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Motivation: Recent advances in DNA sequencing technologies have allowed
the detailed characterization of genomes in large cohorts of tumors, high-
lighting their extreme heterogeneity, with no two tumors sharing the same
complement of somatic mutations. Such heterogeneity hinders our ability
to identify somatic mutations important for the disease, including mutations
that determine clinically relevant phenotypes (e.g., cancer subtypes). Several
tools have been developed to identify somatic mutations related to cancer
phenotypes. However, such tools identify correlations between somatic mu-
tations and cancer phenotypes, with no guarantee of highlighting causal re-
lations.
Results: This thesis is centered around ALLSTAR, a novel tool I developed
as a result of a joint collaboration between the Veneto Institute of Oncology
and the Department of Information Engineering at the University of Padova.
The tool is able to infer reliable causal relations between combinations of so-
matic mutations and cancer phenotypes. ALLSTAR ranks causal rules based
on the highest impact in terms of average effect on the phenotype. Since
proving that the underlying computational problem is NP-hard, I developed
a branch-and-bound approach, employing protein-protein interaction net-
works and novel bounds for pruning the search space, while properly cor-
recting for multiple hypothesis testing. The extensive experimental evalua-
tion on synthetic data shows that ALLSTAR is able to identify reliable causal
relations in large cancer cohorts. Moreover, the reliable causal rules identi-
fied in cancer data show that my approach is able to retrieve several somatic
mutations known to be relevant for cancer phenotypes, as well as novel bio-
logically meaningful relations.
Availability and Implementation: Code, data, and scripts to reproduce the
experiments are available at https://github.com/VandinLab/ALLSTAR.





v

Acknowledgements
Even if it comes first in the order of the thesis, this chapter is always the
last one person wants to write, because it is the hardest of all. In my case,
it is no exception. It is the hardest piece to write because it represents the
awareness that a significant period of your life has come to an end, and you
feel responsible to give credit to every single person that made it so unique.
I will try not to make it a boring list, more like a short story which can fit
everyone in. Well, let’s jump right into it.

After my Master’s graduation, I honestly was not into pursuing a research
career. I looked for industry jobs, and landed a position in a biomedical com-
pany, based in Padova, but with lots of international commercial contacts.
Practically, my role was more customer-related than research-oriented. I had
wonderful colleagues and I often had the chance to travel, but I felt that there
was no learning curve. I wanted something more suited for my thirst for
knowledge, and I must thank my parents Cinzia and Italo, who made me
realize this. They did more: they also sponsored an additional course to
strengthen my data analysis skills in omics data. I enjoyed it, and obviously
wanted to apply my new expertise. For this reason, I preliminarily scouted
research positions in industry, but the ones I liked the most required a Ph.D.:
so the idea of starting this journey, after having been far from the academic
world for a couple of years, began to pervade my mind.
It was only during the COVID-19 pandemic that I put on all my efforts to
find a doctoral program that could tick all my boxes. Despite the tragedy
that was unfolding upon each one of us, I tried to get the most out of it, and
managed to obtain a Ph.D. position at the Veneto Institute of Oncology, in
collaboration with the Department of Oncology (DiSCOG) and Information
Engineering (DEI) at the University of Padova. And I would like to express
my gratitude to my brother Eugenio, that, among all things, halped me get
through the isolation period with game nights, chats, laughs, and fights.

I am extremely grateful to Prof. Paola Zanovello, Prof. Stefano Indrac-
colo, and Prof. Giuseppe Opocher, who had the vision to trust an engineer
for this new position, despite them being oriented to biomedical research.
And of course my biggest thank goes to Prof. Fabio Vandin, who welcomed
me into his research group, mentored me during the development of the ALL-
STAR project with his intuition, and teased me in the right way to push me
beyond my limits. He invited me to stimulating journal clubs with brilliant
people: Leonardo, Andrea, Davide, Diego, they are all able to raise the bar,
when it comes to scientific discussion; I especially grew a stronger bond with
Dario Simionato (co-author of ALLSTAR, fellow pro basketball player) and
Ilie Sarpe (founder of the BBQ competition), with both of whom I shared
awesome moments during, and, especially, after office hours.

Talking about office, during this Ph.D., I had a truly multi-disciplinary ex-
perience by being given a seat also at the core of the genetic data production
lab of the Veneto Institute of Oncology. At the Hereditary Tumor facility, I
met Francesca, Silvia, Claudia, Veronica, and Fly, who tried to make me feel
at home despite our backgrounds were apparently divided by an incurable



vi

rift. And since I got a stable research position at the Institute, I can learn more
out of this weird, but somehow successful, dynamic.

Since I consider myself a social animal, where would I be without my
friends? I managed to surround myself with a selected, stimulating and di-
verse group of people, each one of whom has been a source of inspiration and
support. I will not name them one by one, but I am sure they know which
collective they fit in. I thank the Canederli for the drinks at Gottino, the Hid-
den Embers for the sleepless nights, the Trapattoni for the couch sessions,
and my teammates for the joys and tears (just like a PhD).

Last but not least, words cannot express my gratitude to Laura, who has
had multiple roles throughout this journey. Co-author, flatmate, number 1
fan, she also happens to be my girlfriend, and she is very good at it. I won’t
say she is perfect, because she did not invite me as collaborator to her pub-
lished paper on Nature, but she is special. We share an unsatisfiable thirst
for knowledge, and we both put all we have on the table when it comes to
our passions. She managed to apply this same attitude troughout my doc-
toral path as well, supporting me with curiosity and critical mind. I could
not have asked for more.

In these past three years, I traveled, shared meals and thoughts with peo-
ple from every continent, presented my research in front of hundreds of lis-
teners, won an award, published a few papers, and even got elected as stu-
dent representative. Luckily, I see this thesis not as a landing point, but as
a trampoline. There will be more to come: paraphrasing an old saying, my
most beautiful goal is the next one.
For the moment, I hope you enjoy this piece of writing, as much as I had fun
developing ALLSTAR with Dario, Federica, and Fabio.



vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Preliminaries 5
2.1 Causal Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Observational Data and Causal Effect . . . . . . . . . . . . . . 6
2.3 Reliable Causal Rules . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Algorithm and Methodology 9
3.1 Translation of the Causal Framework . . . . . . . . . . . . . . . 9
3.2 The ALLSTAR’s Manifesto and Implementation . . . . . . . . . 11

3.2.1 Family-Wise Error Rate and Confidence Level α . . . . 14
3.2.2 A Priori Knowledge: the Protein-Protein Interaction Net-

work & Graph G . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 The Clean-up Threshold t . . . . . . . . . . . . . . . . . 15
3.2.4 ALLSTAR’s Methodological Theorem . . . . . . . . . . 16

3.3 A Step Further: an Improved Bound . . . . . . . . . . . . . . . 16

4 Literature Review 19

5 Synthetic Experiments and Algorithm Evaluation 21
5.1 Comparison with Correlational Approaches . . . . . . . . . . . 22
5.2 Impact of Multiple Hypothesis Testing (MHT) Correction . . . 24
5.3 Perks of Using an Interaction Graph G . . . . . . . . . . . . . . 25
5.4 Ability to Tackle Inter-Tumor Heterogeneity . . . . . . . . . . . 27
5.5 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.6 Computational Performances . . . . . . . . . . . . . . . . . . . 30

6 Biological Experimental Results 33
6.1 Cancer Data and Interaction Network . . . . . . . . . . . . . . 33
6.2 Real-World Cancer Datasets . . . . . . . . . . . . . . . . . . . . 33
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.3.1 The Role of CDH1 . . . . . . . . . . . . . . . . . . . . . 34
6.3.2 Cancer Promotion and Precocious Metastasization . . . 36
6.3.3 A Constant in Cancer: TP53 . . . . . . . . . . . . . . . . 36
6.3.4 The RB1-PHB partnership . . . . . . . . . . . . . . . . . 36
6.3.5 Potential Novel Targets: The Case of ERBB2 . . . . . . 36



viii

6.3.6 Long Genes and Mutation Frequency . . . . . . . . . . 37
6.3.7 Pathway Enrichment with DAVID . . . . . . . . . . . . 38

6.4 Stability on Real-World Data . . . . . . . . . . . . . . . . . . . . 38
6.5 Translation to Medical Practice . . . . . . . . . . . . . . . . . . 39

7 Conclusions 41

A Supplemental Methods 43
A.1 Computational Problem Definition . . . . . . . . . . . . . . . . 43
A.2 Proof of NP-Hardness for MaxCRD Problem . . . . . . . . . . . 43
A.3 ALLSTAR: Detailed Methodology . . . . . . . . . . . . . . . . . 45

A.3.1 Algorithm Description . . . . . . . . . . . . . . . . . . . 45
A.3.2 Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . 45

Bibliography 49



ix

List of Figures

1.1 From Piraino et al. (2019), a visual quantification of tumor het-
erogeneity, showing mutation rates per megabase across dif-
ferent cancer types. The black bar is the median mutation rate
of each cancer type. There is considerable variation in muta-
tion rates both within and between cancer types. BRCA, breast
adenocarcinoma; LUAD, lung adenocarcinoma; LUSC, lung
squamous cell carcinoma; UCEC, uterine corpus endometrial
carcinoma; GBM, glioblastoma multiforme; HNSC, head and
neck squamous cell carcinoma; COLO, colon and rectal carci-
noma; BLCA, bladder urothelial carcinoma; KIRC, kidney re-
nal clear cell carcinoma; OV, ovarian serous carcinoma; LAML,
acute myeloid leukemia. . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Graphical representation of a common misunderstanding: obe-
sity does not cause diabetes, since they are both caused by un-
healthy lifestyle and diet. . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Graphical representation of the translational causal framework,
applied to a cancer mutational settings. . . . . . . . . . . . . . 10

3.2 An illustration of ALLSTAR framework. From a dataset com-
prising a set of confounders Z, treatments X, and a target Y,
ALLSTAR uses a branch and bound approach to discover the
top-k rules σ∗1 , ..., σ∗k with the highest reliable causal effect. ALL-
STAR exploits a gene-gene interaction network G to focus on
biologically meaningful rules. . . . . . . . . . . . . . . . . . . 11

3.3 Tree-like explanation of how a Branch-and-Bound algorithm
works. The depth of the tree represents the parameter ℓ, which
is the maximum length of rules to be considered in the search
space. Each child node is the extension of the parent rule by
one feature, taken out of X; the numerical value of a node is
its score according to the objective function f (x). In this ex-
ample, f (x) is assumed subject to maximization to find the
optimal solution. This approach reduces the search space of
possible solutions by discarding the paths that are less likely
to produce an improvement to the best result yet found. The
dashed edges suggest the branches likely to lead to subopti-
mal solutions, thus pruned, while the yellow node represents
the optimal solution produced as output of the algorithm. The
algorithm tries to extend the length ℓ of the rule, while follow-
ing only promising branches and improving the solution score. 12



x

5.1 Ranking comparison of the top-10 rules with the highest effect
computed on a dataset of 100 samples with regards to three
different metrics (p-value, odds-ratio and reliable effect). Each
row corresponds to a rule and each column corresponds to
its ranking (with 1st scores being the highest) with regards to
p-value, odds-ratio and ALLSTAR reliable effect, respectively.
Color-scale representing ranking position on the right. . . . . 23

5.2 Comparison of the rankings in terms of reliable effect (ALL-
STAR output, x-axis) and p-value (CMH test output, y-axis)
for real-world data. Each dot corresponds to one of the top-
1000 rules ranked by reliable effect. . . . . . . . . . . . . . . . . 24

5.3 Mean planted reliable rule effect (a) and mean runtimes (b)
over multiple dataset sizes on 10 runs. In each plot, the dot-
ted lines represent ALLSTAR results passing a protein-protein
interaction G in input, and dash-dotted lines represent the ap-
proach with a fully connected graph (i.e., no prior knowledge). 26

5.4 Data generative Bayesian Network (a) and assumed graph (b)
of synthetic experiment in Section 5.4. In the second plot, clone
variables (i.e. those which definition depends on other vari-
ables) are shown with a dashed border, and variables that out-
put rules with a positive effect by ALLSTAR without cleaning
procedure are represented in grey. . . . . . . . . . . . . . . . . 28

5.5 Average effect returned by ALLSTAR (solid lines) and theoret-
ical value (dashed lines) for the 3 implanted rules of the last
syntetic experiment (see Sec. 5.4). Results have been averaged
on datasets with 1000 samples, and the variability in each run
results is negligible. . . . . . . . . . . . . . . . . . . . . . . . . 29

5.6 Average runtime comparison between ALLSTAR and a brute-
force algorithm on 10 synthetic datasets over different rule
lengths ℓ. Y-axis is logarithmically scaled, and variability across
runs with the same ℓ is negligible (and therefore not plotted). 31



1

Chapter 1

Introduction

In the last ten years, the advances in DNA sequencing technologies have al-
lowed to precisely depict the landscape of somatic alterations in large cohorts
of tumors for various cancer types. Projects such as The Cancer Genome
Atlas (TCGA) (Weinstein et al., 2013) and the International Cancer Genome
Consortium (ICGC) (The International Cancer Genome Consortium, 2010)
provide valuable resources to identify somatic alterations directly related to
tumor development and evolution (The ICGC/TCGA Pan-Cancer Analysis
of Whole Genomes Consortium, 2020). The amount of available data is in-
creasing year after year, with the clear intent of promoting data analysis to
sustain progress in the field of computational oncology.

