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Sommario

La seguente tesi di Dottorato consiste in quattro capitoli, corrispondenti a quattro diversi
articoli che hanno costituito il fulcro della mia attività di ricerca durante il Ph.D. Tre dei quattro
progetti sono il naturale proseguimento di quanto ho indagato durante gli studi magistrali e
triennali. I primi due progetti trattano le tematiche dei giochi a campo medio e dei giochi di tipo
McKean-Vlasov. In particolare, nel primo lavoro studiamo un gioco discreto ad 𝑁 giocatori,
per cui la nozione di equilibrio sottostante è quella di equilibrio correlato, e il suo limite di
campo medio. Il secondo lavoro sviluppa un’applicazione dei giochi di tipo McKean-Vlasov
ad un modello per lo studio dell’interazione tra un produttore e un consumatore che agiscono
come speculatori nel mercato delle commodities. Gli ultimi due progetti vertono sullo studio
della modellizzazione della volatilità nei modelli finanziari. Nel terzo capitolo, presentiamo
un’applicazione della quantizzazione funzionale, una tecnica di discretizzazione per processi sto-
castici, ai cosiddetti modelli a volatilità rough con finalità di pricing: in particolare, ci focalizziamo
sul prezzaggio di opzioni sul VIX e sulla volatilità realizzata. Nell’ultimo progetto, sviluppiamo
uno studio teorico dettagliato di un modello a volatilità non Markoviana che è stato recente-
mente introdotto da Guyon.

Abstract

The following PhD Thesis consists of four chapters, corresponding to four different papers,
which have been the core of my research activity during the Ph.D. Three out of four projects
are the natural continuation of what I have been investigating during my Bachelor and Master’s
studies. The first couple of projects deals with mean field and McKean-Vlasov games. Indeed, in
the first we study a discrete𝑁-player game and its mean-field limit where the underlying notion
of equilibrium is the one of correlated equilibrium. The second work develops an application of
McKean Vlasov games to model the interaction between a producer and a consumer acting
as speculators in commodity markets. The second couple of projects deals with volatility
modellisation in financial models. In the third project, we present an application of functional
quantization, a discretisation technique for stochastic processes, to rough volatility models with
pricing purposes: in particular, we focus on pricing options on VIX and realised volatility. In
the last project, we develop a detailed theoretical analysis of a path dependent volatility model
that was recently introduced by Guyon.
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Introduction

Fall in love with some activity, and do it! Nobody ever figures out what life is all about, and
it doesn’t matter. Explore the world. Nearly everything is really interesting if you go into it
deeply enough. Work as hard and as much as you want to on the things you like to do the
best. Don’t think about what you want to be, but what you want to do. Keep up some kind
of a minimum with other things so that society doesn’t stop you from doing anything at all.

Richard P. Feynman

Disclaimer and educational background

As mentioned in the abstract, this is not the standard Ph.D. Thesis that develops around a
single topic and in which, as a consequence, the chapters display different aspects of a unique
problem. In my specific case, I had the possibility to pursue a Ph.D. program in the same
University in which I had previously completed my Bachelor and Master’s studies. Thus, I was
given the chance to complete my path of study investigating in dept the topics that appealed
me the most during the Bachelor and the Master programs. The first three chapters in the
thesis result from this investigation. The last project can be framed in the same perspective of
continuity and fluidity in the studies. Indeed, it was the result of a proposal to join a previously
started project by one of Prof. Giorgia Callegaro’s coauthors that I had the pleasure to meet
while working on our very first work together.

Since my early Bachelor’s studies I have focused my attention on Probability Theory and
its potential applications to Finance. I have consequently decided to conclude this journey
with a thesis whose title was Optimal Quantization for the Minimisation of Capital Injection in
an Insurance Company. The advisors of this thesis were Prof. Wolfang Runggaldier and Prof.
Giorgia Callegaro. This experience influenced deeply the following decisions I have made in my
studies. Indeed, I was given the chance to meet Prof. Giorgia Callegaro but also to test myself on
an open research problem. This experience has been challenging yet extremely stimulating and I
had the opportunity to get acquainted with the (non-standard) random variables’ discretisation
technique which is known as optimal quantization.

I continued with a Master degree focused on Probability Theory and Finance but when I
was approaching the end of my studies I wanted to concentrate on something more theoretical
and not strictly applied to Finance. Prof. Markus Fischer was the advisor of my Master thesis.
Together we studied Existence and Uniqueness of Solutions for a Class of McKean-Vlasov SDEs.
Here, I have first met this particular type of SDEs where the parameters are not just depending
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INTRODUCTION

on the process itself but also on its law. While investigating the underlying motivations for the
introduction of this kind of equations, I opened the Pandora’s box of McKean-Vlasov control
problems and mean field games.

I was selected for the PhD program in Padova before submitting the Master’s thesis. I
accepted without hesitation, knowing that Padova would have been a fertile ground to pursue
all the interests that I had discovered during my University studies. My two former advisors
have been so crazy and brave to assume responsibility of me, supervising me together on
different projects so that I could pursue all my inclinations.

Two main topics

After this long autobiographic digression that aims at providing a sort of disclaimer to
justify the heterogeneity in the chapters, let us introduce the two macro-areas in which the four
papers can be framed: mean field and McKean-Vlasov games and volatility modelisation in
financial markets.

McKean-Vlasov and mean field games

Since their first appearance in the pioneering paper [115] by Lasry and Lions in 2006, mean
field games have seen a slow but steady growth in interest until a few years ago when they literally
bursted becoming a well-established field appealing not only theoretically inclined investigators
but also applied mathematicians, engineers, and social scientists. For the sake of completeness,
a similar approach for large games under the name of Nash Certainty Equivalence principle
was investigated by Caines, Huang, and Malhamé in [99], but the natural appeal of the name
mean field games is undeniable and this is how these models are known nowadays.

The essence of mean field games can be summarised via the following idea, which is as
simple as brilliant: given the difficulty of computing equilibria for games where the players
are particularly numerous, the number of players 𝑁 is assumed to be so big that the game
is well approximated by one with an infinite number of indistinguishable agents. Then, the
analysis is limited to a control problem where a single player represents the whole system. In
order for the passage to the limit to be meaningful, the representative player in the limit game
should reflect in a consistent way the whole population. To this end, the starting 𝑁-player
games possess the following characteristics. First of all, they are symmetric: the players are
statistically indistinguishable or, equivalently, their joint law is invariant under permutations
of its arguments. Furthermore, the interaction between the players is of mean field type, namely
the influence of the action of a single agent vanishes as the number of players tends to infinity.
Going more into details, it should be possible to model this interaction via the empirical measure
associated to the system (a sort of centre of gravity of the system, equally weighted by 1/𝑁).
Let us mention that the measure flow in the limit game acts as the limiting counterpart of the
empirical measure.

The underlying idea is similar to what is studied in Mechanical Statistics under the name
of weakly-interacting particle systems. The difference lays in the fact that here the systems are
controlled. Indeed, the agents in the games are rational and so they want to optimise an
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INTRODUCTION

objective functional. The fact that there is an underlying notion of equilibrium in the pre-limit
game and that this has to be reflected in a consistent notion of solution for the limit game is
crucial. Indeed, the distinction among mean field games and McKean-Vlasov control problems
has its roots in the notion of equilibrium that is used in the pre-limit game. In general, mean field
games are based on the concept of Nash equilibrium for the pre-limit 𝑁-player games, whereas
McKean-Vlasov control problems originate from 𝑁-player games where a central planner has
to face a population of players and thus the underlying notion of equilibrium there is the one
of Stackelberg equilibrium.

As a consequence of the peculiar starting notion of equilibrium, the two limit problems
display a different relationship between the system and the measure flow. Indeed, in mean
field games the idea of best response (which is somehow the core of Nash equilibria) is translated
into the so-called consistency condition in the definition of a solution: only at the equilibrium
the measure flow is the law of the process itself. On the other side, for McKean-Vlasov control
problems the measure flow, which appears in the dynamics and in the objective functional, is
always the law of the state process itself. In analogy to this last one, the terminology McKean-
Vlasov games refers to 𝑁-player games where the objective functional as well as the dynamics
depend on the law of the processes.

The interested reader is referred to [33, 34] and [18], for an introduction to mean field games.
Let us notice that the latter two works deal with optimal control problems of McKean-Vlasov
type as well. Nevertheless, for a complete literature review, as well as a clear picture of the state
of the Art in the two game formulations, we refer to the introductions of the specific chapters.

Volatility modelisation

Despite being so simple, classical financial models, where the volatility is assumed to be
constant (e.g. Black-Scholes), are unable to fully describe the complexity and richness in market
data. Motivated by the will, on one side, to reproduce empirically observed stylised facts, and,
on the other side, to replicate the smile and skew behavior under a risk neutral probability
measure, practitioners and academicians have introduced several sophisticated market models
approaching the problem from different perspectives and with different tools. The stylised facts
we are making reference to are essentially two: volatility clustering and the persistence of volatility
in the prices’ times series under the real-world probability measure.

In the perspective of option pricing, i.e. in the attempt to mimick the smile and skew
behavior under a risk neutral probability measure, the approaches to volatility modelling can
be essentially grouped into two. The first class is known under the name Stochastic Volatility
(SV, in short) approach. As one can guess from the name itself, the volatility is assumed to be a
stochastic process whose dynamics, and as a consequence the tractability of the corresponding
model, varies with the specific assumptions of each model. This approach has a crucial feature
in view of model calibration, that is to say it allows for a fast and efficient closed-form pricing
of vanilla derivatives. Stein and Stein model [139], Heston model [92], the SABR model of
Hagan et al. [88], Bergomi model [21] and their extensions are included is this broad class.
Everything comes at a cost and even if these models succeed in reproducing the whole implied
volatility surface in a very parsimonious way, they fail to reproduce the smile behaviour, and in

3
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particular the steep implied volatility skew that characterises short maturities in equity markets.
Furthermore, there is a side drawback. Indeed, the calibrated vol of vol parameters, as in the
value of the mean reversion parameters, have to reach insanely high values to force the volatility
process to stay in its natural range when historical volatility is very high as a consequence of a
crisis. Dupire in [50] has given birth to a second class known with the name Local Volatility (LV, in
short) approach. Here, the implied volatility surface is built by interpolation of the real prices
so that the absence of arbitrage opportunities condition is preserved. The result is a partial
differential equation for the option price efficiently solvable so that numerous routines are now
available for the calibration of this model. This model has some weaknesses as well. First, the
model requires frequent re-calibration, since the volatility is linked to the level of an asset and
not its return. Furthermore, this approach is not suited for the pricing of options like forward
starting options. Indeed, for local volatility models pricing results from the interpolation of
known information. LV and SV models reveal the same limitations due to the inborn Markovian
nature of both the approaches.
In a first attempt to let a model enjoy some memory overcoming the Markovian strictness as
well as including the fact that volatility is persistent, Comte and Renault [40] introduced a
fractional stochastic volatility model in which the volatility is a fractional Ornstein-Uhlenbeck
process, driven by a fBM with Hurst parameter 𝐻 ≥ 1/2. This results in a continuous-time
model with stochastic volatility that enjoys the long-memory property that characterises the
fBM itself when its Hurst parameter is bigger than 1/2. Later on, the academic community
realised that the very irregular, i.e. rough, paths of a fBm with 𝐻 ≤ 1/2 could be exploited to
reproduce the roughness in the volatility trajectories, see e.g. Bayer et al. [14] and Gatheral et
al. [77]. In particular, the value of the 𝐻 calibrated on market data is around 0.1, thus way
smaller than 0.5 which is the case corresponding to standard BM. Rough volatility has rapidly
gained a huge success and can now praise numerous descendants. The motivation for such a
popularity lays in the fact that these models, despite being so parsimonious in the number of
parameters (just one more than a standard stochastic volatility model), are able to portray not
only the major stylised features of historical volatility time series but also SPX options smiles
and skews. Nevertheless, the price one has to pay in order to handle these models is hidden
in the Hurst parameter 𝐻 itself. The smaller the value of 𝐻, the less regular the trajectories
are but also the less tractable the problem is from a mathematical perspective, see e.g. [53, 55].
Indeed, in this new framework we do not only loose the semi-martingale property of volatility
but also the Markovianity of the dynamics. From a computational viewpoint this implies that
the well-known PDEs and Monte Carlo techniques are not readily available anymore and it
means that for the extensions of classic models like Heston, SABR and Bergomi to the case
where the volatility is rough finding an analytically tractable pricing technique is the very first
challenge. Given the fact that practitioners are mostly concern with fast and efficient pricing,
this is a serious weakness for these models. The main tool is therefore given by approximations
via asymptotic expansions, see e.g. [53, 14, 73], with the sole exception of the rough Heston
model [29]. A new yet very promising stream of literature is now focusing on signatures [43]:
this approach is universal in the sense that it approximates arbitrarily well all classical models.

The take-home lesson we should learn from the study of rough volatility is the following:

4



INTRODUCTION

despite being analytically tractable the Markovian framework is restrictive and allowing for
memory in the volatility dynamics can prove itself to be extremely beneficial in reproducing
most of market data stylised facts. In fact, implied volatility as well as future realised volatility
are conditioned by the asset price trajectories in the recent past and the assumption that this
should happen in a Markovian fashion, i.e. that the future should depend on the past only
through the present, is unjustified. Indeed, recent studies have shown that financial markets
reveal an evident path-dependent volatility pattern, see Guyon [86]. Another advantage of
this last approach lays in its natural ability to disclose volatility in a solely endogenous way:
no extra source of randomness is needed to generate a rich spot-vol dynamics. In turn, this
yields the uniqueness of the corresponding prices under the only risk neutral measure. Under
this approach, not just the current underlying asset prices but all the past ones store all the
information exchanged by market participants. As a consequence, the volatility dynamics and
the past asset returns are naturally linked and making the so-called Zumbach effect, see [142,
143, 44, 54, 78], reproducible.

Unquestionably, the natural setting for a volatility model is non Markovian. The use of a
fractional process to introduce memory, as in the rough volatility approach, has prove itself to
be a parsimonious and elegant way although lacking of analytical tractability. On the other
hand, the presence of memory can be taken into account by adopting a path dependent volatility
approach. These two approaches are deeply different and focus on different features of market
data but the crucial point is the will to correctly introduce a dependence on the past in the
volatility dynamics.

For a thorough literature review on rough volatility, respectively path dependent volatility,
we refer the reader to the introduction at the beginning of the corresponding chapter.

Structure of the Ph.D. thesis

Now, we present the structure of the thesis. As mentioned above, each chapter represents
a self-contained and autonomous paper. As a consequence, the notation changes chapter by
chapter. The order in which we decided to present the work is not chronological but it is not
casual either. Indeed, we begin by the most theoretical, namely a paper on a particular game
theoretical problem, to proceed then with the second one, that provides an application of the
so-called McKean-Vlasov games, to, finally, dive deeply into financial problems and associated
applications of numerical discretisation techniques with the last couple of works.

Chapter 1 is devoted to paper [26]. This paper is a joint collaboration with my supervisor
Prof. Markus Fischer and Prof. Luciano Campi (University of Milan). The paper was submitted
for publication in December 2022 and it is available on arXiv. We focus on correlated equilibria
(CE, in short) in game theory, which are a generalisation of Nash equilibria allowing for the
possibility of a correlation between the strategies of the players. We study these equilibria in the
context of 𝑁-player and mean field games, extending the results in [30] relaxing the hypothesis
that the strategies used by the players are restricted. This generalisation is highly non-trivial and
introduces several technical difficulties in the problem. In particular, we discuss the problem
of constructing approximate equilibria when deviating players have access to the aggregate
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system state. An explicit example of a correlated mean field game solution not of Nash-type
is provided as well. Finally, in the Appendix we present a direct proof for the existence of
correlated solutions in mean field games for the case in restricted strategies.

In Chapter 2 we present paper [4]. This paper, written in collaboration with my Ph.D.
co-supervisor Prof. Giorgia Callegaro and Profs. Renťe Aid (Université Paris Dauphine) and
Luciano Campi (University of Milan), deals with commodity market prices manipulation. It was
published in Applied Mathematics and Optimization in September 2022. We study a two-player
Linear-Quadratic McKean-Vlasov stochastic differential game in which an energy producer
affects the price dynamics of the good controlling drift and volatility of her production rate,
while a consumer manipulates the price through his consumption rate in a similar way. Using
methods based on the martingale optimality principle and BSDEs, we find a Nash equilibrium
and characterise the corresponding strategies and payoffs in semi-explicit form. Numerical
results are also provided.

Chapter 3 deals with paper [25]. This paper has been written in collaboration with Prof.
Giorgia Callegaro and Prof. Antoine Jacquier (Imperial College London). It was submitted in
July 2021 and its preliminary version is available on arXiv. It deals with a specific discretisation
technique in the paths space of stochastic processes, namely product functional quantization,
applied to the recent trendy field of rough processes. We focus, in particular, on the dis-
cretisation, in the trajectories space, of a family of Gaussian Volterra stochastic processes and
the possible applications to the pricing of derivatives on the VIX volatility index and realised
variance.

Finally, in Chapter 4 we discuss paper [27] which was submitted for publication in November
2022 and is available in the current version on arXiv. This project is a collaboration with Prof.
Antoine Jacquier and Ph.D. Chloé Lacombe (Morgan Stanley). We provide a thorough analysis
of the path-dependent volatility model introduced by Guyon in [86], proving existence and
uniqueness of a strong solution, characterising its behaviour at boundary points, providing
asymptotic closed-form option prices as well as deriving small-time behaviour estimates.
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Correlated equilibria for mean field games with progressive
strategies

If there is intelligent life on other planets, in a majority of them, they would have discovered
correlated equilibrium before Nash equilibrium.

Roger Myerson

This work is a joint collaboration with Prof. Luciano Campi and Prof. Markus Fischer. The
corresponding paper was submitted in December 2022 and it is available on arXiv. In a discrete
space and time framework, we study the mean field game limit for a class of symmetric 𝑁-
player games based on the notion of correlated equilibrium. We give a definition of correlated
solution that allows to construct approximate 𝑁-player correlated equilibria that are robust
with respect to progressive deviations. We illustrate our definition by way of an example with
explicit solutions. In the Appendix we display a detailed proof of chaos propagation as well as
a direct proof for the existence of solutions for the mean field game in restricted strategies.

1.1 Introduction

Building on [30], we consider correlated equilibria for a simple class of symmetric finite
horizon 𝑁-player games in discrete time and their natural mean field game counterpart as the
number of players 𝑁 goes to infinity.

MFGs is the acronym for mean field games and refers to a stream of literature in game theory
extremely popular nowadays whose origins are quite recent. Indeed, MFGs were introduced
nearly at the same time but independently by [99] and [115] in the mid 2000’s. In a nutshell,
MFGs are limit systems for symmetric stochastic 𝑁-player games with mean field interaction
for 𝑁 → ∞. Thanks to the mean field interaction among the players, a kind of law of large
numbers (known as propagation of chaos), one expects the empirical distribution of the players’
states to converge as 𝑁 →∞ to the law of some representative player. In the limit, the concept
of Nash equilibrium translates into a two-step solution where (i) the representative player reacts
optimally to the measure flow representing the distribution of the whole population, and (ii)
the latter arises as aggregation of all such identical players’ best responses at equilibrium. The
reader interested in a broad yet detailed overview on the topic from a probabilistic viewpoint
is referred to the two-volume book by Carmona and Delarue [33].

The connection between MFGs and their finite-player counterpart can be established in two
ways. Crucial is the choice of the type of strategies the players are allowed to play. On one hand, a
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solution to the MFG can be exploited in order to build approximate Nash equilibria for𝑁-player
games; see, e.g., [32, 81, 99]. Existence of solutions can be established under general assumptions
for various types of MFGs; see [110] and more recently [49]. On the other hand, approximate
𝑁-player Nash equilibria can be shown to converge to solutions of the corresponding MFG,
as 𝑁 → ∞. Cardaliaguet, Delarue, Lasry and Lions in [31] gave an important contribution
in this direction when the strategies are of closed loop type, exploiting the well-posedness of
the so-called master equation, which implies uniqueness of MFG solutions. Later, Lacker in
[111] was able to establish a general convergence result for non-degenerate diffusions, which he
subsequently extended to the common noise case in the joint article [112] with Le Flem.

Correlated equilibria were first introduced for many-player games by Robert Aumann, see
[10, 9]. His idea can be summarised in the following way: A correlation device or mediator (he)
picks a strategy profile according to some probability distribution which is common knowledge
among the players. Then, according to the selected profile, he privately suggests a strategy to
each player, meaning that each player only knows the recommendation provided to him by the
mediator. A correlated equilibrium (CE, for short) is a probability distribution on the space
of strategy profiles such that no player is willing to unilaterally deviate from the mediator’s
suggestion. We notice that, when the distribution used by the mediator to generate his recom-
mendations has a product form, then CE reduces to the usual notion of Nash equilibrium in
mixed strategies. Traffic lights in routing games provide an intuitive example of a mediator in
everyday life, e.g. [133, Section 13.1.4]. Other interpretations for such equilibria are available
in the literature, we refer the interested reader to, e.g., [11].

The notion of CE was originally introduced for static games with complete information and
it rapidly led to a massive research activity in game theory as well as in economic theory along
many directions. The survey [62] provides a thorough analysis on several aspects of the more
general notion of communication equilibrium within a wide range of games, such as stochastic
games and games with incomplete information. In particular, for stochastic games we also
refer to [136, 135, 137]. Many pleasant features of CE justify the scientific community interest
towards it, for instance the fact that it may lead to higher payoffs than Nash equilibria, its lower
computational complexity (see, e.g.,[80]), and also that CE are reachable by a wide range of
learning procedures (see [89]).

CE in mean field games where first studied in [30], where the authors established approxima-
tion and convergence results for a class of symmetric finite horizon games in restricted strategies.
After [30] two more papers on correlated equilibria in mean field games appeared, by Paul
Müller and co-authors [126, 125], whose setting is very close to ours. Indeed, they, too, consider
discrete time games with finite state and action spaces. The mean field interaction is modeled
in the 𝑁-player games via the empirical measure of players’ states. Players’ strategies depend
only on the player’s individual states in a Markovian fashion. We stress that their definition of
correlated equilibrium is different from the one we give in [30]. In particular, it does not require
any explicit consistency condition for the flow of measures, which is obtained as a consequence
of their definition. Nonetheless the most recent paper [125] has an interesting discussion on
how to pass from our definition in [30] to theirs and vice-versa. Lastly, big parts of those papers
are devoted to more computational issues focusing on learning algorithms approximating the
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equilibria.

Here, we consider correlated equilibria for a simple class of symmetric finite horizon 𝑁-
player games and their natural MFG counterpart as 𝑁 → ∞. In the 𝑁-player setting, the state
variables evolve in discrete time, both state space and the set of control actions are finite. The
mediator recommends restricted strategies to the players, that is, feedback strategies that depend
only on time and the corresponding individual state variable. This is the same framework as
in [30]. As opposed to that work, and also to [126, 125], the deviating player is allowed to
use (randomised) progressive strategies, that is, strategies that depend on the evolution of the
entire system state up to current time; see Remark 1.4.4 below. We stress that the possibility for
the players to deviate by playing progressive strategies make the analysis and the proofs much
more delicate than in [30]. Our main results can be summarised as follows:

- We extend the notion of correlated solution for a mean field game to allow for progressive
deviations. Two formulations are presented, one based on closed-loop controls, the other
on stochastic open-loop controls.

- Starting from suitable correlated MFG solutions, we construct approximate 𝑁-player
correlated equilibria that are robust against progressive deviations.

- We provide an explicit example for a mean field game possessing correlated solutions
against progressive deviations that have non-deterministic flows of measures and satisfy
all conditions of the approximation result.

The rest of the paper is structured as follows. In Section 1.2, we introduce the notation
and state some preliminary definitions. In Section 1.3, we describe the underlying 𝑁-player
games and give the definition of (approximate) correlated equilibrium against progressive
deviations. Section 1.4 is dedicated to the corresponding mean field game. Correlated MFG
solutions are first defined in feedback strategies with deviations that may directly depend on the
possibly random flow of measures. In Section 1.5 we give an alternative definition of correlated
MFG solution in stochastic open-loop strategies and establish an equivalence between the two
formulations. Our main result is given in Section 1.6, where we show that suitable correlated
MFG solutions yield approximate correlated solutions for the 𝑁-player game. An example of a
correlated MFG with explicit solutions satisfying the assumptions of our approximation result
is provided in Section 1.7. In Appendix 1.A, we collect some auxiliary results related to chaos
propagation and in Appendix 1.B we provide a direct proof for the existence of solutions in
restricted strategies.

1.2 Preliminaries and notation

We denote with [[𝑚, 𝑀]] the set of natural numbers greater or equal to 𝑚 and lower or
equal to 𝑀, namely we set [[𝑚, 𝑀]] := {𝑚, 𝑚 + 1, . . . , 𝑀 − 1, 𝑀}. A given (𝑇 + 1)-dimensional
vector, (𝑥0 , . . . , 𝑥𝑇), will be denoted with (𝑥𝑡)𝑇𝑡=0 or just by 𝑥 when its indices are clear from
the context. Then, the (𝑡 + 1)-dimensional vector of its first 𝑡 + 1 components is denoted with
𝑥(𝑡) := (𝑥0 , 𝑥1 , . . . , 𝑥𝑡). Similarly, for a 𝑇-dimensional vector, (𝑥1 , . . . , 𝑥𝑇), we introduce the
notation (𝑥𝑡)𝑇𝑡=1 (just 𝑥 when the context is clear), and the 𝑡-dimensional vector of its first 𝑡
components is denoted with 𝑥(𝑡) := (𝑥1 , . . . , 𝑥𝑡). Finally, let us fix a notation that is useful in
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the following. Let (Ω, ℱ , P) be a complete probability space supporting a (X ,ℬ(X))-valued
random variable, 𝑋.

We consider the (discrete) time frame [[0, 𝑇]], with finite final time 𝑇 ∈ N. The individual
states and the control actions lie in non-empty finite sets X and Γ, respectively. We mostly deal
with finite sets and the sets of probability measures on them. Throughout the whole paper
these sets are equipped with the discrete metric and the metric dist(·, ·), respectively, making
them Polish spaces. The metric dist(·, ·) on the set P(𝐸) of probability measures over a finite set
𝐸 is defined as follows. For 𝜇, �̃� ∈ P(𝐸), set

dist(𝜇, �̃�) := 1
2

∑
𝑒∈𝐸
|𝜇(𝑒) − �̃�(𝑒)|.

Notice that this metric is compatible with the weak convergence topology and, for measures
over finite sets, weak convergence is equivalent to the convergence in total variation. The set
Z = [0, 1] is the space of noise states. All the variables representing idiosyncratic noise are
distributed according to 𝜈, uniform distribution onZ = [0, 1].

The one-step individual state dynamics is given by the following system function:

Ψ : [[0, 𝑇 − 1]] × X × P(X) × Γ ×Z −→ X.

The running costs are specified through a function:

𝑓 : [[0, 𝑇 − 1]] × X × P(X) × Γ −→ R.

The terminal costs are described by the following function:

𝐹 : X × P(X) −→ R.

Consider the product space [[0, 𝑇 − 1]] × X × P(X)𝑇 . We equip this space with the product
topology with respect to the topologies defined on each space, that are, respectively, discrete
topology for [[0, 𝑇 − 1]] and X, since they are finite sets, and the topology of weak convergence
for the space P(X). Then, on the space [[0, 𝑇 − 1]] × X × P(X)𝑇 , we consider the 𝜎-algebra:

ℬ ([[0, 𝑇 − 1]] × X × P(X)𝑇 ) = ℬ([[0, 𝑇 − 1]]) ⊗ ℬ(X) ⊗ ℬ(P(X)𝑇)
= 2[[0,𝑇−1]] ⊗ 2X ⊗ ℬ(P(X))𝑇 ,

where 2𝐸 denotes the power set of a finite set 𝐸. Notice that ℬ(P(X)) is the Borel 𝜎-algebra
induced by the topology of weak convergence, that in our case, where the state spaceX is finite,
coincides with the one induced by the metric dist(·, ·), on P(X). On the finite set Γ we consider
the discrete topology and its Borel 𝜎-algebra.

Let us define ℛ̂, the set of progressive feedback strategies:

ℛ̂ :=
{
𝜑 : [[0, 𝑇 − 1]] × X𝑇 × P(X)𝑇 −→ Γ, 𝜑 progressively measurable

}
.

As it is used several times in the following, we introduce another set of feedback strategies.
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It corresponds to the Markov strategies that depend only on the individual player’s state, see
restricted strategies in [30]:

ℛ :=
{
𝜑 : [[0, 𝑇 − 1]] × X −→ Γ

}
.

This space is equipped, as all finite sets in this paper, with the discrete topology. Notice that we
have the natural inclusion ℛ ⊂ ℛ̂, and ℛ is compact since it is finite.
Furthermore, for convenience of notation, for each 𝑡 ∈ [[0, 𝑇 − 1]], we set

ℰ̂𝑡 :=
{
𝜑 : X𝑡+1 × P(X)𝑡+1 −→ Γ, 𝜑 Borel-measurable

}
,

ℰ̂(𝑡) :=
{
𝜑 : [[0, 𝑡]] × X𝑡+1 × P(X)𝑡+1 −→ Γ, 𝜑 progressively measurable

}
,

and the corresponding restricted quantities

ℰ𝑡 = ℰ :=
{
𝜑 : X −→ Γ, 𝜑 Borel-measurable

}
,

ℰ(𝑡) = ℰ𝑡 :=
{
𝜑 : [[0, 𝑡]] × X −→ Γ, 𝜑 Borel-measurable

}
.

When considering the 𝑁-player game, the set of progressively measurable feedback strate-
gies corresponds to the following subset of ℛ̂

ℛ̂𝑁 :=
{
𝜑 : [[0, 𝑇 − 1]] × X𝑇 × (ℳX𝑁 )

𝑇 −→ Γ, 𝜑 progressively measurable
}
,

where ℳX𝑁 := {𝑚 ∈ P(X) : for any 𝑥 ∈ X , 𝑚(𝑥) = 𝑘
𝑁 , 𝑘 ∈ [[0, 𝑁]]} is the set of empirical

measures of 𝑁-samples. Notice that the set ℛ̂𝑁 is finite. Indeed this is a consequence of the
finiteness of ℳX𝑁 , whose cardinality is (𝑁+|X|−1)!

𝑁 !(|X|−1)! . Thus, we endow this set with the discrete
topology. Analogously to what is done above, we set

ℰ̂𝑡 ,𝑁 :=
{
𝜑 : X𝑡+1 × (ℳX𝑁 )

𝑡+1 −→ Γ, 𝜑 Borel-measurable
}
,

ℰ̂(𝑡)𝑁 :=
{
𝜑 : [[0, 𝑡]] × X𝑡+1 × (ℳX𝑁 )

𝑡+1 −→ Γ, 𝜑 progressively measurable
}
.

Finally, set

D := {𝑤 : ℛ → ℛ}, D̂ := {𝑤 : ℛ̂ → ℛ̂},

which are respectively the sets of restricted and not strategies modifications. Notice again that
the former set is clearly finite and the latter, when restricted to the 𝑁-player game, is finite and
denoted by

D̂𝑁 := {𝑤 : ℛ̂𝑁 → ℛ̂𝑁 }.

In the following we make extensive use of the concepts of regular conditional distribution
and probability kernel, for which we refer to [105]. For all 𝑁 ∈ N, we define the set of flows of
kernels

K𝑁 := {𝛽 = (𝛽𝑡)𝑇−1
𝑡=0 : 𝛽𝑡 probability kernel from (ℛ̂𝑁 ,ℬ(ℛ̂𝑁 )) to (ℰ̂𝑡 ,𝑁 ,ℬ(ℰ̂𝑡 ,𝑁 )),
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for all 𝑡 ∈ [[0, 𝑇]]}.

