×10 and cell 
characteristics are barely visible at such low magnifications. 
This poses an important computational limitation because if 
the user is interested in doing an exhaustive search of all the 
patterns at a high magnification, millions of patches must 
be extracted. In our experiments, we limited the extraction 
to an upper bound of 2000 patches per WSI for all the 
magnifications, extracting patches from the annotated areas 
when available. Patches at distinct levels of magnification were 
extracted from the pyramidal content of the WSI to account 
for the scale‑specific nature of some of the patterns. Besides 
this, state-of-the-art DL networks applied in histopathology 
have shown that learning the scale of a given histopathology 
image patch is feasible and that including patches from 
multiple scales improves the performance of classification 
tasks.[33,34] Using the openslide library, ×5, ×10, ×20, and × 40 
magnification patches were extracted from manually annotated 
ROIs [Table 3 and Figure 13]. For each of the patches, both 
handcrafted Color and Edge Directivity Descriptor (CEDD)[35] 
and DL features were extracted.

The second dataset used for the validation is a subset of images 
from the PubMed Central dataset of biomedical open access 
literature. Images of the dataset were automatically classified 
as “light microscopy” images.[29] This second dataset has very 
different characteristics, as it is not composed of WSIs (with 
patches extracted at various magnification levels), but rather of 

Figure 10: Keyword input for text search in the retrieval interface

Figure 11: Visualization of a retrieved image with its associated caption

Figure 12: Whole slide image upload and processing pipeline

can be extracted. This is done through a call to the 
ParaDISE indexer that supports several built‑in 
handcrafted unsupervised descriptors (e.g., Colour and 
Edge Directivity Descriptor, Fuzzy Colour and Texture 
Histogram, Bag of Visual Words). In our system, DL 
features generated by several deep architectures are 
extracted as well, using the Keras (http://keras.io, as 
of October 25, 2018) DL framework and several patch 
magnifications to enforce that the network learns features 
at several levels of magnification

3. The user  interface is  updated with  the new 
dataset/magnification levels.

Experimental evaluation
This section presents the datasets currently available in the 
prototype, as well as qualitative and quantitative evaluations 
of the system. They were performed through a user test 
with pathologists and measuring the retrieval performance. 
Evaluating a content‑based retrieval system consists of the 
following two main parts: the qualitative evaluation (targeting 
interface usability, user experience, and speed of the system) 
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figures extracted from articles contained in a variety of medical 
journals. The data has the added benefit of including a caption 
for each figure, enabling text‑based search. It includes around 
240,000 images. This dataset highlights the capability of the 
retrieval system to manage publicly available collections of 
data, characterized by extremely high variability in scale and 
color.

Deep learning model and features indexing
For leveraging the discriminative power of DL models in our 
system, we trained a state-of-the-art architecture, the DenseNet 
model[36] that has a dense connectivity pattern among its layers. 
DenseNet introduces direct connections between any two 
subsequent layers with the same feature map size. The main 
advantage of DenseNet over other very deep architectures is 
that it reuses information at multiple levels without drastically 
increasing the number of parameters in the model, particularly 
with the inclusion of bottleneck and compression layers. The 
bottleneck layer applies a 1 × 1 convolution just before each 
3 × 3 convolution to reduce the number of input feature maps. 
The compression layer uses a fraction of the feature maps in 
each transition layer. The details of the DenseNet architecture 
trained are:
●	 DenseNet-BC 121: We chose the 121-layer variation of 

DenseNet with seven million parameters and performed 
experiments fine‑tuning all the layers from pre‑trained 
ImageNet weights

●	 The network was optimized to minimize the binary 
cross-entropy (healthy vs. cancer patches) using the 

Adam method with initial learning rates explored 
logarithmically between 0.01 and 10 − 7. The best learning 
rate was found to be 0.001

●	 We implemented the architecture using the Keras DL 
framework with the TensorFlow backend. The training 
was set to five epochs; nevertheless, an early convergence 
after two to three epochs was observed

●	 The training of the models took from 2–3 h using a Nvidia 
Titan Xp Graphics Processing Unit

●	 The dataset used for learning the model was the CVDB. 
We trained with 70% of the training patches and validated 
with the remaining 30%. The retrieval performance is then 
computed using the test data. All the patches from a single 
WSI are kept in the same partition (training/validation/test) 
to avoid bias.

Once the network is trained, an auxiliary layer shown in 
Figure 14 is added, to account for the fact that the retrieval 
system computes similarities based on feature vectors.  It is 
thus necessary to extract feature vectors instead of having a 
probability of cancer/no cancer as output. The auxiliary layer is 
a dense layer which extracts 1000-dimensional feature vectors. 
After the feature vectors of all the patches are extracted, an 
index is built for each magnification level and then included 
in the ParaDISE retrieval engine.