Tumor Heterogeneity

The explosion of available data is, in fact, necessary to allow the observa-
tion of the outstanding variability of cancer. It is clearly understandable that
intrinsic differences between various cancer types exist, because of the par-
ticular biological processes associated to the site of development. For this
reason, cancer is well-known as an heterogeneous disease.
However, an additional peculiarity is the presence of variability also among
same-type cancers and across different patients. In fact, the study of the al-
teration landscape in large cohorts has shown that cancer is characterized by
various layers of heterogeneity. The term intra-tumor heterogeneity refers to
the existence of many cancer cell clones within a single tumor mass, whereas
inter-tumor heterogeneity describes the occurrence of distinct genetic alter-
ations in metastatic tumors from a single patient. There is growing evidence
showing that mutational subclones, within the same tumor, present individ-
ual characteristics, suggesting that tumor sub-classification based on hetero-
geneity tout-court is not a straightforward task.
Thus, there is a strong necessity for a deeper investigation to improve patient
stratification and consequent response to therapy.

Correlation is not Causation

A number of computational tools have been designed to try to identify the
alterations that drive the insurgence and development of tumours while tack-
ling inter-tumor heterogeneity (Cortés-Ciriano et al., 2022). These tools are
based on the detection of various types of signals (Cibulskis et al., 2013;
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FIGURE 1.1: From Piraino et al. (2019), a visual quantification
of tumor heterogeneity, showing mutation rates per megabase
across different cancer types. The black bar is the median muta-
tion rate of each cancer type. There is considerable variation in
mutation rates both within and between cancer types. BRCA,
breast adenocarcinoma; LUAD, lung adenocarcinoma; LUSC,
lung squamous cell carcinoma; UCEC, uterine corpus endome-
trial carcinoma; GBM, glioblastoma multiforme; HNSC, head
and neck squamous cell carcinoma; COLO, colon and rectal car-
cinoma; BLCA, bladder urothelial carcinoma; KIRC, kidney re-
nal clear cell carcinoma; OV, ovarian serous carcinoma; LAML,

acute myeloid leukemia.
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Vandin, Upfal, and Raphael, 2012; Mularoni et al., 2016; Arnedo-Pac et al.,
2019) and the integration of different prior and/or clinical information (Cowen
et al., 2017; Reyna et al., 2020; Sarto Basso, Hochbaum, and Vandin, 2019), but
a common feature of these tools is that they detect alterations that are corre-
lated with cancer phenotypes. That is, they identify alterations, or groups of
alterations, that are significantly enriched in a group of patients or signifi-
cantly associated with a (clinical) phenotype.

While the identification of alterations correlated with cancer phenotypes
provides interesting insights into cancer initiation and progression, it does
not guarantee that causal relations between somatic mutations and cancer
are reported. In fact, correlation is not causation. The co-occurrence of two
events can be an indicator of some sort of relationship between them, but it
definitely cannot imply a consequential dependency of one another. How-
ever, it is very easy to fall into the trap, because the correlation is undeniably
strong, or simply because it feels logical.
For example, the correlation value between obesity and Type-2 diabetes is
high, therefore one could conclude that being obese causes the pathology.
Nevertheless, it is more likely that both conditions are caused by common
factors, such as sedentary lifestyle, or an unhealthy diet. A graphical rep-
resentation of the most-likely relationship between these variables can be
found in Figure 1.2.
Although researchers are usually very careful when stating their correlation-
based results do not suggest a causal relationship, a superficial interpretation
or report to a common public, as it usually happens with medical findings
and newspapers, may lead to large-scale misunderstandings. A certain food
can quickly become anti-cancer if its consumers tend not to develop the dis-
ease. Analogously, coming back to the main topic of this thesis, a gene or
alteration can be labeled as leading causes of a certain cancer type, if their
correlation is strong enough. Hence it comes the necessity to define causality
and a solid framework to investigate it.
While experimental and clinical validation is a necessary step to demonstrate
the significance of alterations, tools reporting causal relations with guaran-
tees on the quality of their findings would greatly reduce the resources needed
to identify relevant alterations in follow-up experimental and clinical studies.

Obesity Diabetes

Diet

?

FIGURE 1.2: Graphical representation of a common misunder-
standing: obesity does not cause diabetes, since they are both

caused by unhealthy lifestyle and diet.
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ALLSTAR’s Contributions

This thesis describes ALLSTAR, a novel tool to identify reliable causal rela-
tions between somatic mutations and cancer phenotypes. ALLSTAR identi-
fies causal relations in the form of rules highlighting combinations of muta-
tions with the highest average effect on the phenotype. In this regard, its
main contributions are fourfold and they will be extensively described in
Chapters 3, 5 and 6.
Firstly, it will be proven the underlying computational problem is NP-hard.
Secondly, the necessity to properly correct for multiple hypothesis testing
when identifying reliable causal rules will be highlighted.
Thirdly, ALLSTAR itself will be characterized as an effective branch-and-
bound algorithm to identify the k rules with the highest reliable average ef-
fect on the phenotype, with guarantees on the family-wise error rate (FWER)
of the output. ALLSTAR identifies rules where genes are connected in a
large interaction graph provided in input, and employs an iterative proce-
dure leading to the identification of diverse rules, which highlight different
causal relations potentially linked to cancer heterogeneity.
Fourthly, an extensive evaluation of ALLSTAR on both synthetic data and
real-world cancer data will be depicted. The results show that ALLSTAR is
effective in identifying causal rules associated with the phenotype and that it
reports well-supported as well as potentially novel causal relations between
somatic mutations and cancer phenotypes.
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Chapter 2

Preliminaries

The previous chapter had the objective to introduce and motivate the neces-
sity to develop a causal tool in the field of computational oncology. This
chapter aims to provide the reader with the necessary background to under-
stand the theoretical framework of ALLSTAR.

This thesis presents an algorithm based on a solid mathematical back-
ground. While the notation could be heavy to read, this chapter provides
the preliminary knowledge that is necessary to comprehend the pillars of
causality. Whereas possible, I will try to break down each notation into sim-
ple and intuitive concepts to bridge the gap between theory and practical im-
plementation. Section 2.1 introduces the state-of-the-art definition of causal
rules, Section 2.2 their application to observational datasets, while Section 2.3
describes the improvement given by the introduction of the reliable causal
framework, which has been adopted from Budhathoki, Boley, and Vreeken
(2021), as a starting point for this thesis.

2.1 Causal Rules

Let D be a dataset of observations for two sets of variables X = {X1, ..., Xn}
and Z = {Z1, ..., Zm}, and for a target variable Y. X is the set of features of
interest, for which causal relations with respect to the target variable Y need
to be identified, while Z is the set of confounder variables. In this thesis the
focus is on rules σ = π1 ∧ π2 ∧ ... ∧ πℓ, defined as conjunctions of proposi-
tions πi on the set of variables X (e.g. π1 ≡ X3 = 1, π2 ≡ X5 = 1, and
σ = π1 ∧ π2). In other words, combinations of features of interest X, each
taking a specific value, contribute to the definition of rules σ. Each rule refers
to specific chunks of observations in the dataset D, when propositions are
verified.
A rule σ is true (⊤) for an assignment x = {x1, ..., xn} if every proposition πi

in σ is verified under the assignment x, and it is false (⊥) otherwise.
The general objective of rules’ evaluation is to calculate (or, at least, esti-

mate) their effect on the target. Algorithms based on association, or general
dependence, between rule and target measure the effect by taking into ac-
count the observed conditional distribution,

P(Y|σ = ⊤) = ∑
σ(x)=⊤

P(Y|X = x). (2.1)
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In this thesis, and for ALLSTAR’s core, among various definitions of causal-
ity, I consider causality in the context of the do-calculus (Pearl, 2009) for the
identification of causal relations in non-parametric models.
Let do(Xi = xi) be the atomic intervention operator (Pearl, 2009), which
changes the value of the variable Xi to xi while keeping the values of all
the other variables fixed. Informally, I am interested in finding rules, poten-
tially including multiple variables of interest, which cause a specific change
in the value of the target Y when (atomic) interventions are performed. More
formally, a rule σ defines a so-called stochastic policy Qσ, i.e., a probabil-
ity distribution over the interventions (see Budhathoki, Boley, and Vreeken,
2021 for more details), which integrates do(X = x) operations. Thus, the
post-intervention distribution of Y under the stochastic policy Qσ is formally
defined as follows:

P(Y|do(Qσ)) = ∑
σ(x)=⊤

P(Y|do(X = x))Qσ(do(X = x)). (2.2)

As stated above, the main interest is the effect of a causal rule on Y taking
value y, which is defined as:

ey(σ) = p(Y = y|do(Qσ))− p(Y = y|do(Qσ̄)) (2.3)

where p represents the probability mass function and σ̄ the equality σ =⊥.
ey(σ) can take value in the interval [−1, 1], and, intuitively, a positive

value means that the rule σ has a positive causal influence on Y. A positive
effect is interpretable as as an increase in the probability that Y takes value y
when the rule σ is true, compared to any other configuration (i.e., where σ is
false).

2.2 Observational Data and Causal Effect

Randomized controlled trials (RCT) are the gold standard to determine whether
a variable of interest is causal with respect to a target. However, RCT are of-
ten rather expensive and/or impractical. Besides that, an increasing amount
of observational datasets are becoming more and more available over the
years, suggesting the necessity to develop algorithms able to exploit them.

In the previous section, I have already provided the definitions of ob-
served conditional distribution and post-interventional distributions. These
two entities tend to differ when evaluating observational datasets, due to the
presence of confounding variables Z, or simply confounders, that influence
both intervention variables X and the target Y. From observational data, it is
only possible to estimate observational distributions (i.e., p(Y|Xi = xi)) and
not interventional distributions (i.e., p(Y|do(Xi = xi))) as in RCT, but the two
are equivalent if spurious correlations between X and Y are removed.

To understand this concept, it is worth moving the discussion to a graph-
based domain. A graph, or network, is a set of objects (nodes) that are con-
nected together. The connections between the vertices are called edges. Edges
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can be directed or undirected. Directed edges are interpretable as causal de-
pendencies between two nodes.

Formally, a Bayesian network (BN) is defined as a tuple < G, p > where
G =< V, E > is a directed acyclic graph for which V = X ∪ Z ∪ {Y} and
there is an edge from Vi ∈ V to Vj ∈ V only if Vi is a cause of Vj w.r.t. Pearl’s
do-notation (Pearl, 2009), and p is a probability distribution function over V.
Any undirected path with an incoming edge towards X connecting Y and X
is a spurious path when assessing the causal influence of X on Y. As proved in
Budhathoki, Boley, and Vreeken (2021), spurious correlations between X and
Y are removed in BNs that satisfy the admissible input structure for causal rule
discovery, defined by the following constraints:

1. there are no directed edges from Y to any Xi ∈ X;

2. there are no outgoing edges from any Xi ∈ X to any Zj ∈ Z;

3. there are no edges between variables Xi ∈ X;

4. there are no edges between Xi ∈ X and any unobserved variable U.

In simpler terms, the target variable Y cannot be a cause of any Xi ∈ X,
none of the variables Xi ∈ X can be a cause of any Zj ∈ Zor any other Xj ∈ X,
and there cannot be unobserved variable U that directly cause Xi ∈ X.

When the constraints of the admissible input structure are satisfied, ob-
servational and interventional probabilities are equal by conditioning on Z,
that is

p(Y|Xi = xi, Z) = p(Y|do(Xi = xi), Z) (2.4)

and averaging the observational probabilities over Z gives:

p(Y|do(Xi = xi)) = ∑
z

p(Y|Xi = xi, Z = z)p(Z = z). (2.5)

In other words, if the admissible input assumptions are met, ey(σ) measures
the average treatment effect that the variables in σ exert on the event Y taking
value y without including any spurious (i.e. non-causal) statistical correla-
tion.