We can provide a natural interpretation for a flow of kernels 𝛽 ∈ K𝑁 in our context. It represents
some procedure through which players in the 𝑁-player game select their strategies. Indeed, a
player receives a ℛ̂𝑁 -valued suggestion from the mediator at the beginning of the game and
then, at each time step 𝑡 ∈ [[0, 𝑇 − 1]], determines his ℰ̂𝑡 ,𝑁 -valued strategy as a function of the
suggestion received and an additional independent randomisation factor (e.g. tossing a coin).

Finally, in the following, all 𝜎-algebras and filtrations are assumed to be completed w.r.t.
P-null sets.

1.3 The N-player game

Consider a fixed number of players, 𝑁 ∈ N, and let 𝔪𝑁 ∈ P(X𝑁 ) represent the initial
distribution of the 𝑁-player system. For any probability distribution 𝛾 ∈ P(ℛ̂𝑁 ), we define the
setN𝑁

𝛾 as

N𝑁
𝛾 :=

{
�̃� ∈ P(ℛ̂𝑁 × ℛ̂𝑁 ) : �̃�(d𝜑, d𝜓) = 𝛽0(𝜑, d𝜓0) . . . 𝛽𝑇−1(𝜑, d𝜓𝑇−1)𝛾(d𝜑),
for some 𝛽 = (𝛽𝑡)𝑇−1

𝑡=0 ∈ K𝑁
}
.

where, for all 𝑡 ∈ [[0, 𝑇 − 1]], 𝜓𝑡 is the short form for 𝜓(𝑡 , ·, ·). The elements of N𝑁
𝛾 represent

the joint distribution of the mediator’s suggestion and players’ strategy choices. In particular,
if �̃� ∈ N𝑁

𝛾 , then the first marginal of �̃� equals 𝛾.
Finally, for a probability distribution 𝛾𝑁 ∈ P(ℛ̂𝑁𝑁 ), we denote its 𝑖-th marginal by

𝛾𝑁𝑖 (·) := 𝛾𝑁 (ℛ̂𝑁 × · · · × · × · · · × ℛ̂𝑁 ),

where · on the right-hand side above occupies the 𝑖-th coordinate.

Definition 1.3.1. We call correlated suggestion any probability distribution 𝛾𝑁 ∈ P(ℛ̂𝑁𝑁 ). Then,
consider a probability distribution �̃� ∈ N𝑁

𝛾𝑁𝑖
and call it a strategy modification for the 𝑖-th player. Let

(Ω𝑁 , ℱ𝑁 , P𝑁 ) be a complete probability space carryingX-valued random variables (𝑋1,𝑁
𝑡 , . . . , 𝑋𝑁,𝑁

𝑡 )𝑇𝑡=0,
ℛ̂𝑁 -valued random variables Φ1 , . . . ,Φ𝑁 , Φ̃𝑖 , andZ-valued random variables (𝜉1,𝑁

𝑡 , . . . , 𝜉𝑁,𝑁𝑡 )𝑇𝑡=1 and
(𝜗𝑡)𝑇−1

𝑡=0 such that the following properties hold:

i) P𝑁 ◦ (𝑋1,𝑁
0 , . . . , 𝑋𝑁,𝑁

0 )−1 = 𝔪𝑁 ;
P𝑁 ◦ (Φ1 , . . . ,Φ𝑁 )−1 = 𝛾𝑁 ;

ii) (𝜉1,𝑁
𝑡 , . . . , 𝜉𝑁,𝑁𝑡 )𝑇𝑡=1 are i.i.d. all distributed according to 𝜈;

iii) (𝜗𝑡)𝑇−1
𝑡=0 are i.i.d. all distributed according to 𝜈;

iv) (𝜉1,𝑁
𝑡 , . . . , 𝜉𝑁,𝑁𝑡 )𝑇𝑡=1, (𝑋 𝑗 ,𝑁

0 )𝑁𝑗=1, (𝜗𝑡)𝑇−1
𝑡=0 , and (Φ𝑗)𝑁𝑗=1 are independent;

v) P ◦ (Φ𝑖 , Φ̃𝑖)−1 = �̃� and, for any 𝑡 ∈ [[0, 𝑇 − 1]], Φ̃𝑖(𝑡 , ·, ·) is 𝜎(Φ𝑖 , 𝜗𝑡)-measurable;
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vi) for any 𝑡 ∈ [[0, 𝑇 − 1]],

𝑋 𝑖 ,𝑁
𝑡+1 = Ψ

(
𝑡 , 𝑋 𝑖,𝑁

𝑡 , 𝜇𝑖,𝑁𝑡 , Φ̃𝑖(𝑡 , 𝑋 𝑖,𝑁 , 𝜇𝑖,𝑁 ), 𝜉𝑖,𝑁𝑡+1

)
,

𝑋 𝑗,𝑁
𝑡+1 = Ψ

(
𝑡 , 𝑋 𝑗 ,𝑁

𝑡 , 𝜇𝑗 ,𝑁𝑡 ,Φ𝑗(𝑡 , 𝑋 𝑗,𝑁 , 𝜇𝑗,𝑁 ), 𝜉 𝑗 ,𝑁𝑡+1

)
, 𝑗 ≠ 𝑖, P𝑁 -a.s.,

where 𝜇𝑙,𝑁𝑡 denotes the empirical measure of all 𝑁 players’ states but the 𝑙-th,
i.e. 𝜇𝑙 ,𝑁𝑡 := 1

𝑁−1
∑𝑁
𝑗=1, 𝑗≠𝑙 𝛿𝑋 𝑗 ,𝑁

𝑡
, and 𝜇𝑙 ,𝑁 := (𝜇𝑙,𝑁𝑡 )𝑇𝑡=0 ∈ P(X)𝑇+1 .

Any tuple ((Ω𝑁 , ℱ𝑁 , P𝑁 ), (Φ𝑗)𝑁𝑗=1 , (𝜗𝑡)𝑇−1
𝑡=0 , (𝜉1,𝑁

𝑡 , . . . , 𝜉𝑁,𝑁𝑡 )𝑇𝑡=1 , Φ̃𝑖 , (𝑋1,𝑁
𝑡 , . . . , 𝑋𝑁,𝑁

𝑡 )𝑇𝑡=0) satisfy-
ing the conditions above is called a realisation of the triple (𝔪𝑁 , 𝛾𝑁 , �̃�) for player 𝑖 ∈ [[1, 𝑁]].

The correlated suggestion 𝛾𝑁 represents the known distribution, over the product set of the
players’ strategies, according to which the mediator gives his recommendations to the players,
while �̃� represents the strategy modification for the deviating 𝑖-th player, encoded as the joint
distribution of the suggestion received and the strategy he is actually taking into action. The
fact that, for any 𝑡 ∈ [[0, 𝑇 − 1]], Φ̃𝑖(𝑡 , ·, ·) is 𝜎(Φ𝑖 , 𝜗𝑡)-measurable yields that, at any time instant
𝑡 ∈ [[0, 𝑇 − 1]], the 𝑖𝑡ℎ player can exploit an (independent) randomisation device to choose the
strategy that he actually implements.

Remark 1.3.2. Notice that, for any 𝑤 ∈ D̂𝑁 , given a sequence of suggestions (Φ𝑗)𝑁𝑗=1, Φ̃𝑖 = 𝑤(Φ𝑖)
satisfies assumption v) in Definition 1.3.1, with 𝜎(Φ̃𝑖(𝑡 , ·, ·)) ⊂ 𝜎(Φ𝑖) and P ◦ (Φ𝑖 , Φ̃𝑖)(d𝜑, d𝜓) =
𝛿𝑤(𝜑)(d𝜓)𝛾𝑁𝑖 (d𝜑).
Remark 1.3.3. We make the following useful remarks concerning (conditional) independence properties
of a realisation.

i) Notice that the following inclusion of 𝜎-algebras holds 𝜎(Φ̃𝑖) ⊆ 𝜎((𝜗𝑡)𝑇−1
𝑡=0 ,Φ𝑖), by definition.

Indeed, we have

𝜎(Φ̃𝑖) = 𝜎((Φ̃𝑖(𝑡 , ·, ·))𝑇−1
𝑡=0 ) =

∨
𝑡∈[[0,𝑇−1]]

𝜎(Φ̃𝑖(𝑡 , ·, ·)) ⊆
∨

𝑡∈[[0,𝑇−1]]
𝜎(Φ𝑖 , 𝜗𝑡) = 𝜎(Φ𝑖 , (𝜗𝑡)𝑇−1

𝑡=0 ),

The identities above hold since, for all 𝑡 ∈ [[0, 𝑇 − 1]], ℰ̂𝑡 ,𝑁 are equipped with discrete topology
(making them Polish spaces) so the Borel 𝜎-algebra of the product space ℛ̂𝑁 coincides with the
product of the Borel 𝜎-algebras of ℰ̂𝑡 ,𝑁 . Thus, the 𝜎-algebra generated by a ℛ̂𝑁 -valued r.v.
coincides with the one generated by its components in ℰ̂𝑡 ,𝑁 .

ii) Notice that the assumptions in Definition 1.3.1, in particular iv) and v), imply that for a realisation
of (𝔪𝑁 , 𝛾𝑁 , �̃�) as above

(𝜉1,𝑁
𝑡 , . . . , 𝜉𝑁,𝑁𝑡 )𝑇𝑡=1 , (𝑋 𝑗 ,𝑁

0 )𝑁𝑗=1 and (Φ̃𝑖 , (Φ𝑗)𝑁𝑗=1)) are independent.

In fact, by v), 𝜎(Φ̃𝑖 , (Φ𝑗)𝑁𝑗=1)) ⊆ 𝜎((𝜗𝑡)𝑇−1
𝑡=0 , (Φ𝑗)𝑁𝑗=1) and the 𝜎-algebras 𝜎((𝜗𝑡)𝑇−1

𝑡=0 , (Φ𝑗)𝑁𝑗=1),
𝜎((𝜉1,𝑁

𝑡 , . . . , 𝜉𝑁,𝑁𝑡 )𝑇𝑡=1) and 𝜎((𝑋 𝑗,𝑁
0 )𝑁𝑗=1) are independent by iv).

iii) For a realisation of (𝔪𝑁 , 𝛾𝑁 , �̃�), as above,

(Φ𝑗)𝑁𝑗=1 and Φ̃𝑖 are conditionally independent given Φ𝑖 .

We notice that (Φ𝑗)𝑗 := (Φ𝑗)𝑁𝑗=1 and 𝜗 := (𝜗𝑡)𝑇−1
𝑡=0 are conditionally independent given Φ𝑖 . Indeed,

given 𝐴 ∈ ℬ(ℛ̂𝑁𝑁 ), 𝐵 ∈ ℬ(Z𝑇+1), we have, P𝑁 -a.s.,

E𝑁 [1𝐴((Φ𝑗)𝑗)1𝐵(𝜗)|Φ𝑖] = E𝑁 [E𝑁 [1𝐴((Φ𝑗)𝑗)1𝐵(𝜗)|(Φ1 , . . . ,Φ𝑁 )]|Φ𝑖]
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1.3. THE N-PLAYER GAME

= E𝑁 [1𝐴((Φ𝑗)𝑗)E𝑁 [1𝐵(𝜗)|(Φ1 , . . . ,Φ𝑁 )]|Φ𝑖]
= E𝑁 [1𝐴((Φ𝑗)𝑗)E𝑁 [1𝐵(𝜗)]|Φ𝑖] = E𝑁 [1𝐵(𝜗)]E𝑁 [1𝐴((Φ𝑗)𝑗)|Φ𝑖]
= E𝑁 [1𝐵(𝜗)|Φ𝑖]E𝑁 [1𝐴((Φ𝑗)𝑗)|Φ𝑖].

Then, for arbitrary sets 𝐴 ∈ ℬ(ℛ̂𝑁𝑁 ), 𝐵 ∈ ℬ(ℛ̂𝑁 ), exploiting iv) and v) and the conditional
independence showed above, we see, P𝑁 -a.s.,

E𝑁 [1𝐴((Φ𝑗)𝑗)1𝐵(Φ̃𝑖)|Φ𝑖] = E𝑁 [E𝑁 [1𝐴((Φ𝑗)𝑗)1𝐵(Φ̃𝑖)|𝜎(𝜗,Φ𝑖)]|Φ𝑖]
= E𝑁 [1𝐵(Φ̃𝑖)E𝑁 [1𝐴((Φ𝑗)𝑗)|𝜎(𝜗,Φ𝑖)]|Φ𝑖]
= E𝑁 [1𝐵(Φ̃𝑖)E𝑁 [1𝐴((Φ𝑗)𝑗)|Φ𝑖]|Φ𝑖]
= E𝑁 [1𝐵(Φ̃𝑖)|Φ𝑖]E𝑁 [1𝐴((Φ𝑗)𝑗)|Φ𝑖]
= E𝑁 [1𝐵(Φ̃𝑖)|Φ𝑖]E𝑁 [1𝐴((Φ𝑗)𝑗)|Φ𝑖].

Remark 1.3.4. There is a strategy modification of particular interest for every correlated suggestion and
every player. It reflects the case in which the player 𝑖, as all the other players, follows the suggestion he
is given by the mediator. Exploiting the definition of realisation of a certain triple, this corresponds to
Φ𝑖 = Φ̃𝑖 , P𝑁 -a.s.. In particular, let P𝑁 ◦Φ−1

𝑖 = 𝛾, we have

P𝑁 ◦ (Φ𝑖 , Φ̃𝑖)−1(d𝜑, d𝜓) = P𝑁 ◦ (Φ𝑖 ,Φ𝑖)−1(d𝜑, d𝜓) = 𝛿𝜑(d𝜓)𝛾(d𝜑).

We denote this special strategy modification with 𝜄𝛾 ∈ N𝑁
𝛾 .

Notice that property v) is obviously satisfied in this case and, viceversa, for a realisation of the triple
(𝔪𝑁 , 𝛾𝑁 , 𝜄𝛾𝑁𝑖 ), we have Φ𝑖 = Φ̃𝑖 , P𝑁 -a.s. and Φ̃𝑖(𝑡 , ·, ·) is 𝜎(Φ𝑖 , 𝜗𝑡)-measurable, for any 𝑡 ∈ [[0, 𝑇 − 1]].

We associate to each triple (𝔪𝑁 , 𝛾𝑁 , �̃�) ∈ P(X𝑁 ) × P(ℛ̂𝑁𝑁 ) × P(ℛ̂𝑁 × ℛ̂𝑁 ) a cost functional
for player 𝑖, through the following expression that exploits the concept of realisation:

𝐽𝑁𝑖 (𝔪𝑁 , 𝛾𝑁 , �̃�) := E

[
𝑇−1∑
𝑡=0

𝑓
(
𝑡 , 𝑋 𝑖,𝑁

𝑡 , 𝜇𝑖,𝑁𝑡 , Φ̃𝑖
(
𝑡 , 𝑋 𝑖,𝑁 , 𝜇𝑖,𝑁

) ) + 𝐹 (
𝑋 𝑖 ,𝑁
𝑇 , 𝜇𝑖 ,𝑁𝑇

)]
.

By construction, the right-hand side of (1.3) does not depend on the particular realisation
but only on (𝔪𝑁 , 𝛾𝑁 , �̃�). Indeed, �̃� ∈ N𝑁

𝛾𝑁𝑖
yields

�̃�(d𝜑, d𝜓) = 𝛽𝑁0 (𝜑(0) , d𝜓0) . . . 𝛽𝑁𝑇 (𝜑(𝑇) , d𝜓𝑇)(𝛾𝑁𝑖 )(d𝜑),

for some 𝛽𝑁 = (𝛽𝑁𝑡 )𝑡∈[[0,𝑇]] ∈ K𝑁 . Thus, the cost functional above is well-posed and we write

𝐽𝑁𝑖 (𝔪𝑁 , 𝛾𝑁 , �̃�)
=

∫
X𝑁

∫
Z𝑁𝑇

∫
ℛ̂𝑁𝑁

∫
ℰ̂0,𝑁

. . .
∫
ℰ̂𝑇,𝑁

𝐺𝑁 (𝑥1 , . . . , 𝑥𝑁 , 𝜑0 , . . . , 𝜑𝑇−1 , 𝑢1 , . . . , 𝑢𝑁 , 𝑧1 , . . . , 𝑧𝑁𝑇)

𝛽𝑁𝑇 (𝑢𝑖 , d𝜑𝑇) · · · 𝛽𝑁0 (𝑢𝑖 , d𝜑0)𝛾𝑁 (d𝑢1 , . . . , d𝑢𝑁 )𝜈⊗𝑁𝑇(d𝑧1 , . . . , d𝑧𝑁𝑇)𝔪⊗𝑁0 (d𝑥1 , . . . , d𝑥𝑁 ),

for some measurable function 𝐺𝑁 : X𝑁 × ℰ̂0,𝑁 × . . . × ℰ̂𝑇−1,𝑁 × ℛ̂𝑁𝑁 ×Z𝑁𝑇 → R.
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CHAPTER 1. CORRELATED EQUILIBRIA FOR MFGS WITH PROGRESSIVE STRATEGIES

Since, for each 𝑖 ∈ [[1, 𝑁]], the functional 𝐽𝑁𝑖 (·) represents the costs that player 𝑖 faces, his aim
is to minimise it. As natural when dealing with several players, we deal with an equilibrium
concept for optimality.

Definition 1.3.5. Let 𝜀 ≥ 0. We call a distribution 𝛾𝑁 ∈ P(ℛ̂𝑁𝑁 ) an 𝜀-correlated equilibrium with
initial distribution 𝔪𝑁 ∈ P(X𝑁 ) if we have

𝐽𝑁𝑖 (𝔪𝑁 , 𝛾𝑁 , 𝜄𝛾𝑁𝑖 ) ≤ 𝐽
𝑁
𝑖 (𝔪𝑁 , 𝛾𝑁 , �̃�) + 𝜀,

for every player 𝑖 ∈ [[1, 𝑁]] and every strategy modification �̃� ∈ N𝛾𝑁𝑖
.

In particular, we call 𝛾𝑁 a correlated equilibrium, denoted by CE, if 𝜀 = 0.

Definition 1.3.5 is in line with the notion of correlated equilibrium present in the literature.
We stress that, here, the deviating player has access to the entire history of the system and, in
addition, is allowed to use a randomisation device.

1.4 The mean field game

Let 𝔪0 ∈ P(X) be the initial distribution of our mean field system. In this model there is
only one representative player in the mean field game because of the symmetry in the 𝑁-player
game.

Definition 1.4.1. Let 𝜌 ∈ P (ℛ × P(X)𝑇+1) and call it a correlated suggestion. Call strategy
modification a function 𝑤 ∈ D̂. Then, let (Ω, ℱ , P) be a probability space supporting X-valued
process (𝑋𝑡)𝑇𝑡=0, an ℛ-valued random variable Φ, a P(X)𝑇+1 -valued random variable 𝜇 and Z-valued
random variables (𝜉𝑡)𝑇𝑡=1, such that the following properties hold:

i) P ◦ 𝑋−1
0 = 𝔪0;

ii) P ◦ (Φ, (𝜇𝑡)𝑇𝑡=0)−1 = 𝜌;

iii) (𝜉𝑡)𝑇𝑡=1 are i.i.d. all distributed according to 𝜈;

iv) (𝜉𝑡)𝑇𝑡=1, 𝑋0 and (Φ, (𝜇𝑡)𝑇𝑡=0) are independent;

v) the evolution of (𝑋𝑡)𝑇𝑡=0 follows this dynamics: for any 𝑡 ∈ [[0, 𝑇 − 1]],
𝑋𝑡+1 = Ψ

(
𝑡 , 𝑋𝑡 , 𝜇𝑡 , 𝑤 ◦Φ(𝑡 , 𝑋, 𝜇), 𝜉𝑡+1

)
, P-a.s.. (1.4.1)

We call any tuple
((Ω, ℱ , P),Φ, (𝜇𝑡)𝑇𝑡=0 , 𝑋0 , (𝜉𝑡)𝑇𝑡=1 , 𝑤, (𝑋𝑡)𝑇𝑡=0

)
satisfying the conditions above a

realisation of the triple (𝔪0 , 𝜌, �̃�).
The strategy modification 𝑤 represents how the representative player decides to deviate

from the suggestion he was given. Notice that, contrary to the 𝑁-player game where the 𝑖𝑡ℎ

player can exploit a randomisation device when selecting the strategy to put in action, the choice
here is a deterministic functional of the suggestion, Φ, provided by the mediator.

Remark 1.4.2. As for the 𝑁-player game, we can characterise the form of a realisation for the case in
which the representative player follows the suggestion provided to him.
This is the case when the function 𝑤 is just the identity. Indeed, we have 𝑤 ◦ 𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡)) = 𝜑(𝑡 , 𝑥𝑡),
for each 𝑡 ∈ [[0, 𝑇 − 1]] and 𝜑 ∈ ℛ. We call this special modification 𝜄.
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1.4. THE MEAN FIELD GAME

The player in the mean field game faces costs associated to the triple (𝔪0 , 𝜌, 𝑤) ∈ P(X) ×
P (ℛ × P(X)𝑇+1) × D̂ that are given by

𝐽(𝔪0 , 𝜌, 𝑤) := E

[
𝑇−1∑
𝑡=0

𝑓
(
𝑡 , 𝑋𝑡 , 𝜇𝑡 , 𝑤 ◦Φ(𝑡 , 𝑋(𝑡) , 𝜇(𝑡))

)
+ 𝐹 (

𝑋𝑇 , 𝜇𝑇
) ]
.

As noticed for the 𝑁-player game, we highlight that the cost functional above is well defined
since the right-hand side does not depend on the realisation considered but only on (𝔪0 , 𝜌, 𝑤),
and we may write

𝐽(𝔪0 , 𝜌, 𝑤) =
∫
X

∫
Z𝑇

∫
ℛ×P(X)𝑇+1

𝐺𝑤(𝑥, 𝜑, 𝑧, 𝑚)𝜌(d𝜑, d𝑚)𝜈⊗𝑇(d𝑧)𝔪0(d𝑥),

for some function 𝐺𝑤 : X × ℛ ×Z𝑇 × P(X)𝑇+1 → R.
Definition 1.4.3. We say that 𝜌 ∈ P (ℛ × P(X)𝑇+1) is a correlated solution for the mean field
game with initial distribution 𝔪0 ∈ P(X), if the following two conditions hold:

(Opt) For each strategy modification 𝑤 ∈ D̂,
𝐽(𝔪0 , 𝜌, 𝜄) ≤ 𝐽(𝔪0 , 𝜌, 𝑤).

(Con) For any realisation of (𝔪0 , 𝜌, 𝜄), namely
((Ω, ℱ , P) ,Φ, (𝜇𝑡)𝑇𝑡=0 , 𝑋0 , (𝜉𝑡)𝑇𝑡=1 , 𝜄, (𝑋𝑡)𝑇𝑡=0), setting

ℱ 𝜇 := 𝜎
((𝜇𝑡)𝑇𝑡=0

)
, we have

𝜇𝑡(·) = P(𝑋𝑡 ∈ · |ℱ 𝜇), 𝑡 ∈ [[0, 𝑇]].

The first condition above is called optimality condition, the second is called consistency condi-
tion.

Remark 1.4.4. A correlated solution according to Definition 1.4.3 is an element ofP (ℛ×P(X)𝑇+1) . The
mediator thus suggests to play strategies that depend only on time and the representative player’s current
state (Markov open-loop or restricted strategies as in [30]). By the optimality condition, following the
mediator’s recommendations in those restricted strategies has to be optimal against progressive deviations,
that is, strategies that may depend on the entire history of state and flow of measures up to current time.
More precisely, if the representative player decides to deviate, then she chooses a strategy modification
𝑤 (not equal to the identity on ℛ) that takes a (restricted) strategy recommended by the mediator and
transforms it into a progressive feedback strategy, which is then applied to generate the state dynamics;
see Equation (1.4.1).

Remark 1.4.5. In the consistency condition of Definition 1.4.3, we take conditional distribution with
respect to ℱ 𝜇, the 𝜎-algebra generated by the entire flow of measures 𝜇 (up to terminal time 𝑇). This
implies the generally weaker condition

𝜇𝑡(·) = P(𝑋𝑡 ∈ · |ℱ 𝜇
𝑡 ), 𝑡 ∈ [[0, 𝑇]], (1.4.2)

where ℱ 𝜇
𝑡 := 𝜎

((𝜇𝑠)𝑡𝑠=0
)

is the 𝜎-algebra generated by the flow of measures 𝜇 up to time 𝑡. The intuition
behind conditioning on the entire flow of measures is the following. In choosing a correlated equilibrium,
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CHAPTER 1. CORRELATED EQUILIBRIA FOR MFGS WITH PROGRESSIVE STRATEGIES

the mediator wants to induce a certain behavior of the population. That behavior is represented by the
flow of measures 𝜇. In equilibrium, the representative player accepts the mediator’s recommendations.
But those recommendations are potentially correlated with the flow of measures up to terminal time. As a
consequence, the player’s state 𝑋𝑡 at any intermediate time 𝑡 can be correlated with the flow of measures 𝜇
also at future times. In order to reproduce the population behavior given by 𝜇, the representative player’s
state must therefore satisfy the consistency condition according to (Con), not just (1.4.2). For further
discussion also see Remark 4.2 in [30].

1.5 The mean field game in open-loop strategies

Now, we formalise an alternative structure for the mean field game, extending the class of
admissible control policies. We then prove in Section 1.5.2 that, under a mild assumption on
the form of the correlated solution 𝜌, the value of the MFG remains the same.

1.5.1 The definition of the MFG in open-loop strategies

Let 𝔪0 ∈ P(X) be the initial distribution of the mean field system.

Definition 1.5.1. Let 𝜌 ∈ P (ℛ × P(X)𝑇+1) .
A tuple ((Ω, ℱ , P), {G𝑡}𝑇−1

𝑡=0 , Φ, (𝜇𝑡)𝑇𝑡=0 , 𝑋0 , (𝜉𝑡)𝑇𝑡=1 , (𝑢𝑡)𝑇−1
𝑡=0 ) is said to be an open-loop control policy

(open-loop strategy) if (Ω, ℱ , P) is a complete probability space supportingX-valued random variables
𝑋𝑡 , 𝑡 ∈ [[0, 𝑇]], anℛ-valued random variableΦ, aP(X)𝑇+1 -valued random variable𝜇,Z-valued random
variables (𝜉𝑡)𝑇𝑡=1 and Γ-valued random variables 𝑢𝑡 , 𝑡 ∈ [[0, 𝑇 − 1]], and {G𝑡}𝑇−1

𝑡=0 is a complete filtration
such that

i) P ◦ (𝑋0)−1 = 𝔪0;

ii) P ◦ (Φ, (𝜇𝑡)𝑇𝑡=0)−1 = 𝜌;

iii) (𝜉𝑡)𝑇𝑡=1 are i.i.d. all distributed according 𝜈;

iv) (𝜉𝑡)𝑇𝑡=1, 𝑋0 and (Φ, (𝜇𝑡)𝑇𝑡=0) are independent;

iv’) for each 𝑡 ∈ [[0, 𝑇 − 1]]:

– 𝜉𝑡 is G𝑡-measurable and 𝜉𝑡+𝑘 , 𝑘 = 1, . . . , 𝑇 − 𝑡, are jointly independent of G𝑡 ,
– G𝑡 = ℋ𝑡 ∨ 𝜎(𝜇(𝑡)) ∨ 𝜎(Φ) ∨ 𝜎(𝑋0), withℋ𝑡 independent of 𝜎(Φ, (𝜇𝑡)𝑇𝑡=0 , 𝑋0),
– 𝑢𝑡 is G𝑡-measurable;

v) for all 𝑡 ∈ [[0, 𝑇 − 1]],
𝑋𝑡+1 = Ψ

(
𝑡 , 𝑋𝑡 , 𝜇𝑡 , 𝑢𝑡 , 𝜉𝑡+1

)
, P-a.s..

We denote withA the set of all open-loop control policies and, with a slight abuse of notation, in the
following we write (𝑢𝑡)𝑇−1

𝑡=0 ∈ A for ((Ω, ℱ , P), {G𝑡}𝑇−1
𝑡=0 , Φ, (𝜇𝑡)𝑇𝑡=0 , 𝑋0 , (𝜉𝑡)𝑇𝑡=1 , (𝑢𝑡)𝑇−1

𝑡=0 ) ∈ A.
We call any tuple

((Ω, ℱ , P), {G𝑡}𝑇−1
𝑡=0 ,Φ, (𝜇𝑡)𝑇𝑡=0 , 𝑋0 , (𝜉𝑡)𝑇𝑡=1 , (𝑢𝑡)𝑇−1

𝑡=0 , (𝑋𝑡)𝑇𝑡=0
)

as above a realisation
of the triple (𝔪0 , 𝜌, (𝑢𝑡)𝑇−1

𝑡=0 ).
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Remark 1.5.2. Notice that this new setting includes the previous one. Indeed, setting, for 𝑡 ∈ [[0, 𝑇−1]],
𝑢𝑡 = 𝑤 ◦ Φ(𝑡 , 𝑋(𝑡) , 𝜇(𝑡)), the recursive structure of the problem yields that 𝑢𝑡 is G𝑡-measurable with
G𝑡 = 𝜎(𝑋0) ∨ 𝜎(Φ) ∨ 𝜎(𝜇(𝑡)) ∨ 𝜎(𝜉(𝑡)), that is ℋ𝑡 = 𝜎(𝜉(𝑡)), and thus all the conditions in iv’) hold.
In particular, the closed-loop strategy 𝜄, corresponding to the case in which the 𝑖𝑡ℎ-player follows the
mediator’s suggestion induces the open-loop admissible strategy

𝑢 𝜄
𝑡 := 𝜄 ◦Φ(𝑡 , 𝑋(𝑡) , 𝜇(𝑡)) = Φ(𝑡 , 𝑋𝑡), Φ ∈ ℛ .

In this case the costs associated to the triple (𝔪0 , 𝜌, (𝑢𝑡)𝑇−1
𝑡=0 ) ∈ P(X) × P

(ℛ × P(X)𝑇+1) × A
are given by

�̂�(𝔪0 , 𝜌, (𝑢𝑡)𝑇−1
𝑡=0 ) := E

[
𝑇−1∑
𝑡=0

𝑓
(
𝑡 , 𝑋𝑡 , 𝜇𝑡 , 𝑢𝑡

) + 𝐹 (
𝑋𝑇 , 𝜇𝑇

) ]
.

In this definition of the costs, there is a little abuse of notation. Indeed, (𝑢𝑡)𝑇−1
𝑡=0 ∈ A stands for

((Ω, ℱ , P), {G𝑡}𝑇−1
𝑡=0 , Φ, (𝜇𝑡)𝑇𝑡=0 , 𝑋0 , (𝜉𝑡)𝑇𝑡=1 , (𝑢𝑡)𝑇−1

𝑡=0 ) ∈ A.

Definition 1.5.3. We say that 𝜌 ∈ P (ℛ × P(X)𝑇+1) is an open-loop correlated solution for the
mean field game with initial distribution 𝔪0 ∈ P(X), if the following two conditions hold:

(Opt) For each strategy modification (𝑢𝑡)𝑇−1
𝑡=0 ∈ A,

�̂�(𝔪0 , 𝜌, (𝑢 𝜄
𝑡 )𝑇−1
𝑡=0 ) ≤ �̂�(𝔪0 , 𝜌, (𝑢𝑡)𝑇−1

𝑡=0 ).
(Con) For any realisation of (𝔪0 , 𝜌, (𝑢 𝜄

𝑡 )𝑇−1
𝑡=0 ), namely ((Ω, ℱ , {G𝑡}𝑇−1

𝑡=0 , P),Φ, (𝜇𝑡)𝑇𝑡=0,𝑋0 , (𝜉𝑡)𝑇𝑡=1, (𝑢 𝜄
𝑡 )𝑇−1
𝑡=0 ,

(𝑋𝑡)𝑇𝑡=0), setting ℱ 𝜇 := 𝜎
((𝜇𝑡)𝑇𝑡=0

)
, we have

𝜇𝑡(·) = P(𝑋𝑡 ∈ · |ℱ 𝜇), 𝑡 ∈ [[0, 𝑇]].