Retrieval performance
For assessing the retrieval performance of our system, the 
following standard evaluation metrics were selected: mean 

Figure 13: Patches from the CVDB dataset at whole slide image levels zero, one, two, and three (×40, ×20, ×10 and × 5). Top row: Patches from 
healthy regions of interest; bottom row: Patches from regions of interest with Gleason patterns greater or equal to three

Table 3: Number of patches per magnification used in each partition

Partition/magnification ×5 ×10 ×20 ×40
Train 1925H-1205G 3730H-8300G 15644H-23985G 20700H-7425G
Test 825H-517G 1599H-3557G 6705H-10280G 8872H-3182G
Total 2750H-1722G 5329H-11857G 22349H-34264G 29572H-10607G
H stands for patches extracted from healthy ROIs and G for patches with some Gleason grades. In total, our dataset consists of 118,450 patches: 82,913 for 
training/validation and 35,537 for testing. ROIs: Regions of interest
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average precision (MAP), geometric MAP, precision after 
ten patches retrieved (P10), and precision after 30 patches 
retrieved (P30). Precision-recall graphs also show the 
performance in a graphical way.

We report these performance metrics that are common 
measures in the assessment of retrieval systems, also for 
image retrieval, and that assess different aspects of the system. 
This evaluation purely analyses the algorithm performance 
in a standard way. The user tests described below perform a 
qualitative evaluation of the user interface that also includes 
the retrieval quality.

As shown in Figure 15, the precision-recall graphs for both 
DL and CEDD features are compared. As shown in other 
articles,[7] the deep learning-based representations outperform 
handcrafted features such as CEDD in digital pathology tasks.

Instead of computing the performance on a WSI basis, the 
reported measures are at a patch level, as there are several 
annotated areas in a WSI, which makes it hard to assign a single 
label to compare relevance with another WSI in the database. The 
number of patches evaluated was not exhaustive as this would 
result in a massive number of 35,539 × 82,925 = 2,947,071,575 
entries (~40GB). We uniformly sampled 10% of the training 
patches and 50% of the testing patches to have an estimation of 
the quantitative performance of our system, i.e., 8292 training 
patches and 17,769 testing patches. Even with this small 
sample, the computation of the ranking matrix took ~18 h, since 
computing the histogram intersection for such a large number of 
samples incurs in a high computational cost. The performance 
measures are shown in Table 4.

An interesting measure is P@10 (0.2507) that can easily 
be interpreted: On average, 2.5 retrieved patches in the first 
ten retrieved patches are relevant or in this case of the same 
Gleason pattern. Sometimes also similar patterns and not only 
the same can be relevant in the differential diagnosis, so the 
chosen relevance criterion of considering only the exact same 
Gleason pattern is very strict. The other measures also show 
that the general performance of the system is good.

User tests
The interface of the system was evaluated qualitatively by two 
senior pathologists (P1 and P2) who interacted with the system 
through a series of five tasks:
1. Open the WSI number 1, mark a gland region and search 

for similar results in the WSI database.
P1: Pathologist 1 remarked the ease of use of the interface 

but that the results can be improved, suggesting that 
training with more powerful features in larger datasets 
should be performed.

Figure 14: Schema of the deep learning model training and the subsequent feature extraction to index the database

Table 4: Performance measures computed with trec_eval 
software for the deep learning based features

Performance measure Value
MAP 0.2573
GM‑MAP 0.2572
Rprec 0.2331
bpref 0.4889
P@10 0.2507
P@15 0.2312
MAP: Mean average precision, GM‑MAP: Geometric mean average precision
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P2: Pathologist 2 pointed out that the results are not all 
relevant – some results are benign for malignant 
queries. Despite this, he remarked the large collection 
of relevant patches and that results take you to directly 
to the WSI image to which it belongs. He said that the 
results quality needs to be improved, possibly through 
a larger data set with annotated areas.

2. Open a WSI, mark an area of inflammation, search in the 
PubMed Central database.
P1: Pathologist 1 pointed out the ease of use of the 

interface and that the PubMed Central images 
included results from monkeys and rats, which are 
not of interest for clinical use when compared to 
humans. This aspect was improved subsequently 
using the MeSH terms attached to the articles for 
filtering out animal tissue.

P2: Pathologist 2 said that the articles found were not all 
relevant to the prostate cases he searched with. He 
liked the easiness for starting the query and opening 
the articles. He said that the retrieved articles could 
be better focused.

3. Open a WSI, mark a Gleason 4 cribriform area and search 
for similar results in the WSI database.
P1: Pathologist 1 remarked that the results were 

sufficiently good and that it would be nice to have a 
split screen with “side-by-side” view of the images. 
The high incidence of good results may be related 
to the high incidence of Gleason 4 cribriform areas 

within the ContextVision database (i.e., otherwise 
very small), which allows good retrieval results.

P2: Pathologist 2 liked the fact that the more specific you 
are with your annotation, the more relevant images 
were found and that the interface is easy to use. He 
remarked again the need for including a larger number 
of relevant images in the database.