2.3 Reliable Causal Rules

The estimation of probabilities from data is challenging when sample sizes
are small, as the estimates obtained with naïve empirical estimators have
high variance. As a consequence, rules discovered by data using such naïve
empirical estimators have effects whose estimates are far from their true ef-
fects. To mitigate this phenomenon, which may lead to overfitting , Bud-
hathoki, Boley, and Vreeken (2021) proposes a reliable estimator for the effect
of causal rules.
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The naïve empirical estimator of p(Y = y|σ = ⊤) is defined as

p̂(Y = y|σ = ⊤) =
nY=y,σ=⊤

nσ=⊤
, (2.6)

where nσ=⊤ is the number of instances for which σ = ⊤ (i.e, σ is true), and
nY=y,σ=⊤ is the number of instances for which Y = y and σ = ⊤. Analo-
gously, the equality

p̂(Y = y|σ =⊥) =
nY=y,σ=⊥

nσ=⊥

stands for the cases when the rule is not verified.
In extreme cases (e.g. σ =⊥ for all instances) such quantities are ill-defined,
therefore the Laplace correction is applied to the estimated probability, which
becomes

p̂c(Y = y|σ = ⊤) =
nY=y,σ=⊤ + 1

nσ=⊤ + 2
. (2.7)

By considering all samples such that σ = ⊤ (and, respectively, σ =⊥), the
value y is a binomial distribution with success probability p(Y = y|σ = ⊤).
For a given confidence level α ∈ (0, 1), by defining β(α) as the 1− α/2 quan-
tile of a standard normal distribution, the confidence bound for Equation 2.7
proposed by Budhathoki, Boley, and Vreeken (2021) is then

[

p̂c(Y = y|σ = ⊤)− β(α)

2
√

nσ=⊤
, p̂c(Y = y|σ = ⊤) + β(α)

2
√

nσ=⊤

]

. (2.8)

Such bound allows to compute the effect of reliable causal rules, defined
as the lower bound of the effect of causal rules. Since the main objective
is always to retrieve a quantitative measurement of the causal relationship
between variables of interest and a target, the estimated reliable effect ê

y
rel(σ)

of a causal rule σ on Y taking value y with confidence α is defined as:

ê
y
rel(σ, α) = p̂c(Y = y|do(Qσ))− p̂c(Y = y|do(Qσ̄))−

β(α)

2
√

nσ=⊤
− β(α)

2
√

nσ=⊥
.

(2.9)

In the following, I will refer to β(α) as β and to ê
y
rel(σ, α) as êrel(σ) to improve

readability.
In the next chapter, I will make clear how the causal framework has been

improved and the algorithm ALLSTAR implemented.
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Chapter 3

Algorithm and Methodology

In the previous chapter, I introduced the state-of-the-art mathematical knowl-
edge that is necessary to understand the foundations of ALLSTAR. In this
chapter, I take a step further by introducing the core methodology and the
main contributions of the algorithm, as well as the translational field of appli-
cation. ALLSTAR is the first tool able to find the ranked top-k rules σ∗1 , ..., σ∗k
(e.g., combinations of alterations) with the highest positive reliable causal ef-
fect (ATE > 0) on a cancer phenotype Y with statistical guarantees on the
result. This project is able to bring multiple advances to the state-of-the-art,
which can be summarized as follows:

• Proof of NP-hardness for the general computational problem;

• Development of an efficient and scalable Branch-and-Bound algorithm;

• Statistical guarantees for Multiple Hypothesis Testing (MHT);

• Integration of aprioristic knowledge (protein-protein interaction net-
work) to make the algorithm biologically-informed;

• Extensive evaluation of the algorithm performances through synthetic
experiments (see Chapter 5);

• Application to Breast Cancer data and analysis of the result via onco-
logical experts (see Chapter 6).

3.1 Translation of the Causal Framework

As it already has been made clear in the introductory chapters, the develop-
ment of ALLSTAR has always had translational oncology as field of applica-
tion. Towards this aim, the causal framework described in Chapter 2 needed
both suitable data and meaningful biological questions, to exploit its full po-
tential.
For the former point, I decided to work with publicly available datasets, to
put the accent on the robustness of the algorithm and guarantee reproducibil-
ity of the results. Concerning the latter point, the causal framework offered
the possibility to extract rules (i.e., combinations of features) scoring the high-
est causal effect on a relevant target. This suggested the idea of mining causal
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combinations of somatic alterations with the highest effect on a specific can-
cer phenotype.
Variables X, Z, and Y are defined as follows:

• the set X of features includes somatic alterations (i.e., SNVs, loss of het-
erozygosity, hypermethylation) in a set of genes, and the observations
are provided by a binary matrix describing the status (present or not)
of such alterations in a cohort of patients;

• the set Z of confounders includes relevant germline mutations (in driver
genes, BRCA1 and BRCA2) and clinical information (i.e. race, age, sex,
history of previous malignancy, etc), and the observations are provided
by a corresponding matrix of relevant clinical variables;

• the target Y is a phenotype of interest, such as histological or molecular
marker-derived cancer subtypes.

Recalling Figure 1.2, Figure 3.1 describes the translational causal framework,
focused on retrieving

Somatic Alterations Phenotypic Subtype

Clinical Variables

?

FIGURE 3.1: Graphical representation of the translational
causal framework, applied to a cancer mutational settings.

Such a setting needs also a translation of the constraints required by an
admissible input structure for causal rule discovery. They now recite as fol-
lows:

1. the target subtype variable Y does not cause somatic alterations;

2. there is no somatic alteration that is a cause of any clinical variable iden-
tified as confounder;

3. there are no causal relations between somatic alterations;

4. there are no causal relations between somatic alterations and relevant
unobserved variables.

Assumptions 1, 2, and 4 are satisfied by a proper choice of target variable Y,
of confounders Z, and the features X to include in the study. Assumption 3
is instead supported by the fact that somatic alterations arise as independent
observations in the genome (even in normal cells), even if specific somatic
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FIGURE 3.2: An illustration of ALLSTAR framework. From a
dataset comprising a set of confounders Z, treatments X, and a
target Y, ALLSTAR uses a branch and bound approach to dis-
cover the top-k rules σ∗1 , ..., σ∗k with the highest reliable causal
effect. ALLSTAR exploits a gene-gene interaction network G to

focus on biologically meaningful rules.

alterations may modify the overall distribution of alterations in the genome
(e.g., due to their impact on processes involved in mutagenesis). In fact, ac-
cording to current models of cancer as an accumulation of somatic mutations,
such mutations are happening randomly, under an increasing state of insta-
bility, and the disease develops only when a sufficient number of alterations
providing selective advantage has accumulated. In this sense, there is no
causality between the appearance of somatic alterations, since all alterations
appear as a result of a random process. Therefore, I believe that Assumption
3 is well justified. In such setup, each rule represents the observation of a
specific set of gene alterations that occur simultaneously, and the rule effect
is a measure of the influence of such pattern on having a specific cancer type.

3.2 The ALLSTAR’s Manifesto and Implementation

This section is meant to present the core of the algorithm ALLSTAR (reli-
able cAusaL ruLe discovery between Somatic muTations and cAnceR pheno-
types) for causal rule discovery with guarantees on its results. The underly-
ing problem of estimating the rule with highest causal effect is NP-hard even
if the probability distributions are known a priori. This means that there is no
known algorithm able to solve this problem in polynomial time, thus the so-
lution can only be retrieved in exponential time. The proof of NP-hardness,
formulated by Dario Simionato who is one of the contributors to this project,
is available in the Appendix A. As a consequence, it is necessary to optimize
the algorithm in order to reduce the complexity: for example, ALLSTAR ex-
ploits a gene-gene interaction network to focus on sets of functionally related
genes and prune the search space. The pseudocode of ALLSTAR is in Algo-
rithm 1.
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FIGURE 3.3: Tree-like explanation of how a Branch-and-Bound
algorithm works. The depth of the tree represents the param-
eter ℓ, which is the maximum length of rules to be considered
in the search space. Each child node is the extension of the par-
ent rule by one feature, taken out of X; the numerical value of
a node is its score according to the objective function f (x). In
this example, f (x) is assumed subject to maximization to find
the optimal solution. This approach reduces the search space
of possible solutions by discarding the paths that are less likely
to produce an improvement to the best result yet found. The
dashed edges suggest the branches likely to lead to suboptimal
solutions, thus pruned, while the yellow node represents the
optimal solution produced as output of the algorithm. The al-
gorithm tries to extend the length ℓ of the rule, while following

only promising branches and improving the solution score.

At its core, ALLSTAR (see Figure 3.2) employs a Branch-and-Bound ap-
proach to discover the rule with the highest causal effect, while limiting
to rules with at most ℓ alterations. Following the demonstration of NP-
hardness, the Branch-and-Bound was chosen as method to solve the opti-
mization problem to avoid the need to evaluate all the possible combination
of features (i.e., rules): its goal is to find the best candidate value that maxi-
mizes (or minimizes, depending on the problem) a real-valued function f (x),
called objective function, among a set of admissible solutions by recursively
splitting the search space into smaller spaces (branching) and keeping track
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of bounds on the maximum (or minimum) that it is trying to find (bound-
ing). These bounds are then exploited to prune the search space, eliminating
candidate solutions that it can prove will not contain an optimal solution. A
simplified graphical representation of this principle can be found in Figure
3.3.

Moreover, since in practice the general interest is in finding multiple and
diverse rules with positive reliable effect and with functionally related alter-
ations, ALLSTAR uses an iterative approach to identify at most k rules, where
k is a parameter provided by the user, and an interaction graph G to consider
only rules with functionally related alterations.

Specifically, ALLSTAR takes several inputs:

• a set X of alterations,

• a set Z of confounders,

• a value y of interest for the target variable Y,

• the maximum length ℓ of rules,

• a confidence level α,

• a graph G whose vertices are the alterations in X and whose edges rep-
resent some relation between alterations (e.g., an edge represents the
interaction between the proteins where the alterations are found),

• the maximum number k of rules to be reported in output,

Algorithm 1: ALLSTAR

Input: alterations X, confounders Z, value y of target Y, max. rule
length ℓ, confidence α, graph G = (X, E), integer k, clean-up
threshold t

Output: top-k reliable causal rules
1 N ← calculateRulesNumber(G, ℓ); αc ← α/N;
2 output← ∅; Q← empty FIFO queue;
3 for i← 1 to k do
4 êmax←−∞; σmax←∅;
5 for Xj ∈ X do Q.enqueue(”Xj = 1”);

6 while |Q| > 0 do
7 σ← Q.dequeue();
8 if upperBoundRelATE(σ,y,Z,αc) > êmax then
9 êσ ← computeRelATE(σ, y, Z, αc);

10 if êσ > êmax then êmax ← êσ; σmax ← σ;
11 for σ′ ∈expand(σ, G, ℓ) do Q.enqueue(σ′);

12 if êmax > 0 then output← output ∪ {σmax};
13 update(X,σmax,t);

14 return output;
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• a clean-up threshold t ∈ [0, 1] that controls the diversity of the rules
reported in output.

In output, ALLSTAR produces at most k rules containing up to ℓ alterations,
with the highest reliable effect and where each rule consists of alterations that
form a connected subgraph of G. In addition, each reported rule comprises
alterations that appear in a set of patients different from the alterations in
other reported rules, where the difference is controlled by the parameter t.

3.2.1 Family-Wise Error Rate and Confidence Level α

When two variables are tested for independence, they are usually considered
dependent if the p-value of the corresponding test is below a certain thresh-
old α. It is easy to see that such procedure guarantees that if the variables
are indeed independent, then the probability of a false discovery, that is, mis-
takenly rejecting their independence, is at most α. Instead, if a number N of
tests is performed, and the same threshold α is used for each of the N tests,
the expected number of false discoveries is increased up to αN. In Chapter
2, I pointed out the contribution of Budhathoki, Boley, and Vreeken (2021),
who introduced the reliable estimator ê

y
rel(σ), a biased estimator for ey(σ) with

lower variance. It accounts for statistical noise using a confidence interval
that contains the true rule effect with confidence 1− α, where α ∈ (0, 1) is
user-defined. However, such an estimator is correct for the effect estima-
tion of just one rule, but it may lead to false positives if multiple hypotheses
(i.e. multiple rules) are analyzed. In this thesis’ scenario, in which the aim
is discovering the top-k rules with the largest effect among a high number of
combinations, this approach is no longer applicable.