1.5.2 The optimal value of the objective functional in the MFG

This section is devoted to proving that the value of the objective functional at equilibrium
in the limit game remains the same if we enlarge the set of admissible strategies to include
open-loop controls with the information structure given in Definition 1.5.1.

We start by showing that, under suitable technical assumptions needed to guarantee the
well-posedness of all the conditional expectations involved, a conditional Dynamic Programming
Principle holds for MFG solutions in the sense of Definition 1.4.3. Then, we prove by backward
induction in time that the value of the MFG in closed-loop strategies is the same as the one in
open-loop strategies and that, therefore, a closed-loop solution according to Definition 1.4.3 is
also an open-loop solution according to Definition 1.5.3.

Our first assumption requires the state dynamics to be non-degenerate; more precisely:

(A1) For any 𝑡 ∈ [[0, 𝑇 − 1]], any 𝑚 ∈ P(X), any 𝑥, 𝑦 ∈ X and any 𝑢 ∈ Γ,
P(Ψ(𝑡 , 𝑥, 𝑚, 𝑢, 𝑍) = 𝑦) > 0,

where 𝑍 is a random variable with distribution 𝜈.

In addition, we make a finiteness assumption on the structure of the correlated solution. To
this end, let 𝜌 be a solution of the MFG starting at𝔪0 according to Definition 1.4.3. Consider a re-
alisation

((Ω, ℱ , P),Φ, (𝜇𝑡)𝑇𝑡=0 , 𝑋0 , (𝜉𝑡)𝑇𝑡=1 , 𝑤, (𝑋𝑡)𝑇𝑡=0
)

of (𝔪0 , 𝜌, 𝑤) according to Definition 1.4.1.
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Given the fact that ℛ is finite and limiting our analysis to the functions 𝜑 ∈ ℛ such that
P(Φ = 𝜑) > 0, the induced conditional probability P𝜑(·) := P(·|Φ = 𝜑) is well-defined. The
finiteness assumption on 𝜌 is now:

(R1) If (Φ, (𝜇𝑡)𝑇𝑡=0) is distributed according to 𝜌, then there exists, for any choice of 𝜑 ∈ ℛ such
that P(Φ = 𝜑) > 0, a subset P𝜑 ⊂ P(X)𝑇+1 of finite cardinality such that P𝜑(𝜇(𝑇) ∈ P𝜑) = 1
and, for any 𝑚 ∈ P𝜑, P𝜑(𝜇(𝑇) = 𝑚) > 0.

Remark 1.5.4. The assumptions above are used to ensure the well-posedness of conditional probabilities
of the form P𝜑(·|𝜇(𝑡) = 𝑚(𝑡) , 𝑋(𝑡) = 𝑥(𝑡)), for any 𝑚(𝑡) ∈ P(𝑡)𝜑 , any 𝑥(𝑡) ∈ X𝑡+1, where P(𝑡)𝜑 :=
𝜋P(X)𝑡+1(P𝜑) = {𝑚 ∈ P(X)𝑡+1 s.t. there exists 𝑙 ∈ P(X)𝑇−𝑡 s.t. (𝑚, 𝑙) ∈ P𝜑}. Indeed, for this to hold
it is enough to check that P𝜑(𝜇(𝑇) = 𝑚, 𝑋(𝑇) = 𝑥(𝑇)) > 0, for any 𝑥(𝑇) ∈ X𝑇+1 and any 𝑚 ∈ P𝜑. First,
exploiting disintegration we write

P𝜑(𝜇(𝑇) = 𝑚, 𝑋(𝑇) = 𝑥(𝑇)) = P𝜑(𝑋(𝑇) = 𝑥(𝑇) |𝜇(𝑇) = 𝑚) · P𝜑(𝜇(𝑇) = 𝑚), (1.5.1)

where the second term in the product on the right is clearly strictly positive by Assumption (R1). Then,
another round of disintegration yields

P𝜑(𝑋(𝑇) = 𝑥(𝑇) |𝜇(𝑇) = 𝑚)

= P𝜑(𝑋0 = 𝑥0 |𝜇(𝑇) = 𝑚)
𝑇−1∏
𝑡=0
P𝜑(𝑋𝑡+1 = 𝑥𝑡+1 |𝜇(𝑇) = 𝑚, 𝑋(𝑡) = 𝑥(𝑡)) (1.5.2)

= 𝔪0({𝑥0})
𝑇−1∏
𝑡=0
P𝜑(𝑋𝑡+1 = 𝑥𝑡+1 |𝜇(𝑇) = 𝑚, 𝑋(𝑡) = 𝑥(𝑡)).

Now, exploiting the iterative dynamics of the state in the game, we have that, for any fixed 𝑡 ∈ [[0, 𝑇 − 1]],

P𝜑(𝑋𝑡+1 = 𝑥𝑡+1 |𝜇(𝑇) = 𝑚, 𝑋(𝑡) = 𝑥(𝑡))
= P𝜑(Ψ(𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝑢𝑡 , 𝜉𝑡+1) = 𝑥𝑡+1 |𝜇(𝑇) = 𝑚, 𝑋(𝑡) = 𝑥(𝑡)) (1.5.3)

=
∑
𝛾∈Γ
P𝜑(Ψ(𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝛾, 𝜉𝑡+1) = 𝑥𝑡+1)P𝜑(𝑢𝑡 = 𝛾 |𝜇(𝑇) = 𝑚, 𝑋(𝑡) = 𝑥(𝑡)) > 0.

Hence, putting together Equations (1.5.1), (1.5.2) and (1.5.3), we get

P𝜑(𝜇(𝑇) = 𝑚, 𝑋(𝑇) = 𝑥(𝑇)) ≥ P𝜑(𝜇(𝑇) = 𝑚)𝔪0({𝑥0})
𝑇−1∏
𝑡=0
P𝜑(𝑋𝑡+1 = 𝑥𝑡+1 |𝜇(𝑇) = 𝑚, 𝑋(𝑡) = 𝑥(𝑡)) > 0.

Finally notice that the very same proof can be carried out replacing 𝑢𝑡 with 𝑤 ◦𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡)) and so the
result holds, in particular, for the MFG in Definition 1.4.1.

Let 𝜌 be a solution of the MFG starting at 𝔪0 and satisfying (R1). Consider a realisation((Ω, ℱ , P),Φ, (𝜇𝑡)𝑇𝑡=0 , 𝑋0 , (𝜉𝑡)𝑇𝑡=1 , 𝑤, (𝑋𝑡)𝑇𝑡=0
)

of (𝔪0 , 𝜌, 𝑤). Set 𝜌2(·|𝜑) = P(𝜇 ∈ ·|Φ = 𝜑). Such a
realisation then has the following properties, conditionally on the event {Φ = 𝜑}:
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i)𝜑 P𝜑 ◦ (𝑋0)−1 = 𝔪0;

ii)𝜑 P𝜑 ◦ (Φ, (𝜇𝑡)𝑇𝑡=0)−1 = P𝜑 ◦ (𝜑, (𝜇𝑡)𝑇𝑡=0)−1 = 𝛿𝜑 ⊗ 𝜌2(·|𝜑);
iii)𝜑 (𝜉𝑡)𝑇𝑡=1 are i.i.d. all distributed according to P𝜑 · (𝜉𝑡)−1 = 𝜈;

iv)𝜑 (𝜉𝑡)𝑇𝑡=1, 𝑋0 and (𝜇𝑡)𝑇𝑡=0 are independent w.r.t. P𝜑;

v)𝜑 for all 𝑡 ∈ [[0, 𝑇 − 1]],
𝑋𝑡+1 = Ψ

(
𝑡 , 𝑋𝑡 , 𝜇𝑡 , 𝑤 ◦ 𝜑(𝑡 , 𝑋(𝑡) , 𝜇(𝑡)), 𝜉𝑡+1

)
, P𝜑-a.s..

Notice that properties i)𝜑, ii)𝜑, iii)𝜑, iv)𝜑 and v)𝜑 are a consequence of the corresponding
properties in the unconditional setting and the independence in property iv).

Hence, the (conditional) costs associated to the triple (𝔪0 , 𝜌, 𝑤) ∈ P(X)×P
(ℛ×P(X)𝑇+1)×D̂

are

𝐽𝜑(𝔪0 , 𝜌, 𝑤) := E𝜑

[
𝑇−1∑
𝑡=0

𝑓
(
𝑡 , 𝑋𝑡 , 𝜇𝑡 , 𝑤 ◦ 𝜑(𝑡 , 𝑋(𝑡) , 𝜇(𝑡))

)
+ 𝐹 (

𝑋𝑇 , 𝜇𝑇
) ]
,

where E𝜑[·] := E[·|Φ = 𝜑].

We set

𝐽𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡) , 𝑤) = E𝜑
[
𝑇−1∑
𝑠=𝑡

𝑓 (𝑠, 𝑋𝑠 , 𝜇𝑠 , 𝑤 ◦ 𝜑(𝑠, 𝑋(𝑠) , 𝜇(𝑠))) + 𝐹(𝑋𝑇 , 𝜇𝑇)|𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡)
]
.

and thus, in particular,

𝐽𝜑(𝑇, 𝑥(𝑇) , 𝑚(𝑇) , 𝑤) = 𝐹(𝑥𝑇 , 𝑚𝑇).

Notice that, for any fixed 𝑡 ∈ [[0, 𝑇−1]],𝑋(𝑡) and (𝜇𝑠)𝑇𝑠=𝑡+1 areP𝜑-conditionally independent given
𝜇(𝑡). Indeed, consider a fixed 𝑡 ∈ [[0, 𝑇 − 1]] and let 𝑥(𝑡) ∈ X𝑡+1 and 𝑚[𝑡+1] := (𝑚𝑠)𝑇𝑠=𝑡+1 ∈ P[𝑇−𝑡]𝜑 ,
with P[𝑇−𝑡]𝜑 := 𝜋P(X)𝑇−𝑡 (P𝜑) = {𝑚 ∈ P(X)𝑇−𝑡 s.t. there exists 𝑙 ∈ P(X)𝑡+1 s.t. (𝑙 , 𝑚) ∈ P𝜑}.
Exploiting tower property and measurability, we have

P𝜑(𝑋(𝑡) = 𝑥(𝑡) , (𝜇𝑠)𝑇𝑠=𝑡+1 = 𝑚[𝑡+1] |𝜇(𝑡)) = E𝜑[E𝜑[1{𝑥(𝑡)}(𝑋(𝑡))1{𝑚[𝑡+1]}((𝜇𝑠)𝑇𝑠=𝑡+1)|𝑋0 , 𝜇(𝑡) , 𝜉(𝑡)]|𝜇(𝑡)]
= E𝜑[1{𝑥(𝑡)}(𝑋(𝑡))E𝜑[1{𝑚[𝑡+1]}((𝜇𝑠)𝑇𝑠=𝑡+1)|𝑋0 , 𝜇(𝑡) , 𝜉(𝑡)]|𝜇(𝑡)]
= E𝜑[1{𝑥(𝑡)}(𝑋(𝑡))E𝜑[1{𝑚[𝑡+1]}((𝜇𝑠)𝑇𝑠=𝑡+1)|𝜇(𝑡)]|𝜇(𝑡)]
= E𝜑[1{𝑚[𝑡+1]}((𝜇𝑠)𝑇𝑠=𝑡+1)|𝜇(𝑡)]E𝜑[1{𝑥(𝑡)}(𝑋(𝑡))|𝜇(𝑡)]
= P𝜑(𝑋(𝑡) = 𝑥(𝑡) |𝜇(𝑡))P𝜑((𝜇𝑠)𝑇𝑠=𝑡+1 = 𝑚[𝑡+1] |𝜇(𝑡)).

As a consequence of the conditional independence stated above, if 𝑤 ◦ 𝜑(𝑢, ·) = 𝑤 ◦ 𝜑(𝑢, ·),
for 𝑢 ≥ 𝑡, 𝐽𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡) , 𝑤) = 𝐽𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡) , 𝑤). Indeed, take 𝑤, 𝑤 ∈ D̂ such that 𝑤 ◦ 𝜑(𝑢, ·) =
𝑤 ◦ 𝜑(𝑢, ·), for 𝑢 ≥ 𝑡. We have

𝐽𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡) , 𝑤) (1.5.4)

= E𝜑

[
𝑇−1∑
𝑠=𝑡

𝑓 (𝑠, 𝑋𝑠 , 𝜇𝑠 , 𝑤 ◦ 𝜑(𝑠, 𝑋(𝑠) , 𝜇(𝑠))) + 𝐹(𝑋𝑇 , 𝜇𝑇 )|𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡)
]

=: E𝜑
[
𝐺𝑡 (𝑥(𝑡) , 𝑚(𝑡) , (𝜇𝑠 )𝑇𝑠=𝑡+1 , (𝜉𝑠 )𝑇𝑠=𝑡+1 , (𝑤 ◦ 𝜑(𝑠, ·))𝑇𝑠=𝑡 )|𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡)

]
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=
∫
Z𝑇−𝑡

∑
𝑚[𝑡+1]∈P𝑇−𝑡𝜑

𝐺𝑡 (𝑥(𝑡) , 𝑚(𝑡) , 𝑚[𝑡+1] , (𝑧𝑠 )𝑇𝑠=𝑡+1 , (𝑤 ◦ 𝜑(𝑠, ·))𝑇𝑠=𝑡 )P𝜑((𝜇𝑠 )𝑇𝑠=𝑡+1 = 𝑚[𝑡+1] |𝜇(𝑡))𝜈⊗(𝑇−𝑡−1)(d𝑧)

=
∫
Z𝑇−𝑡

∑
𝑚[𝑡+1]∈P𝑇−𝑡𝜑

𝐺𝑡 (𝑥(𝑡) , 𝑚(𝑡) , 𝑚[𝑡+1] , (𝑧𝑠 )𝑇𝑠=𝑡+1 , (𝑤 ◦ 𝜑(𝑠, ·))𝑇𝑠=𝑡 )P𝜑((𝜇𝑠 )𝑇𝑠=𝑡+1 = 𝑚[𝑡+1] |𝜇(𝑡))𝜈⊗(𝑇−𝑡−1)(d𝑧)

= 𝐽𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡) , 𝑤),

where we have used the notation d𝑧 = d𝑧𝑡+1 , . . . , d𝑧𝑇 and in the third identity we have exploited
the fact that, for any fixed 𝑡 ∈ [[0, 𝑇 − 1]], 𝑋(𝑡) and (𝜇𝑠)𝑇𝑠=𝑡+1 are P𝜑-conditionally independent
given 𝜇(𝑡).
Then, we write 𝐽𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡) , (𝑤𝑠)𝑇𝑠=𝑡) = 𝐽𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡) , 𝑤). Thus, the optimal value function is
defined as

𝑉𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡))

= inf
𝑤𝑡∈ℛ̂𝑡

E𝜑

[
𝑇−1∑
𝑠=𝑡

𝑓 (𝑠, 𝑋𝑠 , 𝜇𝑠 , 𝑤𝑡(𝑠, 𝑋(𝑠) , 𝜇(𝑠))) + 𝐹(𝑋𝑇 , 𝜇𝑇)|𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡)
]
,

where ℛ̂𝑡 := {𝑤 : [[𝑡 , 𝑇]] × X𝑇 × P𝜑 → Γ, progressively measurable}.
Our aim, now, is to show that, even in this non-Markovian setting, the following DPP holds.

Proposition 1.5.5. For any 𝑡 ∈ [[0, 𝑇 − 1]],

𝑉𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡))
= inf

𝛾∈ΓE𝜑
[
𝑓 (𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝛾) +𝑉𝜑

(
𝑡 , (𝑥(𝑡) ,Ψ(𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝛾, 𝜉𝑡+1)), (𝑚(𝑡) , 𝜇𝑡+1)

) ����𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡)
]
.

Proof. By construction and measurability properties, it holds

𝑉𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡))

= inf
𝑤𝑡∈ℛ̂𝑡

E𝜑

[
𝑇−1∑
𝑠=𝑡

𝑓 (𝑠, 𝑋𝑠 , 𝜇𝑠 , 𝑤𝑡(𝑠, 𝑋(𝑠) , 𝜇(𝑠))) + 𝐹(𝑋𝑇 , 𝜇𝑇)
���𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡)

]
= inf
𝑤𝑡∈ℛ̂𝑡

E𝜑

[
𝑓 (𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝑤𝑡(𝑡 , 𝑥(𝑡) , 𝑚(𝑡))) +

𝑇−1∑
𝑠=𝑡+1

𝑓 (𝑠, 𝑋𝑠 , 𝜇𝑠 , 𝑤𝑡(𝑠, 𝑋(𝑠) , 𝜇(𝑠)))

+ 𝐹(𝑋𝑇 , 𝜇𝑇)
���𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡)

]
= inf
𝑤𝑡∈ℛ̂𝑡

{
𝑓 (𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝑤𝑡(𝑡 , 𝑥(𝑡) , 𝑚(𝑡)))

+
∑

(𝑦,𝑙)∈X×P𝜑
P𝜑(Ψ(𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝑤𝑡(𝑡 , 𝑥(𝑡) , 𝑚(𝑡)), 𝜉𝑡+1) = 𝑦, 𝜇𝑡+1 = 𝑙 |𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡))·

· E𝜑
[ 𝑇−1∑
𝑠=𝑡+1

𝑓 (𝑠, 𝑋𝑠 , 𝜇𝑠 , 𝑤𝑡(𝑠, 𝑋(𝑠) , 𝜇(𝑠))) + 𝐹(𝑋𝑇 , 𝜇𝑇)
���𝑋(𝑡+1) = (𝑥(𝑡) , 𝑦), 𝜇(𝑡+1) = (𝑚(𝑡) , 𝑙)

]}
Now, exploiting the fact that P𝜑 is finite (to exchange the inf and the summation) and the
conditional independence property shown above (together with the consequent identity in
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Equation (1.5.4)), we have

𝑉𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡))

= inf
𝛾∈Γ inf

𝑤𝑡+1∈ℛ̂𝑡+1

{
𝑓 (𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝛾)

+
∑

(𝑦,𝑙)∈X×P𝜑
P𝜑(Ψ(𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝛾, 𝜉𝑡+1) = 𝑦, 𝜇𝑡+1 = 𝑙 |𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡))·

· E𝜑
[ 𝑇−1∑
𝑠=𝑡+1

𝑓 (𝑠, 𝑋𝑠 , 𝜇𝑠 , 𝑤𝑠(𝑋(𝑠) , 𝜇(𝑠))) + 𝐹(𝑋𝑇 , 𝜇𝑇)
���𝑋(𝑡+1) = (𝑥(𝑡) , 𝑦), 𝜇(𝑡+1) = (𝑚(𝑡) , 𝑙)

]}
= inf

𝛾∈Γ

{
𝑓 (𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝛾)

+
∑

(𝑦,𝑙)∈X×P𝜑
inf

𝑤𝑡+1∈ℛ̂𝑡+1

{
P𝜑(Ψ(𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝛾, 𝜉𝑡+1) = 𝑦, 𝜇𝑡+1 = 𝑙 |𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡))·

· E𝜑
[ 𝑇−1∑
𝑠=𝑡+1

𝑓 (𝑠, 𝑋𝑠 , 𝜇𝑠 , 𝑤𝑠(𝑋(𝑠) , 𝜇(𝑠))) + 𝐹(𝑋𝑇 , 𝜇𝑇)
���𝑋(𝑡+1) = (𝑥(𝑡) , 𝑦), 𝜇(𝑡+1) = (𝑚(𝑡) , 𝑙)

]}}
= inf

𝛾∈Γ

{
𝑓 (𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝛾) +

∑
(𝑦,𝑙)∈X×P𝜑

{
𝑉𝜑(𝑡 + 1, (𝑥(𝑡+1) , 𝑦), (𝑚(𝑡) , 𝑙))·

· P𝜑(Ψ(𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝛾, 𝜉𝑡+1) = 𝑦, 𝜇𝑡+1 = 𝑙 |𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡))
}}

= inf
𝛾∈Γ

{
E𝜑

[
𝑓 (𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝛾) +𝑉𝜑(𝑡 , (𝑥(𝑡) ,Ψ(𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝛾, 𝜉𝑡+1)), (𝑚(𝑡) , 𝜇𝑡+1))|𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡)

]}
.

□

Thus, we have shown the DPP and we can proceed with the second step.

Proposition 1.5.6. Assume (A1). Let 𝜌 ∈ P(ℛ × P(X)𝑇+1 ) be a correlated solution of the MFG in
closed-loop strategies starting at 𝔪0 according to Definition 1.4.3. If 𝜌 satisfies (R1), then 𝜌 is a solution
for the mean field game in open-loop strategies, as in Definition 1.5.3, too. In particular, for any 𝜑 ∈ ℛ,
𝑉𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡)) and 𝑉𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡)) coincide.

Remark 1.5.7. Notice that, since the consistency conditions in Definitions 1.4.3 and 1.5.3 are the same
and the set of closed-loop strategies is included in the set of open-loop strategies, a solution of the correlated
MFG in open-loop strategies, 𝜌 ∈ P(ℛ × P(X)𝑇+1 ), is automatically a solution for the corresponding
game in closed-loop strategies.

Proof. We have already discussed the form of the objective functional for the MFG in closed-loop
controls when showing the DPP. Regarding the relaxed MFG, conditionally on the suggestion re-
ceived by the representative player (that is on the event {Φ = 𝜑}), a realisation of (𝔪0 , 𝜌, (𝑢𝑡)𝑇−1

𝑡=0 ),
i.e. a tuple

((Ω, ℱ , {G𝑡}𝑇−1
𝑡=0 , P),Φ, (𝜇𝑡)𝑇𝑡=0, 𝑋0 , (𝜉𝑡)𝑇𝑡=1 , (𝑢𝑡)𝑇−1

𝑡=0 , (𝑋𝑡)𝑇𝑡=0
)
, satisfies the following:

i)𝜑 P𝜑 ◦ (𝑋0)−1 = 𝔪0;
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ii)𝜑 P𝜑 ◦ (Φ, (𝜇𝑡)𝑇𝑡=0)−1 = 𝛿𝜑 ⊗ 𝜌2(·|𝜑);
iii)𝜑 (𝜉𝑡)𝑇𝑡=1 are i.i.d. all distributed according P𝜑 ◦ (𝜉𝑡)−1 = 𝜈;

iv)𝜑 (𝜉𝑡)𝑇𝑡=1, 𝑋0 and (𝜇𝑡)𝑇𝑡=0 are independent w.r.t. P𝜑;

iv’)𝜑 For each 𝑡 ∈ [[0, 𝑇 − 1]],

– 𝜉𝑡 is G𝑡-measurable and 𝜉𝑡+𝑘 , 𝑘 = 1, . . . , 𝑇 − 𝑡, are jointly independent of G𝑡 w.r.t. P𝜑,

– G𝑡 = ℋ𝑡 ∨ 𝜎(𝜇(𝑡)) ∨ 𝜎(Φ) ∨ 𝜎(𝑋0), withℋ𝑡 independent of 𝜎((𝜇𝑡)𝑇𝑡=0 , 𝑋0 ,Φ)w.r.t. P𝜑,
– 𝑢𝑡 is G𝑡-measurable,

v’)𝜑 for any 𝑡 ∈ [[0, 𝑇 − 1]],
𝑋𝑡+1 = Ψ

(
𝑡 , 𝑋𝑡 , 𝜇𝑡 , 𝑢𝑡 , 𝜉𝑡+1

)
, P𝜑-a.s..

Let’s quickly review how we check the properties in iv’)𝜑. Notice that the other properties
are trivial. Let us first recall that measurability properties concern 𝜎-algebras and not the
specific probability measure on them, hence we have to exhibit proofs only for the independence
properties. For any arbitrary fixed 𝑡 ∈ [[0, 𝑇 − 1]], we have

• (𝜉𝑡+𝑘)𝑇−𝑡𝑘=1, are jointly independent of G𝑡 w.r.t. P𝜑. Indeed, let 𝐴 ∈ G𝑡 and (𝐵𝑘)𝑇−𝑡𝑘=1 ∈ ℬ(Z),
exploiting the tower property, the fact that 𝜎(Φ) ⊂ G𝑡 and the fact that G𝑡 and (𝜉𝑡+𝑘)𝑇−𝑡𝑘=1
are independent w.r.t. P, we obtain

P𝜑(𝐴 ∩ {𝜉𝑡+1 ∈ 𝐵1} ∩ · · · ∩ {𝜉𝑇 ∈ 𝐵𝑇−𝑡}) =
E[1{𝜑}(Φ)1𝐴1𝐵1(𝜉𝑡+1) . . . 1𝐵𝑇−𝑡 (𝜉𝑇)]

P(Φ = 𝜑)
=
E[E[1{𝜑}(Φ)1𝐴1𝐵1(𝜉𝑡+1) . . . 1𝐵𝑇−𝑡 (𝜉𝑇)|G𝑡]]

P(Φ = 𝜑) =
E[1{𝜑}(Φ)1𝐴E[1𝐵1(𝜉𝑡+1) . . . 1𝐵𝑇−𝑡 (𝜉𝑇)|G𝑡]]

P(Φ = 𝜑)

=
E[1{𝜑}(Φ)1𝐴∏𝑇−𝑡

𝑘=1 P(𝜉𝑡+𝑘 ∈ 𝐵𝑘)]
P(Φ = 𝜑) =

𝑇−𝑡∏
𝑘=1
P(𝜉𝑡+𝑘 ∈ 𝐵𝑘)P(𝐴|Φ = 𝜑).

• G𝑡 = ℋ𝑡 ∨ 𝜎(𝜇(𝑡)) ∨ 𝜎(Φ) ∨ 𝜎(𝑋0), with ℋ𝑡 independent of 𝜎(𝜇, 𝑋0 ,Φ) w.r.t. P𝜑. By
assumption, ℋ𝑡 , 𝜎(𝑋0) and 𝜎(Φ, 𝜇) are independent w.r.t. P. Take 𝐴 ∈ ℋ𝑡 , 𝐵 ∈ 𝜎(𝜇) and
𝐶 ∈ 𝜎(𝑋0), we get

P𝜑(𝐴 ∩ 𝐵 ∩ 𝐶) =
E[1{𝜑}(Φ)1𝐴1𝐵1𝐶]
P(Φ = 𝜑) =

E[E[1{𝜑}(Φ)1𝐴1𝐵1𝐶 |Φ, 𝜇]]
P(Φ = 𝜑) =

E[1{𝜑}(Φ)1𝐵E[1𝐴1𝐶 |Φ, 𝜇]]
P(Φ = 𝜑)

=
E[1{𝜑}(Φ)1𝐵E[1𝐴1𝐶]]

P(Φ = 𝜑) =
P(𝐴)P(𝐶)E[1{𝜑}(Φ)1𝐵]

P(Φ = 𝜑) = P𝜑(𝐴)P𝜑(𝐶)P𝜑(𝐵).

The (conditional) costs associated to the triple (𝔪0 , 𝜌, (𝑢𝑡)𝑇−1
𝑡=0 ) ∈ P(X)×P

(ℛ×P(X)𝑇+1) ×A
are

�̂�𝜑(𝔪0 , 𝜌, (𝑢𝑡)𝑇−1
𝑡=0 ) := E𝜑

[
𝑇−1∑
𝑡=0

𝑓
(
𝑡 , 𝑋𝑡 , 𝜇𝑡 , 𝑢𝑡)) + 𝐹 (

𝑋𝑇 , 𝜇𝑇
) ]
.

Then,

𝑉𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡)) = inf
(𝑢𝑡 )𝑇−1

𝑡=0 ∈A
E𝜑

[
𝑇−1∑
𝑠=𝑡

𝑓 (𝑠, 𝑋𝑠 , 𝜇𝑠 , 𝑢𝑠) + 𝐹(𝑋𝑇 , 𝜇𝑇)|𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡)
]
,

23



1.5. THE MEAN FIELD GAME IN OPEN-LOOP STRATEGIES

and so, in particular, at the terminal time 𝑇 ∈ N, we have

𝑉𝜑(𝑇, 𝑥(𝑇) , 𝑚(𝑇)) = 𝐹(𝑋𝑇 , 𝑚𝑇).

We want to prove that 𝑉𝜑 = 𝑉𝜑. One side of the inequality is straightforward. Indeed,
closed-loop controls as in Definition 1.4.1 induce admissible open-loop controls in the sense of
Definition 1.5.1, through

𝑢𝑡 := 𝑤 ◦ 𝜑(𝑡 , 𝑋(𝑡) , 𝜇(𝑡)), 𝑡 ∈ [[0, 𝑇 − 1]].

Thus, it holds 𝑉𝜑 ≤ 𝑉𝜑. We show that 𝑉𝜑 ≥ 𝑉𝜑, by backward induction on 𝑡. We have
𝑉𝜑(𝑇, 𝑥(𝑇) , 𝑚(𝑇)) = 𝐹(𝑋𝑇 , 𝑚𝑇) = 𝑉𝜑(𝑇, 𝑥(𝑇) , 𝑚(𝑇)). Now, as an induction hypothesis, assume that
𝑉𝜑(𝑡 + 1, 𝑥(𝑡+1) , 𝑚(𝑡+1)) = 𝑉𝜑(𝑡 + 1, 𝑥(𝑡+1) , 𝑚(𝑡+1)). To prove that 𝑉𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡)) = 𝑉𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡)),
it is enough to check that �̂�𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡) , (𝑢𝑡)𝑇−1

𝑡=0 ) ≥ 𝑉𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡)), for any admissible sequence
of controls 𝑢 ∈ A. Exploiting the definitions and induction hypothesis, we see

�̂�𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡) , (𝑢𝑡)𝑇−1
𝑡=0 ) = E𝜑

[
𝑇−1∑
𝑠=𝑡

𝑓 (𝑠, 𝑋𝑠 , 𝜇𝑠 , 𝑢𝑠) + 𝐹(𝑋𝑇 , 𝜇𝑇)
����𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡)

]
= E𝜑

[
𝑓 (𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝑢𝑡)

���𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡)
]

+
∫
X×P(X)

P𝜑(𝑋𝑡+1 = 𝑋𝑡+1 , 𝜇𝑡+1 = 𝑚𝑡+1 |𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡))·

· E𝜑
[
𝑇−1∑
𝑠=𝑡+1

𝑓 (𝑠, 𝑋𝑠 , 𝜇𝑠 , 𝑢𝑠) + 𝐹(𝑋𝑇 , 𝜇𝑇)
����𝑋(𝑡+1) = 𝑥(𝑡+1) , 𝜇(𝑡+1) = 𝑚(𝑡+1)

]
= E𝜑

[
𝑓 (𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝑢𝑡)

���𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡)
]
+

∫
X×P(X)

�̂�𝜑(𝑡 + 1, 𝑥(𝑡+1) , 𝑚(𝑡+1) , 𝑢)·

· P𝜑(𝑋𝑡+1 = 𝑥𝑡+1 , 𝜇𝑡+1 = 𝑚𝑡+1 |𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡))
≥ E𝜑

[
𝑓 (𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝑢𝑡)

���𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡)
]
+

∫
X×P(X)

𝑉𝜑(𝑡 + 1, 𝑥(𝑡+1) , 𝑚(𝑡+1))·

· P𝜑(𝑋𝑡+1 = 𝑥𝑡+1 , 𝜇𝑡+1 = 𝑚𝑡+1 |𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡)).