4. Open a WSI, mark a Gleason 4 cribriform area and search 
for similar results in the PubMed Central database.
P1: Pathologist 1 pointed out that the quality of the results is 

not optimal for use in research or clinical practice, which 
suggests that more work needs to be done to extract 
and filter valuable information in the PubMed Central 
database (which was done after the end of the user tests 
leading to an improvement in retrieved results).

P2: Pathologist 2 mentioned that showing the caption of 
the article with the image would be useful. He liked 
the speed of the search and that the interface was 
easy to use. Finally, he commented on the relevance 
of the results and insisted to include a larger number 
of relevant articles.

5. Free Interaction with the system.
P1: Several points were mentioned:
 a.     The system should include a larger database, as 

it only included few WSIs at the time of the tests
 b.    The tool can be helpful in the daily job of general 

pathologists and residents
 c.    The speed of the system was considered good for 

Figure 15: Precision-Recall graph of the retrieval performance using visual features extracted with the DenseNet architecture (orange line) and the Color 
and Edge Directivity Descriptor features (blue line) in four magnification levels. The DenseNet features are systematically leading to slightly higher results
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research use but possibly slightly slow for clinical 
use

 d.    The system was considered useful for finding 
patterns in radical prostatectomie

 e.    The magnification at which the search was 
performed had an impact on the quality and the 
type of the results retrieved.

P2: The following was given as feedback:
 a.    The system is useful but needs more images to 

make it even more powerful
 b.    The most useful functionality is the ability to 

refine the search with relevance feedback and 
find images in the PubMed Central database

 c.    The principal improvement was considered to be 
a larger data set to have more relevant cases.

dIscussIon

This article describes the concept, the first implementation, 
and test of a web-based digital pathology retrieval system 
that provides an interactive visualization and the possibility 
to perform visual similarity retrieval in proprietary WSIs 
and publicly available datasets of the biomedical literature. 
The retrieval system is based on automatically extracted 
hand-crafted and DL-based visual features. The retrieval 
is possible with text, as content-based visual retrieval and 
a combination of the two. This approach allows to include 
hospital archives where no annotations exist, as well as image 
datasets with additional data such as text. Unlike most other 
pathology viewers, features generated with a convolutional 
neural network trained and fine‑tuned on pathology images are 
used for the integrated retrieval. The method uses manually 
annotated regions for training. However, once trained, the 
model can also be used on large nonannotated data sets, for 
which manual annotations can be too time-consuming and 
expensive (e.g., digital pathology repositories in hospital).

The system was tested on two strongly differing databases 
(in this paper, using a proprietary dataset of WSIs and the 
PubMed Central dataset). The platform was tested using 
prostate cancer biopsies, although it can easily be extended to 
other cellular and tissue samples. The use of proprietary datasets 
allows clinical departments and scientific research groups to 
develop their own resources to guide difficult diagnoses or train 
students. The use of publicly available datasets, such as the 
PubMed Central data allows pathologists to benefit from the 
increasing number of images in the biomedical literature that are 
available. The proposed retrieval system could be particularly 
helpful when dealing with rare patterns and it allows to save 
time in comparison to searching in books. 

A user test with two pathologists was performed to have 
feedback already in an early development stage by potential 
users of the platform. The overall impression of the interface 
was very positive, particularly the speed and the user-friendly 
interaction of the different functions in the platform were 
mentioned. Comments were made regarding the retrieval 

quality and the limited number of available images: the version 
of the system described here was already improved in terms 
of retrieval results and amount of indexed data, integrating 
the comments of both pathologists. Further fine‑tuning of the 
retrieval results was performed and should ease the integration 
into clinical workflows.

An online video demonstration of the platform is available 
at the following link: https://youtu.be/uwIezxabiaw 
(as of November 20, 2018).

conclusIons

Interactive systems equipped with AI‑based models may 
change the current work in histopathology. Thanks to the recent 
approval that digital histopathology can also be billed in the 
US, new systems for slide storage, analysis and retrieval can 
be used for diagnosis and not only for research. Image retrieval 
on histopathology data is a solution that can enhance the usage 
of AI resources according to the pathologists’ experience and 
requirements.

The developed retrieval prototype enables the viewing of WSIs 
and the search for images similar to manually defined ROIs in 
diverse data sources, including proprietary and public datasets. 
The presented results and user tests show that visual retrieval 
is possible, even with extremely large WSIs. The proposed 
solution aims to reduce the pathologists’ workload while 
increasing the reproducibility of their assessment on digitally 
scanned tissue slides. The technical implementation is based 
on the combination of open source solutions, thus helping the 
scientific community to test, develop improved similar systems 
for research and clinical practice. Further improvements to the 
system should be studied to introduce this tool into the clinical 
workflow and facilitate the diagnostic process.
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