Rigorously, the Family-Wise Error Rate (FWER) is the probability of re-
turning in output at least one false positive (FP) when conducting multiple
hypothesis testing, and it can be defined as

FWER = P(FP ≥ 1) = 1− P(FP = 0). (3.1)

Therefore, by keeping FWER ≤ α it is possible to control the overall prob-
ability of returning false positives at tests’ family-level. There are various
ways to apply this, the one I chose for ALLSTAR is Bonferroni correction (Bon-
ferroni, 1936). Substantially, a corrected threshold αc = α/N is considered
for each hypothesis where N is the number of (potential) hypotheses tested.
A simple union bound shows that the resulting FWER is at most α.
Among all methods, Bonferroni correction is considered as one of the most
conservative ways to limit the FWER: in other words, the risk is to consid-
erably reduce the estimated causal effect, when a high number of rules is
evaluated. In a field like cancer biology, I felt the need to model ALLSTAR
in such a way for a very practical reason: by returning as output rules with
strong causal signal, the immediate advantage is to reduce the number of
downstream investigations to the very essential. In fact, as it will be dis-
cussed in Chapter 6, the results need to be evaluated by domain experts, in
order to be validated. ALLSTAR is able to point the finger towards potential
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interesting targets, but biological processes addressed by the rules in output,
should always be investigated further, possibly with in vitro experiments.

3.2.2 A Priori Knowledge: the Protein-Protein Interaction Net-

work & Graph G

One of the most effective ways to bridge the gap between computer sci-
ence and its implementation to biological scenarios is to inform the algorithm
about aprioristic knowledge, relevant to the application domain. Protein-
Protein interaction (PPI) networks play a crucial role in enhancing our un-
derstanding of biological processes and how various proteins/genes relate
to each other. By unveiling functional links, these networks reveal the intri-
cate molecular and cellular mechanisms that govern the health and disease
states of organisms. As a result, this information can be exploited to guide
the search for optimal results along functionally meaningful paths. In the
case of ALLSTAR, it can be optionally fed with a suitable PPI and gener-
ates an interaction graph G that is used to extend rules with ℓ > 1. Thus,
the Branch-and-Bound core of ALLSTAR can evaluate only combinations of
altered genes that represent a link in G. The immediate benefit of this ap-
proach consists in forcing the algorithm to produce domain-relevant results
to drive the post-analysis discussion into an appropriate track. An additional
silver lining of the PPI exploitation consists in the fact that the search space
is dramatically reduced in the first place, leading to significant reduction of
the waiting times to obtain the results.

3.2.3 The Clean-up Threshold t

As pointed out by Fisher, Pusztai, and Swanton (2013), the increasing evi-
dence that solid tumors may consist of subpopulations of cells with distinct
genomic alterations within the same tumor, a phenomenon known as intra-
tumor heterogeneity, has been ascertained by more and more experimental re-
sults over the years. This genetic complexity of malignant tumors is likely
to have profound implications for the characterization and understanding
of cancer itself, as well as biomarker discovery, especially in the era of per-
sonalized treatment. Consequently, there is emerging evidence suggesting a
relationship between intra-tumoral heterogeneity and clinical outcomes. To
tackle this problem and to identify a diverse and more informative set of
rules, the set X of alterations is updated after each rule is extracted. This is
done with function update(X,σmax,t) (line 13), hereby described. Such func-
tion removes from the set of alterations X the ones that either appear in the
rule σmax or are very similar to at least one alteration in σmax. The similarity is
defined according to the normalized city-block Manhattan distance, defined
for two vectors a and b in n dimensions as

dM (a, b) =
1

n

n

∑
i=1

|ai − bi| . (3.2)
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In particular, update(X,σmax,t) removes from X all alterations in σmax and
the ones with distance dM less than t from at least one alteration in σmax,
where the distance between the vectors describing the appearance of alter-
ations in patients is considered and t is a user-defined threshold.This func-
tion therefore allows to recover non-overlapping rules over the whole alter-
ations’ search space, focusing on a wide spectrum of potential genetic targets
causally related with the outcome of interest.

3.2.4 ALLSTAR’s Methodological Theorem

The following theorem proves that ALLSTAR produces in output a set of
rules with a rigorous bound on its FWER, where a false positive is defined as
a rule σ reported in output but with effect e(σ) ≤ 0. The proof is provided
below.

Theorem 1. ALLSTAR(X, Z, y, ℓ, α, G = (X, E), k, t) outputs a set of rules with
FWER ≤ α.

Proof. It is noticeable that each iteration of the for loop at line 6 considers
an increasingly small subset of X and therefore the total amount N of candi-
date causal rules that may be evaluated by ALLSTAR (i.e. the total number
of hypotheses tested in the worst scenario) is equal to the total number of
rules that can be evaluated on the first iteration of the loop. In particular, the
number of all the different rules of max length ℓ (i.e. N, line 1) is equivalent
to the number of distinct connected subgraphs in G of length at most ℓ since
ALLSTAR exploits G to expand a rule σ to a more specific σ′ ⊃ σ by adding
a proposition Xi = 1 only if Xi is not already present in σ and it is connected
to at least one treatment of σ.

It is proved in the next paragraph that, by setting αc = α/N (line 1),
ALLSTAR returns a false positive with probability at most α. It is supposed
that a false positive rule σFP (i.e. such that e(σFP) ≤ 0) is returned in output
by ALLSTAR. A necessary condition for this to happen is to add σFP to the
top-k rules found (line 12) which in turn happens only if its estimated effect
êσ (calculated in line 9) is greater than 0 (line 12). By construction of the
confidence intervals with confidence αc, a rule with e(σFP) ≤ 0 may have its
estimated effect êσ > 0 with probability at most αc. Since there are at most N
rules under study, in the worst case the probability of having at least a false
positive estimate is N × αc = α which implies that the algorithm does not
output any false positive with probability of at least 1− α.

3.3 A Step Further: an Improved Bound

While the parallel implementation of ALLSTAR employs the branch-and-
bound approach proposed in Budhathoki, Boley, and Vreeken (2021), an ad-
ditional contribution to this project is constituted by the development of an
improved (i.e., tighter) upper bound on the reliable causal effect of a rule.
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Such bound is best suited for single-core runs since it requires a data struc-
ture shared among processors. It relies on the key observation that one rule
σ′ is more specific of every rule in Ωp = {σ′ \ {∧πk}|∀πk ∈ σ′}.

Consider a rule σ = π1 ∧ ...∧πi and a more specific one σ′ = σ∧πj. Bud-
hathoki, Boley, and Vreeken (2021) defined the upper bound τ̃σ′(σ, z) to the
reliable effect estimate êrel(σ

′) of σ′ as a function of the number of instances
n (in the Z strata), the number n1 of instances with Y = y, and the number aσ

of instances for which σ holds and Y = y, as

τ̃σ′(σ, z) = max
a′σ∈{0,1,...,aσ}

a′σ + 1

a′σ + 2
− n1 − a′σ + 1

n− a′σ + 2
− β(α)

2
√

a′σ + 2
− β(α)

2
√

n− a′σ + 2
(3.3)

which upper bounds the effect of σ′ by exploiting the fact that aσ will
upper bound the number aσ′ of instances for which the σ′ holds and Y = y,
given that σ′ is more specific than σ. It is arguable that σ′ not only is more spe-
cific than σ, but also than every rule in the set Ωp = {σ′ \ {∧πk}|∀πk ∈ σ′}
of all possible rules chosen from σ′ removing the proposition πk. The pro-
posed estimator must hold for each rule in Ωp therefore I propose a tighter
optimistic estimator that considers amin = minσj∈Ωp

aσj
as

τ̄σ′(σ, z) = max
a′

Ωp
∈{0,1,...,amin}

a′Ωp
+ 1

a′
Ωp

+ 2
−

n1 − a′Ωp
+ 1

n− a′
Ωp

+ 2
− β(α)

2
√

a′
Ωp

+ 2
− β(α)

2
√

n− a′
Ωp

+ 2

(3.4)

Notice that if a rule σrem ∈ Ωp has been pruned by the breadth-first branch
and bound algorithm, then τ̄σ′(σ, z) = −∞ can be set since the condition in
line 8 does not hold for any such σ′, given that it is more specific than σrem.
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Chapter 4

Literature Review

After introducing the methodological perks of ALLSTAR, this chapter depicts
the state of the art to contextualise where the algorithm stands in the current
field of computational oncology.

Randomized Controlled Trials & Observational Studies

The optimal statistical setting to infer causal relationships between variables
is offered by randomized controlled trials (RCTs), as seen in Concato, Shah,
and Horwitz (2000) and Rosenbaum, Rosenbaum, and Briskman (2010). To
this extent, RCTs are considered the gold standard for causality in the biomed-
ical field. Their foundation consists in subdividing the population under
test into a treatment group, whose members are all given the cause (e.g., a
medicine) under test, and a control group, not receiving the cause and pro-
ducing natural effects. If the basic principles of RCTs are respected, such as
random assignment of the cause, and a suitable choice of the placebo for the
controls, the effect of the cause is expected to be precisely estimated, without
falling into correlation-bound spurious relationships (Cartwright, 2010).

In reality, RCTs are most of the time extremely expensive, ethically chal-
lenging, or, worse, unfeasible. For example, in the setting of this thesis as
it will be clarified in the methodological chapter, building an RCT with so-
matic alterations as causes to investigate, poses the challenge to plant muta-
tions into patients of the treatment group. On the other hand, the increas-
ing amount of observational data being collected provides the opportunity
to mine such data to identify possible interesting relations, to be confirmed
with follow-up experimental evaluation.

The Landmark for Causal Rules Mining

Mining association rules, or combinations, aims at discovering frequent pat-
terns from a dataset (Agrawal, Imieliński, and Swami, 1993; Kotsiantis and
Kanellopoulos, 2006). However, in recent years, a lot of attention has been de-
voted towards mining causal rules (Silverstein et al., 2000) from observational
data. Recently, Budhathoki, Boley, and Vreeken (2021) proposed a novel es-
timator of a rule’s effect, taking into account the uncertainty of the estimates
derived from data, and developed a branch and bound algorithm for the dis-
covery task. This thesis proposes a tool advancing their framework, which
is tailored for scenarios with low number of variables, by implementing a
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correction for controlling the FWER in a multiple hypothesis testing setting.
This is a fundamental feature of cancer studies given the high number and
typologies of alterations found in tumors.
Moreover, ALLSTAR comes with improved performances due to a novel and
tighter upper bound to the reliable effect of a rule, and due to the incorpo-
ration of prior knowledge in the form of an interaction graph. This feature
allows to reduce the search space while focusing on functionally related al-
terations.

State-of-the-Art Causal Tools & Multi-Omics

In the past ten years, given the theoretical advantages over correlational ap-
proaches, causality-based tools have started to rise, also in the field of com-
putational biology. As stated in Chapter 1, the constant upgrade of sequenc-
ing technologies and consequential increase of accessible omics data pushed
the development of tools and pipelines able to solve more and more com-
plex biological problems. Various causal tools are now publicly available,
but ALLSTAR differentiates from existing approaches due to the possibility
to mine causal combinations of alterations with respect to a target pheno-
type and to output their impact in terms of effect. For instance, ALLSTAR
focuses on estimating the impact of genomic alterations on a tumor subtype,
unlike bayesian approaches such as Zhang, Burdette, and Wang, 2014 that
learn a causal graph from The Cancer Genome Atlas (TCGA) mutation data
to identify genetic causes relevant to ovarian cancer, but without considering
their effect on a target variable. The final outcome is an interesting directed
graph, comprising and refining multiple relations between genes, but it fails
in specifying a genetic target for follow-up analyses.

Other causal tools, instead, such as Cifuentes-Bernal et al. (2022), lever-
age the increasing availability of single-cell RNAseq data and the estimates
of pseudo-time derived from such data to identify causal relations at the
transcriptomic level. The pseudo-time reconstruction is an in silico proce-
dure that places each cell on a time axis, producing a temporal-like order-
ing. Since temporal relationships are usually considered valid when identi-
fying causes and effects, these tools are thus included within the causality
realm, even if they draw conclusions from similarities at gene-level between
pseudo-temporally-ordered cells’ transcriptional counts.