Now, exploiting, in sequence, the fact that 𝜉𝑡+1 is jointly independent of 𝑋(𝑡) , 𝑢𝑡 and 𝜇(𝑡+1), the
tower property, the fact that 𝑢𝑡 is G𝑡-measurable, the fact that 𝜇𝑡+1 and G𝑡 are P𝜑-conditionally
independent given 𝜇(𝑡) and the measurability properties of conditional expectations, we obtain,
for any 𝐴 ∈ ℬ(P(X)), 𝐵 ∈ ℬ(Z) and 𝐶 ∈ ℬ(Γ),

P𝜑(𝜇𝑡+1 ∈ 𝐴, 𝜉𝑡+1 ∈ 𝐵, 𝑢𝑡 ∈ 𝐶 |𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡)) (1.5.5)

= P𝜑(𝜉𝑡+1 ∈ 𝐵|𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡))P𝜑(𝜇𝑡+1 ∈ 𝐴, 𝑢𝑡 ∈ 𝐶 |𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡))

= P𝜑(𝜉𝑡+1 ∈ 𝐵)
E[(1𝐴(𝜇𝑡+1)1𝐶(𝑢𝑡))(1{𝑥(𝑡)}(𝑋(𝑡))1{𝑚(𝑡)}(𝜇(𝑡))1{𝜑}(Φ))]

P(𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡) ,Φ = 𝜑)

= P𝜑(𝜉𝑡+1 ∈ 𝐵)
E[E[1𝐴(𝜇𝑡+1)|G𝑡]1𝐶(𝑢𝑡)1{𝑥(𝑡)}(𝑋(𝑡))1{𝑚(𝑡)}(𝜇(𝑡))1{𝜑}(Φ)]

P(𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡) ,Φ = 𝜑)
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= P𝜑(𝜉𝑡+1 ∈ 𝐵)
E[E[1𝐴(𝜇𝑡+1)|Φ, 𝜇(𝑡)]1𝐶(𝑢𝑡)1{𝑥(𝑡)}(𝑋(𝑡))1{𝑚(𝑡)}(𝜇(𝑡))1{𝜑}(Φ)]

P(𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡) ,Φ = 𝜑)
= P𝜑(𝜉𝑡+1 ∈ 𝐵)E[1𝐶(𝑢𝑡)E[1𝐴(𝜇𝑡+1)|Φ, 𝜇(𝑡)]|𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡) ,Φ = 𝜑]
= P𝜑(𝜉𝑡+1 ∈ 𝐵)E[1𝐴(𝜇𝑡+1)|Φ = 𝜑, 𝜇(𝑡) = 𝑚(𝑡)]E[1𝐶(𝑢𝑡)|𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡) ,Φ = 𝜑]
= P𝜑(𝜉𝑡+1 ∈ 𝐵)P𝜑(𝜇𝑡+1 ∈ 𝐴|𝜇(𝑡) = 𝑚(𝑡))P𝜑(𝑢𝑡 ∈ 𝐶 |𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡))
= 𝜈(𝐵)P𝜑(𝜇𝑡+1 ∈ 𝐴|𝜇(𝑡) = 𝑚(𝑡))𝜆𝑡(𝐶),

where 𝜆𝑡(𝐶) := P𝜑(𝑢𝑡 ∈ 𝐶 |𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡)). Then, exploiting the iterative dynamics of the
state and Equation (1.5.5), we have

�̂�𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡) , (𝑢𝑡 )𝑇−1
𝑡=0 ) ≥ E𝜑

[
𝑓 (𝑡 , 𝑥, 𝑚𝑡 , 𝑢𝑡 )

+𝑉𝜑(𝑡 + 1, (𝑥(𝑡) ,Ψ(𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝑢𝑡 , 𝜉𝑡+1)), (𝑚(𝑡) , 𝜇𝑡+1))|𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡)
]

= E𝜑
[
𝑓 (𝑡 , 𝑥, 𝑚𝑡 , 𝑢𝑡 ) +

∫
Z
𝑉𝜑(𝑡 + 1, (𝑥(𝑡) ,Ψ(𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝑢𝑡 , 𝑧)), (𝑚(𝑡) , 𝜇𝑡+1))𝜈(d𝑧)|𝑋(𝑡) = 𝑥(𝑡) , 𝜇(𝑡) = 𝑚(𝑡)

]
=

∫
Γ

{
𝑓 (𝑡 , 𝑥, 𝑚𝑡 , 𝛾) +

∫
Z
E𝜑

[
𝑉𝜑(𝑡 + 1, (𝑥(𝑡) ,Ψ(𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝛾, 𝑧)), (𝑚(𝑡) , 𝜇𝑡+1))|𝜇(𝑡) = 𝑚(𝑡)

]
𝜈(d𝑧)

}
𝜆𝑡 (d𝛾)

≥ inf
𝛾∈Γ

{
𝑓 (𝑡 , 𝑥, 𝑚𝑡 , 𝛾)) +

∫
Z
E𝜑

[
𝑉𝜑(𝑡 + 1, (𝑥(𝑡) ,Ψ(𝑡 , 𝑥𝑡 , 𝑚𝑡 , 𝛾, 𝑧)), (𝑚(𝑡) , 𝜇𝑡+1))|𝜇(𝑡) = 𝑚(𝑡)

]
𝜈(d𝑧)

}
= 𝑉𝜑(𝑡 , 𝑥(𝑡) , 𝑚(𝑡)),

where the last identity follows from the DPP in Proposition 1.5.5. Finally, to conclude it is
sufficient to integrate with respect to 𝜌1(d𝜑). Hence, we have shown that under Assumptions
(A1) and (R1) the optimal value of the two mean field games is the same.

□

1.6 Approximate N-player correlated equilibria

Here, we show how to construct approximate 𝑁-player correlated equilibria starting from a
suitable solution of the MFG. We make the following additional assumptions on dynamics and
costs:
(A2) Continuity of Ψ : [[0, 𝑇 − 1]] × X × Γ ×Z → X :

1) For every (𝑡 , 𝑥, 𝛾) ∈ [[0, 𝑇 − 1]] × X × Γ and for all 𝑚, 𝑚 ∈ P(X),
𝜈 ({𝑧 : Ψ(𝑡 , 𝑥, 𝑚, 𝛾, 𝑧) ≠ Ψ(𝑡 , 𝑥, 𝑚, 𝛾, 𝑧)}) ≤ 𝔚(dist(𝑚, 𝑚)),

where 𝔚 : [0,+∞) → [0, 1] is some non-decreasing function with lim𝑠→0+𝔚(𝑠) = 0.
2) For any 𝑡 ∈ [[0, 𝑇 − 1]], Ψ(𝑡 , ·) is 𝜏 ⊗ 𝜈-almost everywhere continuous, for every

𝜏 ∈ P(X × P(X) × Γ).

(A3) The functions 𝑓 and 𝐹, running cost and terminal cost, are Lipschitz continuous with the
same Lipschitz constant 𝐿.

For an illustration of the continuity assumption (A2) on the dynamics, see [30, Remark 6.1].
Assumption (A3) is rather standard; in our finite setting, it is a true restriction only with respect
to the measure argument of 𝑓 and 𝐹.

The correlated suggestion 𝜌 we start with must satisfy, in addition to (R1), the following
condition on its information structure:
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(R2) If (Φ, (𝜇𝑡)𝑇𝑡=0) is distributed according to 𝜌, then there exist 𝛼𝑡 : [0, 1] × P(𝑋)𝑡+2 → ℰ,
𝑡 ∈ [[0, 𝑇 − 1]], Borel-measurable functions and a uniformly distributed random variable
𝑍 𝑑∼ 𝜈, independent of 𝜇 s.t. Φ(𝑡 , ·) := 𝛼𝑡(𝑍, 𝜇(𝑡+1))(·), for all 𝑡 ∈ [[0, 𝑇 − 1]].

Remark 1.6.1. If 𝜌 satisfies (R2), then it admits a decomposition of the form

𝜌(𝐶0 × · · · × 𝐶𝑇−1 × 𝐵) =
∫
𝐵
𝜌1(𝐶0 × · · · × 𝐶𝑇−1 |𝑚)𝜌2(d𝑚)

=
∫
𝐵

∫
Z
⊗𝑇−1
𝑡=0 𝛿𝛼𝑡 (𝑧,𝑚(𝑡+1))(𝐶𝑡)𝜈(d𝑧)𝜌2(d𝑚),

for any 𝐶𝑡 ∈ ℬ(ℰ), 𝑡 ∈ [[0, 𝑇 − 1]] and 𝐵 ∈ ⊗𝑇+1ℬ(P(X)) and where, for 𝑡 ∈ [[0, 𝑇 − 1]], 𝛼𝑡 :
[0, 1] × P(X)𝑡+2 → ℰ are Borel functions.

Finally let us notice that, if (Φ, (𝜇𝑡)𝑇𝑡=0) is distributed according to 𝜌 that satisfies (R2), then, for each
𝑡 ∈ [[0, 𝑇 − 1]], Φ(𝑡) and 𝜇 are conditionally independent given 𝜇(𝑡+1). The example presented in Section
1.7 seems to suggest that the two conditions are equivalent.

Theorem 1.6.2. Let 𝔪0 ∈ P(X), and suppose (A1) – (A3) hold. Let 𝜌 ∈ P(ℛ × P(X)𝑇+1) be a
correlated solution of the mean field game starting at 𝔪0 and satisfying (R1) – (R2). For 𝑁 ∈ N, define
𝛾𝑁 ∈ P(ℛ𝑁 ) by

𝛾𝑁 (𝐶1 × · · · × 𝐶𝑁 ) :=
∫
P(X)𝑇+1

𝑁∏
𝑗=1

𝜌1(𝐶 𝑗 |𝑚)𝜌2(d𝑚).

Then, for all 𝑁 ∈ N, 𝛾𝑁 is an 𝜀𝑁 -correlated equilibrium for the 𝑁-player game with initial distribution
𝔪⊗𝑁0 and the sequence {𝜀𝑁 }𝑁∈N ⊆ [0,+∞) is such that lim𝑁→∞ 𝜀𝑁 = 0.

Remark 1.6.3. Let (𝑍 𝑗)𝑁𝑗=1 be i.i.d. r.v.s distributed according to 𝜈, also independent of 𝜇, and define, for
𝑗 ∈ [[1, 𝑁]], Φ𝑗 through Φ𝑗(𝑡 , ·) := 𝛼𝑡(𝑍 𝑗 , 𝜇(𝑡+1))(·), 𝑡 ∈ [[0, 𝑇 − 1]], with 𝛼 as in (R2). Then we have
P ◦ (Φ1 , . . . ,Φ𝑁 )−1 = 𝛾𝑁 :=

∫
P(X)𝑇+1

∏𝑁
𝑗=1 𝜌1(·|𝑚)𝜌2(d𝑚).

Proof. We prove the result only for strategy modifications of the first player. Then, the general
result is a consequence of the symmetry in the problem. With a small abuse of notation, we
simply write 𝜄 for 𝜄𝛾, when its clear from the context the distribution that it refers to. We also
use this same symbol 𝜄 for both the 𝑁-player game and the mean field game. Consider the
correlated suggestion 𝛾𝑁 ∈ P(ℛ𝑁 ) defined in the statement of the theorem. For each 𝑁 ∈ N,
𝛾𝑁 is an 𝜀𝑁 -correlated equilibrium for the initial distribution 𝔪⊗𝑁0 , once the sequence {𝜀𝑁 }𝑁∈N
is defined as

𝜀𝑁 := 𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , 𝜄) − inf
�̃�𝑁∈N

𝛾𝑁1

𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ), for all 𝑁 ∈ N.

By definition of infimum, it is possible to find a sequence of strategy modifications, {�̃�𝑁 }𝑁∈N ⊆
N𝛾𝑁1

, such that

𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ) ≤ inf
�̃�𝑁∈N

𝛾𝑁1

𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ) + 1
𝑁
, 𝑁 ∈ N. (1.6.1)
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Thence, to complete the proof of the theorem, so showing that 𝜀𝑁
𝑁→∞−→ 0, it suffices to prove

the following:
lim
𝑁→∞ 𝐽

𝑁
1 (𝔪⊗𝑁0 , 𝛾𝑁 , 𝜄𝛾𝑁1 ) = 𝐽(𝔪0 , 𝜌, 𝜄), (1.6.2)

lim inf
𝑁→∞ 𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ) ≥ 𝐽(𝔪0 , 𝜌, 𝜄). (1.6.3)

Proof of (1.6.2). First of all, let us notice that the following equation holds

𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , 𝜄𝛾𝑁1 ) =
∫
P(X)𝑇+1

𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁𝑚 , 𝜄𝛾𝑁𝑚,1)𝜌2(d𝑚),

where, for each 𝑁 ∈ N and for each 𝑚 ∈ P(X)𝑇+1, 𝛾𝑁𝑚 := ⊗𝑁𝜌1(·|𝑚). In fact, it holds 𝛾𝑁1 =

𝛾𝑁 ◦ 𝜋−1
1 =

(∫
P(X)𝑇+1 𝜌1(·|𝑚)⊗𝑁𝜌2(d𝑚)

)
◦ 𝜋−1

1 =
∫
P(X)𝑇+1 𝜌1(·|𝑚)𝜌2(d𝑚), and 𝛾𝑁𝑚,1 = 𝛾𝑁𝑚 ◦ 𝜋−1

1 =

𝜌1(·|𝑚)⊗𝑁 ◦ 𝜋−1
1 = 𝜌1(·|𝑚).

Indeed, thanks to the particular structure of the cost functional and the fact that 𝜄𝛾𝑁1 (d𝜑, d𝑢) =
𝛿𝑢(d𝜑)𝛾𝑁1 (d𝑢), we write

𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , 𝜄𝛾𝑁1 )
=

∫
X𝑁

∫
Z𝑁𝑇

∫
ℛ𝑁

∫
ℛ
𝐺𝑁 (𝑥, 𝜑, (𝑢𝑗)𝑁𝑗=2 , 𝑧)𝛿𝑢1(d𝜑)𝛾𝑁 (d𝑢1 , . . . , d𝑢𝑁 )𝜈⊗𝑁𝑇(d𝑧)𝔪⊗𝑁0 (d𝑥)

=
∫
X𝑁

∫
Z𝑁𝑇

∫
ℛ𝑁

∫
ℛ
𝐺𝑁 (𝑥, (𝑢𝑗)𝑁𝑗=1 , 𝑧)𝛾𝑁 (d𝑢1 , . . . , d𝑢𝑁 )𝜈⊗𝑁𝑇(d𝑧)𝔪⊗𝑁0 (d𝑥)

=
∫
X𝑁

∫
Z𝑁𝑇

∫
P(X)𝑇+1

∫
ℛ𝑁

𝐺𝑁 (𝑥, (𝑢𝑗)𝑁𝑗=1 , 𝑧)𝛾𝑁𝑚 (d𝑢1 , . . . , d𝑢𝑁 )𝜌2(d𝑚)𝜈⊗𝑁𝑇(d𝑧)𝔪⊗𝑁0 (d𝑥)

=
∫
P(X)𝑇+1

( ∫
X𝑁

∫
Z𝑁𝑇

∫
ℛ𝑁

𝐺𝑁 (𝑥, (𝑢𝑗)𝑁𝑗=1 , 𝑧)𝛾𝑁𝑚 (d𝑢1 , . . . , d𝑢𝑁 )𝜈⊗𝑁𝑇(d𝑧)𝔪⊗𝑁0 (d𝑥)
)
𝜌2(d𝑚)

=
∫
P(X)𝑇+1

( ∫
X𝑁

∫
Z𝑁𝑇

∫
ℛ𝑁+1

𝐺𝑁 (𝑥, 𝜑, (𝑢𝑗)𝑁𝑗=2 , 𝑧)𝛿𝑢1(d𝜑)𝛾𝑁𝑚 (d𝑢)𝜈⊗𝑁𝑇(d𝑧)𝔪⊗𝑁0 (d𝑥)
)
𝜌2(d𝑚)

=
∫
P(X)𝑇+1

𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁𝑚 , 𝜄𝛾𝑁𝑚,1)𝜌2(d𝑚).

Notice that, here we have implicitly exploited the conditional independence and independence
properties proved in Remark 1.3.3, points ii) and iii). Indeed, assumeP𝑁◦(Φ̃1 ,Φ1 , . . . ,Φ𝑁 )−1 = 𝜆

and denote with 𝜆𝑖 the measure projected on it 𝑖𝑡ℎ component(s), that is 𝜆𝑖 := 𝜆 ◦ (𝜋𝑖)−1. Let
𝐴, 𝐵1 , . . . , 𝐵𝑁 ∈ ℬ(ℛ̂𝑁 ). Exploiting Remark 1.3.3 (iii), we get

P𝑁 (Φ̃1 ∈ 𝐴,Φ1 ∈ 𝐵1 , . . . ,Φ𝑁 ∈ 𝐵𝑁 )

=
∫
ℛ̂𝑁

1𝐵1(𝜑1)
∫
ℛ̂𝑁×ℛ̂𝑁−1

𝑁

1𝐴(d𝜓)
𝑁∏
𝑗=2

1𝐵𝑗 (𝜑 𝑗)𝜆1,3,...,𝑁+1(d𝜓, d𝜑2 , . . . , d𝜑𝑁 |𝜑1)𝜆2(d𝜑1)

=
∫
ℛ̂𝑁

1𝐵1(𝜑1)
∫
ℛ̂𝑁

1𝐴(d𝜓)𝜆1(d𝜓 |𝜑1)
∫
ℛ̂𝑁−1
𝑁

𝑁∏
𝑗=2

1𝐵𝑗 (𝜑 𝑗)𝜆3,...,𝑁+1(d𝜑2 , . . . , d𝜑𝑁 |𝜑1)𝜆2(d𝜑1)
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=
∫
ℛ̂𝑁×ℛ̂𝑁𝑁

1𝐴(d𝜓)
𝑁∏
𝑗=1

1𝐵𝑗 (𝜑 𝑗)𝜆1(d𝜓 |𝜑1)𝜆3,...,𝑁+1(d𝜑2 , . . . , d𝜑𝑁 |𝜑1)𝜆2(d𝜑1)

=
∫
ℛ̂𝑁×ℛ̂𝑁𝑁

1𝐴(d𝜓)
𝑁∏
𝑗=1

1𝐵𝑗 (𝜑 𝑗)𝛿𝜑1(d𝜓)𝛾𝑁 (d𝜑1 , . . . , d𝜑𝑁 ),

where the last step is a consequence of the fact that P𝑁 ◦ (Φ1 , . . . ,Φ𝑁 )−1 = 𝛾𝑁 and P𝑁 ◦
(Φ̃1 ,Φ1)−1 = 𝜄𝛾𝑁𝑖

. Thus, we have 𝜆(d𝜓, d𝜑1 , . . . , d𝜑𝑁 ) = 𝛿𝜑1(d𝜓)𝛾𝑁 (d𝜑1 , . . . , d𝜑𝑁 ).

Furthermore, for the mean field game, we have

𝐽(𝔪0 , 𝜌, 𝜄) =
∫
P(X)𝑇+1

𝐽(𝔪0 , 𝜌1(·|𝑚) ⊗ 𝛿𝑚 , 𝜄)𝜌2(d𝑚),

where 𝜌1(·|𝑚) as in the statement of the theorem. In fact, with similar computations as above
for 𝐽𝑁1 , we get

𝐽(𝔪0 , 𝜌, 𝜄) =
∫
X

∫
Z𝑇

∫
ℛ×P(X)𝑇+1

𝐺𝜄(𝑥, 𝜑, 𝑧, 𝑚)𝜌(d𝜑, d𝑚)𝜈⊗𝑇(d𝑧)𝔪0(d𝑥)

=
∫
X

∫
Z𝑇

∫
P(X)𝑇+1

∫
ℛ
𝐺𝜄(𝑥, 𝜑, 𝑧, 𝑚)𝜌1(d𝜑 |𝑚)𝜌2(d𝑚)𝜈⊗𝑇(d𝑧)𝔪0(d𝑥)

=
∫
P(X)𝑇+1

∫
X

∫
Z𝑇

∫
ℛ
𝐺𝜄(𝑥, 𝜑, 𝑧, 𝑚)𝜌1(d𝜑 |𝑚)𝜈⊗𝑇(d𝑧)𝔪0(d𝑥)𝜌2(d𝑚)

=
∫
P(X)𝑇+1

𝐽(𝔪0 , 𝜌1(·|𝑚) ⊗ 𝛿𝑚 , 𝜄)𝜌2(d𝑚),

and this ends the proof of the identity.
In the proof of (1.6.2), that is the case in which all the players follow the mediator’s suggestion,

computations simplify considerably. Indeed, since the recommendation 𝛾𝑁 belongs to P(ℛ𝑁 ),
for any 𝑁 ∈ N, we can proceed as in the proof of [30, Theorem 5.1 and Theorem 6.1], that is
through the following three steps:

1. We show that, for any fixed 𝑚 ∈ P(X)𝑇+1 , there exists a subsequence of indices such that

lim
𝑘→∞

𝐽𝑁𝑘
1 (𝔪⊗𝑁𝑘

0 , 𝛾𝑁𝑘
𝑚 , 𝜄) = 𝐽(𝔪0 , 𝜌𝑚 , 𝜄𝜌𝑚 ),

for some 𝜌𝑚 ∈ P(ℛ × P(X)𝑇+1 ), with 𝛾𝑁𝑚 = 𝜌1(·|𝑚)⊗𝑁 .
2. We prove a result of chaos propagation that enables us to deduce that, in the limit, for all
𝑚 ∈ P(X)𝑇+1 , we have

P𝑚 ◦ (𝑋𝑚
𝑡 , 𝜇

𝑚
𝑡 )−1 = 𝑚𝑚

𝑡 ⊗ 𝛿𝑚𝑚
𝑡
, for all 𝑡 ∈ [[0, 𝑇]],

for some 𝑚𝑚
𝑡 ∈ P(X).

3. We show that, for 𝜌2-almost every 𝑚 ∈ P(X)𝑇+1 , (𝑚𝑚
𝑡 )𝑇𝑡=0 = (𝑚𝑡)𝑇𝑡=0, independently of the

convergent subsequence considered, and conclude by integrating in (𝑚𝑡)𝑇𝑡=0 ∈ P(X)𝑇+1

w.r.t. 𝜌2(d𝑚).
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Step 1

Fix a flow of measure𝑚 ∈ P(X)𝑇+1 . Consider the sequence of triples {(𝔪⊗𝑁0 , 𝛾𝑁𝑚 , 𝜄)}𝑁∈N. For
each𝑁 ∈ N, consider the tuple ((Ω𝑁,𝑚 , ℱ𝑁,𝑚 , P𝑁,𝑚), (Φ𝑁,𝑚

𝑗 )𝑁𝑗=1 , (𝜗𝑁,𝑚𝑡 )𝑇−1
𝑡=0 , (𝜉1,𝑁 ,𝑚

𝑡 , . . . , 𝜉𝑁,𝑁,𝑚𝑡 )𝑇𝑡=1,
Φ̃𝑁,𝑚

1 , (𝑋1,𝑁 ,𝑚
𝑡 , . . . , 𝑋𝑁,𝑁,𝑚

𝑡 )𝑇𝑡=0), a realisation of (𝔪⊗𝑁0 , 𝛾𝑁𝑚 , 𝜄). Since we are proving (1.6.2), w.l.o.g.
we assume that Φ𝑁,𝑚

1 = Φ̃𝑁,𝑚
1 , P𝑁,𝑚-a.s. Set, for any 𝑁 ∈ N,

𝜂𝑁𝑚 := P𝑁,𝑚 ◦ (Φ𝑁,𝑚
1 , (𝜇1,𝑁 ,𝑚

𝑡 )𝑇𝑡=0 , (𝜉1,𝑁 ,𝑚
𝑡 )𝑇𝑡=1 , Φ̃

𝑁,𝑚
1 , (𝑋1,𝑁 ,𝑚

𝑡 )𝑇𝑡=0)−1.

Since, for any 𝑁 ∈ N, 𝜂𝑁𝑚 belongs to the compact set P(ℛ × P(X)𝑇+1 × Z𝑇 × ℛ × X𝑇+1), the
sequence {𝜂𝑁𝑚 }𝑁∈N admits a convergent subsequence, {𝜂𝑁𝑘

𝑚 }𝑘∈N, with limit 𝜂𝑚 . On a suitable
probability space, (Ω𝑚 , ℱ𝑚 , P𝑚), we consider a ℛ × P(X)𝑇+1 ×Z𝑇 × ℛ ×X𝑇+1- valued random
vector, (Φ𝑚 , (𝜇𝑚𝑡 )𝑇𝑡=0 , (𝜉𝑚𝑡 )𝑇𝑡=1 , Φ̃

𝑚 , (𝑋𝑚
𝑡 )𝑇𝑡=0), such that

𝜂𝑚 := P𝑚 ◦ (Φ𝑚 , (𝜇𝑚𝑡 )𝑇𝑡=0 , (𝜉𝑚𝑡 )𝑇𝑡=1 , Φ̃
𝑚 , (𝑋𝑚

𝑡 )𝑇𝑡=0)−1

and set
𝜌𝑚 := P𝑚 ◦ (Φ𝑚 , (𝜇𝑚𝑡 )𝑇𝑡=0)−1 ∈ P(ℛ × P(X)𝑇+1 ),

𝛽𝑚 := P𝑚 ◦ (Φ̃𝑚 ,Φ𝑚 , (𝜇𝑚𝑡 )𝑇𝑡=0)−1 ∈ P(ℛ × ℛ × P(X)𝑇+1 ).
Then, the limit variables, (Φ𝑚 , (𝜇𝑚𝑡 )𝑇𝑡=0 , (𝜉𝑚𝑡 )𝑇𝑡=1 , Φ̃

𝑚 , (𝑋𝑚
𝑡 )𝑇𝑡=0), satisfy the following properties:

i) By the continuous mapping theorem and the fact that, by hypothesis, 𝑋1,𝑁 ,𝑚
0

𝑑∼ 𝔪0, for all
𝑁 ∈ N, we get

P𝑚 ◦ (𝑋𝔪
0 )−1 = 𝔪0.

ii) 𝜌𝑚 = P𝑚 ◦ (Φ𝑚 , (𝜇𝑚𝑡 )𝑇𝑡=0)−1 ∈ P(ℛ × P(X)𝑇+1 ), by definition.

iii) As a consequence of the independence of the variables (𝜉1,𝑁 ,𝑚
𝑡 )𝑇𝑡=1 , 𝑋

1,𝑁 ,𝑚
0 , and (Φ𝑁,𝑚

1 , Φ̃𝑁,𝑚
1 )

and the fact that they jointly converge in distribution, together with the continuous map-
ping theorem and the fact that 𝜉1,𝑁 ,𝑚

𝑡
𝑑∼ 𝜈, 𝑁 ∈ N, 𝑡 ∈ [[1, 𝑇]], we have

𝜉𝑚𝑡
𝑑∼ 𝜈, for any 𝑡 ∈ [[1, 𝑇]].

iv) Since, for any 𝑁 ∈ N, Φ𝑁,𝑚
1 = Φ̃𝑁,𝑚

1 , P𝑁,𝑚-a.s., we get Φ𝑚 = Φ̃𝑚 , P𝑚-a.s. Then, we have
Φ̃𝑚(𝑡 , 𝑥(𝑡) , 𝑚(𝑡)) = Φ𝑚(𝑡 , 𝑥(𝑡) , 𝑚(𝑡)) = 𝜄𝑡(Φ𝑚 , 𝑥(𝑡) , 𝑚(𝑡)).
Furthermore, since (Φ𝑁𝑘 ,𝑚

𝑗 )𝑁𝑘
𝑗=1, Φ̃𝑁𝑘 ,𝑚

1 , as well as Φ𝑚 and Φ̃𝑚 , are ℛ-valued variables,
reasoning as in the Step 3 of the proof of [30, Theorem 5.1], we get that (𝜉𝑚𝑡 )𝑇𝑡=1, 𝑋𝔪

0 and
(Φ𝑚 , (𝜇𝑚𝑡 )𝑇𝑡=0) are independent.

v) Furthermore, proceeding as in the Step 3. of the proof of [30, Theorem 5.1], it is possible
to prove that (𝑋𝑚

𝑡 )𝑇𝑡=0 follows the dynamics: for any 𝑡 ∈ [[0, 𝑇 − 1]],
𝑋𝑚
𝑡+1 = Ψ

(
𝑡 , 𝑋𝑚

𝑡 ,Φ
𝑚

(
𝑡 , 𝑋𝑚,(𝑡) , 𝜇𝑚,(𝑡)

)
, 𝜉𝑚𝑡+1

)
, P𝑚-a.s.

= Ψ
(
𝑡 , 𝑋𝑚

𝑡 ,Φ
𝑚 (
𝑡 , 𝑋𝑚

𝑡

)
, 𝜉𝑚𝑡+1

)
.

These features correspond to properties i)-v) in Definition 1.4.1. We have proved that the tu-
ple ((Ω𝑚 , ℱ𝑚 , P𝑚),Φ𝑚 , (𝜇𝑚𝑡 )𝑇𝑡=0 , 𝑋

𝔪
0 , (𝜉𝑚𝑡 )𝑇𝑡=1 , Φ̃

𝑚 , (𝑋𝑚
𝑡 )𝑇𝑡=0) is a realisation of the triple (𝔪0 , 𝜌𝑚 , 𝜄).
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Furthermore, since, for any 𝑁 ∈ N, P𝑁,𝑚 ◦ (Φ𝑁,𝑚
1 )−1 = 𝜌1(·|𝑚), we get P𝑚 ◦ (Φ𝑚)−1 = 𝜌1(·|𝑚).

Furthermore, we have
lim
𝑘→∞

𝐽𝑁𝑘
1 (𝔪⊗𝑁𝑘

0 , 𝛾𝑁𝑘
𝑚 , 𝜄) = 𝐽(𝔪0 , 𝜌𝑚 , 𝜄). (1.6.4)

Equation (1.6.4) follows from the joint convergence in distribution of the variables that form
a realisation together with hypothesis (A3) and the dominated convergence theorem. Notice
that, here, the fact that Φ𝑁,𝑚

1 , as well as Φ𝑚 , are ℛ-valued is crucial.

Step 2

The symmetry and independence among the players in the pre-limit game enable us to
prove a result of chaos propagation for the convergent subsequence associated to (𝔪⊗𝑁0 , 𝛾𝑁𝑚 , 𝜄).
We are not going to show this property directly but exploiting an equivalent characterisation of
propagation of chaos, namely [82, Theorem 4.2](see Theorem 1.A.1, in the Appendix).
In fact, we can work iteratively to show that chaos propagates from 𝑡 to 𝑡+1 for each 𝑡 ∈ [[0, 𝑇−1]].
This fact implies

P𝑚 ◦ (𝑋𝑚
𝑡 , 𝜇

𝑚
𝑡 )−1 = 𝑚𝑚

𝑡 ⊗ 𝛿𝑚𝑚
𝑡
, 𝑡 ∈ [[0, 𝑇]].

for some deterministic flow of measures (𝑚𝑚
𝑡 )𝑇𝑡=0 ∈ P(X)𝑇+1, with 𝑚𝔪

0 = 𝑚0.
We show that propagation of chaos holds, for our specific structure, for the first time step. This
same reasoning can be immediately extended to the other time steps implying our thesis. We
notice that this is possible only because the variables {Φ𝑁,𝑚

𝑗 }𝑁𝑗=1 take values in ℛ. For a detailed
proof see Appendix 1.A.

Reframing the result (1.6) of chaos propagation in the dynamics described in Equation (1.6),
we get, P𝑚-a.s., {

𝑋𝑚
𝑡+1 = Ψ

(
𝑡 , 𝑋𝑚

𝑡 , 𝑚
𝑚
𝑡 ,Φ

𝑚
(
𝑡 , 𝑋𝑚

𝑡

)
, 𝜉𝑚𝑡+1

)
,

P𝑚 ◦ (𝑋𝑚
𝑡 )−1 = 𝑚𝑚

𝑡 , 𝑡 ∈ [[0, 𝑇]].
Notice that, in the variable Φ𝑚 , we are omitting the dependence on the measure 𝑚. We are
allowed to do this because this variable takes values in ℛ, being distributed according to
𝜌1(·|𝑚). The system in (1.6) has a unique solution. It is a consequence of the iterative definition
of the process (𝑋𝑚

𝑡 )𝑇𝑡=0 and of properties i)-v) of the limit realisation. Thence, the flow of
measures (𝑚𝑚

𝑡 )𝑇𝑡=0 ∈ P(X)𝑇+1 , corresponding to this system, is uniquely determined for each
(𝑚𝑡)𝑇𝑡=0 ∈ P(X)𝑇+1 .