A step towards the identification of causal relations between multi-omics
data and a target variable (e.g., phenotype) has been made by the tools Aris-
totle (Mansouri et al., 2022) and CauMu (Liu et al., 2022), both identifying
single features (i.e., alterations, or genes) linked to the phenotype. ALLSTAR
takes another step by providing an efficient approach to identify rules com-
prising multiple features, which is an important characteristic given the high
levels of heterogeneity found in cancer. Moreover, Aristotle focuses on the
significance of the relation by computing a corresponding p-value, rather
than returning their effect as done by ALLSTAR.
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Chapter 5

Synthetic Experiments and
Algorithm Evaluation

This Chapter is meant to assess ALLSTAR’s performance. Before applying the
algorithm on real data, it is good practice to build meaningful experiments
on synthetic data to motivate its perks and prove its claims on the robustness
of the output. The synthetic experiments can be summarized as follows:

1. comparison of ALLSTAR with standard correlational approaches1;

2. evaluation of the impact of the multiple hypothesis testing correction
employed by ALLSTAR;

3. effectiveness of using graph G to reduce the number of rules to evalu-
ate;

4. assessment of ALLSTAR’s ability to recover diverse rules, involving
multiple alterations, planted in a large, noisy dataset, and robustness
with regards to Assumption 3 violations (see Sec. 3.1) under suitable
settings of update threshold t;

5. confirmation of the stability of our algorithm on different combinations
of the user-defined parameters ℓ, G, and t, to highlight how increas-
ing the number of combinations decreases the recovered effect without
leading to any false discovery;

6. establishment of computational performances against a brute-force ap-
proach.

Every synthetic dataset resembles the structure of real cancer data, with
mutated genes as treatments X and a binary outcome Y. For simplicity,
Z = ∅ was set in these analyses. For each experiment, 10 datasets for ev-
ery tested sample size (25, 50, 75, 100, 250, 500, 1000, 5000, 10000, and 25000)
were randomly sampled. In each dataset, most alterations are drawn ran-
domly with probability 0.5 and independently of the outcome Y. In some
datasets, alterations with a causal relation to the target Y were planted; such
alterations constitute the rules of interest to assess ALLSTAR’s performance.
Their relationships with Y are described in the section related to each exper-
iment.

1It has been not possible to compare with Aristotle due to issues with its implementation,
available at https://github.com/MehrdadMansouri/Aristotle.



22 Chapter 5. Synthetic Experiments and Algorithm Evaluation

5.1 Comparison with Correlational Approaches

In the preliminary experiment, I compared ALLSTAR with standard correla-
tional approaches, to understand whether the results obtained are the same.
The main purpose does not consist in motivating the choice of causal meth-
ods over correlational ones, rather assessing a different output between the
approaches to support the novelty of ALLSTAR’s contributions. In particular,
I considered a dataset of 100 samples with one alteration and a target; I omit-
ted confounders since they would be a superflous addition for the sake of the
experiment. All possible permutations of the alteration’s distribution across
samples were generated, hence each permuted dataset referred to a differ-
ent rule comprising the alteration and the target (i.e., a uniquely supported
rule, since each permuted dataset is different in the alteration’s distribution).
Three metrics were then computed: i) the reliable effect by ALLSTAR, ii) the
p-value from the Fisher exact test, and iii) the odds ratio. More specifically,
in the two latter cases, the values were obtained by taking into consideration
the contingency table and by evaluating the distribution of σ (that for each
sample it is either ⊤ or ⊥) and the linked distribution of the event "Y = y",
associated to each rule as in Budhathoki, Boley, and Vreeken, 2021. The re-
sults were then sorted according to each computed value and the three rank-
ings compared. Figure 5.1 shows the rankings of the top-10 rules ranked
by highest reliable effect: the top rules obtained by ALLSTAR have a much
lower ranking as if they were ranked by p-value or odds ratio. For exam-
ple, 4 of the top-10 rules according to the reliable effect are not in the top-10
by p-value or by odds ratio, with one rule appearing in the 18th position of
the ranking by p-value. In general, while there is an overall concordance
in terms of Kendall-tau coefficient (Kendall, 1938) between the ranking by
reliable effect and the other measures (Kendall-tau coefficient 0.79 correla-
tion between the odds ratio and effects; Kendall-tau coefficient 0.9 between
p-values and effects), the reliable effect provides different top rules (which
are the most interesting ones for any practical purpose) than standard cor-
relation approaches. In fact, in a real-world scenario, downstream analyses
(such as in vitro confirmation experiments) are performed by oncologists and
biologists on a limited part of the results, ideally the highest scoring rules.
To simulate a situation like the one described, I took a step further and repli-
cated the same experiment in a real-data example that includes confounders.

It appears that findings in the synthetic setting are exacerbated in the real-
world scenario. A breast cancer-related dataset was chosen as reference, pre-
senting 622 alteration profiles, 7 confounders and a binary outcome2. ALL-
STAR and a python implementation of the Cochran-Mantel-Haenszel test
(CMH) were both run on the dataset, ranking reliable effects and p-values
for rules built on every combination of one confounder, two alterations and
the outcome. The scatter plot describing the two rankings’ comparison for

2A dataset was chosen among the ones that will be described in Chapter 6. Specifically, it
was selected the dataset with the 300 most frequent somatic mutations, the 300 most frequent
loss of heterozygosity profiles (LOHs), and the patterns of 22 frequently hypermethylated
genes, as X, and the Triple-Negative binary molecular classification, as target Y.



5.1. Comparison with Correlational Approaches 23

FIGURE 5.1: Ranking comparison of the top-10 rules with the
highest effect computed on a dataset of 100 samples with re-
gards to three different metrics (p-value, odds-ratio and reli-
able effect). Each row corresponds to a rule and each column
corresponds to its ranking (with 1st scores being the highest)
with regards to p-value, odds-ratio and ALLSTAR reliable ef-
fect, respectively. Color-scale representing ranking position on

the right.
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FIGURE 5.2: Comparison of the rankings in terms of reliable
effect (ALLSTAR output, x-axis) and p-value (CMH test output,
y-axis) for real-world data. Each dot corresponds to one of the

top-1000 rules ranked by reliable effect.

the first 1000 rules sorted by reliable effect, is shown in Fig. 5.2. It seems
clear that a considerable amount of rules ranked among the top-1000 in the
effect ranking, when assessed using the correlation-based method CMH, are
placed well beyond the 100000th position. Additionally, the p-value rank-
ings compressed to the bottom of the plot are actually all valued 1. CMH is
not able to differentiate all these rules, giving them a p-value of zero, which
hints at their possible significance, but fails at prioritizing the combinations
of genes that may be relevant to the target outcome.

5.2 Impact of Multiple Hypothesis Testing (MHT)

Correction

In this experiment, the impact of correcting for multiple hypothesis testing on
false positives was investigated. Only random alterations were considered in
each sample, hence no causal rule (i.e. any rule with a positive effect) with
respect to the outcome was planted. In this setup, three different estimates of
the (reliable) effect were taken into account: the version based on the naïve
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estimate of probabilities, the reliable approach proposed in Budhathoki, Bo-
ley, and Vreeken (2021)3, and the one used by ALLSTARḞor the last two es-
timates, which are considering a confidence level, the value α = 0.05 was
considered. The estimation of probabilities from data is challenging when
sample sizes are small, as the estimates obtained with naïve empirical es-
timators have high variance. As a consequence, rules discovered by data
using such naïve empirical estimators have effects whose estimates are far
from their true effects. In particular, the naïve approach estimates the effect
(i.e., empirical probabilities estimated from data and without any correction)
as the difference

ê(σ) = p̂(Y = y|σ = ⊤)− p̂(Y = y|σ =⊥),

while the reliable approach proposed in Budhathoki, Boley, and Vreeken
(2021) considers êrel(σ) (i.e., adding confidence bounds) but without correct-
ing for multiple hypothesis testing, as it is done instead in ALLSTAR.

Both the naïve and reliable approach incorrectly return at least one rule
with a positive effect for every dataset (i.e., corresponding to a FWER of 1),
while ALLSTAR is the only one correctly returning zero false positives. These
results reinforce that the multiple hypothesis correction on ALLSTAR’s reli-
able effect is a crucial component to avoid false discoveries.

5.3 Perks of Using an Interaction Graph G

The second experiment assesses the effectiveness of using the interaction
graph G in ALLSTAR when identifying causal rules composed of multiple
alterations. A total of 22 alterations were used to sample multiple datasets. 7
of these alterations are part of a rule causally related to the target Y and con-
stitute a connected subgraph of G. ALLSTAR was run with various values of
the maximum rule length ℓ as inputs. As expected, the estimate of the effect
converges to the true effect for all values of ℓ, and the estimate obtained us-
ing the interaction graph G is significantly better than the one when no prior
knowledge is considered. Moreover, as additional benefit, the use of G dras-
tically reduces the runtime, due to a reduction in the number of candidate
rules.

Figure 5.3 shows the results obtained passing G in input (dotted line) and
the results obtained when no prior knowledge on gene interaction is con-
sidered (dash-dotted line), obtained by passing a fully connected graph in
input to ALLSTAR. In particular, both the effect estimation of the implanted
rule and the runtime were considered. For example, with 25000 samples and
ℓ = 7, the runtime using G is of few seconds, while almost 3 minutes are
required when no prior knowledge is considered. This shows that the inter-
action graph leads to significant improvements in terms of the estimate of the
true effect and of runtime.

3The code is available on the bitbucket repository at https://bitbucket.org/realKD/ does
not run properly, therefore I implemented an equivalent, but functioning version.
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(a)

(b)

FIGURE 5.3: Mean planted reliable rule effect (a) and mean run-
times (b) over multiple dataset sizes on 10 runs. In each plot,
the dotted lines represent ALLSTAR results passing a protein-
protein interaction G in input, and dash-dotted lines represent
the approach with a fully connected graph (i.e., no prior knowl-

edge).
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5.4 Ability to Tackle Inter-Tumor Heterogeneity

A key feature claimed by ALLSTAR is the power to tackle cancerous scenar-
ios characterized by high inter-tumor heterogeneity. To prove this feature, an
adequate experiment was set up to assess the ability of recovering planted
rules that cover a wide spectrum of diverse functional processes. As a plus,
this experiment suggests the robustness of the algorithm even when some ad-
missible input structure assumptions (see Sec. 3.1) are not satisfied. Datasets
were simulated with 3 planted rules (of 5 genes in total) and 100 random al-
terations. For each alteration in a planted rule, a correlated alteration was
generated with 97.5% of values identical to the planted alteration. This al-
lows to assess whether ALLSTAR correctly reports only the causal alterations
or returns an output contaminated by the correlated (but not causal) ones.

Both a variant of ALLSTAR (that ignores the Manhattan distance-based
updating procedure, see function update(X, σmax,t) in Algorithm 1), and
ALLSTAR itself with t = 0.05 were run. The top-3 rules in output of the two
analyses were then compared. ALLSTAR reports the planted rules and cor-
rectly disregards the rules comprising the correlated alterations. The variant
of ALLSTAR not using the Manhattan distance-based updating procedure,
instead, produces, among the top-3 rules, rules containing the correlated al-
terations. The immediate positive side of this result is the ability of the al-
gorithm to produce diversity within the output: in fact, most genetic alter-
ations that are related to the same biological mechanism tend to either have
the same mutational pattern or be characterized by mutual exclusivity. In
any of these two cases, the pairwise correlation is extremely high, ALLSTAR
is able to manage this peculiar situation.

Additionally, another way of seeing the failure to apply the update thresh-
old t is that ALLSTAR returns correlations instead of causal relations: this is
due to the fact that Assumption 3 for the admissible causal structure is not
satisfied. On the other hand, the Manhattan distance-based updating pro-
cedure allows to remove the spuriously-linked variables and to report only
causal relations. These results show that the use of the Manhattan distance-
based updating procedure is also important to focus on causal alterations
only.

In particular, Figure 5.4 shows the graph of the data generative Bayesian
Network (BN) associated with this experimental setup in (a) against the one
assumed by ALLSTAR in (b). The main difference between the two BNs is to
be found in the relationship between Xi, 1 ≤ i ≤ 5 and their clones Xi(clone).
In particular, Xi always blocks spurious correlation paths (more on this and
d-separation in Pearl, 2009) from Xi(clone) in 5.4(a) but not in 5.4(b), therefore
if we (incorrectly) assume the underlying graph to be as the latter, in order
to still have correct results we should be able to have some other heuristic
mechanism (i.e., the threshold-based cleaning procedure) that removes the
clones in order to exclude them from the analysis. Another difference be-
tween the two BNs in Figure 5.4 lies on the links between the external vari-
ables (Ei, 1 ≤ i ≤ 100) and Y. Such links imply some form of (possible) de-
pendence whose strength is defined by the probability distribution functions



28 Chapter 5. Synthetic Experiments and Algorithm Evaluation

X1 X3 X
5 X2 X4 E

1

Y

X2 X4 X
1 X3 X5 … E

100

X1 X3 X
5

X2 X4

E1

Y

X2 X4

X
1

X3

X5

… E100

a)

b)

FIGURE 5.4: Data generative Bayesian Network (a) and as-
sumed graph (b) of synthetic experiment in Section 5.4. In the
second plot, clone variables (i.e. those which definition de-
pends on other variables) are shown with a dashed border, and
variables that output rules with a positive effect by ALLSTAR

without cleaning procedure are represented in grey.

inferred by the observational dataset. ALLSTAR however, is able to confi-
dently ignore such spurious correlations due to the use of the reliable effect
estimator and its ability to deal with multiple hypotheses testing (see more
on Theorem 1 proof).

For reproducibility’s sake, the equations for sampling data from the graph
of Figure 5.4(a) are the following:

X1 ∼B(0.5)

X2 ∼B(0.4)

X3 ∼B(0.7)

X4 ∼B(0.65)

X5 ∼B(0.15)

Xi(clone) ∼Xi ⊕B(0.025)

Ei ∼B(0.5)

Y ∼(X1 ∧ X2) ∨ (X3 ∧ X4) ∨ X5
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FIGURE 5.5: Average effect returned by ALLSTAR (solid lines)
and theoretical value (dashed lines) for the 3 implanted rules
of the last syntetic experiment (see Sec. 5.4). Results have been
averaged on datasets with 1000 samples, and the variability in

each run results is negligible.

5.5 Stability Analysis

The stability of ALLSTAR’s results were experimentally assessed with respect
to the user-defined parameters ℓ, t, and G = (X, E). The two tests are re-
ported below.

In the first of stability analyses, we run ALLSTAR on the datasets of the
synthetic experiment of Sec. 5.4, with ℓ taking values from 3 to 7, and t =
0.05. Figure 5.5 shows the average effect returned by ALLSTAR (solid lines)
for the three implanted rules by varying ℓ, as well as their theoretical value
(dashed lines). Results have been averaged for all datasets of 1000 samples,
and their variability across the runs is negligible. As expected, the rule ef-
fect returned by ALLSTAR decreases as the rule length increases because the
number of hypotheses to test increases and therefore the Bonferroni correc-
tion becomes stricter. Moreover, despite increasing ℓ allows ALLSTAR to
evaluate more rules, our algorithm did not return any false positive.

We then analyzed results variability with regards to changes of t by run-
ning ALLSTAR on the same setup of the previous experiment, and setting t
to 0.01, 0.025, 0.05, 0.075, and 0.1. We finally set k = 4 to assess the ability of
ALLSTAR to avoid returning duplicated rules. ALLSTAR returned duplicate
rules consistently among all the runs for t = 0.01, among 6 of 10 runs for
t = 0.025, and did not return any duplicated rule for all the other values of
t tested. This is an expected behavior in this data generative scenario since
each rule differs from its clone on 2.5% of samples on average (see equations
in Sec. 5.4).
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5.6 Computational Performances

The last performed experiment aims at comparing the computational perfor-
mances of ALLSTAR against a brute-force algorithm that exploits G to select
the candidate rules to study, but calculates them all without exploiting the
Branch-and-Bound. 10 synthetic datasets were created with 1000 samples
from the following distributions:

X1 ∼B(0.15)

Ei ∼B(0.1), 1 ≤ i ≤ 600

Y ∼X1 ∨ B(0.05)

and the rule with the highest effect (k = 1) was reported by setting the target
value Y = 1. Both algorithms ran on 60 cores of a computing cluster and
the runtimes were tracked without considering the time required to calculate
the Bonferroni correction (i.e. function calculateRulesNumber of ALLSTAR)
as the only focus is to compare the performances of the two rule discovery
approaches4. Figure 5.6 compares the average runtimes in seconds of both
approaches (y axis is log-scaled) over increasing maximum rule lengths ℓ.
As expected, ALLSTAR is faster than the brute force approach due to the
speedup given by its Branch-and-Bound, and their difference increases with
the number of rules under study, therefore it increases monotonically with
ℓ. As a reference, the brute force algorithm is more than 3 times slower than
ALLSTAR when discovering rules setting ℓ = 4, and nearly 20 times slower
for ℓ = 5.

4As a reminder, this procedure would be a prerequisite for both algorithms, therefore it
would just add a bias term to both runtimes under analysis.
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FIGURE 5.6: Average runtime comparison between ALLSTAR
and a brute-force algorithm on 10 synthetic datasets over dif-
ferent rule lengths ℓ. Y-axis is logarithmically scaled, and vari-
ability across runs with the same ℓ is negligible (and therefore

not plotted).
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Chapter 6

Biological Experimental Results

6.1 Cancer Data and Interaction Network

ALLSTAR was tested on publicly available breast cancer (BRCA) data from
TCGA. In particular, the main source is the TCGA-BRCA repository which
offers public clinical and somatic mutational data, for a total of 1096 sam-
ples. The complete molecular and histological landscape of TCGA-BRCA pa-
tients was downloaded, comprising also the subtype classification of TCGA-
BRCA based on the 50-gene PAM50 model (Parker et al., 2009). Germline
mutational patterns for TCGA patients in BRCA1 and BRCA2 were retrieved
from Kraya et al. (2019). Two additional alteration types that play a signifi-
cant role in cancer were integrated: loss of heterozygosity (LOH) information
from Riaz et al. (2017) and reported by Bodily et al. (2020), and hypermethy-
lation from Xena Functional Genomics Explorer data (Goldman et al., 2015)
and reported in Bodily et al. (2020). Not for every sample the correspond-
ing target value was available, therefore the total number of observations
dropped slightly. The final datasets comprised a number of samples ranging
from 898 to 935, depending on the target variable of interest. As an input
graph for ALLSTAR any protein-protein interaction network can be used:
these results were generated exploiting the most recent Functional Interac-
tion (Wu, Feng, and Stein, 2010) gene network from Reactome1, which com-
prises almost 14,000 genes and more than 250,000 edges.

6.2 Real-World Cancer Datasets

ALLSTAR was run on breast cancer data described in Section 6.1. This section
provides the details on how the datasets were built, the parameters used in
the analyses with ALLSTAR, the results that were obtained, and their biolog-
ical relevance.

The first step consisted in identifying from data described in Section 6.1
the variables to included into treatments X, confounders Z, and outcomes Y.
In each run, a common set of confounders was considered, while treatments
and outcome are combined in different ways to focus on certain cancer mech-
anisms. In particular:

1The repository FIsInGene (version 2021) is publicly available at https://reactome.org/

download/tools/ReatomeFIs/FIsInGene_122921_with_annotations.txt.zip.
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• 7 confounder variables Z were included, which are: gender, race, age at
diagnosis, menopause status, history of another previous malignancy, and the
presence of a germline mutation in genes BRCA1 and BRCA2.

• a total of 622 alterations were selected, including the 300 most fre-
quently somatically mutated genes, the 300 most frequent LOHs, and
22 frequently hypermethylated genes. Two types of analyses were pro-
cessed: one where each alteration corresponds to a treatment (element
of X), and one where treatments X were the 300 most frequently altered
genes by considering a gene mutated if any of the 3 alterations above is
present.

• As target Y, three sub-typing classifications were accounted for: an his-
tological categorization (Ductal, Lobular, and Other carcinoma), an ex-
panded molecular one, based on gene expression (Basal, HER2E, Luminal-
A, Luminal-B, and Normal-like), and a specific binary molecular clas-
sification (Triple-Negative, or not).

6.3 Results

ALLSTAR was tested under multiple settings on the differently combined
datasets: maximum rule length ℓ spanned from 2 to 4, while k = 3, and
t = 0.01. Informally, the maximum number of variables comprising each
tested rule could be 4, the top-3 rules for each experiment were retrieved and
the clean-up (similarity) threshold after each iteration of the algorithm was
set at 99%. Data requirements increase exponentially with the size of Z, and,
therefore, for each dataset ALLSTAR was run multiple times, passing a differ-
ent subset of Z of cardinality at most 1. On each run, α = 0.05/(|Z|+ 1) was
set to bound the FWER of all the tests on the same dataset below 0.05. Finally,
both the presence (GENEalteration 1) and the absence (GENEalteration 0)
of treatment were taken into consideration. Table 6.1 contains the highest-
scoring results, separated into two blocks: on top, it shows the best rules with
no confounders, while below it presents the best rules when conditioning on
confounders. It is noteworthy that patients in every dataset are all affected
by cancer, therefore every reported rule implicitly conditions on such event.

6.3.1 The Role of CDH1

The first three rules by effect include gene CDH1, which is a recurrently mu-
tated gene in breast cancer and whose impact has been recognized as sub-
stantial (Pereira et al., 2016) in lobular histological subtype (McCart Reed et
al., 2021; Erber and Hartmann, 2020), consistent with rules a and b; steadily,
rule c states that the absence of an alteration in CDH1, given a breast cancer
diagnosis, increases the chances of developing a ductal subtype, antagonist
to the lobular one. Moreover, the combination of mutated CDH1 with unal-
tered ANK2 and SCN5A (rule b) provides an additional perspective on the



6.3. Results 35

ID Rule Effect

a CDH1som 1→ Lobular 0.470
b CDH1som 1 ∧ ANK2som 0 ∧ SCN5Asom 0→ Lobular 0.430
c CDH1som 0→ Ductal Carcinoma 0.401
d ITGB3alt 1 ∧ RHOAalt 1 ∧MAP3K1alt 1→ Basal 0.342
e TP53som 1 ∧ ATRIPloh 1 ∧ ERBB2loh 1→ Basal 0.300
f ITGB3alt 1 ∧MAP3K1alt 1→ Basal 0.297
g TP53som 0→ Luminal-A 0.289
h RB1loh 1 ∧ PHBloh 1 ∧ LIMD1loh 1→ Basal 0.271
i TP53som 0 ∧ BRCA1meth 0→ Luminal-A 0.268
j ERBB2alt 1 ∧MST1alt 1→ Basal 0.245
k MST1loh 1 ∧ ERBB2loh 1→ Basal 0.243
l RB1loh 1 ∧ PHBloh 1→ Basal 0.242
m STAT3alt 1 ∧ ERBB2alt 1 ∧WNT5Aalt 1→ Basal 0.241
n TP53alt 1 ∧ RB1alt 1 ∧ NGFRalt 1→ Basal 0.241
o PIK3CAsom 0 ∧ RHOAloh 1 ∧ NGFRloh 1→ Basal 0.240
p TP53som 1 ∧ NME1loh 1→ Basal 0.230
q TP53loh 1 ∧ PRKCDloh 1 ∧ NME1loh 1→ Basal 0.226
r PDX1alt 1 ∧ SPOPalt 1→ Basal 0.203
s TP53som 1 ∧ ERBB2loh 1 ∧ PRKCDloh 1→ TripleN 0.195
t ITGB3alt 1 ∧ RHOAalt 1 ∧MAP3K1alt 1→ TripleN 0.184

u TP53som 0 ∧ BRCA2som 0→ Luminal-A | gender 0.243
v CDH1som 1 ∧ AKT1som 0→ Lobular | age_at_diagnosis 0.229
w ERBB2alt 1 ∧ RHOAalt 1→ Basal | BRCA2germ 0.202
x TP53som 0 ∧ BRCA2som 0 ∧ BRCA1meth 0→ Luminal-A | gender 0.197
y TP53som 0 ∧ RB1som 0 ∧ BRCA1meth 0→ Luminal-A | BRCA2germ 0.191
z TP53som 1 ∧ ERBB2loh 1→ Basal | history_other_malignancy 0.175

TABLE 6.1: Best rules, with (bottom) and without (top) con-
founder’s conditioning, ordered by descending effect. Rules’
description is as follows: GENE1alteration [0,1] ∧GENE2alteration

[0,1]∧ . . . → Target subtype | Confounder.

mechanisms regulating the lobular subtype: ANK2 is typically downregu-
lated in breast cancer, while SCN5A is upregulated in almost every neoplastic
process. However, SCN5A is known to mediate the epithelialmesenchymal
transition (EMT), a biological trait underpinning cancer aggressiveness: the
absence of a mutation in this gene can be interpreted as a normal state for
EMT, aligned with the mild characteristics of the lobular subtype (Gradek
et al., 2019; Luo et al., 2020). Additionally, the rule including the absence of
mutation in AKT1 in lobular carcinoma (rule v) is coherent, since this gene is
strongly associated with ductal differentiation (Hinz and Jücker, 2019). As a
plus, this rule is strengthened by the conditioning on the confounder "age at
diagnosis", which removes spurious correlations.
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6.3.2 Cancer Promotion and Precocious Metastasization

When considering a gene altered in the presence of either a somatic, LOH
or hypermethylation event, strong effects are linked to the molecular basal-
like subtype. ALLSTAR reports the combination of aberrations occurring in
ITGB3 and MAP3K (rule f ) as strongly causal of the aforementioned sub-
type, in agreement with literature: Sesé et al. (2017), Fuentes et al. (2020) and
Li et al. (2022) converge on this conclusion due to their cancer-promoting
activity and inclusion in the metastatic process. Hence, ITGB3 and MAP3K
have recently gained attention relatively to basal-like breast cancer, but their
combination is yet to be investigated. Even more interesting is the extension
of this causal rule with the alteration of RHOA (rule d): the score of this ex-
panded rule is even higher in association with basal-like subtype and it can
be explained by the association of the outcome with precocious metastasiza-
tion in accordance to RHOA’s anti-metastatic function (Kalpana et al., 2019;
Kalpana et al., 2021; Privat et al., 2020).