Step 3

Now, our aim is to prove that (𝑚𝑚
𝑡 )𝑇𝑡=0 = (𝑚𝑡)𝑇𝑡=0, for 𝜌2-almost all (𝑚𝑡)𝑇𝑡=0 ∈ P(X)𝑇+1 . Let 𝜌 be

the correlated solution for the mean field game starting at𝔪0, as in the statement of the theorem,
and consider a realisation of (𝔪0 , 𝜌, 𝜄), i.e.

((Ω∗ , ℱ ∗ , P∗),Φ∗ , (𝜇∗𝑡)𝑇𝑡=0 , 𝑋
∗
0 , (𝜉∗𝑡)𝑇𝑡=1 , 𝜄, (𝑋∗𝑡 )𝑇𝑡=0

)
. By

definition of realisation, such a tuple satisfies properties i)-v) in Definition 1.4.1. In particular,
without loss of generality, we set

i) P∗ ◦ (𝑋∗0)−1 = 𝔪0;

ii) P∗ ◦ (Φ∗ , (𝜇∗𝑡)𝑇𝑡=0)−1 = 𝜌;
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iii) (𝜉∗𝑡)𝑇𝑡=1 i.i.d. with 𝜉∗𝑡
𝑑∼ 𝜈;

iv) (𝜉∗𝑡)𝑇𝑡=1 , 𝑋
∗
0 and (Φ∗ , (𝜇∗𝑡)𝑇𝑡=0) independent;

iv’) 𝜄(Φ∗) = Φ∗ , P∗-a.s.;

v) for all 𝑡 ∈ [[0, 𝑇 − 1]],
𝑋∗𝑡+1 = Ψ

(
𝑡 , 𝑋∗𝑡 , 𝜇

∗
𝑡 , 𝜄 ◦Φ∗

(
𝑡 , 𝑋∗ , 𝜇∗

)
, 𝜉∗𝑡+1

)
= Ψ

(
𝑡 , 𝑋∗𝑡 , 𝜇

∗
𝑡 ,Φ
∗ (𝑡 , 𝑋∗𝑡 ) , 𝜉∗𝑡+1

)
, P∗-a.s.

The fact that 𝜌 is a correlated solution for the mean field game (consistency condition) and
the definition of 𝜌1(·|𝑚) imply, respectively, that, for 𝜌2-almost all 𝑚 ∈ P(X)𝑇+1 , we have:

• P∗
(
𝑋∗𝑡 ∈ ·

��(𝜇∗𝑡)𝑇𝑡=0 = (𝑚𝑡)𝑇𝑡=0
)
= 𝑚𝑡 , 𝑡 ∈ [[0, 𝑇]];

• P∗
(
Φ∗ ∈ ·��(𝜇∗𝑡)𝑇𝑡=0 = (𝑚𝑡)𝑇𝑡=0

)
= 𝜌1(·|𝑚);

Then, setting Q𝑚(·) = P∗(·|(𝜇∗𝑡)𝑇𝑡=0 = (𝑚𝑡)𝑇𝑡=0), we get:

• Q𝑚 ◦ (𝑋∗𝑡 )−1 = 𝑚𝑡 , 𝑡 ∈ [[0, 𝑇]];
• Q𝑚 ◦ (Φ∗)−1 = 𝜌1(·|𝑚);
• Q𝑚 ◦ (𝜉∗𝑡)−1 = 𝜈, 𝑡 ∈ [[1, 𝑇]];
where the last item is a consequence of the fact that (𝜉∗𝑡)𝑇𝑡=1 is jointly independent of (𝜇∗𝑡)𝑇𝑡=0,

by property iv) above. Hence, for 𝜌2-almost all (𝑚𝑡)𝑇𝑡=0 ∈ P(X)𝑇+1 , Q𝑚-almost surely, for any
𝑡 ∈ [[0, 𝑇 − 1]], we have {

𝑋∗𝑡+1 = Ψ
(
𝑡 , 𝑋∗𝑡 , 𝑚𝑡 ,Φ∗

(
𝑡 , 𝑋∗𝑡

)
, 𝜉∗𝑡+1

)
Q𝑚 ◦ (𝑋∗𝑡 )−1 = 𝑚𝑡 , 𝑡 ∈ [[0, 𝑇]].

This means that the tuple
((Ω∗ , ℱ ∗ ,Q𝑚),Φ∗ , (𝜇∗𝑡)𝑇𝑡=0 , 𝑋

∗
0 , (𝜉∗𝑡)𝑇𝑡=1 , (𝑋∗𝑡 )𝑇𝑡=0

)
is a solution for the

system (1.6). Finally, exploiting the uniqueness of solution for this system, we obtain the
following identities, that hold for 𝜌2-almost all (𝑚𝑡)𝑇𝑡=0 ∈ P(X)𝑇+1 :

(𝑚𝑚
𝑡 )𝑇𝑡=0 = (𝑚𝑡)𝑇𝑡=0 , 𝜌𝑚 = P𝑚 ◦ (Φ𝑚 , 𝜇𝑚)−1 = Q𝑚 ◦ (Φ∗ , 𝑚)−1 = 𝜌1(·|𝑚) ⊗ 𝛿𝑚 .

Notice that the second equation is a consequence of the fact that P𝑚 ◦ (Φ𝑚)−1 = 𝜌1(·|𝑚). In
particular, we rewrite the equation in (1.6.4) as

lim
𝑘→∞

𝐽𝑁𝑘
1 (𝔪⊗𝑁𝑘

0 , 𝛾𝑁𝑘
𝑚 , 𝜄) = 𝐽(𝔪0 , 𝜌1(·|𝑚) ⊗ 𝛿𝑚 , 𝜄).

Notice that the limit above does not depend on the subsequence considered and so we can
deduce that the whole sequence converges to this limit. Now, an application of the dominated
convergence theorem, together with the identities (1.6) and (1.6), yields

lim
𝑁→∞ 𝐽

𝑁
1 (𝔪⊗𝑁0 , 𝛾𝑁 , 𝜄) = lim

𝑁→∞

∫
P(X)𝑇+1

𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁𝑚 , 𝜄)𝜌2(d𝑚)

=
∫
P(X)𝑇+1

lim
𝑁→∞ 𝐽

𝑁
1 (𝔪⊗𝑁0 , 𝛾𝑁𝑚 , 𝜄)𝜌2(d𝑚)

=
∫
P(X)𝑇+1

𝐽(𝔪0 , 𝜌1(·|𝑚) ⊗ 𝛿𝑚 , 𝜄)𝜌2(d𝑚) = 𝐽(𝔪0 , 𝜌, 𝜄).
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This ends the proof of (1.6.2).

Proof of (1.6.3). Consider the minimising sequence of strategy modifications {�̃�𝑁 }𝑁∈N ⊆ N𝛾𝑁1
,

defined in (1.6.1). Now, set

𝛾𝑁 (d𝜑1 , . . . , d𝜑𝑁 , d𝑚) : = ©«
𝑁⊗
𝑗=1

𝜌1(d𝜑 𝑗 |𝑚)ª®¬ 𝜌2(d𝑚)

=
©«

𝑁⊗
𝑗=1

(∫
Z

𝑇−1⊗
𝑡=0

𝛿𝛼𝑡 (𝑧 𝑗 ,𝑚(𝑡+1))(d𝜑 𝑗(𝑡 , ·))𝜈(d𝑧 𝑗)
)ª®¬ 𝜌2(d𝑚)

= 𝛾𝑁𝑚 (d𝜑1 , . . . , d𝜑𝑁 )𝜌2(d𝑚) ∈ P(ℛ𝑁 × P(X)𝑇+1 ),

where 𝛼𝑡 has been chosen according to (R2), see Remark 1.6.1 and 1.6.3. The peculiar form
of the starting MFG solution 𝜌 that satisfies assumption (R2), and the consequent form of the
correlated suggestion in the 𝑁-player game, will be crucial to give an interpretation to any 𝑁-
player game realisation in the mean-field sense. Now, we want to build a sequence of realisations
of {(𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 )}𝑁∈N. For a fixed 𝑁 ∈ N, let (Ω𝑁 , ℱ𝑁 , P𝑁 ) be a complete probability space.
On this probability space, we set:

i) (𝑋 𝑗
0)𝑁𝑗=1, X-valued random variables i.i.d. according to 𝔪0;

(Φ𝑗)𝑁𝑗=1 , ℛ-valued random variables, such that

Φ𝑗(𝑡 , ·) := 𝛼𝑡(𝑍 𝑗 , 𝜇(𝑡+1)), 𝑗 = 1, . . . , 𝑁 , 𝑡 = 0, . . . , 𝑇 − 1,

with (𝑍 𝑗)𝑁𝑗=1 i.i.d. 𝑑∼ 𝜈 and independent of 𝜇 𝑑∼ 𝜌2.

In particular, this implies thatP𝑁◦((Φ𝑗)𝑁𝑗=1 , 𝜇)−1(d𝜑1 , . . . , d𝜑𝑁 , d𝑚) = 𝛾𝑁 (d𝜑1 , . . . , d𝜑𝑁 , d𝑚)
and so that P𝑁 ◦ ((Φ𝑗)𝑁𝑗=1)−1(d𝜑1 , . . . , d𝜑𝑁 ) = 𝛾𝑁 (d𝜑1 , . . . , d𝜑𝑁 );

ii) (𝜉1
𝑡 , . . . , 𝜉

𝑁
𝑡 )𝑇𝑡=0,Z-valued random variables i.i.d. all distributed according to 𝜈;

iii) (𝜗𝑡)𝑇𝑡=0,Z-valued random variables i.i.d. all distributed according to 𝜈;

iv) (𝜉1
𝑡 , . . . , 𝜉

𝑁
𝑡 )𝑇𝑡=0, (𝑋 𝑗

0)𝑁𝑗=1, ((𝜇𝑡)𝑇𝑡=0 , (𝑍 𝑗)𝑁𝑗=1) and (𝜗𝑡)𝑇−1
𝑡=0 are independent;

v) Υ̃𝑁
1 , ℛ̂-valued random variable s.t. Υ̃𝑁

1 (𝑡 , ·) = 𝑤𝑁
𝑡 (𝜗𝑡 ,Φ1)(·), with 𝑤𝑁

𝑡 : [0, 1] × ℛ → ℰ̂𝑡 ,𝑁
Borel function, for any 𝑡 ∈ [[0, 𝑇 − 1]], and P𝑁 ◦ (Φ1 , Υ̃𝑁

1 )−1 = �̃�𝑁 1.

We set the following dynamics for the X-valued processes, (𝑋 𝑗 ,𝑁
𝑡 )𝑇𝑡=0, 𝑗 ∈ [[1, 𝑁]], for 𝑡 ∈

[[0, 𝑇 − 1]],
𝑋 𝑗,𝑁
𝑡+1 = Ψ

(
𝑡 , 𝑋 𝑗,𝑁

𝑡 , 𝜇𝑗 ,𝑁𝑡 ,Φ𝑗(𝑡 , 𝑋 𝑗
𝑡 ), 𝜉 𝑗𝑡+1

)
, P𝑁 -a.s.,

where, for all 𝑡 ∈ [[0, 𝑇]] and 𝑗 ∈ [[1, 𝑁]], 𝜇𝑗 ,𝑁𝑡 := 1
𝑁−1

∑𝑁
𝑘≠𝑗 ,𝑘=1 𝛿𝑋 𝑘,𝑁

𝑡
and 𝜇𝑗,𝑁 := (𝜇𝑗 ,𝑁𝑡 )𝑇𝑡=0. This

corresponds to the case where all the players stick to the suggestion given by the mediator.

1The existence of these Borel functions is a consequence of the measurability condition in v) in Definition 1.3.1
and of Doob’s Lemma (see [105, Lemma 1.13]).
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Then, we define another sequence of processes, (𝑋 𝑗 ,𝑁
𝑡 )𝑇𝑡=0, 𝑗 ∈ [[1, 𝑁]], setting 𝑋 𝑗 ,𝑁

0 := 𝑋 𝑗
0 and,

for 𝑡 ∈ [[0, 𝑇 − 1]],

𝑋 𝑗,𝑁
𝑡+1 = Ψ

(
𝑡 , 𝑋 𝑗 ,𝑁

𝑡 , �̃�𝑗 ,𝑁𝑡 ,Φ𝑗(𝑡 , 𝑋 𝑗,𝑁
𝑡 ), 𝜉 𝑗𝑡+1

)
, (1.6.5)

𝑋1,𝑁
𝑡+1 = Ψ

(
𝑡 , 𝑋1,𝑁

𝑡 , �̃�1,𝑁
𝑡 , Υ̃1,𝑁 (𝑡 , 𝑋1,𝑁 , �̃�1,𝑁 ), 𝜉1

𝑡+1

)
, P𝑁 -a.s.,

where, for all 𝑡 ∈ [[0, 𝑇]] and 𝑗 ∈ [[1, 𝑁]], �̃�
𝑗,𝑁
𝑡 := 1

𝑁−1
∑𝑁
𝑘≠𝑗,𝑘=1 𝛿𝑋 𝑘,𝑁

𝑡
and �̃�𝑗,𝑁 := (�̃�𝑗 ,𝑁𝑡 )𝑇𝑡=0.

This represents the case in which only the first player is deviating from the suggestion ac-
cording to the minimising sequence of strategy modifications introduced in the beginning of
the proof. Hence, ((Ω𝑁 , ℱ𝑁 , P𝑁 ), (Φ𝑗)𝑁𝑗=1, (𝜗𝑡)𝑇−1

𝑡=0 , (𝜉1
𝑡 , . . . , 𝜉

𝑁
𝑡 )𝑇𝑡=1 ,Φ1 , (𝑋1,𝑁

𝑡 , . . . , 𝑋𝑁,𝑁
𝑡 )𝑇𝑡=0) and

((Ω𝑁 , ℱ𝑁 , P𝑁 ), (Φ𝑗)𝑁𝑗=1, (𝜗𝑡)𝑇−1
𝑡=0 , (𝜉1

𝑡 , . . . , 𝜉
𝑁
𝑡 )𝑇𝑡=1, Υ̃𝑁

1 , (𝑋1,𝑁
𝑡 , . . . , 𝑋𝑁,𝑁

𝑡 )𝑇𝑡=0) are, respectively, a re-
alisation of the triple (𝔪⊗𝑁0 , 𝛾𝑁 , 𝜄) and (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ) for the first player. Indeed, we notice that,
with this construction, also condition v) in Definition 1.3.1 is satisfied.
Then, we define another sequence of processes, (𝑋 𝑗 ,𝑁

𝑡 )𝑇𝑡=0, 𝑗 ∈ [[2, 𝑁]], setting 𝑋 𝑗 ,𝑁
0 := 𝑋 𝑗

0 and,
for 𝑡 ∈ [[0, 𝑇 − 1]],

𝑋 𝑗 ,𝑁
𝑡+1 = Ψ

(
𝑡 , 𝑋 𝑗,𝑁

𝑡 , �̂�1,𝑁
𝑡 ,Φ𝑗(𝑡 , 𝑋 𝑗 ,𝑁

𝑡 ), 𝜉 𝑗𝑡+1

)
, P𝑁 -a.s.,

where, for all 𝑡 ∈ [[0, 𝑇]], �̂�1,𝑁
𝑡 := 1

𝑁−1
∑𝑁
𝑘=2 𝛿𝑋 𝑘,𝑁

𝑡
and �̂�1,𝑁 := (�̂�1,𝑁

𝑡 )𝑇𝑡=0. These processes describe
the evolution of the system excluding the first player.
Finally, we define the process, (𝑋1,𝑁

𝑡 )𝑇𝑡=0, setting 𝑋
1,𝑁
0 := 𝑋1

0 and, for 𝑡 ∈ [[0, 𝑇 − 1]],

𝑋
1,𝑁
𝑡+1 = Ψ

(
𝑡 , 𝑋

1,𝑁
𝑡 , 𝜇𝑡 , Υ̃1,𝑁 (𝑡 , 𝑋1,𝑁 , �̃�1,𝑁 ), 𝜉1

𝑡+1

)
, P𝑁 -a.s.. (1.6.6)

This last one is an auxiliary process whose utility will be made clear in the following. From
now on, for simplicity of notation, for 𝑡 ∈ [[0, 𝑇 − 1]], we write �̃�1,𝑁

𝑡 for Υ̃1,𝑁 (𝑡 , 𝑋1,𝑁 , �̃�1,𝑁 ).
First of all, we focus on ((Ω𝑁 , ℱ𝑁 , P𝑁 ),Φ1 , (𝜇𝑡)𝑇𝑡=0 , (𝜇1,𝑁

𝑡 )𝑇𝑡=0 , (𝜗𝑡)𝑇−1
𝑡=0 , (𝜉1

𝑡 )𝑇𝑡=1 , (𝑋1,𝑁
𝑡 )𝑇𝑡=0). For all

𝑡 ∈ [[0, 𝑇]], an application of the tower property yields

E𝑁 [dist(𝜇1,𝑁
𝑡 , 𝜇𝑡)] =

∫
P(X)𝑇+1

E𝑁 [dist(𝜇1,𝑁
𝑡 , 𝜇𝑡)|𝜇 = 𝑚]𝜌2(d𝑚).

Conditionally on the event {(𝜇𝑡)𝑇𝑡=0 = (𝑚𝑡)𝑇𝑡=0}, we have already seen that (𝜇1,𝑁
𝑡 )𝑇𝑡=0 converges

weakly to (𝑚𝑡)𝑇𝑡=0, as 𝑁 goes to infinity. Since (𝑚𝑡)𝑇𝑡=0 ∈ P(X)𝑇+1 is deterministic, the conver-

gence result above holds in probability, that is, for any fixed 𝜀 > 0, P𝑚𝑁 (dist(𝜇1,𝑁
𝑡 , 𝜇𝑡) > 𝜀) 𝑁→∞−→ 0.

Then, we have

E𝑚𝑁 [dist(𝜇1,𝑁
𝑡 , 𝜇𝑡)] ≤ P𝑚𝑁 (dist(𝜇1,𝑁

𝑡 , 𝜇𝑡) > 𝜀) + 𝜀P𝑚𝑁 (dist(𝜇1,𝑁
𝑡 , 𝜇𝑡) ≤ 𝜀)

≤ P𝑚𝑁 (dist(𝜇1,𝑁
𝑡 , 𝜇𝑡) > 𝜀) + 𝜀

𝑁→∞−→ 𝜀,

and we obtain by the arbitrariness of 𝜀 > 0 that E𝑚𝑁 [dist(𝜇1,𝑁
𝑡 , 𝜇𝑡)] 𝑁→∞−→ 0, for any 𝑡 ∈ [[0, 𝑇]].
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Finally, by disintegration, an application of the dominated convergence theorem yields

lim
𝑁→∞E𝑁 [dist(𝜇1,𝑁

𝑡 , 𝜇𝑡)] =
∫
P(X)𝑇+1

lim
𝑁→∞E𝑁 [dist(𝜇1,𝑁

𝑡 , 𝜇𝑡)|𝜇 = 𝑚]𝜌2(d𝑚) = 0, for all 𝑡 ∈ [[0, 𝑇]],

and consequently
lim
𝑁→∞E𝑁 [dist𝑇(𝜇1,𝑁 , 𝜇)] = 0. (1.6.7)

Now, we prove the following claim.

Claim 1. For any 𝜆 = (𝜆𝑡)𝑇𝑡=0 ∈ {�̃�𝑗,𝑁𝑡 , 𝑗 ∈ [[1, 𝑁]]} ∪ {𝜇𝑗,𝑁𝑡 , 𝑗 ∈ [[1, 𝑁]]}

lim
𝑁→∞E

[
dist𝑇(𝜆, �̂�1,𝑁 )] = 0.

Proof of Claim 1. We prove the claim for 𝜆 = �̃�𝑗 ,𝑁 , the proof for 𝜆 = 𝜇𝑗,𝑁 being similar. Since by
definition of dist𝑇 , we have

E
[
dist𝑇(�̃�𝑗,𝑁 , �̂�1,𝑁 )] = E [

𝑇∑
𝑡=0

dist(�̃�𝑗 ,𝑁𝑡 , �̂�1,𝑁
𝑡 )

]
=

𝑇∑
𝑡=0
E

[
dist(�̃�𝑗 ,𝑁𝑡 , �̂�1,𝑁

𝑡 )
]
,

it suffices to prove that, for any 𝑗 ∈ []1, 𝑁]], and any 𝑡 ∈ []0, 𝑇]],

lim
𝑁→∞E

[
dist(�̃�𝑗,𝑁𝑡 , �̂�1,𝑁

𝑡 )
]
= 0. (1.6.8)

We notice that the definition of the distance dist together with the upper bound for empirical
measures in (2.1) in [30] implies that, for all 𝑗 ∈ []1, 𝑁]], 𝑡 ∈ []0, 𝑇]],

E
[
dist(�̂�1,𝑁

𝑡 , �̃�𝑗 ,𝑁𝑡 )
]
≤ 1
𝑁 − 1 +

1
𝑁 − 1

𝑁∑
𝑙=2
P

(
𝑋 𝑙,𝑁
𝑡 ≠ 𝑋 𝑙 ,𝑁

𝑡

)
. (1.6.9)

In fact, for 𝑗 = 1, we have

E
[
dist(�̂�1,𝑁

𝑡 , �̃�𝑗,𝑁𝑡 )
] (2.1)≤ E [

1
𝑁 − 1

𝑁∑
𝑙=2

1𝑋 𝑙,𝑁
𝑡 ≠𝑋 𝑙 ,𝑁

𝑡

]
=

1
𝑁 − 1

𝑁∑
𝑙=2
P

(
𝑋 𝑙 ,𝑁
𝑡 ≠ 𝑋 𝑙,𝑁

𝑡

)
.

Whereas, for 𝑗 ∈ []2, 𝑁]], we get

E
[
dist(�̂�1,𝑁

𝑡 , �̃�𝑗 ,𝑁𝑡 )
] (2.1)≤ E  1

𝑁 − 1

𝑁∑
𝑙=2,𝑙≠𝑗

1𝑋 𝑙 ,𝑁
𝑡 ≠𝑋 𝑙,𝑁

𝑡
+ 1
𝑁 − 11

𝑋1,𝑁
𝑡 ≠𝑋 𝑗 ,𝑁

𝑡


≤ E

[
1

𝑁 − 1

𝑁∑
𝑙=2

1𝑋 𝑙,𝑁
𝑡 ≠𝑋 𝑙 ,𝑁

𝑡
+ 1
𝑁 − 1

]
=

1
𝑁 − 1

𝑁∑
𝑙=2
P

(
𝑋 𝑙,𝑁
𝑡 ≠ 𝑋 𝑙,𝑁

𝑡

)
+ 1
𝑁 − 1 .
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Furthermore, we prove that, for all 𝑡 ∈ []0, 𝑇]], we have the following convergence, as 𝑁 →∞,

lim
𝑁→∞

1
𝑁 − 1

𝑁∑
𝑗=2
P

(
𝑋 𝑗,𝑁
𝑡 ≠ 𝑋 𝑗,𝑁

𝑡

)
= 0.

In fact, (1.6), with 𝑡 = 0, follows from the fact that, for all 𝑁 ∈ N,

𝑁∑
𝑗=2
P

(
𝑋 𝑗,𝑁

0 ≠ 𝑋 𝑗 ,𝑁
0

)
= 0.

which is a consequence of the fact that, by construction, for all 𝑁 ∈ N, 𝑗 ∈ [[1, 𝑁]], 𝑋 𝑗 ,𝑁
0 = 𝑋 𝑗

0,
P𝑁 -a.s. and for all 𝑁 ∈ N, 𝑗 ∈ [[2, 𝑁]], 𝑋 𝑗 ,𝑁

0 = 𝑋 𝑗
0, P𝑁 -a.s.. Then, we prove (1.6) for a generic

time, reasoning by induction. Let us assume that (1.6) holds for 𝑡, for all 𝑗 ∈ []2, 𝑁]], we have

P
(
𝑋 𝑗 ,𝑁
𝑡+1 ≠ 𝑋 𝑗,𝑁

𝑡+1

)
= P

(
𝑋 𝑗 ,𝑁
𝑡+1 ≠ 𝑋 𝑗,𝑁

𝑡+1 , 𝑋
𝑗,𝑁
𝑡 ≠ 𝑋 𝑗 ,𝑁

𝑡

)
+ P

(
𝑋 𝑗,𝑁
𝑡+1 ≠ 𝑋 𝑗 ,𝑁

𝑡+1 , 𝑋
𝑗 ,𝑁
𝑡 = 𝑋 𝑗,𝑁

𝑡

)
≤ P

(
𝑋 𝑗,𝑁
𝑡 ≠ 𝑋 𝑗 ,𝑁

𝑡

)
+ P

(
𝑋 𝑗,𝑁
𝑡+1 ≠ 𝑋 𝑗 ,𝑁

𝑡+1 , 𝑋
𝑗 ,𝑁
𝑡 = 𝑋 𝑗,𝑁

𝑡

)
=: ★,

where we have exploited disintegration. Using the iterative definition of the processes (𝑋 𝑗,𝑁
𝑡 )𝑇𝑡=0

and (𝑋 𝑗 ,𝑁
𝑡 )𝑇𝑡=0 through Ψ and the fact that Φ𝑗 , by construction, takes values in ℛ we get

★ = P

(
Ψ

(
𝑡 , 𝑋 𝑗 ,𝑁

𝑡 , �̃�𝑗,𝑁𝑡 ,Φ𝑗(𝑡 , 𝑋 𝑗 ,𝑁
𝑡 ), 𝜉 𝑗𝑡+1

)
≠ Ψ

(
𝑡 , 𝑋 𝑗 ,𝑁

𝑡 , �̂�1,𝑁
𝑡 ,Φ𝑗(𝑡 , 𝑋 𝑗,𝑁

𝑡 ), 𝜉 𝑗𝑡+1

)
, 𝑋 𝑗 ,𝑁

𝑡 = 𝑋 𝑗 ,𝑁
𝑡

)
+ P

(
𝑋 𝑗 ,𝑁
𝑡 ≠ 𝑋 𝑗 ,𝑁

𝑡

)
= P

(
Ψ

(
𝑡 , 𝑋 𝑗 ,𝑁

𝑡 , �̃�𝑗,𝑁𝑡 ,Φ𝑗(𝑡 , 𝑋 𝑗 ,𝑁
𝑡 ), 𝜉 𝑗𝑡+1

)
≠ Ψ

(
𝑡 , 𝑋 𝑗 ,𝑁

𝑡 , �̂�1,𝑁
𝑡 ,Φ𝑗(𝑡 , 𝑋 𝑗,𝑁

𝑡 ), 𝜉 𝑗𝑡+1

)
, 𝑋 𝑗 ,𝑁

𝑡 = 𝑋 𝑗 ,𝑁
𝑡

)
+ P

(
𝑋 𝑗 ,𝑁
𝑡 ≠ 𝑋 𝑗 ,𝑁

𝑡

)
= P

(
𝑋 𝑗 ,𝑁
𝑡 ≠ 𝑋 𝑗 ,𝑁

𝑡

)
+ P

(
Ψ

(
𝑡 , 𝑋 𝑗,𝑁

𝑡 , �̃�𝑗,𝑁𝑡 ,Φ𝑗(𝑡 , 𝑋 𝑗 ,𝑁
𝑡 ), 𝜉 𝑗𝑡+1

)
≠ Ψ

(
𝑡 , 𝑋 𝑗 ,𝑁

𝑡 , �̂�1,𝑁
𝑡 ,Φ𝑗(𝑡 , 𝑋 𝑗 ,𝑁

𝑡 ), 𝜉 𝑗𝑡+1

) )
Then, an application of Fubini’s Theorem, together with the independence properties of
(𝜉 𝑗𝑡+1)𝑁𝑗=2, yields

P
(
𝑋 𝑗 ,𝑁
𝑡+1 ≠ 𝑋 𝑗,𝑁

𝑡+1

)
= P

(
𝑋 𝑗,𝑁
𝑡 ≠ 𝑋 𝑗,𝑁

𝑡

)
+ E

[∫
Z

1{
Ψ

(
𝑡 ,𝑋 𝑗 ,𝑁

𝑡 ,�̃�𝑗,𝑁𝑡 ,Φ𝑗(𝑡 ,𝑋 𝑗,𝑁
𝑡 ),𝑧

)
≠Ψ

(
𝑡 ,𝑋 𝑗,𝑁

𝑡 ,�̂�1,𝑁
𝑡 ,Φ𝑗(𝑡 ,𝑋 𝑗,𝑁

𝑡 ),𝑧
)}𝜈(d𝑧)]

≤ P
(
𝑋 𝑗,𝑁
𝑡 ≠ 𝑋 𝑗 ,𝑁

𝑡

)
+ E

[
𝔚(dist(�̃�𝑗,𝑁𝑡 , �̂�1,𝑁

𝑡 )
]
,

where the inequality in the last row follows from Assumption (A2) 1).
Now, notice that

lim
𝑁→∞ max

𝑗∈[[2,𝑁]]
E

[
dist(�̃�𝑗,𝑁𝑡 , �̂�1,𝑁

𝑡 )
] (1.6.9)≤ lim

𝑁→∞

{
1

𝑁 − 1 +
1

𝑁 − 1

𝑁∑
𝑙=2
P

(
𝑋 𝑙 ,𝑁
𝑡 ≠ 𝑋 𝑙,𝑁

𝑡

)}
= 0,
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because of the induction hypothesis. Thence, with the notation dist(�̃�𝑗 ,𝑁𝑡 , �̂�1,𝑁
𝑡 ) = 𝛿𝑁𝑗 , for any

𝜀 > 0, we have

max
𝑗∈[[2,𝑁]]

E
[
𝔚(dist(�̃�𝑗,𝑁𝑡 , �̂�1,𝑁

𝑡 ))
]
= max

𝑗∈[[2,𝑁]]
E

[
𝔚(𝛿𝑁𝑗 )

]
≤ max

𝑗∈[[2,𝑁]]

{
E

[
𝔚(𝛿𝑁𝑗 )

��𝛿𝑁𝑗 ≥ 𝜀
]
P(𝛿𝑁𝑗 ≥ 𝜀) + E

[
𝔚(𝛿𝑁𝑗 )

��𝛿𝑁𝑗 < 𝜀
]
P(𝛿𝑁𝑗 < 𝜀)

}

≤ max
𝑗∈[[2,𝑁]]

{
| |𝔚| |∞P(𝛿𝑁𝑗 ≥ 𝜀) + E

[
𝔚(𝛿𝑁𝑗 )

��𝛿𝑁𝑗 < 𝜀
] }

≤ max
𝑗∈[[2,𝑁]]

{
| |𝔚| |∞P(𝛿𝑁𝑗 ≥ 𝜀) +𝔚(𝜀)

}
≤ 𝔚(𝜀) + ||𝔚| |∞ max

𝑗∈[[2,𝑁]]

E[𝛿𝑁𝑗 ]
𝜀

≤ 𝔚(𝜀) + ||𝔚| |∞
𝜀

max
𝑗∈[[2,𝑁]]

E[dist(�̃�𝑗,𝑁𝑡 , �̂�1,𝑁
𝑡 )]

𝑁→∞−→ 𝔚(𝜀),

where we have made use of disintegration, the fact that 𝔚 is bounded, Markov’s inequality and
the convergence result in (1.6).

The fact that 𝔚 converges to 0 as its argument goes to zero and the arbitrariness of 𝜀 > 0
therefore implies

lim
𝑁→∞

{
max
𝑗∈[[2,𝑁]]

E
[
𝔚(dist(�̃�𝑗 ,𝑁𝑡 , �̂�1,𝑁

𝑡 ))
]}

= 0. (1.6.10)

Applying once more the induction hypothesis to the inequality in (1.6), we get

lim
𝑁→∞

1
𝑁 − 1P

(
𝑋 𝑗,𝑁
𝑡+1 ≠ 𝑋 𝑗,𝑁

𝑡+1

)
≤ lim

𝑁→∞

{
1

𝑁 − 1P
(
𝑋 𝑗,𝑁
𝑡 ≠ 𝑋 𝑗,𝑁

𝑡

)
+ max
𝑗∈[[2,𝑁]]

E
[
𝔚(dist(�̃�𝑗,𝑁𝑡 , �̂�1,𝑁

𝑡 )
] }

= 0.

Thus, we have shown (1.6), which, together with (1.6.9), implies (1.6.8) and so our claim.

Then, by the triangular inequality and the monotonicity of expectation, Equation (1.6.7)
together with the statement in Claim 1 yields

E𝑁 [dist𝑇(�̃�1,𝑁 , 𝜇)] ≤ E𝑁 [dist𝑇(�̃�1,𝑁 , �̂�1,𝑁 )] + E𝑁 [dist𝑇(�̂�1,𝑁 , 𝜇1,𝑁 )] + E𝑁 [dist𝑇(𝜇1,𝑁 , 𝜇)] 𝑁→∞−→ 0.
(1.6.11)

Now, set

�̃�𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ) := E𝑁

[
𝑇∑
𝑡=0

𝑓 (𝑡 , 𝑋1,𝑁
𝑡 , 𝜇𝑡 , �̃�

1,𝑁
𝑡 ) + 𝐹(𝑋1,𝑁

𝑇 , 𝜇𝑇)
]
,

and

𝐽
𝑁
1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ) := E𝑁

[
𝑇∑
𝑡=0

𝑓 (𝑡 , 𝑋1,𝑁
𝑡 , 𝜇𝑡 , �̃�

1,𝑁
𝑡 ) + 𝐹(𝑋

1,𝑁
𝑇 , 𝜇𝑇)

]
,

with processes 𝑋1,𝑁 and 𝑋
1,𝑁

defined in Equations (1.6.5) and (1.6.6).
Now, consider a real valued sequence { 𝑓𝑛}𝑛∈N s.t., for any 𝑛 ∈ N, 𝑓𝑛 = ℎ𝑛 + 𝑔𝑛 + ℎ with
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lim𝑛→∞ ℎ𝑛 = 0, 𝑔𝑛 ≥ 0, for all 𝑛 ∈ N. Then,

lim inf
𝑛→∞ 𝑓𝑛 ≥ ℎ. (1.6.12)

In order to prove Equation (1.6.3), we want to exploit the inequality in Equation (1.6.12)
with 𝑔𝑁 = 𝐽

𝑁
1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ) − 𝐽(𝔪0 , 𝜌, 𝜄), ℎ𝑁 = 𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ) − 𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ) and ℎ =

𝐽(𝔪0 , 𝜌, 𝜄). First of all, (A3) and the convergence in Equation (1.6.11) imply

|𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ) − �̃�𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 )| (1.6.13)

≤ E𝑁
[

𝑇∑
𝑡=0
| 𝑓 (𝑡 , 𝑋1,𝑁

𝑡 , �̃�1,𝑁
𝑡 , �̃�1,𝑁

𝑡 ) − 𝑓 (𝑡 , 𝑋1,𝑁
𝑡 , 𝜇𝑡 , �̃�

1,𝑁
𝑡 )| + |𝐹(𝑋1,𝑁

𝑇 , �̃�1,𝑁
𝑇 ) − 𝐹(𝑋1,𝑁

𝑇 , 𝜇𝑇)|
]

≤ E𝑁
[
𝑇∑
𝑡=0

𝐿dist(�̃�1,𝑁
𝑡 , 𝜇𝑡) + 𝐿dist(�̃�1,𝑁

𝑇 , 𝜇𝑇)
]
= 𝐿E

[
dist𝑇(�̃�1,𝑁 , 𝜇)] 𝑁→∞−→ 0.

Furthermore, for all 𝑡 ∈ [[0, 𝑇]],

lim
𝑁→∞P𝑁 (𝑋

1,𝑁
𝑡 ≠ 𝑋

1,𝑁
𝑡 ) = 0.

We show this by induction on 𝑡 ∈ [[0, 𝑇]]. Indeed, for 𝑡 = 0, P𝑁 (𝑋1,𝑁
0 ≠ 𝑋

1,𝑁
0 ) = 0, being

𝑋1,𝑁
0 = 𝑋

1,𝑁
0 = 𝑋1

0 , P𝑁 -a.s., by construction. Now, suppose that lim𝑁→∞ P𝑁 (𝑋1,𝑁
𝑡 ≠ 𝑋

1,𝑁
𝑡 ) = 0,

for some 𝑡 ∈ [[0, 𝑇]]. Then, exploiting Assumption (A2) 1), we obtain

P𝑁 (𝑋1,𝑁
𝑡+1 ≠ 𝑋

1,𝑁
𝑡+1 ) ≤ P𝑁 (𝑋1,𝑁

𝑡 ≠ 𝑋
1,𝑁
𝑡 ) + P𝑁 (𝑋1,𝑁

𝑡+1 ≠ 𝑋
1,𝑁
𝑡+1 , 𝑋

1,𝑁
𝑡 = 𝑋

1,𝑁
𝑡 )

≤ P𝑁 (𝑋1,𝑁
𝑡 ≠ 𝑋

1,𝑁
𝑡 )

+ P𝑁
(
Ψ

(
𝑡 , 𝑋1,𝑁

𝑡 , �̃�1,𝑁
𝑡 , �̃�1,𝑁

𝑡 , 𝜉1
𝑡+1

)
≠ Ψ

(
𝑡 , 𝑋

1,𝑁
𝑡 , 𝜇𝑡 , �̃�

1,𝑁
𝑡 , 𝜉1

𝑡+1

)
, 𝑋1,𝑁

𝑡 = 𝑋
1,𝑁
𝑡

)
≤ P𝑁 (𝑋1,𝑁

𝑡 ≠ 𝑋
1,𝑁
𝑡 ) + P𝑁

(
Ψ

(
𝑡 , 𝑋1,𝑁

𝑡 , �̃�1,𝑁
𝑡 , �̃�1,𝑁

𝑡 , 𝜉1
𝑡+1

)
≠ Ψ

(
𝑡 , 𝑋1,𝑁

𝑡 , 𝜇𝑡 , �̃�
1,𝑁
𝑡 , 𝜉1

𝑡+1

))
≤ P𝑁 (𝑋1,𝑁

𝑡 ≠ 𝑋
1,𝑁
𝑡 ) + E𝑁

[
𝔚

(
dist(�̃�1,𝑁

𝑡 , 𝜇𝑡)
)]
,

and the last term on the right goes to zero as 𝑁 goes to infinity by the induction assumption
and the convergence in Equation (1.6.11), reasoning in a similar way as in the proof of Equation
(1.6.10). As a consequence, we see

|̃𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ) − 𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 )| (1.6.14)

≤ E𝑁
[

𝑇∑
𝑡=0
| 𝑓 (𝑡 , 𝑋1,𝑁

𝑡 , 𝜇𝑡 , �̃�
1,𝑁
𝑡 ) − 𝑓 (𝑡 , 𝑋

1,𝑁
𝑡 , 𝜇𝑡 , �̃�

1,𝑁
𝑡 )| + |𝐹(𝑋1,𝑁

𝑇 , 𝜇𝑇) − 𝐹(𝑋1,𝑁
𝑇 , 𝜇𝑇)|

]
≤ 2| | 𝑓 | |∞

𝑇∑
𝑡=0
P𝑁 (𝑋1,𝑁

𝑡 ≠ 𝑋
1,𝑁
𝑡 ) + 2| |𝐹 | |∞P𝑁 (𝑋1,𝑁

𝑇 ≠ 𝑋
1,𝑁
𝑇 ) 𝑁→∞−→ 0,

where we have exploited the fact that 𝑓 and 𝐹 being 𝐿-Lipschitz continuous real-valued function
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on a compact domain are bounded. The convergences in Equations (1.6.13) and (1.6.14) implies

|ℎ𝑁 | = |𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ) − 𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 )|
≤ |𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ) − 𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 )| + |𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ) − 𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 )| 𝑁→∞−→ 0.

Thus, an application of the inequality in (1.6.12) with

𝑔𝑁 = 𝐽
𝑁
1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ) − 𝐽(𝔪0 , 𝜌, 𝜄),

ℎ𝑁 = 𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ) − 𝐽𝑁1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 )
and

ℎ = 𝐽(𝔪0 , 𝜌, 𝜄),
yields (1.6.3) provided that 𝑔𝑁 = 𝐽

𝑁
1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 )− 𝐽(𝔪0 , 𝜌, 𝜄) ≥ 0. This is a consequence of the

fact that 𝐽
𝑁
1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ) can be interpreted as the value of the MFG when the representative

player implements the strategy �̃�1,𝑁
𝑡 = Υ̃𝑁

1 (𝑡 , 𝑋1,𝑁
𝑡 , �̃�𝑁1 ), 𝑡 ∈ [[0, 𝑇 − 1]]. Indeed, the realisation of

the triple (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ) for the first player on the previously defined complete probability space
(Ω𝑁 , ℱ𝑁 , P𝑁 ) can be seen as a tuple

((Ω𝑁 , ℱ𝑁 , {G𝑁𝑡 }𝑇−1
𝑡=0 , P𝑁 ),Φ1 , (𝜇𝑡)𝑇𝑡=0 , 𝑋0 , (𝜉1

𝑡 )𝑇𝑡=1, (�̃�1,𝑁
𝑡 )𝑇−1

𝑡=0 ,
(𝑋1,𝑁

𝑡 )𝑇𝑡=0
)

such that

i) P𝑁 ◦ (𝑋1
0 )−1 = 𝔪0;

ii) P𝑁 ◦ (Φ1 , (𝜇𝑡)𝑇𝑡=0)−1 = 𝜌;

iii) (𝜉1
𝑡 )𝑇𝑡=1,Z-valued random variables i.i.d. all distributed according to 𝜈;

iv) 𝑋1
0 , (𝜉1

𝑡 )𝑇𝑡=1, (Φ1 , (𝜇𝑡)𝑇𝑡=0) are independent;

iv’) For each 𝑡 ∈ [[0, 𝑇 − 1]],
– 𝜉1

𝑡 is G𝑁𝑡 -measurable and (𝜉1
𝑡+𝑘)𝑇𝑘=1 are jointly independent of G𝑁𝑡 ,

– G𝑁𝑡 = ℋ𝑁
𝑡 ∨ 𝜎(𝜇(𝑡)) ∨ 𝜎(Φ1) ∨ 𝜎(𝑋1

0 ), withℋ𝑁
𝑡 independent of 𝜎(Φ1 , (𝜇𝑡)𝑇𝑡=0 , 𝑋

1
0 ),

– �̃�1,𝑁
𝑡 is G𝑁𝑡 -measurable,

v) Finally, for 𝑡 ∈ [[0, 𝑇 − 1]], the state dynamics for the first player is given by

𝑋
1,𝑁
𝑡+1 = Ψ

(
𝑡 , 𝑋

1,𝑁
𝑡 , 𝜇𝑡 , �̃�

1,𝑁
𝑡 , 𝜉1

𝑡+1

)
, P𝑁 -a.s.

Above we have exploited the fact that, by definition, the sequence of control actions (�̃�1,𝑁
𝑡 )𝑇−1

𝑡=0 ,

�̃�1,𝑁
𝑡 = Υ̃𝑁

1 (𝑡 , 𝑋1,𝑁 , �̃�1,𝑁 ) = 𝑤𝑁
𝑡 (𝜗𝑡 ,Φ1)((𝑋1,𝑁 )(𝑡) , (�̃�1,𝑁 )(𝑡)),

is adapted to the filtration {G𝑁𝑡 }𝑇−1
𝑡=0 , defined as

G𝑁𝑡 := 𝜎((𝑋 𝑗
0)𝑁𝑗=1 , (𝜉1

𝑠 , . . . , 𝜉
𝑁
𝑠 )𝑡𝑠=1 ,Φ1 , (𝜗𝑠)𝑡𝑠=0 , (𝑍 𝑗)𝑁𝑗=2 , 𝜇

(𝑡)) = ℋ𝑁
𝑡 ∨ 𝜎(𝜇(𝑡)) ∨ 𝜎(Φ1) ∨ 𝜎(𝑋1

0 ),

withℋ𝑁
𝑡 := 𝜎((𝑋 𝑗

0)𝑁𝑗=2 , (𝑍 𝑗)𝑁𝑗=2 , (𝜉1
𝑠 , . . . , 𝜉

𝑁
𝑠 )𝑡𝑠=1 , 𝜗

(𝑡)).
Notice that, for all 𝑡 ∈ [[1, 𝑇]], 𝜉1

𝑡 is G𝑁𝑡 -measurable and, in turn, G𝑁𝑡 is jointly independent of
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(𝜉1
𝑡+𝑘)𝑇−𝑡𝑘=1. Furthermore, for all 𝑡 ∈ [[0, 𝑇]],ℋ𝑁

𝑡 , 𝜎(𝑋1
0 ) and 𝜎(Φ1 , (𝜇𝑡)𝑇𝑡=0) are independent.

Hence, the tuple ((Ω𝑁 , ℱ𝑁 , {G𝑁𝑡 }𝑇−1
𝑡=0 , P𝑁 ),Φ1 , (𝜇𝑡)𝑇𝑡=0 , 𝑋

1
0 , (𝜉1

𝑡 )𝑇𝑡=1, (�̃�1,𝑁
𝑡 )𝑇−1

𝑡=0 , (𝑋1,𝑁
𝑡 )𝑇𝑡=0) represents

a realisation of the triple (𝔪0 , 𝜌, (�̃�1,𝑁
𝑡 )𝑇−1

𝑡=0 ) for the open-loop MFG, with costs given by

�̂�(𝔪0 , 𝜌, (�̃�1,𝑁
𝑡 )𝑇−1

𝑡=0 ) = 𝐽
𝑁
1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ).

Now, 𝜌 is a solution of the correlated MFG according to Definition 1.4.3 and the values of the
objective functionals at the equilibrium for the correlated MFGs in open-loop and closed-loop
strategies are the same (see Proposition 1.5.6). Thus, by the optimality condition in Definition
1.5.3, we get 𝐽

𝑁
1 (𝔪⊗𝑁0 , 𝛾𝑁 , �̃�𝑁 ) ≥ 𝐽(𝔪0 , 𝜌, 𝜄) ≥ 0 and this ends our proof.

□

1.7 A toy example

In order to further motivate the definition of mean field game solution given in Section 1.4,
we consider the two-state example introduced in [30] and show that it possesses correlated so-
lutions with non-deterministic flow of measures also in the sense of Definition 1.4.3. Moreover,
assumptions (A1) – (A3) as well as conditions (R1) – (R2) on the correlated solution will be seen
to hold.

Let us recall the setting. Let 𝑇 = 2, X = {−1, 1}, and Γ = {0, 1}. Let the system function and
the cost functional, respectively, be given by

Ψ(𝑥, 𝛾, 𝑧) = Ψ(𝑡 , 𝑥, 𝛾, 𝑧) = 𝑥[1{0}(𝛾)(1[0, 12 ] − 1( 12 ,1])(𝑧) + 1{1}(𝛾)(1[0, 34 ] − 1( 34 ,1])(𝑧)]
= 𝑥[(1 − 𝛾)(1[0, 12 ] − 1( 12 ,1])(𝑧) + 𝛾(1[0, 34 ] − 1( 34 ,1])(𝑧)],

and

𝑓 (𝑡 , 𝑥, 𝛾, 𝑚) = 𝑐0(1 − 𝑡)𝛾 + 𝑡(𝑐1𝛾 − 𝑥M(𝑚)),
𝐹(𝑥, 𝑚) = −𝑥M(𝑚),

with 𝑐0 , 𝑐1 > 0.

1 −1

1/21/2

1/21/2

1 −1

3/41/4

1/43/4

Figure 1.1: States and corresponding transition probabilities for the action 𝛾 = 0 (left) and 𝛾 = 1
(right).
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Now, we consider the following candidate correlated solution for the game

𝜌 = + 𝛽1(𝛿(𝜑+ ,𝑚+) + 𝛿(𝜑− ,𝑚−)) + 𝛽2(𝛿(𝜑0 ,𝑚+) + 𝛿(𝜑0 ,𝑚−))
+ 𝛽3(𝛿(𝜑+ ,𝑚+) + 𝛿(𝜑− ,𝑚−)) + 𝛽4(𝛿(𝜑0 ,𝑚+) + 𝛿(𝜑0 ,𝑚−)),

where

𝜑0(𝑡 , 𝑥) := 0, 𝜑+(𝑡 , 𝑥) := 1{1}(𝑥) = 1 + 𝑥
2 , 𝜑−(𝑡 , 𝑥) := 1{−1}(𝑥) = 1 − 𝑥

2 ,

𝜑+(𝑡 , 𝑥) = 1{0}(𝑡)1{1}(𝑥) = (1 − 𝑡)(1 + 𝑥)2 , 𝜑−(𝑡 , 𝑥) := 1{0}(𝑡)1{−1}(𝑥) = (1 − 𝑡)(1 − 𝑥)2

and

𝑚+ := (𝑚0 , 𝑚+1 , 𝑚
+
2 ), 𝑚+ := (𝑚0 , 𝑚−1 , 𝑚

−
2 ), 𝑚+ := (𝑚0 , 𝑚+1 , 𝑚0), 𝑚− := (𝑚0 , 𝑚−1 , 𝑚0),

with

𝑚0 =
1
2𝛿1 + 1

2𝛿−1 ,

𝑚+1 =
5𝛽1 + 4𝛽2

8(𝛽1 + 𝛽2)𝛿1 + 3𝛽1 + 4𝛽2

8(𝛽1 + 𝛽2)𝛿−1 , 𝑚−1 =
3𝛽1 + 4𝛽2

8(𝛽1 + 𝛽2)𝛿1 + 5𝛽1 + 4𝛽2

8(𝛽1 + 𝛽2)𝛿−1 ,

𝑚+2 =
21𝛽1 + 16𝛽2

32(𝛽1 + 𝛽2) 𝛿1 + 11𝛽1 + 16𝛽2

32(𝛽1 + 𝛽2) 𝛿−1 , 𝑚−2 =
11𝛽1 + 16𝛽2

32(𝛽1 + 𝛽2) 𝛿1 + 21𝛽1 + 16𝛽2

32(𝛽1 + 𝛽2) 𝛿−1 ,

and 𝛽𝑖 > 0, 𝑖 ∈ [[1, 4]], ∑4
𝑖=1 𝛽𝑖 =

1
2 .

Let ((Ω, ℱ , P),Φ, 𝜄, (𝑋0 , 𝑋1 , 𝑋2), (𝜇0 , 𝜇1 , 𝜇2), (𝜉1 , 𝜉2)) be a realisation of (𝑚0 , 𝜌, 𝜄). First of all,
let’s check that this example satisfies the additional assumptions we have set for this extended
framework.

(A1) Fix 𝑡 ∈ {0, 1}, 𝑥, 𝑦 ∈ {−1, 1} and 𝛾 ∈ {0, 1} and let 𝑍 be a r.v. distributed according to 𝜈
defined on a probability space (Ω, ℱ , P). We have

P(Ψ(𝑥, 𝛾, 𝑍) = 𝑦) = P(𝑥[(1 − 𝛾)(1[0, 12 ] − 1( 12 ,1])(𝑍) + 𝛾(1[0, 34 ] − 1( 34 ,1])(𝑍)] = 𝑦)
and so

– for 𝑥 = 𝑦 ∈ {−1, 1} and 𝛾 = 0:

P
(
Ψ(𝑥, 𝛾, 𝑍) = 𝑦

)
= P

(
(1[0, 12 ] − 1( 12 ,1])(𝑍) = 1

)
= P

(
𝑍 ∈

[
0, 1

2

] )
=

1
2;

– for 𝑥 = 𝑦 ∈ {−1, 1} and 𝛾 = 1:

P
(
Ψ(𝑥, 𝛾, 𝑍) = 𝑦

)
= P

(
(1[0, 34 ] − 1( 34 ,1])(𝑍) = 1

)
= P

(
𝑍 ∈

[
0, 3

4

] )
=

3
4;

– for 𝑥 ≠ 𝑦 ∈ {−1, 1} and 𝛾 = 0:

P
(
Ψ(𝑥, 𝛾, 𝑍) = 𝑦

)
= P

(
(1[0, 12 ] − 1( 12 ,1])(𝑍) = −1

)
= P

(
𝑍 ∈

(
1
2 , 1

] )
=

1
2;
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– for 𝑥 ≠ 𝑦 ∈ {−1, 1} and 𝛾 = 1:

P
(
Ψ(𝑥, 𝛾, 𝑍) = 𝑦

)
= P

(
(1[0, 34 ] − 1( 34 ,1])(𝑍) = −1

)
= P

(
𝑍 ∈

(
3
4 , 1

] )
=

1
4 .

Thus, for any 𝑡 ∈ {0, 1}, 𝑥, 𝑦 ∈ {−1, 1} and 𝛾 ∈ {0, 1},
P

(
Ψ(𝑥, 𝛾, 𝑍) = 𝑦

) ≥ 1
4 > 0.

(R1) Notice that in the exampleP(Φ = 𝜑) > 0 if and only if 𝜑 ∈ {𝜑0 , 𝜑+ , 𝜑− , 𝜑+ , 𝜑−} =: 𝔉. Thus,
if 𝜑 ∈ 𝔉 \ {𝜑0}, the conditions in (R1) are obviously satisfied. Indeed, the corresponding
setP𝜑 reduces to a singleton: in particular, we haveP𝜑+ = {𝑚+},P𝜑− = {𝑚−},P𝜑+ = {𝑚+}
and P𝜑− = {𝑚−}. When {Φ = 𝜑0}, we have P𝜑0 = {𝑚+ , 𝑚− , 𝑚+ , 𝑚−} and:

1. |P𝜑0 | = 4;
2. P𝜑0(𝜇 ∈ P𝜑0) = 1;

3. P𝜑0(𝜇 = 𝑚) ≥ min{ 𝛽2
2(𝛽2+𝛽4) ,

𝛽4
2(𝛽2+𝛽4) }, for any 𝑚 ∈ 𝔐 := {𝑚+ , 𝑚− , 𝑚+ , 𝑚−}.

Further notice that, in this case, we have

P(0)𝜑0 = {𝑚0}, P(1)𝜑0 = {𝑚(1)+ , 𝑚(1)− } = {(𝑚0 , 𝑚+1 ), (𝑚0 , 𝑚−1 )}.
(R2) In order to guarantee the validity of this assumption, we have to set a new condition on

the parameters of the model, that is 𝛽1 = 𝛽3 = 𝛽 and 𝛽2 = 𝛽4 = 𝛾 (so that 𝛽 + 𝛾 = 1
4 ). It

is sufficient to notice that, given a probability space (Ω, ℱ , P) endowed with a couple of
independent random variables 𝜇 ∼ 𝜌2, with 𝜌2 = 𝜌 ◦ 𝜋−1

P(X) =
1
4 (𝛿𝑚− + 𝛿𝑚+ + 𝛿𝑚− + 𝛿𝑚+),

and𝑊 ∼ 𝜈 and setting
Φ = 1{𝑚+}(𝜇)(1[0,4𝛽](𝑊)𝜑+ + 1(4𝛽,1](𝑊)𝜑0) + 1{𝑚−}(𝜇)(1[0,4𝛽](𝑊)𝜑− + 1(4𝛽,1](𝑊)𝜑0)

+ 1{𝑚+}(𝜇)(1[0,4𝛽](𝑊)𝜑+ + 1(4𝛽,1](𝑊)𝜑0)
+ 1{𝑚+}(𝜇)(1[0,4𝛽](𝑊)𝜑+ + 1(4𝛽,1](𝑊)𝜑0) (1.7.1)

=: 𝛼1(𝑊, 𝜇(2)),
we have:

– P ◦ (Φ, 𝜇)−1 = 𝜌. Indeed, exploiting the fact that 𝜇 is distributed according to 𝜌2 and
that Φ is defined via Equation (1.7.1), for (𝜑, 𝑚) ∈ 𝔉 ×𝔐, we have
P((Φ, 𝜇) = (𝜑, 𝑚))
=

∑
𝑚∈𝔐

1{𝑚}(𝑚)P(𝜇 = 𝑚)P(Φ = 𝜑 |𝜇 = 𝑚)

=
1
4

{
1{𝑚+}(𝑚)(4𝛽1{𝜑+}(𝜑) + 4𝛾1{𝜑0}(𝜑)) + 1{𝑚−}(𝑚)(4𝛽1{𝜑−}(𝜑) + 4𝛾1{𝜑0}(𝜑))

+ 1{𝑚+}(𝑚)(4𝛽1{𝜑+}(𝜑) + 4𝛾1{𝜑0}(𝜑)) + 1{𝑚−}(𝑚)(4𝛽1{𝜑−}(𝜑) + 4𝛾1{𝜑0}(𝜑))
}

= 𝜌(𝜑, 𝑚).
– It holds that

Φ(0, ·) = 1{𝑚+}(𝜇)1[0,4𝛽](𝑊)1{1} + 1{𝑚−}(𝜇)1[0,4𝛽](𝑊)1{−1}
+ 1{𝑚+}(𝜇)1[0,4𝛽](𝑊)1{1} + 1{𝑚−}(𝜇)1[0,4𝛽](𝑊)1{−1}

= 1{𝑚+1 }(𝜇1)1[0,4𝛽](𝑊)1{1} + 1{𝑚−1 }(𝜇1)1[0,4𝛽](𝑊)1{−1}
= 𝛼0(𝑊, 𝜇1),
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with 𝛼0 : Z × P(X)2 → ℰ, measurable function defined as
𝛼0(𝑤, 𝑚) := 1{𝑚+1 }(𝑚)1[0,4𝛽](𝑤)1{1} + 1{𝑚−1 }(𝑚)1[0,4𝛽](𝑤)1{−1} ,

Hence, the conditional independence property holds being equivalent to the exis-
tence of a 𝑍 ∼ 𝜈 independent of 𝜇 s.t. Φ(0, ·) = 𝑢(𝑍, 𝜇(1)), with 𝑢 : Z × P(X)2 → ℰ,
measurable function (see [105, Proposition 6.13]).

(A2) This is omitted being the same as in [30].

(A3) Let us start by checking the Lipschitzianity of 𝑓 .

-𝑡 = 0: for any 𝑥1 , 𝑥2 ∈ X, 𝛾1 , 𝛾2 ∈ Γ and 𝑚1 , 𝑚2 ∈ P(X),
| 𝑓 (0, 𝑥1 , 𝛾1 , 𝑚1) − 𝑓 (0, 𝑥2 , 𝛾2 , 𝑚2)| = 𝑐0 |𝛾1 − 𝛾2 | = 𝑐0d(𝛾1 , 𝛾2);

-𝑡 = 1: for any 𝑥1 , 𝑥2 ∈ X, 𝛾1 , 𝛾2 ∈ Γ and 𝑚1 , 𝑚2 ∈ P(X),
| 𝑓 (1, 𝑥1 , 𝛾1 , 𝑚1) − 𝑓 (1, 𝑥2 , 𝛾2 , 𝑚2)| ≤ 𝑐1d(𝛾1 , 𝛾2) + 2dist(𝑚1 , 𝑚2) + 2d(𝑥1 , 𝑥2).

Now, for any 𝑥1 , 𝑥2 ∈ X and 𝑚1 , 𝑚2 ∈ P(X),
|𝐹(𝑥1 , 𝑚1) − 𝐹(𝑥2 , 𝑚2)| ≤ 2d(𝑥1 , 𝑥2) + 2dist(𝑚1 , 𝑚2).

Hence, the validity of the last assumption follows from the choice 𝐿 = max{𝑐0 , 4, 𝑐1+ 4} =
max{𝑐0 , 𝑐1 + 4}.

Now, let us write down some identities specific for the example that we are going to exploit
in the following. Concerning the means associated to the measure flows, we have

M(𝑚0) = 0, M(𝑚+1 ) = −M(𝑚−1 ) =
𝛽1

4(𝛽1 + 𝛽2) = 𝛽,

M(𝑚+2 ) = −M(𝑚−2 ) =
5𝛽1

16(𝛽1 + 𝛽2) =
5
8𝛽.

Then, set P0(·) := P(·|Φ = 𝜑0) and, analogously, E0[·] := E[·|Φ = 𝜑0]. The distribution of the
measure flow conditionally on the event {Φ = 𝜑0} can be computed explicitly and it is given by

P0

(
𝜇(2) = 𝑚+

)
= P0

(
𝜇(2) = 𝑚−

)
=

𝛽2

2(𝛽2 + 𝛽4) =
1
4 ,

P0

(
𝜇(2) = 𝑚−

)
= P0

(
𝜇(2) = 𝑚+

)
=

𝛽4

2(𝛽2 + 𝛽4) =
1
4 ,

and, setting 𝑚(1)+ := (𝑚0 , 𝑚+1 ) and 𝑚(1)− := (𝑚0 , 𝑚−1 ), we have

P0

(
𝜇(1) = 𝑚(1)+

)
= P0

(
𝜇(1) = 𝑚(1)−

)
=

1
2 .

Then, we compute the distribution of 𝜇(2) conditionally on 𝜇(1):

P0

(
𝜇(2) = 𝑚+ |𝜇(1) = 𝑚(1)+

)
= P0

(
𝜇(2) = 𝑚− |𝜇(1) = 𝑚(1)−

)
=

𝛽2

𝛽2 + 𝛽4
=

1
2 ,

P0

(
𝜇(2) = 𝑚+ |𝜇(1) = 𝑚(1)+

)
= P0

(
𝜇(2) = 𝑚− |𝜇(1) = 𝑚(1)−

)
=

𝛽4

𝛽2 + 𝛽4
=

1
2 .

The conditions on parameters ensuring the optimality of 𝜌 are presented in the following
result.
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Proposition 1.7.1. Consider the MFG setting described above. Then,

𝜌 = 𝛽(𝛿(𝜑+ ,𝑚+) + 𝛿(𝜑− ,𝑚−) + 𝛿(𝜑+ ,𝑚+) + 𝛿(𝜑− ,𝑚−)) + 𝛾(𝛿(𝜑0 ,𝑚+) + 𝛿(𝜑0 ,𝑚−) + 𝛿(𝜑0 ,𝑚+) + 𝛿(𝜑0 ,𝑚−)),
(1.7.2)

is optimal provided that

i) 𝛽, 𝛾 ∈ [0, 1] and 𝛽 + 𝛾 = 1
4 ,

ii) 0 < 𝑐0 <
𝛽
2 ,

ii) 5
32𝛽 < 𝑐1 < 5

16𝛽.

Remark 1.7.2. Under the assumption that 𝛽1 = 𝛽3 = 𝛽 and 𝛽2 = 𝛽4 = 𝛾, which we have previously set
to ensure the validity of (R2), the consistency property is automatically satisfied. Furthermore, under the
stronger conditions in the Proposition above, there are still infinitely many correlated solutions but we
loose a degree of freedom w.r.t. the result in [30].