6.3.3 A Constant in Cancer: TP53

Considering the decomposed treatments, rules pertaining to even more spe-
cific mechanisms are retrieved. Besides the strong positive effect of mutated
TP53, which is well ascertained in non-luminal breast cancer (Bertheau et al.,
2013; Abubakar et al., 2019), even more relevant is the causal effect increase
in combination with the LOH event in ATRIP (rule e). When stable, this gene
is responsible for anti-proliferative signal mediation (Venere et al., 2007), but
its impairment’s effect is not well established in the literature. The interaction
with mutated TP53 can open up new scenarios but it needs to be investigated
in vivo.

6.3.4 The RB1-PHB partnership

Another combination found with strong roots in literature is LOH in RB1 and
PHB (rule l), as well explained by Wang et al. (1999a), Wang et al. (1999b),
and Wang and Faller (2008): RB1 is an important tumor suppressor gene
(Herschkowitz et al., 2008), while PHB mediates anti-proliferation signaling
(Jupe et al., 1996; Nuell et al., 1991; Sato et al., 1993; Sato et al., 1992), therefore
their combined action, if altered, in basal-like tumors is easily explainable.
The addition of the LOH in LIMD1 (rule h) is less established in breast cancer,
being more associated with lung carcinoma, but its oncosuppressive role, and
the correlation between LOH and mitosis, make it a potential key player in
basal subtype (Huggins and Andrulis, 2008; Spendlove et al., 2008).

6.3.5 Potential Novel Targets: The Case of ERBB2

HER2-positive, basal-like, and triple-negative breast cancer are consistently
determined by aberrations occurring in MST1 (Ercolani et al., 2017; Jin et
al., 2021). Our findings (rules j, k) coherently overlap this knowledge, ex-
tending it by pairing MST1 and ERBB2 within the same positively-scored
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rule. ERBB2 is a member of the epidermal growth factor (EGF) receptor fam-
ily and its overexpression in 20-30% of invasive breast carcinomas leads to
increased chemoresistance to certain chemotherapeutic agents (Tan and Yu,
2007). Its mutational impact is undefined in literature, as only ERBB2’s ex-
pression abnormalities have been encountered in breast malignancies, espe-
cially in triple-negative/basal-like. Our result in this particular case is par-
tially coherent but can enable further studies into the MST1-ERBB2 interac-
tion in terms of mammalian carcinoma profiling. Conversely, the joint action
between ERBB2, STAT3, and WNT5A (rule m) is more explainable. STAT3
has a pivotal role in the initiation, progression, metastasis, and immune eva-
sion of triple-negative breast cancer (Manore et al., 2022; Qin et al., 2019),
while WNT5A reduces the clonogenicity, invasiveness, migration, and pro-
liferation of carcinoma cells, and it is also considered a therapeutic target
(Kobayashi et al., 2018). The rule that ALLSTAR returned is not specific, as it
emerged from the aggregated dataset, but it suggests a strong mutational in-
volvement of these three genes in basal breast cancer. This being said, ERBB2
is recalled in rule w with RHOA: both genes offer potential reasons to be part-
nering in the determination of Basal subtype, but there is no clinical evidence
of their combination, let alone an involvement of BRCA2 germline mutation
as a confounder to condition over.

This rule is a clear example of potential relations that need to be evaluated
in future studies. It is not a surprise that various rules with a high conditional
effect, which is one of the main contributions of choosing a causal approach,
are related to one of the most debated genes, ERBB2, suggesting its direct
involvement in breast cancer carcinogenesis (see also rule z in combination
with TP53).

6.3.6 Long Genes and Mutation Frequency

An additional point favorable to our methodology consists in the rules that
have not appeared among the highest-scoring ones: long genes such as TTN,
HMCN1, or DMD, usually harbor several mutations simply due to their size.
ALLSTAR seems robust to this drawback, even if those genes are in the top-
20 of the most somatically mutated ones in TCGA data. As a term of com-
parison, Saravia et al. (2019) perform a chi-square test to detect meaningful
mutations in triple-negative breast cancer, identifying TTN, HMCN1, and
DMD, among others, as statistically significant players in recurrent patterns
of genomic alterations with a potential contribution to tumor evolution. The
authors themselves acknowledge the possibility their findings may be false
positives and our results support this hypothesis.
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6.3.7 Pathway Enrichment with DAVID

As a further functional evaluation, for each analysis, the set of genes ob-
tained by merging the alterations reported in any of the rules from ALL-
STAR were considered. Subsequently, pathway enrichment analysis was per-
formed with DAVID (Huang, Sherman, and Lempicki, 2009) to find statisti-
cally overrepresented biological functions (encoded in the KEGG database,
Kanehisa and Goto (2000)) in each of these sets of genes. As the significance
cut-off for pathways’ p-value, 0.05 was conventionally selected . After that,
the occurrence of each pathway, when significantly enriched, was counted
over all the results of the analyses. The most represented pathway, occur-
ring in 65% of the sets, is neurotrophin signaling pathway, whose relevance
as a potential therapeutic target for breast cancer has been previously ascer-
tained in preclinical studies (Hondermarck, 2012). Interestingly, the breast
cancer pathway (KEGG: hsa05224) occupies one of the top spots with a 57%
of occurrence, alongside others known to be relevant pathways such as Rap1
and PI3K-Akt signaling (Gil, 2014; Zhang et al., 2017). Additionally, the
fluid shear stress and atherosclerosis (KEGG: hsa05418) scored an occurrence
of 60%: the impact of this process in breast cancer, and in oncogenesis in
general, is still unclear. However, this result seems to endorse some pre-
liminary findings: according to Choi et al. (2019), in addition to promoting
hematopoietic growth, biomechanical forces seem to be significant microen-
vironmental variables in the generation of cancer stem-like cells (CSLCs) or
tumor-initiating cells (TICs) in cancer metastasis.

6.4 Stability on Real-World Data

Lastly, a stability-like experiment was performed on these data. Since most
of the interactions between genes that are publicly available are cursed by a
serious level of uncertainty, the impact of using a high confidence Protein-
Protein Interaction network, as input knowledge, was evaluated. Conve-
niently, the original PPI from Reactome (see Section 6.1) is featured with a
score (s ∈ [0, 1]) for each pair of genes, representing the confidence of their
edge in the interaction network. Therefore a certain subnetwork could be
extracted from the original one. To build the experiment, every pair with a
score lower than 1 was removed, thus keeping only high confidence links,
and ALLSTAR run with the same data inputs and parameters as described
in Section 6.3, with the exception of the PPI. The results obtained running
ALLSTAR with the two input PPIs were compared. Keeping Table 6.1 as ref-
erence, a total of 7 rules out of 26 (27% of the reference), and specifically, rules
b, h, l, m, r, u, and v, were not retrieved in this analysis. These results show
that most of the rules found by ALLSTAR including lower confidence interac-
tions, are still reported using only high-confidence interactions. To be more
precise, the excluded rules r and u were not extensively characterized in the
results section due to lack of literature support. Conversely, rules b, h, l, m,
and v were labeled as potentially novel discoveries: as motivated in Section
6.3, these rules refer to proteins whose impact on breast cancer is debated.
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Even if their role in breast cancer physiology is not specifically supported by
sufficient literature, the underlying biological mechanisms are explainable,
either because of their genetic properties and functionalities, or the existence
of an analogous biological process in other cancer types. Overall, these re-
sults show that ALLSTAR can focus on well-characterized mechanisms by
including only high-confidence interactions, but also that ALLSTAR can be
used to pinpoint potential novel discoveries by including lower-confidence
interactions.

6.5 Translation to Medical Practice

The aforementioned results offered by ALLSTAR are promising, given their
wide overlap with breast cancer literature. Moreover, they seem to satisfy the
prerequisites I conveyed in the first chapter of this thesis: in addition to be-
ing able to describe known biological mechanisms, ALLSTAR improves the
state of the art in the field of computational oncology and suggests poten-
tially novel combinations of alterations, defining a certain cancer subtype. I
would stress the latter point: as already pointed out, cancer is an extremely
intricate disease, and one of the keys to better understand it is represented
by the unveiling of new mechanisms that drive its development and progres-
sion.
This project was built towards this goal: in Subsection 6.3.5, I acknowledged
the potential role of ERBB2 in breast cancer physiopathology. The combina-
tions involving this gene, as well as other ones not overlapping literature,
represent the real added value of this project, and, if confirmed by subse-
quent in vitro experiments, may improve patients’ stratification, as well as
response to personalized therapy. As a plus, the algorithm is generalized for
cancer and scalable, therefore it is not restricted to a certain tumor type. In
fact, the ultimate objective of this thesis is to offer a powerful tool that focuses
on promising genetic targets for patients affected by diverse cancer subtypes.





41

Chapter 7

Conclusions

This thesis aimed at presenting the development of a novel tool, ALLSTAR,
able to infer combinations of somatic alterations that are causal to a specific
cancer phenotype. This is in contrast to previous approaches focusing on cor-
relations. Despite the high number of required computations, ALLSTAR can
take as input mutational data measured in large cohorts of cancer patients,
thanks to its optimized branch-and-bound approach. This novel tool reports
the highest-scoring rules defined on several interactions and integrates prior
information in the form of a graph to focus on functionally related alterations.
It also uses an iterative procedure to identify diverse rules to tackle tumor
heterogeneity.

Throughout the project, one of the biggest challenges has been the transla-
tion of a rigid mathematical framework, offered by the causal notation, into a
completely different context. In fact, this project drew inspiration from Bud-
hathoki, Boley, and Vreeken (2021), an excellent theoretical work that pre-
sented simple, yet effective results on a rather limited dataset, the Titanic
database. The authors offered intuitive results supported by logical reason-
ing: in synthesis, being either a woman, a child, or simply a rich person was
a strong causal feature for survival, and it makes complete sense. But the
logic behind cancer development and evolution is way more complicated to
grasp, especially due to the inner intricacy of the disease. Where do clinical
variables stand within the causal framework? What about germline and so-
matic alterations? Data types best fitting the model are not as intuitive.
As an additional challenge, the code provided by Budhathoki, Boley, and
Vreeken (2021) had trouble returning correct answers when fed with toy syn-
thetic datasets. Even after contacting the authors, I was not able to obtain
the expected results the theory should guarantee. Honestly, this bump in
the road has been a real blessing in disguise, since it allowed the possibility
to build from the ground up a tool that not only advances the state of the
art, but also translates and adapts its powerful means to a relevant subject.
For example, the integration of the protein-protein interaction graph and the
clean-up procedure are practical solutions to the specific problem at hand,
and their addition has been eased by this possibility to start from scratch.

Furthermore, the extensive experimental evaluation, both with synthetic
and real-world data, shows that ALLSTAR is an efficient and effective tool,
and that it is able to identify well-supported causal relations from cancer
data. In Section 6.3, I presented these relations from a biological point of
view, obviously with the support of an experienced oncologist. Among the
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best rules (see Table 6.1), most of them either are known in breast cancer
physiology, or capture known mechanisms, while some other alterations’
combinations take a stand in debated topics significant to the oncologic sub-
ject. Thus the results are satisfactory in terms of relevance to the field of
application, and they offer potentially good targets for an eventual in vivo
follow-up analysis.

Despite building up from solid theory and existing research, there is still
room for improvement. Concerning the methodological part, in Section 3.2.1,
I introduced the method to correct for multiple hypotheses testing, the Bon-
ferroni correction, and mentioned its conservative nature. In fact, it assumes
the worst-case scenario between every generated null hypothesis, when com-
puting the bound, and the estimate of the effect is then extremely affected by
the correction term. On the one side, rules with a positive score are guaran-
teed to be significant with confidence α, and the overall results is an essential
list containing the very best it can be found. On the other side, ALLSTAR
could be discarding potentially interesting interactions, especially in the case
of datasets with a very high number of possible rules to investigate. A pos-
sible future direction consists in integrating Rademacher averages as bounding
technique to control the FWER. Leaving the rigorous mathematical descrip-
tion to the reader (Bartlett and Mendelson, 2002), Rademacher averages come
from statistical learning theory and they are frequently applied to quantify
the complexity of a family of functions: by doing so, they offer a probabilistic
method to limit the variance between the empirical means of the functions in
the family and their expected values. The immediate advantage is the com-
putation of a data-dependent bound rather than an absolute one. To the best of
my knowledge, their application to biological problems has not been proven,
yet.