Proof. In this simplified context the set of strategy modifications maps the set 𝔉 into

ℛ̂ = {𝜓 : {0, 1} × X3 ×𝔐→ Γ, progressively measurable},

that is, for any𝑤 ∈ D̂ and for any 𝜑 ∈ 𝔉, 𝑤(𝜑)(0, (𝑥0 , 𝑥1 , 𝑥2), (𝑚0 , 𝑚1 , 𝑚2)) = 𝑤(𝜑)(0, 𝑥0 , 𝑚0) and
𝑤(𝜑)(1, (𝑥0 , 𝑥1 , 𝑥2), (𝑚0 , 𝑚1 , 𝑚2)) = 𝑤(𝜑)(1, (𝑥0 , 𝑥1), (𝑚0 , 𝑚1)). In order to find the conditions on
the parameters in the definition of 𝜌 in Equation (1.7.2) ensuring that it is a solution in the MFG,
we rewrite the cost functional exploiting desintegration over sets of the form {Φ = 𝜑}, with
𝜑 ∈ 𝔉,

𝐽(𝑚0 , 𝜌, 𝑤) = E
[
𝑐0𝑤(Φ)(0, 𝑋0 , 𝑚0) + 𝑐1𝑤(Φ)(1, (𝑋0 , 𝑋1), (𝑚0 , 𝜇1)) − 𝑋1M(𝜇1) − 𝑋2M(𝜇2)

]
= 𝛽

{
𝑐0E+

[
𝑤(𝜑+)(0, 𝑋0 , 𝑚0)

] + 𝑐1E+
[
𝑤(𝜑+)(1, (𝑋0 , 𝑋1), (𝑚0 , 𝑚+1 ))

]
− E+

[
𝑋1

]
M(𝑚+1 ) − E+

[
𝑋2

]
M(𝑚+2 )

}
+ 𝛽

{
𝑐0Ê+

[
𝑤(𝜑+)(0, 𝑋0 , 𝑚0)

]
+ 𝑐1Ê+

[
𝑤(𝜑+)(1, (𝑋0 , 𝑋1), (𝑚0 , 𝑚+1 ))

] − Ê+ [𝑋1
]
M(𝑚+1 ) − Ê+

[
𝑋2

]
M(𝑚0)

}
+ 𝛽

{
𝑐0E−

[
𝑤(𝜑−)(0, 𝑋0 , 𝑚0)

] + 𝑐1E−
[
𝑤(𝜑−)(1, (𝑋0 , 𝑋1), (𝑚0 , 𝑚−1 ))

]
− E−

[
𝑋1

]
M(𝑚−1 ) − E−

[
𝑋2

]
M(𝑚−2 )

}
+ 𝛽

{
𝑐0Ê−

[
𝑤(𝜑−)(0, 𝑋0 , 𝑚0)

]
+ 𝑐1Ê−

[
𝑤(𝜑−)(1, (𝑋0 , 𝑋1), (𝑚0 , 𝑚−1 ))

] − Ê− [𝑋1
]
M(𝑚−1 ) − Ê−

[
𝑋2

]
M(𝑚0)

}
+ 4𝛾

{
𝑐0E0

[
𝑤(𝜑0)(0, 𝑋0 , 𝑚0)

] + 𝑐1E0
[
𝑤(𝜑0)(1, (𝑋0 , 𝑋1), (𝑚0 , 𝜇1))

]
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− E0
[
𝑋1M(𝜇1)

] − E0
[
𝑋2M(𝜇2)

]}
,

where we have exploited the fact that the conditioning on {Φ = 𝜑}, with 𝜑 ∈ {𝜑+ , 𝜑− , 𝜑+ , 𝜑−},
completely determines the measure flow as well. Notice that the notation E+ (resp. E−, Ê+,
Ê− and E0) was introduced to denote conditional expectation w.r.t. the event {Φ = 𝜑+} (resp.
𝜑− , 𝜑+ , 𝜑− and 𝜑0). Before proceeding with the study of the different cases we make a useful
remark.

Consider the probability space (Ω, ℱ , P𝜑), where P𝜑(·) = P(·|Φ = 𝜑), with 𝜑 ∈ 𝔉. For any
𝑡 ∈ [[0, 𝑇 − 1]], 𝑋(𝑡) and (𝜇𝑡+1 , . . . , 𝜇𝑇) are conditionally independent given 𝜇(𝑡). Indeed, for
any 𝑚 ∈ P(X)𝑇−𝑡 , 𝑥 ∈ X𝑡+1, exploiting in sequence the tower property, the measurability of
𝑋(𝑡) w.r.t. 𝜎(𝑋0 , 𝜉1 , . . . , 𝜉𝑡 ,Φ, 𝜇(𝑡)), the joint independence of 𝜇 from 𝑋0 and 𝜉1 , . . . , 𝜉𝑇 , and the
measurability of conditional expectations, we have

P𝜑((𝜇𝑡+1 , . . . , 𝜇𝑇) = 𝑚, 𝑋(𝑡) = 𝑥 |𝜇(𝑡)) = E𝜑[1{𝑚}(𝜇𝑡+1 , . . . , 𝜇𝑇)1{𝑥}(𝑋(𝑡))|𝜇(𝑡)]
= E𝜑[1{𝑥}(𝑋(𝑡))E𝜑[1{𝑚}(𝜇𝑡+1 , . . . , 𝜇𝑇)|𝜇(𝑡) , 𝑋0 , 𝜉1 , . . . , 𝜉𝑡]|𝜇(𝑡)]
= E𝜑[1{𝑥}(𝑋(𝑡))E𝜑[1{𝑚}(𝜇𝑡+1 , . . . , 𝜇𝑇)|𝜇(𝑡)]|𝜇(𝑡)]
= E𝜑[1{𝑚}(𝜇𝑡+1 , . . . , 𝜇𝑇)|𝜇(𝑡)]E𝜑[1{𝑥}(𝑋(𝑡))|𝜇(𝑡)]
= P𝜑((𝜇𝑡+1 , . . . , 𝜇𝑇) = 𝑚 |𝜇(𝑡))P𝜑(𝑋(𝑡) = 𝑥 |𝜇(𝑡)).

Now, let’s start by discussing the first case, that is when the suggestion is {Φ = 𝜑+}. We
proceed exploiting the DPP (Proposition 1.5.5). In the following we omit the dependency on
the measure flow being it identically equal to a single element and we introduce the following
simplified notations: 𝑉+ := 𝑉𝜑+ , 𝑉− := 𝑉𝜑− , 𝑉+ := 𝑉𝜑+ , 𝑉− := 𝑉𝜑− and 𝑉0 := 𝑉𝜑0 .

• For 𝑡 = 2, 𝑥 ∈ {−1, 1}3,

𝑉+(2, (𝑥0 , 𝑥1 , 1)) = 𝐹(1, 𝑚+2 ) = −M(𝑚+2 ) = −
5
4𝛽,

𝑉+(2, (𝑥0 , 𝑥1 ,−1)) = 𝐹(−1, 𝑚+2 ) = +M(𝑚+2 ) =
5
4𝛽,

• For 𝑡 = 1, 𝑥 ∈ {−1, 1}2,

𝑉+(1, (𝑥0 ,−1)) = min
𝛾∈{0,1}

{
𝑐1𝛾 +M(𝑚+1 ) + E+ [𝑉+ (2, (𝑥0 ,−1,Ψ(−1, 𝛾, 𝜉2)))]

}
= min

𝛾∈{0,1}

{
𝑐1𝛾 +M(𝑚+1 ) +M(𝑚+2 ) [P+ (Ψ(−1, 𝛾, 𝜉2) = −1) − P+ (Ψ(−1, 𝛾, 𝜉2) = 1)]

}
= M(𝑚+1 ) +min

{
M(𝑚+2 )

(
1
2 −

1
2

)
, 𝑐1 +M(𝑚+2 )

(
−1

4 +
3
4

) }
= 𝛽 +min

{
0, 𝑐1 + 5

16𝛽

}
.

This implies that, at time 𝑡 = 1 in state (𝑥0 ,−1), 𝛾 = 0 is optimal which corresponds to 𝜑+
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evaluated at 𝑡 = 1, 𝑥 = −1. Analogously,

𝑉+(1, (𝑥0 , 1)) = min
𝛾∈{0,1}

{
𝑐1𝛾 −M(𝑚+1 ) + E+ [𝑉+ (2, (𝑥0 , 1,Ψ(1, 𝛾, 𝜉2)))]

}
= −𝛽 +min

{
0, 𝑐1 − 5

16𝛽

}
.

This implies that 𝛾 = 1 (and so 𝜑+) is optimal at time 𝑡 = 1 and state (𝑥0 , 1) if and only if
𝑐1 − 5

16𝛽 < 0, that is

0 < 𝑐1 <
5
16𝛽. (1.7.3)

• For 𝑡 = 0, 𝑥 ∈ {−1, 1},

𝑉+(0,−1) = min
𝛾∈{0,1}

{
𝑐0𝛾 + E+ [𝑉+ (1, (−1,Ψ(−1, 𝛾, 𝜉2)))]

}
= min

𝛾∈{0,1}

{
𝑐0𝛾 +

(
−𝛽 + 𝑐1 − 5

16𝛽
)
P+ (Ψ(−1, 𝛾, 𝜉2) = 1) + 𝛽P+ (Ψ(−1, 𝛾, 𝜉2) = −1)

}
= min

{
0 + 1

2

(
−𝛽 + 𝑐1 − 5

16𝛽
)
+ 1

2𝛽, 𝑐0 +
(
−𝛽 + 𝑐1 − 5

16𝛽
)

1
4 + 𝛽

3
4

}
= min

{
1
2

(
𝑐1 − 5

16𝛽
)
, 𝑐0 +

(
𝑐1 − 5

16𝛽
)

1
4 + 𝛽

1
2

}
.

Since 𝑐1 − 5
16𝛽 < 0 and all the parameters are positive, at time 𝑡 = 0 in state 𝑥0 = −1, 𝛾 = 0

is optimal which corresponds to 𝜑+ evaluated at 𝑡 = 0, 𝑥 = −1. Analogously,

𝑉+(0, 1) = min
𝛾∈{0,1}

{
𝑐0𝛾 + E+ [𝑉+ (1, (1,Ψ(1, 𝛾, 𝜉2)))]

}
= min

{
1
2

(
𝑐1 − 5

16𝛽
)
, 𝑐0 +

(
𝑐1 − 5

16𝛽
)

3
4 − 𝛽

1
2

}
.

This implies that 𝛾 = 1 (and so 𝜑+) is optimal at time 𝑡 = 0 and state 1 if and only if
1
2
(
𝑐1 − 5

16𝛽
)
> 𝑐0 + (

𝑐1 − 5
16𝛽

) 3
4 − 𝛽 1

2 . Since we have already set 𝑐1 < 5
16𝛽, we set the

following stronger condition that guarantees the validity of the inequality above

0 < 𝑐0 <
1
2𝛽. (1.7.4)

Hence, we have shown that, conditionally on the event {Φ = 𝜑+}, 𝜑+ is optimal.
The case {Φ = 𝜑−} is completely analogous and leads to the same constraints on the

coefficients.
Now, let’s discuss in details the case in which the suggestion is {Φ = 𝜑+}.

• For 𝑡 = 2, 𝑥 ∈ {−1, 1}3,

𝑉+(2, (𝑥0 , 𝑥1 , 𝑥2)) = 𝐹(𝑥2 , 𝑚0) = −𝑥2M(𝑚0) = 0,

• For 𝑡 = 1, 𝑥 ∈ {−1, 1}2,

𝑉+(1, (𝑥0 , 𝑥1)) = min
𝛾∈{0,1}

{
𝑐1𝛾 − 𝑥1M(𝑚+1 ) + Ê+

[
𝑉+ (2, (𝑥0 , 𝑥1 ,Ψ(𝑥1 , 𝛾, 𝜉2)))

] }
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= min
𝛾∈{0,1}

{
𝑐1𝛾 − 𝑥1M(𝑚+1 )

}
= −𝑥1M(𝑚+1 ) + 𝑐1 min

{
0, 𝛾

}
= −𝑥1M(𝑚+1 ).

This implies that at time 𝑡 = 1, in any state (𝑥0 , 𝑥1), 𝛾 = 0 is optimal which corresponds to
𝜑+ evaluated at 𝑡 = 1.

• For 𝑡 = 0, 𝑥 ∈ {−1, 1},

𝑉+(0,−1) = min
𝛾∈{0,1}

{
𝑐0𝛾 + Ê+

[
𝑉+ (1, (−1,Ψ(−1, 𝛾, 𝜉2)))

] }
= min

𝛾∈{0,1}

{
𝑐0𝛾 + (−𝛽)Ê+ [Ψ(−1, 𝛾, 𝜉2)]

}
= min

{
0, 𝑐0 + 𝛽

2

}
.

At time 𝑡 = 0 in state 𝑥0 = −1, 𝛾 = 0 is optimal which corresponds to 𝜑+ evaluated at
𝑡 = 0, 𝑥 = −1. Analogously,

𝑉+(0, 1) = min
𝛾∈{0,1}

{
𝑐0𝛾 + Ê+

[
𝑉+ (1, (1,Ψ(1, 𝛾, 𝜉2)))

] }
= min

{
0, 𝑐0 − 𝛽

2

}
.

The condition that we have set in Equation (1.7.4) yields that 𝛾 = 1 (and so 𝜑+) is optimal at
time 𝑡 = 0 and state 1. Hence, we have checked that, conditionally on the event {Φ = 𝜑+},
𝜑+ is optimal.

The computations for the case {Φ = 𝜑−} are analogous and lead to the same constraints.
The last case, namely {Φ = 𝜑0}, is the most complicated. Indeed, in this case we have

to handle a random measure flow and consequently different flows of measure and different
outcomes when evaluating the strategies of the representative player. This is done exploiting
again the dynamic programming principle.

• For 𝑡 = 2, 𝑥 ∈ {1,−1}3, (𝑚0 , 𝑚1 , 𝑚2) ∈ {𝑚+ , 𝑚+ , 𝑚− , 𝑚−} = D𝜑0 ,
𝑉0(2, (𝑥0 , 𝑥1 , 𝑥2), (𝑚0 , 𝑚1 , 𝑚2)) = −𝑥2M(𝑚2).

In particular, we have

𝑉0(2, (𝑥0 , 𝑥1 , 1), 𝑚+) = 𝑉0(2, (𝑥0 , 𝑥1 ,−1), 𝑚−) = −M(𝑚+2 ) = −
5
8𝛽,

𝑉0(2, (𝑥0 , 𝑥1 ,−1), 𝑚+) = 𝑉0(2, (𝑥0 , 𝑥1 , 1), 𝑚−) = M(𝑚+2 ) =
5
8𝛽,

𝑉0(2, (𝑥0 , 𝑥1 , 𝑥2), (𝑚0 , 𝑚1 , 𝑚0)) = 0.

• For 𝑡 = 1, 𝑥 ∈ {1,−1}2, (𝑚0 , 𝑚1) ∈ {𝑚(1)+ , 𝑚(1)− } = D(1)𝜑0 ,

𝑉0(1, (𝑥0 , 𝑥1), (𝑚0 , 𝑚1)) = min
𝛾∈{0,1}

{
𝑐1𝛾 − 𝑥M(𝑚1)

+ E0
[
𝑉0(2, (𝑥0 , 𝑥1 ,Ψ(𝑥1 , 𝛾, 𝜉2), (𝑚0 , 𝑚1 , 𝜇2)))|𝑋(1) = (𝑥0 , 𝑥1), 𝜇(1) = (𝑚0 , 𝑚1)

] }
.

Exploiting the computations at the previous step, the fact that 𝜉2 and (Φ, 𝜇, 𝑋0 , 𝜉1) are
independent, and the fact that, on the probability space (Ω, ℱ , P𝜑0), 𝑋(1) and 𝜇2 are
conditionally independent given 𝜇(1), we have
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𝑉0(1, (𝑥0 , 1), 𝑚(1)+ ) = min
𝛾∈{0,1}

{
𝑐1𝛾 −M(𝑚+1 )

+ E0

[
𝑉0(2, (𝑥0 , 1,Ψ(1, 𝛾, 𝜉2)), (𝑚(1)+ , 𝜇(2)))|𝑋(1) = (𝑥0 , 1), 𝜇(1) = 𝑚(1)+

] }
= −M(𝑚+1 ) + min

𝛾∈{0,1}

{
𝑐1𝛾 +M(𝑚+2 )

[
P0(Ψ(1, 𝛾, 𝜉2) = −1, 𝜇 = 𝑚+2 |𝑋(1) = (𝑥0 , 1), 𝜇(1) = 𝑚(1)+ )

− P0(Ψ(1, 𝛾, 𝜉2) = 1, 𝜇 = 𝑚+2 |𝑋(1) = (𝑥0 , 1), 𝜇(1) = 𝑚(1)+ )
]}

= −M(𝑚+1 ) + min
𝛾∈{0,1}

{
𝑐1𝛾 +M(𝑚+2 )

[
P0(Ψ(1, 𝛾, 𝜉2) = −1)P0(𝜇 = 𝑚+2 |𝑋(1) = (𝑥0 , 1), 𝜇(1) = 𝑚(1)+ )

− P0(Ψ(1, 𝛾, 𝜉2) = 1)P0(𝜇 = 𝑚+2 |𝑋(1) = (𝑥0 , 1), 𝜇(1) = 𝑚(1)+ )
]}

= −𝛽 + min
𝛾∈{0,1}

{
𝑐1𝛾 + 5

8𝛽
[
P0(Ψ(1, 𝛾, 𝜉2) = −1)P0(𝜇 = 𝑚+2 |𝜇(1) = 𝑚(1)+ )

− P0(Ψ(1, 𝛾, 𝜉2) = 1)P0(𝜇 = 𝑚+2 |𝜇(1) = 𝑚(1)+ )
]}

= −𝛽 +min
{
0 + 5

16𝛽
[
1
2 −

1
2

]
, 𝑐1 + 5

16𝛽
[
1
4 −

3
4

] }
= −𝛽 +min

{
0, 𝑐1 − 5

32𝛽
}

and, similarly,

𝑉0(1, (𝑥0 ,−1), 𝑚(1)− ) = min
𝛾∈{0,1}

{
𝑐1𝛾 +M(𝑚−1 )

+ E0
[
𝑉0(2, (𝑥0 ,−1,Ψ(−1, 𝛾, 𝜉2)), (𝑚(1)− , 𝜇(2)))|𝑋(1) = (𝑥0 ,−1), 𝜇(1) = 𝑚(1)−

] }
= −𝛽 +min

{
0 + 5

16𝛽
[
1
2 −

1
2

]
, 𝑐1 + 5

16𝛽
[
1
4 −

3
4

] }
= −𝛽 +min

{
0, 𝑐1 − 5

32𝛽
}
.

This yields that 𝛾 = 0 (and so 𝜑0) is optimal at time 𝑡 = 0 when (𝑥, 𝑚) ∈ {((𝑥0 , 1), (𝑚0 , 𝑚+1 )),
((𝑥0 ,−1), (𝑚0 , 𝑚−1 ))} if and only if 𝑐1 − 5

32𝛽 > 0. Thus, we set the condition
5
32𝛽 < 𝑐1. (1.7.5)

Analogously, we compute

𝑉0(1, (𝑥0 ,−1), 𝑚(1)+ ) = min
𝛾∈{0,1}

{
𝑐1𝛾 +M(𝑚+1 )

+ E0

[
𝑉0(2, (𝑥0 ,−1,Ψ(−1, 𝛾, 𝜉2)), (𝑚(1)+ , 𝜇(2)))|𝑋(1) = (𝑥0 ,−1), 𝜇(1) = 𝑚(1)+

] }
= 𝛽 +min

{
0 + 5

16𝛽
[
1
2 −

1
2

]
, 𝑐1 + 5

16𝛽
[
3
4 −

1
4

] }
= 𝛽 +min

{
0, 𝑐1 + 5

32𝛽
}
,

and

𝑉0(1, (𝑥0 , 1), 𝑚(1)− ) = min
𝛾∈{0,1}

{
𝑐1𝛾 +M(𝑚−1 )

+ E0
[
𝑉0(2, (𝑥0 , 1,Ψ(1, 𝛾, 𝜉2)), (𝑚(1)− , 𝜇(2)))|𝑋(1) = (𝑥0 , 1), 𝜇(1) = 𝑚(1)−

] }
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= 𝛽 +min
{
0 + 5

16𝛽
[
1
2 −

1
2

]
, 𝑐1 + 5

16𝛽
[
3
4 −

1
4

] }
= 𝛽 +min

{
0, 𝑐1 + 5

32𝛽
}

Thus, 𝛾 = 0 (and so 𝜑0) is optimal at time 𝑡 = 0 when (𝑥, 𝑚) ∈ {((𝑥0 ,−1), (𝑚0 , 𝑚+1 )),((𝑥0 , 1), (𝑚0 , 𝑚−1 ))}, without the need of any further constraint.

• For 𝑡 = 0, 𝑥0 ∈ {1,−1},
𝑉0(0, 𝑥0) = 𝑉0(0, 𝑥0 , 𝑚0)

= min
𝛾∈{0,1}

{
𝑐0𝛾 + E0

[
𝑉0(1, (𝑥0 ,Ψ(𝑥0 , 𝛾, 𝜉1), (𝑚0 , 𝜇1))|𝑋0 = 𝑥0 , 𝜇0 = 𝑚0

]}
.

Finally, we study the initial time step in detail, exploiting the fact that 𝑋0, 𝜉1 and 𝜇1 are
independent on the probability space (Ω, ℱ , P0):

𝑉0(0, 1) = min
𝛾∈{0,1}

{
𝑐0𝛾 + E0

[
𝑉0(1, (1,Ψ(1, 𝛾, 𝜉1), (𝑚0 , 𝜇1))|𝑋0 = 1, 𝜇0 = 𝑚0

]}
= min

𝛾∈{0,1}
{
𝑐0𝛾 + E0

[
𝑉0(1, (1,Ψ(1, 𝛾, 𝜉1), (𝑚0 , 𝜇1))|𝑋0 = 1

]}
= min

𝛾∈{0,1}

{
𝑐0𝛾 + 𝛽

2

[
P0 (Ψ(1, 𝛾, 𝜉1) = −1) + P0 (Ψ(1, 𝛾, 𝜉1) = 1)

]
− 𝛽

2

[
P0 (Ψ(1, 𝛾, 𝜉1) = 1) + P0 (Ψ(1, 𝛾, 𝜉1) = −1)

]}
= min

{
0 + 𝛽

2

[(
1
2 +

1
2

)
−

(
1
2 +

1
2

)]
, 𝑐0 + 𝛽

2

[(
1
4 +

3
4

)
−

(
1
4 +

3
4

)] }
= min{0, 𝑐0}

and, similarly,

𝑉0(0,−1) = min
𝛾∈{0,1}

{
𝑐0𝛾 + E0

[
𝑉0(1, (−1,Ψ(−1, 𝛾, 𝜉1), (𝑚0 , 𝜇1))|𝑋0 = −1, 𝜇0 = 𝑚0

]}
= min

{
0 + 𝛽

2

[(
1
2 +

1
2

)
−

(
1
2 +

1
2

)]
, 𝑐0 + 𝛽

2

[(
1
4 +

3
4

)
−

(
1
4 +

3
4

)] }
= min{0, 𝑐0}.

Hence, at time 𝑡 = 0, 𝛾 = 0 (and so 𝜑0) is optimal at any state.

Thus, we have proved that, conditionally on the event {Φ = 𝜑0}, the strategy 𝜑0 is optimal,
completing the analysis of the various cases. Now, putting together the conditions in Equations
(1.7.3), (1.7.4) and (1.7.5), we obtain the statement of the theorem.

□
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Appendix

1.A Propagation of chaos

First of all, let us recall some basic definitions, for which we refer to [82]. We denote with Π𝑛

the set of permutations over 𝑛 elements, namely over [[1, 𝑛]]. Consider a probability measure
𝑝 ∈ P(X) and a sequence of symmetric probability measures {𝑝𝑛}𝑛∈N, with 𝑝𝑛 ∈ P(X𝑛), for
each 𝑛 ∈ N. We call the sequence of probability measures (𝑝𝑛)𝑛∈N 𝑝-chaotic if for any choice of
𝑘 ∈ N continuous and bounded functions on X, 𝑔1 , . . . , 𝑔𝑘 , we have

lim
𝑛→∞

∫
X𝑛
𝑔1(𝑠1) . . . 𝑔𝑘(𝑠𝑘)𝑝𝑛(d𝑠1 , . . . , d𝑠𝑛) =

𝑘∏
𝑗=1

∫
X
𝑔𝑗(𝑠)𝑝(d𝑠).

Then, we call a sequence of symmetric probability measures (𝑝𝑛)𝑛∈N chaotic, if there exists
a probability measure 𝑝 ∈ P(X) s.t. (𝑝𝑛)𝑛∈N is 𝑝-chaotic. Let (𝛽𝑛(·, ·))𝑛∈N be a sequence of
probability kernels such that, for any 𝑛 ∈ N, 𝛽𝑛 : X𝑛 × ℬ(X)𝑛 → [0, 1] satisfies the following
(symmetry) condition:

𝛽𝑛(𝑥, 𝐵) = 𝛽𝑛(𝜋𝑥,𝜋𝐵), for any 𝜋 ∈ Π𝑛 .

We say that propagation of chaos holds for the sequence (𝛽𝑛(·, ·))𝑛∈N if (𝑈𝑝𝑛)𝑛∈N is chaotic for any
chaotic sequence (𝑝𝑛)𝑛∈N , where, for any 𝑛 ∈ N,

𝑈𝑝𝑛(𝐵) :=
∫
X𝑛

𝛽𝑛(𝑥, 𝐵)𝑝𝑛(d𝑥), for all 𝐵 ∈ ℬ(X)𝑛 .

We are going to show that propagation of chaos holds in our case via the following equivalent
characterisation.

Theorem 1.A.1 (Theorem 4.2, in [82]). Consider a couple of complete and separable metric spaces,
(X , 𝑑X) and (Y , 𝑑Y). For each 𝑛 ∈ N, let Π𝑛 denote the set of permutations over [[1, 𝑛]]. Let
𝛽𝑛 : X𝑛 ×ℬ(Y𝑛) → [0, 1] be a sequence of Markovian transition functions (probability kernels), i.e. for
𝑥𝑛 ∈ X𝑛 and 𝐵 ∈ ℬ(Y𝑛), 𝛽𝑁 (𝑥𝑛 , 𝐵) is the probability that the state of the n-particle system lies in 𝐵,
given that the initial state was 𝑥𝑛 . Suppose that the transition functions satisfy the following condition:

𝛽𝑛(𝑥𝑛 , 𝐵) = 𝛽𝑛(𝜋𝑥𝑛 ,𝜋𝐵), for all 𝜋 ∈ Π𝑛 , for all 𝑥𝑛 ∈ X𝑛 and for all 𝐵 ∈ ℬ(Y𝑛).

Then, {𝛽𝑛}𝑛∈N propagates chaos if and only if, whenever 𝜇𝑛(𝑥𝑛) := 1
𝑛

∑𝑛
𝑗=1 𝛿(𝑥𝑛)𝑗 → 𝑝 in P(X) with

𝑥𝑛 ∈ X𝑛 , then {�̃�𝑛(𝑥𝑛 , ·)}𝑛∈N is 𝐹(𝑝)-chaotic, where 𝐹 : P(X) → P(Y), is a continuous function w.r.t.
weak topologies and �̃�𝑛 is defined as

�̃�𝑛(𝑥𝑛 , 𝐵) = 1
𝑛!

∑
𝜋∈Π𝑛

𝛽𝑛(𝑥𝑛 ,𝜋𝐵).

Now, we should reframe the general definitions above in our context. Consider 𝑥𝑁 ∈ X𝑁
(initial conditions) and 𝐵 ∈ ℬ(X𝑁 ). In our case, for an arbitrary fixed 𝑁 ∈ N, the probability
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kernel is given by

𝛽𝑁 (𝑥𝑁 , 𝐵) = P𝑁,𝑚 ◦ (𝑋1,𝑁 ,𝑚
1 , . . . , 𝑋𝑁,𝑁,𝑚

1 )−1(𝐵) (1.A.1)

= P𝑁,𝑚

((
Ψ(0, 𝑥𝑁𝑗 ,

1
𝑁 − 1

∑
𝑘≠𝑗

𝛿𝑥𝑁𝑘
,Φ𝑁,𝑚

𝑗 (0, 𝑥𝑁𝑗 ), 𝜉 𝑗 ,𝑁 ,𝑚1 )
)𝑁
𝑗=1
∈ 𝐵

)
,

where, in the second line, we have exploited the fact that Φ𝑁,𝑚
1 = Φ̃𝑁,𝑚

1 , P𝑁,𝑚-a.s., and that,
since 𝛾𝑁𝑚 = 𝜌1(·|𝑚)⊗𝑁 , Φ𝑁,𝑚

𝑗 takes values in ℛ , for each 𝑗 ∈ [[1, 𝑁]].
We have the following propagation of chaos result:

Claim 2. Propagation of chaos holds for the first time step of our model, i.e. (𝛽𝑁 (·, ·))𝑁∈N, as defined in
Equation (1.A.1), propagates chaos.

Proof of Claim 2. First of all, we need to prove that condition (1.A.1) in Theorem 1.A.1 holds. We
denote with𝜋 a generic permutation of [[1, 𝑁]]. For any 𝑥𝑁 ∈ X𝑁 and 𝐵 = 𝐵1× . . .×𝐵𝑁 ∈ ℬ(X𝑁 ),
with 𝜋𝐵 = 𝐵𝜋(1) × . . . × 𝐵𝜋(𝑁), we have

𝛽𝑁 (𝜋𝑥𝑁 ,𝜋𝐵)
= P𝑁,𝑚

((
Ψ(0, 𝑥𝑁𝜋(𝑗) ,

1
𝑁 − 1

∑
𝑘≠𝑗

𝛿𝑥𝑁
𝜋(𝑘)
,Φ𝑁,𝑚

𝑗 (0, 𝑥𝑁𝜋(𝑗)), 𝜉
𝑗 ,𝑁 ,𝑚
1 )

)𝑁
𝑗=1
∈ 𝜋𝐵

)
= ★.

Since (Φ𝑁,𝑚
𝑗 )𝑁𝑗=1

𝑑∼ 𝜌1(·|𝑚)⊗𝑁 and (𝜉 𝑗 ,𝑁 ,𝑚1 )𝑁𝑗=1
𝑑∼ 𝜈⊗𝑁 are independent, we reorder the terms to get

★ = P𝑁,𝑚

((
Ψ(0, 𝑥𝑁𝜋(𝑗) ,

1
𝑁 − 1

∑
𝑘≠𝑗

𝛿𝑥𝑁
𝜋(𝑘)
,Φ𝑁,𝑚

𝜋(𝑗) (0, 𝑥𝑁𝜋(𝑗)), 𝜉
𝜋(𝑗),𝑁 ,𝑚
1 )

)𝑁
𝑗=1
∈ 𝜋𝐵

)
= P𝑁,𝑚

((
Ψ(0, 𝑥𝑁𝑗 ,

1
𝑁 − 1

∑
𝑘≠𝑗

𝛿𝑥𝑁𝑘
,Φ𝑁,𝑚

𝑗 (0, 𝑥𝑛𝑗 ), 𝜉 𝑗 ,𝑁 ,𝑚1 )
)𝑁
𝑗=1
∈ 𝐵

)
= 𝛽𝑁 (𝑥𝑁 , 𝐵).

Thus, we have shown that condition (1.A.1) holds. Now, to conclude that (𝛽𝑁 (·, ·))𝑁∈N prop-
agates chaos we need to prove that, for any given sequence 𝑥𝑁 ∈ X𝑁 , 𝑁 ∈ N, such that
𝜇𝑁 (𝑥𝑁 ) := 1

𝑁

∑𝑁
𝑗=1 𝛿𝑥𝑁𝑗

→ 𝑝 in P(X), the sequence (�̃�𝑁 (𝑥𝑁 , ·))∞𝑁=1, with �̃�𝑁 defined as

�̃�𝑁 (𝑥𝑁 , 𝐵) = 1
𝑁 !