Another future possibility, on the biological side, is the evaluation of ALL-
STAR’s performances on a wider Pan-Cancer cohort of patients. This could
unveil novel combinations and mechanisms, highly specific for a certain phe-
notype in a specific cancer. One possible challenge could be the necessity to
line up a conspicuous number of domain experts to interpret the results, at
least one for each cancer type. Additionally, the integration of more omics
data, such as RNAseq, could be an interesting upgrade, but it definitely
would require a careful homogenization with the causal framework assump-
tions, as described in Section 3.1.

In conclusion, this thesis presented an innovative traslational tool that
combines elements of statistics, probability, and informatics, with the direct
application to oncology. ALLSTAR proposes a reliable causal methodology
to retrieve genetic targets for cancer phenotypes, starting from raw somatic
alteration data that are publicly available online. The statistical guarantees
have been extensively demonstrated with multiple synthetic experiments,
therefore I strongly believe the results on real data could offer both confirma-
tion of previous knowledge and potentially novel insights on breast cancer
physiology, differentiation and, hopefully, treatment.
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Appendix A

Supplemental Methods

A.1 Computational Problem Definition

We now define the computational problem at the core of finding causal rules.
In particular, we consider the problem of finding the rule with the largest
positive effect on a target variable, defined as follows.

Definition 1. Max Positive CRD problem. Consider variables Z∪X and a target
variable Y. Find the rule σ∗ with i) e(σ∗) > 0 and ii) σ∗ = arg maxσ e(σ).

The Max Positive CRD problem is a simplified version of the problem of
finding the rule with largest positive effect from data, since it assumes that
one has access to the exact probabilities for the events of interests, while, in
practice, such probabilities are estimated from an observational dataset (see
Section 2). Nonetheless, we prove that the problem above is computationally
difficult. In particular, we prove that finding the causal rule with the maxi-
mum effect is NP-hard, even when no confounder is considered (i.e., when
Z = ∅) and the true probabilities are described by a Bayesian Network, that
is a convienent mathematical way to represent causal relations between vari-
ables. Formally, Bayesian network (BN) is defined as a tuple < G, p > where
G =< V, E > is a directed acyclic graph for which V = X ∪ Z ∪ {Y} and
there is an edge from Vi ∈ V to Vj ∈ V only if Vi is a cause of Vj w.r.t. Pearl’s
do-notation (Pearl, 2009), and p is a probability distribution function over V.

We now define the problem aforementioned problem, that we call the
MaxCRD problem.

Definition 2. MaxCRD Problem. Given a Bayesian Network B, output⊤ if the rule
σ∗ = arg maxσ |e(σ)| with the highest absolute effect has a non-zero effect.

A.2 Proof of NP-Hardness for MaxCRD Problem

The following theorem proves that the MaxCRD problem is computationally
difficult.

Theorem 2. MaxCRD is NP-hard.

Proof. We prove that MaxCRD is NP-hard by reducing from SAT. The proof is
divided in two steps: first we show a polynomial-time reduction of an input
of SAT to an input of MaxCRD, and then we show that solving MaxCRD on such
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input allows to derive a solution to SAT in time polynomial on the original
instance.

We start by describing the reduction from SAT. Let ψ(X) be a boolean
formula over variables in X. Let us define G =< V, E > with V = X ∪ {Y}
and E = {Xi → Y|Xi ∈ X}. Let us define each Xi ∼ B(0.5) be a Bernoulli
distribution with probability p(Xi = 0) = p(Xi = 1) = 0.5. Let Y take
values in {0, 1} and let p(Y = 1|X1 = x′1, ..., Xn = x′n) = 1 if and only if
ψ((x′1, ..., x′n)) = ⊤ else p(Y = 1|X1 = x′1, ..., Xn = x′n) = 01. We then define
the BN B =< G, p > as the reduced input for MaxCRD.

We now prove that solving MaxCRD on the reduced input leads to solv-
ing SAT in polynomial time on the original instance by proving that (i) if
MaxCRD(B) = ⊤ then ψ(X) = ⊤ and (ii) if MaxCRD(B) = ⊥ then we can build a
polynomial-time algorithm that solves SAT.

Let us prove (i). If MaxCRD(B) = ⊤ then ∃σ|ecorr(σ) 6= 0 that is p(Y =
y|σ = ⊤) − p(Y = y|σ =⊥) 6= 0. By construction, we have two cases:
y = 1 or y = 0. If y = 1 then ψ(X) is satisfiable by construction since at
least one between p(Y = 1|σ = ⊤) and p(Y = 1|σ =⊥) is positive. (Note
that σ =⊥ corresponds to all assignments of variables X for which rule σ
is not satisfied, and p(Y = 1|σ =⊥) > 0 if and only if at least one such
assignment lead to Y = 1, that by definition implies that such assignment
satisfies ψ(X).) If y = 0 then we notice that the same rule evaluated on
y = 1 has a non-zero effect given that y = 1 is y = 0’s complementary event
therefore p(Y = 0|σ =⊥) = 1− p(Y = 1|σ =⊥) (and the same holds for
σ =⊥).

Let us prove (ii). If MaxCRD(B) = ⊥ then ∀σ we have p(Y = y|σ = ⊤) =
p(Y = y|σ =⊥) = p(Y = y) that is the value of Y is independent on X
assignments. This means that ψ(X) is either a tautology or a contradiction2

and by evaluating ψ(X) on any assignment we can distinguish between the
two cases.

As stated before, in practice we do not have access to the exact proba-
bilities and, therefore, to the exact effect e(σ) for a rule σ. We are therefore
interested in finding the rule with the largest positive reliable effect from an
observational dataset, which we formalize in the problem below.

Definition 3. Max Reliable Positive CRD Problem. Consider an observa-
tional dataset D on variables Z ∪ X ∪ {Y} and a confidence level α ∈ (0, 1). Find
the rule σ∗ such that i) êrel(σ

∗) > 0 and ii) σ∗ = arg maxσ êrel(σ).

1Note that the probability distribution function is fully specified since p(Y = 0|X1 =
x′1, ..., Xn = x′n) = 1− p(Y = 1|X1 = x′1, ..., Xn = x′n).

2If not, then it would be possible to discover a rule with non-zero effect σ : X1 = x′1 ∧
... ∧ Xn = x′n on all elements of X. By construction, in fact, p(Y = 1|σ = ⊤) ∈ {0, 1} since it
evaluates on just one element, and p(Y = 1|σ =⊥) 6= p(Y = 1|σ = ⊤) otherwise the value
of Y would be constant.
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A.3 ALLSTAR: Detailed Methodology

A.3.1 Algorithm Description

ALLSTAR starts by computing the total number of candidate rules of length
at most ℓ (that is the number of connected subgraphs in G of length at most
ℓ) and then calculates the correct threshold αc for each confidence bound us-
ing Bonferroni correction (line 1). The rule discovery is then performed in k
iterations (line 6). In each iteration, a breadth-first search (BFS) of the lattice
defined by set of all possible rules with at most ℓ alterations is performed
by using a FIFO queue Q and its (standard) operations enqueue and dequeue.
During the BFS, the best rule σmax, and its maximum reliable estimated effect
êmax, discovered during the exploration are maintained. After the initializa-
tion of σmax and êmax (line 4), the queue Q is initialized by inserting the rules
containing a single alteration (line 5). (Note that ALLSTAR can also consider
the absence of an alteration as part of a rule (i.e. Xi = 0); for clarity’s sake,
this is not reported in Algorithm 1.) The BFS then proceeds by extracting
the current rule σ (line 7) until Q is not empty (line 6). When a rule σ is ex-
tracted from Q, an upper bound to its reliable effect is computed with the
function computeRelATE(σ, y, Z, αc). If such upper bound is greater than êmax

(line 8) then the (exact) reliable effect estimate êσ of σ is computed (line 9),
and the values êmax, σmax are updated if êσ > êmax (line 10). Then, the rules
that are obtained by expanding σ, obtained with the function expand(σ, G, ℓ),
are added to the queue (lines 11-11). expand(σ, G, ℓ) returns all rules (with at
most ℓ alterations) that are obtained by adding to σ one alteration that must
be connected in G to at least one alteration of σ. When the BFS completes,
the best rule σmax is added to the output set if its estimated reliable effect is
positive (line 12), and the set X of alterations is updated (line 13) to avoid
discovering highly-overlapping, redundant, rules (see below). At the end,
the set of at most top-k rules is reported in output (line 16).

A.3.2 Subroutines

ALLSTAR exploits three subroutines calculateRulesNumber, upperBoundRelATE,
and computeRelATE that will be briefly explained in the following (and whose
Python code is available online): calculateRulesNumber takes as input a
graph G and the maximum rule length ℓ and outputs the number of con-
nected subgraphs of length at most ℓ between elements in G. It is used to
calculate the total number of possible rules under study, which is the amount
of test performed in the worst case, and the pseudocode is described in Al-
gorithm 2.
upperBoundRelATE takes as an input a rule σ, the value y for target Y, a set of
confounders Z, and a threshold αc corrected for multiple hypotheses testing,
and it outputs the tight optimistic upper bound to the effect for the rule pro-
posed by Budhathoki, Boley, and Vreeken, 2021. It is used by the branch-and-
bound algorithm for deciding whether to compute study a specific branch
(i.e. all children of a specific rule) or to avoid the computation because the
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Algorithm 2: calculateRulesNumber

Input: Graph G = (V, E), maximum rule length ℓ

Output: Number N of connected subgraphs of length at most ℓ
between elements in G

1 P← ∅;
2 Q← ∅;
3 for X ∈ V do
4 P← P ∪ {X};
5 Q← Q ∪ {X};
6 for i← 1 to ℓ− 1 do
7 L← ∅;
8 for q ∈ Q do
9 for X ∈ q do

10 for e ∈ E do
11 if X ∈ e & e \ {X} 6∈ q then
12 L← L ∪ {q ∪ {e \ {X}}}

13 Remove duplicates from L;
14 P← P ∪ {L};
15 Q← L;

16 return size(P);

best solution found in such branch would never improve the current best so-
lution (i.e., the incumbent) êmax.
More specifically, let us consider a rule σ and a more specific rule σ′ = σ∧πj.
Let us define the quantity τ̃σ′(σ, z) on the elements for which Z = z holds as

τ̃σ′(σ, z) = max
a′σ∈{0,1,...,aσ}

a′σ + 1

a′σ + 2
− n1 − a′σ + 1

n− a′σ + 2
− β(αc)

2
√

a′σ + 2
− β(αc)

2
√

n− a′σ + 2
(A.1)

where β(αc) is the 1− αc/2 quartile of the standard normal distribution, n
is the number of instances taken into account (i.e. with Z = z), n1 of which
have Y = y, and aσ is the number of instances for which σ holds, Z = z and
Y = y. The upper bound is then defined as

U(σ′) = ∑
z

(τ̃σ′(σ, z) p̂(Z = z)) (A.2)

where p̂(Z = z) is the empirical probability of Z taking value z. Differently
from Budhathoki, Boley, and Vreeken, 2021 our bound uses a confidence level
αc = α/N, where N is the total number of rules considered by the algorithm,
to account for the multiple hypothesis testing problem.
computeRelATE takes as an input a rule σ, the value y for target Y, a set of
confounders Z, and a threshold αc and calculates the reliable effect of the
rule êrel(σ) as described in Section 2.3. More specifically, let us define p̂(Y =
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y|σ = ⊤) = nY=y,σ=⊤
nσ=⊤

where nσ=⊤ is the number of instances for which σ = ⊤
(i.e, σ is true), and nY=y,σ=⊤ is the number of instances for which Y = y and

σ = ⊤. Analogously we have p̂(Y = y|σ =⊥) =
nY=y,σ=⊥

nσ=⊥
. In extreme cases

(e.g. σ =⊥ for all instances) such quantities are ill-defined, therefore the
Laplace correction is applied to the estimated conditional probability, which

becomes p̂c(Y = y|σ = ⊤) =
nY=y,σ=⊤+1

nσ=⊤+2 . The returned value ê
y
rel(σ) is then

defined as

ê
y
rel(σ) = ∑

z

[(

p̂c(Y = y|Z = z, σ = ⊤)+

− p̂c(Y = y|Z = z, σ =⊥)+

− β(αc)

2
√

nZ=z,σ=⊤
− β(αc)

2
√

nZ=z,σ=⊥

)

p̂(Z = z)

]

.
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