∑
𝜋∈Π𝑁

𝛽𝑁 (𝑥𝑁 ,𝜋𝐵), 𝑥𝑁 ∈ X𝑁 , 𝐵 ∈ ℬ(X)𝑁 ,

is 𝐹(𝑝)-chaotic, where 𝐹 : P(X) → P(X) is a suitable continuous function.
Suppose that 𝜇𝑁 (𝑥𝑁 ) = 1

𝑁

∑𝑁
𝑗=1 𝛿𝑥𝑁𝑗

→ 𝑝 in P(X), let us consider 𝑔1 , . . . , 𝑔𝑙 ∈ 𝐶𝑏(X), 𝑙 ∈ N,
exploiting property (1.A.1) we have∫
X𝑁

𝑔1(𝑦1) . . . 𝑔𝑙(𝑦𝑙)�̃�𝑁 (𝑥𝑁 , d𝑦1 . . . d𝑦𝑁 ) = 1
𝑁 !

∑
𝜋∈Π𝑁

∫
X𝑁

𝑔1(𝑦1) . . . 𝑔𝑙(𝑦𝑙)𝛽𝑁 (𝑥𝑁 , d𝑦𝜋(1) . . . d𝑦𝜋(𝑁))
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=
1
𝑁 !

∑
𝜋∈Π𝑁

∫
X𝑁

𝑔1(𝑦1) . . . 𝑔𝑙(𝑦𝑙)𝛽𝑁 (𝜋𝑥𝑁 , d𝑦1 . . . d𝑦𝑁 ) =: ★

Now, we exploit the definition of 𝛽𝑁 (·, ·) to gather terms together in order to get

★ =
1
𝑁 !

∑
𝜋∈Π𝑁

∫
ℛ𝑁

∫
Z𝑁

𝑙∏
𝑗=1

𝑔𝑗(Ψ(0, 𝑥𝑁𝜋(𝑗) ,
1

𝑁 − 1

∑
𝑘≠𝑗

𝛿𝑥𝑁
𝜋(𝑘)
, 𝜑 𝑗(0, 𝑥𝑁𝜋(𝑗)), 𝑧 𝑗))𝜈⊗𝑁 (d𝑧1 , . . . , d𝑧𝑁 )𝛾𝑁𝑚 (d𝜑)

=
1
𝑁 !

∑
𝜋∈Π𝑁

𝑙∏
𝑗=1

∫
ℛ

∫
Z
𝑔𝑗(Ψ(0, 𝑥𝑁𝜋(𝑗) ,

1
𝑁 − 1

∑
𝑘≠𝑗

𝛿𝑥𝑁
𝜋(𝑘)
, 𝜑(0, 𝑥𝑁𝜋(𝑗)), 𝑧))𝜈(d𝑧)𝜌1(d𝜑 |𝑚)

=
1
𝑁 !

∑
𝜋∈Π𝑁

𝑙∏
𝑗=1

∫
ℛ

∫
Z
𝑔𝑗(Ψ(0, 𝑥𝑁𝜋(𝑗) ,

𝑁
𝑁 − 1𝜇𝑁 (𝑥

𝑁 ) − 1
𝑁 − 1𝛿𝑥𝑁𝜋(𝑗) , 𝜑(0, 𝑥

𝑁
𝜋(𝑗)), 𝑧))𝜈(d𝑧)𝜌1(d𝜑 |𝑚)

=
(𝑁 − 𝑙)!
𝑁 !

∑
𝜆∈ℐ𝑁 :𝑙

𝑙∏
𝑗=1

∫
ℛ

∫
Z
𝑔𝑗(Ψ(0, 𝑥𝑁𝜆(𝑗) ,

𝑁
𝑁−1𝜇𝑁 (𝑥

𝑁 ) − 1
𝑁−1𝛿𝑥𝑁𝜆(𝑗) , 𝜑(0, 𝑥

𝑁
𝜆(𝑗)), 𝑧))𝜈(d𝑧)𝜌1(d𝜑 |𝑚)

=: �,

where ℐ𝑁 :𝑙 denotes the set of injections from [[1, 𝑙]] to [[1, 𝑁]].
Set 𝜇𝑁 :𝑙 to be, for a vector 𝑥𝑁 ∈ X𝑁 , the symmetric probability measure given by

𝜇𝑁 :𝑙(𝑥𝑁 ) = (𝑁 − 𝑙)!𝑁 !

∑
𝜆∈ℐ𝑁 :𝑙

𝛿(𝑥𝑁
𝜆(1) ,...,𝑥

𝑁
𝜆(𝑙)).

It is possible to show, see [82] pg. 29, that 𝜇𝑁 (𝑥𝑁 ) −→
𝑁→∞ 𝑝 implies 𝜇𝑁 :𝑙(𝑥𝑁 ) −→

𝑁→∞ 𝑝
⊗𝑙 . We have

� = (𝑁 − 𝑙)!
𝑁 !

∑
𝜆∈ℐ𝑁 :𝑙

𝑙∏
𝑗=1

∫
ℛ

∫
Z
𝑔𝑗(Ψ(0, 𝑥𝑁𝜆(𝑗) ,

𝑁
𝑁−1𝜇𝑁 (𝑥

𝑁 ) − 1
𝑁−1𝛿𝑥𝑁𝜆(𝑗) , 𝜑(0, 𝑥

𝑁
𝜆(𝑗)), 𝑧))𝜈(d𝑧)𝜌1(d𝜑 |𝑚)

=
∫
X 𝑙

𝑙∏
𝑗=1

∫
ℛ

∫
Z
𝑔𝑗(Ψ(0, 𝑦 𝑗 , 𝑁

𝑁−1𝜇𝑁 (𝑥
𝑁 ) − 1

𝑁−1𝛿𝑦𝑗 , 𝜑(0, 𝑦 𝑗), 𝑧))𝜈(d𝑧)𝜌1(d𝜑 |𝑚)𝜇𝑁 :𝑙(𝑥𝑁 )(d𝑦1 , . . . , d𝑦𝑙)

=
∫
X 𝑙

𝜇𝑁 :𝑙(𝑥𝑁 )(d𝑦)
{ 𝑙∏
𝑗=1

∫
ℛ
𝜌1(d𝜑 |𝑚)

∫
Z
𝜈(d𝑧)𝑔𝑗(Ψ(0, 𝑦 𝑗 , 𝑁

𝑁−1𝜇𝑁 (𝑥
𝑁 ) − 1

𝑁−1𝛿𝑦𝑗 , 𝜑(0, 𝑦 𝑗), 𝑧))
}

−→
𝑁→∞

∫
X 𝑙
𝑝⊗𝑙(d𝑦)

{ 𝑙∏
𝑗=1

∫
ℛ
𝜌1(d𝜑 |𝑚)

∫
Z
𝜈(d𝑧)𝑔𝑗(Ψ(0, 𝑦 𝑗 , 𝑝, 𝜑(0, 𝑦 𝑗), 𝑧))

}
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=
𝑙∏
𝑗=1

∫
X
𝑝(d𝑦)

∫
ℛ
𝜌1(d𝜑 |𝑚)

∫
Z
𝜈(d𝑧)𝑔𝑗(Ψ(0, 𝑦, 𝑝, 𝜑(0, 𝑦), 𝑧)) =

𝑙∏
𝑗=1

∫
X
𝑔𝑗(𝑥)𝑞(𝑝)(d𝑥),

where 𝑞(𝑝) is the image of (𝑝, 𝜌1(·|𝑚), 𝜈) via the mapping (𝑦, 𝜑, 𝑧) ↦→ Ψ(0, 𝑦, 𝑝, 𝜑(0, 𝑦), 𝑧).
In particular, the convergence in the fourth line is proved as follows, exploiting a generali-
sation of the continuous mapping theorem, namely [22, Theorem I.5.5]. In the notation of
[22, Theorem I.5.5], we have P𝑁 = 𝜇𝑁 :𝑙(𝑥𝑁 ) 𝑁→∞−→ 𝑝⊗𝑙 , by assumption. Furthermore, we
consider the following functions ℎ𝑁 : X 𝑙 → [−∏𝑙

𝑗=1 ‖𝑔𝑗 ‖∞ ,
∏𝑙

𝑗=1 ‖𝑔𝑗 ‖∞], for all 𝑁 ∈ N, and
ℎ : X 𝑙 → [−∏𝑙

𝑗=1 ‖𝑔𝑗 ‖∞ ,
∏𝑙

𝑗=1 ‖𝑔𝑗 ‖∞], defined, for 𝑦 ∈ X, by

ℎ𝑁 (𝑦) :=
𝑙∏
𝑗=1

∫
ℛ

∫
Z
𝑔𝑗(Ψ(0, 𝑦 𝑗 , 𝑁

𝑁−1𝜇𝑁 (𝑥
𝑁 ) − 1

𝑁−1𝛿𝑦𝑗 , 𝜑(0, 𝑦 𝑗), 𝑧))𝜈(d𝑧)𝜌1(d𝜑 |𝑚),

ℎ(𝑦) :=
𝑙∏
𝑗=1

∫
ℛ

∫
Z
𝑔𝑗(Ψ(0, 𝑦 𝑗 , 𝑝, 𝜑(0, 𝑦 𝑗), 𝑧))𝜈(d𝑧)𝜌1(d𝜑 |𝑚).

We have that both previous functions are measurable, since the finite set X 𝑙 is equipped with
the discrete metric. Finally, we show that, for any 𝑦 ∈ X 𝑙 , ℎ𝑁 (𝑦) → ℎ(𝑦), as 𝑁 →∞. We prove
this for 𝑙 = 2, but the result can be extended to any 𝑙 ∈ N. In the following we exploit the
notation �̄�𝑁,𝑗 := 𝑁

𝑁−1𝜇𝑁 (𝑥𝑁 ) − 1
𝑁−1𝛿𝑦𝑗 . Exploiting the fact that 𝑔1 , 𝑔2 ∈ C𝑏(X) and (A2), we have

|ℎ𝑁 (𝑦) − ℎ(𝑦)|

=
��� 2∏
𝑗=1

∫
ℛ

∫
Z
𝑔𝑗(Ψ(0, 𝑦𝑗 , �̄�𝑁,𝑗 , 𝜑(0, 𝑦𝑗), 𝑧))𝜈(d𝑧)𝜌1(d𝜑 |𝑚) −

2∏
𝑗=1

∫
ℛ

∫
Z
𝑔𝑗(Ψ(0, 𝑦𝑗 , 𝑝, 𝜑(0, 𝑦𝑗), 𝑧))𝜈(d𝑧)𝜌1(d𝜑 |𝑚)

���
≤

��� 2∏
𝑗=1

∫
ℛ

∫
Z
𝑔𝑗(Ψ(0, 𝑦𝑗 , �̄�𝑁,𝑗 , 𝜑(0, 𝑦𝑗), 𝑧))𝜈(d𝑧)𝜌1(d𝜑 |𝑚)

−
∫
ℛ

∫
Z
𝑔1(Ψ(0, 𝑦1 , �̄�𝑁,1 , 𝜑(0, 𝑦1), 𝑧))𝜈(d𝑧)𝜌1(d𝜑 |𝑚)

∫
ℛ

∫
Z
𝑔2(Ψ(0, 𝑦2 , 𝑝, 𝜑(0, 𝑦2), 𝑧))𝜈(d𝑧)𝜌1(d𝜑 |𝑚)

���
+

��� ∫
ℛ

∫
Z
𝑔1(Ψ(0, 𝑦1 , �̄�𝑁,1 , 𝜑(0, 𝑦1), 𝑧))𝜈(d𝑧)𝜌1(d𝜑 |𝑚)

∫
ℛ

∫
Z
𝑔2(Ψ(0, 𝑦2 , 𝑝, 𝜑(0, 𝑦2), 𝑧))𝜈(d𝑧)𝜌1(d𝜑 |𝑚)

−
2∏
𝑗=1

∫
ℛ

∫
Z

𝜑 𝑗(Ψ(0, 𝑦𝑗 , 𝑝, 𝜑(0, 𝑦𝑗), 𝑧))𝜈(d𝑧)𝜌1(d𝜑 |𝑚)
���

≤ ‖𝑔1‖∞
��� ∫
ℛ

∫
Z
𝑔2(Ψ(0, 𝑦2 , �̄�𝑁,2 , 𝜑(0, 𝑦2), 𝑧)) − 𝑔2(Ψ(0, 𝑦2 , 𝑝, 𝜑(0, 𝑦2), 𝑧))𝜈(d𝑧)𝜌1(d𝜑 |𝑚)

���
+ ‖𝑔2‖∞

��� ∫
ℛ

∫
Z
𝑔1(Ψ(0, 𝑦1 , �̄�𝑁,1 , 𝜑(0, 𝑦1), 𝑧)) − 𝑔1(Ψ(0, 𝑦1 , 𝑝, 𝜑(0, 𝑦1), 𝑧))𝜈(d𝑧)𝜌1(d𝜑 |𝑚)

���
≤ 2‖𝑔1‖∞‖𝑔2‖∞

��� ∫
ℛ

∫
Z

1Ψ(0,𝑦2 ,�̄�𝑁,2 ,𝜑(0,𝑦2),𝑧)≠Ψ(0,𝑦2 ,𝑝,𝜑(0,𝑦2),𝑧)𝜈(d𝑧)𝜌1(d𝜑 |𝑚)
���

+ 2‖𝑔1‖∞‖𝑔2‖∞
��� ∫
ℛ

∫
Z

1Ψ(0,𝑦1 ,�̄�𝑁,1 ,𝜑(0,𝑦1),𝑧)≠Ψ(0,𝑦1 ,𝑝,𝜑(0,𝑦1),𝑧)𝜈(d𝑧)𝜌1(d𝜑 |𝑚)
���

≤ 2‖𝑔1‖∞‖𝑔2‖∞(𝔚(dist(�̄�𝑁,1 , 𝑝)) +𝔚(dist(�̄�𝑁,2 , 𝑝))) 𝑁→∞−→ 0.

Indeed, lim𝑠→0+𝔚(𝑠) = 0 and, for any 𝑗 ∈ {1, 2}, dist(�̄�𝑁,𝑗 , 𝑝) ≤ dist(�̄�𝑁,𝑗 , 𝜇𝑁 (𝑥𝑁 ))+dist(𝜇𝑁 (𝑥𝑁 ), 𝑝).
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The second term on the right vanishes as 𝑁 →∞ by assumption and

dist
(
𝑁
𝑁−1𝜇𝑁 (𝑥

𝑁 ) − 1
𝑁−1𝛿𝑦𝑗 , 𝜇𝑁 (𝑥

𝑁 )
)
=

1
2

∑
𝑧∈X
| 𝑁
𝑁−1𝜇𝑁 (𝑥

𝑁 )(𝑧) − 1
𝑁−1𝛿𝑦𝑗 (𝑧) − 𝜇𝑁 (𝑥

𝑁 )(𝑧)|

=
1

2(𝑁 − 1)
∑
𝑧∈X
|𝜇𝑁 (𝑥𝑁 )(𝑧) − 𝛿𝑦𝑗 (𝑧)| ≤ 1

𝑁 − 1 → 0.

Thence, an application of [22, Theorem I.5.5] yields the desired convergence. To conclude we
need to show that the function 𝑞 : P(X) → P(X), defined, for 𝑝 ∈ P(X), as the image of
(𝑝, 𝜌1(·|𝑚), 𝜈) via the mapping (𝑦, 𝜑, 𝑧) ↦→ Ψ(0, 𝑦, 𝑝, 𝜑(0, 𝑦), 𝑧), is a continuous function of 𝑝.
This function 𝑞(𝑝) corresponds to the function 𝐹(𝑝) in the statement of Theorem 1.A.1. Let’s
consider a sequence {𝑝𝑛}𝑛∈N ⊆ P(X), such that 𝑝𝑛 −→

𝑁→∞ 𝑝 weakly and let 𝐵 ∈ ℬ(X). Exploiting
hypothesis (A2), we are able to deduce

|𝑞(𝑝𝑛)(𝐵) − 𝑞(𝑝)(𝐵)|
≤

���� ∫X 𝑝𝑛(d𝑦)
∫
ℛ
𝜌1(d𝜑 |𝑚)

∫
Z
𝜈(d𝑧)1𝐵(Ψ(0, 𝑦, 𝑝𝑛 , 𝜑(0, 𝑦), 𝑧))

−
∫
X
𝑝(d𝑦)

∫
ℛ
𝜌1(d𝜑 |𝑚)

∫
Z
𝜈(d𝑧)1𝐵(Ψ(0, 𝑦, 𝑝, 𝜑(0, 𝑦), 𝑧))

����
≤

���� ∫X 𝑝𝑛(d𝑦)
∫
ℛ
𝜌1(d𝜑 |𝑚)

∫
Z
𝜈(d𝑧)

{
1𝐵(Ψ(0, 𝑦, 𝑝𝑛 , 𝜑(0, 𝑦), 𝑧)) − 1𝐵(Ψ(0, 𝑦, 𝑝, 𝜑(0, 𝑦), 𝑧))

}����
+

���� ∫X(𝑝𝑛 − 𝑝)(d𝑦)
∫
ℛ
𝜌1(d𝜑 |𝑚)

∫
Z
𝜈(d𝑧)1𝐵(Ψ(0, 𝑦, 𝑝, 𝜑(0, 𝑦), 𝑧)

����
≤

∫
X
𝑝𝑛(d𝑦)

∫
ℛ
𝜌1(d𝜑 |𝑚)

∫
Z
𝜈(d𝑧)1{Ψ(0,𝑦,𝑝𝑛 ,𝜑(0,𝑦),𝑧)≠Ψ(0,𝑦,𝑝,𝜑(0,𝑦),𝑧)}

+
���� ∫X(𝑝𝑛 − 𝑝)(d𝑦)

∫
ℛ
𝜌1(d𝜑 |𝑚)

∫
Z
𝜈(d𝑧)

����
≤

∫
X
𝑝𝑛(d𝑦)

∫
ℛ
𝜌1(d𝜑 |𝑚)𝔚(dist(𝑝𝑛 , 𝑝)) +

∫
X
|𝑝𝑛 − 𝑝 |(d𝑦)

≤ 𝔚(dist(𝑝𝑛 , 𝑝)) + dist(𝑝𝑛 , 𝑝).

This fact, in particular, implies

dist(𝑞(𝑝𝑛), 𝑞(𝑝)) = 𝑑𝑇𝑉 (𝑞(𝑝𝑛), 𝑞(𝑝)) = sup
𝐵∈ℬ(X)

|𝑞(𝑝𝑛)(𝐵) − 𝑞(𝑝)(𝐵)|

≤ 𝔚(dist(𝑝𝑛 , 𝑝)) + dist(𝑝𝑛 , 𝑝) −→
𝑁→∞ 0,

where 𝑑𝑇𝑉 denotes the distance in total variation, that coincides with the distance dist(·, ·),
compatible with weak topology, because the set X is finite. So, we get the continuity of 𝑞 and
conclude the proof of chaos propagation. □
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1.B Existence of solutions for the MFG in restricted strategies

We prove existence of correlated solutions for mean field games in the setting described in
[30]. In fact, in the aforementioned paper the existence of correlated solutions for the MFG is
a consequence of the existence of correlated solutions in the 𝑁-player games together with the
convergence of 𝑁-player solutions to the mean field one.

1.B.1 The mean field game in restricted strategies

Let us start by recalling the structure of the MFG in restricted strategies. Let 𝔪0 ∈ P(X) be
the initial distribution of our mean field system.

Definition 1.B.1. Let 𝜌 ∈ P (ℛ × P(X)𝑇+1) and call it a correlated suggestion. Call strategy
modification a function, 𝑤 ∈ D. Then, let (Ω, ℱ , P) be a probability space supporting an X-valued
process (𝑋𝑡)𝑇𝑡=0, an ℛ-valued random variable Φ, a P(X)𝑇+1 -valued random variable 𝜇 and Z-valued
random variables (𝜉𝑡)𝑇𝑡=1, such that the following properties hold:

i) P ◦ 𝑋−1
0 = 𝔪0;

ii) P ◦ (Φ, (𝜇𝑡)𝑇𝑡=0)−1 = 𝜌;

iii) (𝜉𝑡)𝑇𝑡=1 are i.i.d. all distributed according to 𝜈;

iv) (𝜉𝑡)𝑇𝑡=1, 𝑋0 and (Φ, (𝜇𝑡)𝑇𝑡=0) are independent;

v) for any 𝑡 ∈ [[0, 𝑇 − 1]],
𝑋𝑡+1 = Ψ

(
𝑡 , 𝑋𝑡 , 𝜇𝑡 , 𝑤 ◦Φ(𝑡 , 𝑋𝑡), 𝜉𝑡+1

)
, P-a.s..

We call any tuple
((Ω, ℱ , P),Φ, (𝜇𝑡)𝑇𝑡=0 , 𝑋0 , (𝜉𝑡)𝑇𝑡=1 , 𝑤, (𝑋𝑡)𝑇𝑡=0

)
satisfying the conditions above a

realisation of the triple (𝔪0 , 𝜌, 𝑤).
The strategy modification 𝑤 represents how the representative player decides to deviate

from the suggestion he was given. Notice that the deviation is a deterministic functional of the
suggestion, Φ, provided by the mediator. Furthermore, here we limit ourselves to restricted
strategies in the sense that the deviations live in ℛ, as well, that is they do not depend on the
measure flow.

Remark 1.B.2. As for the 𝑁-players game and generalised MFG, we can characterise the form of a
realisation for the case in which the representative player follows the suggestion he was given.
This is the case when the function 𝑤 is just the identity, which we denote by 𝜄 by analogy to the previous
sections.

The player in this mean field game faces costs associated to the triple (𝔪0 , 𝜌, 𝑤) ∈ P(X) ×
P (ℛ × P(X)𝑇+1) × D that are given by

𝐽(𝔪0 , 𝜌, 𝑤) := E

[
𝑇−1∑
𝑡=0

𝑓
(
𝑡 , 𝑋𝑡 , 𝜇𝑡 , 𝑤 ◦Φ(𝑡 , 𝑋𝑡)

) + 𝐹 (
𝑋𝑇 , 𝜇𝑇

) ]
.

As noticed in the previous sections, we highlight that the cost functional above is well defined
since the right-hand side does not depend on the realisation considered but only on (𝔪0 , 𝜌, 𝑤).
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Definition 1.B.3. We say that 𝜌 ∈ P (ℛ × P(X)𝑇+1) is a correlated solution for the mean field
game in restricted strategies with initial distribution 𝔪0 ∈ P(X), if the following two conditions hold:

(Opt) For each strategy modification 𝑤 ∈ D,
𝐽(𝔪0 , 𝜌, 𝜄) ≤ 𝐽(𝔪0 , 𝜌, 𝑤).

(Con) For any realisation of (𝔪0 , 𝜌, 𝜄), namely
((Ω, ℱ , P) ,Φ, (𝜇𝑡)𝑇𝑡=0 , 𝑋0 , (𝜉𝑡)𝑇𝑡=1 , 𝜄, (𝑋𝑡)𝑇𝑡=0), setting

ℱ 𝜇 := 𝜎
((𝜇𝑡)𝑇𝑡=0

)
, we have

𝜇𝑡(·) = P(𝑋𝑡 ∈ · |ℱ 𝜇), 𝑡 ∈ [[0, 𝑇]].

The first condition is called optimality condition, the second is called consistency condition.

1.B.2 The result and its proof

We prove our results under the following set of assumptions (which is the same as in [30])

(A2’) “Continuity” of Ψ : [[0, 𝑇 − 1]] × X × Γ ×Z → X :

1) For every (𝑡 , 𝑥, 𝛾) ∈ [[0, 𝑇 − 1]] × X × Γ and for all 𝑚, 𝑚 ∈ P(X),
𝜈 ({𝑧 : Ψ(𝑡 , 𝑥, 𝑚, 𝛾, 𝑧) ≠ Ψ(𝑡 , 𝑥, 𝑚, 𝛾, 𝑧)}) ≤ 𝔚(dist(𝑚, 𝑚)),

where 𝔚 : [0,+∞) → [0, 1] is a non-decreasing measurable function with
lim
𝑠→0+

𝔚(𝑠) = 0.

2) For any 𝑡 ∈ [[0, 𝑇 − 1]], Ψ(𝑡 , ·) is 𝜏 ⊗ 𝜈-almost everywhere continuous, for every
𝜏 ∈ P(X × P(X) × Γ).

(A3’) The functions 𝑓 and 𝐹, running cost and terminal cost, are continuous.

Proposition 1.B.4. Let Assumptions (A2’) and (A3’) hold and let 𝔪0 ∈ P(X). Then there exists a
correlated solution in restricted strategies for the mean field game with initial distribution 𝔪0.

Proof. Consider the set

A𝔪0 := {𝜌 ∈ P (ℛ×P(X)𝑇+1) : 𝜌◦𝜋−1
2 = 𝛿𝔪0 and the corresponding consistency condition holds},

with 𝜋2 : ℛ × P(X)𝑇+1 → P(X), 𝜋2(𝜑, (𝑚𝑡)𝑇𝑡=0) = 𝑚0.
The proof proceeds through the following two steps:

1. We show that the setA𝔪0 is a non-empty, compact and convex subset of P (ℛ ×P(X)𝑇+1) .
2. We see the original game as a two-player zero-sum game and reason as in [90] to show

that this game possesses a solution.
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Step 1: Properties of the set A𝔪0 Let us start by showing that the set A𝔪0 is non-empty.
Consider an arbitrary fixed 𝜑 ∈ ℛ and a probability space (Ω, ℱ , P), supporting a X-valued
random variable 𝑋0, such that P ◦ 𝑋−1

0 = 𝔪0, and Z-valued i.i.d. random variables (𝜉𝑡)𝑇𝑡=1
(𝜉𝑡)𝑇𝑡=1 all distributed according to 𝜈 and jointly independent of 𝑋0. Then, we iteratively define
a X-valued random process, (𝑋𝑡)𝑇𝑡=0, setting, P-a.s.,

𝑋1 = Ψ
(
0, 𝑋0 ,𝔪0 , 𝜑(0, 𝑋0), 𝜉1

)
𝑚𝜑

1 = P ◦ 𝑋−1
1

𝑋2 = Ψ
(
1, 𝑋1 , 𝑚

𝜑
1 , 𝜑(1, 𝑋1), 𝜉2

)
𝑚𝜑

2 = P ◦ 𝑋−1
2

...
...

𝑋𝑡+1 = Ψ
(
𝑡 , 𝑋𝑡 , 𝑚

𝜑
𝑡 , 𝜑(𝑡 , 𝑋𝑡), 𝜉𝑡+1

)
𝑚𝜑
𝑡+1 = P ◦ 𝑋−1

𝑡+1
...

...

𝑋𝑇 = Ψ
(
𝑇 − 1, 𝑋𝑇−1 , 𝑚

𝜑
𝑇−1 , 𝜑(𝑇 − 1, 𝑋𝑇−1), 𝜉𝑇 ) 𝑚𝜑

𝑇 = P ◦ 𝑋−1
𝑇 .

By construction,
((Ω, ℱ , P) , 𝜑, (𝑚𝜑

𝑡 )𝑇𝑡=0 , 𝑋0 , (𝜉𝑡)𝑇𝑡=1 , 𝜄, (𝑋𝑡)𝑇𝑡=0) is a realisation of (𝔪0 , 𝜌𝜑 , 𝜄), with
𝜌𝜑 := 𝛿𝜑 ⊗ 𝛿(𝑚𝜑

𝑡 )𝑇𝑡=0
. Notice, in particular, that 𝜌𝜑 ◦ 𝜋−1

2 = 𝛿𝔪0 . Furthermore, for any 𝑡 ∈ [[0, 𝑇]],

P(𝑋𝑡 ∈ ·|(𝑚𝜑
𝑡 )𝑇𝑡=0) = P(𝑋𝑡 ∈ ·) = 𝑚𝜑

𝑡 , P-a.s.

and so 𝜌𝜑 belongs toA𝔪0 , which is non-empty.
Now, we prove the convexity of A𝔪0 . Let 𝜌1 and 𝜌2 in A𝑚0 , 𝜆 ∈ [0, 1] and set 𝜌 :=

𝜆𝜌1 + (1 − 𝜆)𝜌2. It clearly holds 𝜌 ∈ P (ℛ × P(X)𝑇+1) and, by linearity, we also have

𝜌 ◦ 𝜋−1
2 = [𝜆𝜌1 + (1 − 𝜆)𝜌2] ◦ 𝜋−1

2 = 𝜆𝜌1 ◦ 𝜋−1
2 + (1 − 𝜆)𝜌2 ◦ 𝜋−1

2 = 𝜆𝛿𝔪0 + (1 − 𝜆)𝛿𝔪0 = 𝛿𝔪0 .

To conclude, we have to prove that the consistency condition is satisfied by an arbitrary realisa-
tion of (𝔪0 , 𝜌, 𝜄). On a probability space (Ω, ℱ , P), consider three X-valued processes (𝑋1

𝑡 )𝑇𝑡=0,
(𝑋2

𝑡 )𝑇𝑡=0 and (𝑋𝑡)𝑇𝑡=0, a couple of ℛ-valued random variables Φ1 and Φ2, a couple of P(X)𝑇+1 -
valued random variables 𝜇1 and 𝜇2, Z-valued random variables (𝜉𝑡)𝑇𝑡=1 and a {0, 1}-valued
random variable 𝑍, such that the following properties hold:

i) P ◦ 𝑋−1
0 = 𝔪0 and 𝑋0 = 𝑋1

0 = 𝑋2
0 , P-a.s.;

ii) P ◦ (Φ1 , (𝜇1
𝑡 )𝑇𝑡=0)−1 = 𝜌1 and P ◦ (Φ2 , (𝜇2

𝑡 )𝑇𝑡=0)−1 = 𝜌2;

ii’) Φ = 𝑍Φ1 + (1 − 𝑍)Φ2 and 𝜇 = 𝑍𝜇1 + (1 − 𝑍)𝜇2;

iii) (𝜉𝑡)𝑇𝑡=1 are i.i.d. all distributed according to 𝜈;

iii’) 𝑍 is a Bernoulli random variable of parameter 𝜆;

iv) (𝜉𝑡)𝑇𝑡=1, 𝑋0 and (Φ1 , (𝜇1
𝑡 )𝑇𝑡=0), (Φ2 , (𝜇2

𝑡 )𝑇𝑡=0) and 𝑍 are independent;

v) The evolution of (𝑋1
𝑡 )𝑇𝑡=0, (𝑋2

𝑡 )𝑇𝑡=0 and (𝑋𝑡)𝑇𝑡=0 follows these dynamics.
For any 𝑡 ∈ [[0, 𝑇 − 1]], P-a.s.,

𝑋1
𝑡+1 = Ψ

(
𝑡 , 𝑋1

𝑡 , 𝜇
1
𝑡 ,Φ

1(𝑡 , 𝑋1
𝑡 ), 𝜉𝑡+1

)
,

𝑋2
𝑡+1 = Ψ

(
𝑡 , 𝑋2

𝑡 , 𝜇
2
𝑡 ,Φ

2(𝑡 , 𝑋2
𝑡 ), 𝜉𝑡+1

)
,
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𝑋𝑡+1 = Ψ
(
𝑡 , 𝑋𝑡 , 𝜇𝑡 ,Φ(𝑡 , 𝑋𝑡), 𝜉𝑡+1

)
.

First of all, notice that P ◦ (Φ, 𝜇)−1 = 𝜌. Indeed, for any 𝐴 ∈ ℬ(ℛ) and any 𝐵 ∈ ℬ(P(X)𝑇+1),
exploiting disintegration and the fact that (Φ1 , (𝜇1

𝑡 )𝑇𝑡=0), (Φ2 , (𝜇2
𝑡 )𝑇𝑡=0) and 𝑍 are independent, we

have

P ◦ (Φ, 𝜇)−1(𝐴 × 𝐵) = P(Φ ∈ 𝐴, 𝜇 ∈ 𝐵) = P(𝑍Φ1 + (1 − 𝑍)Φ2 ∈ 𝐴, 𝑍𝜇1 + (1 − 𝑍)𝜇2 ∈ 𝐵)
= P(Φ1 ∈ 𝐴, 𝜇1 ∈ 𝐵)P(𝑍 = 1) + P(Φ2 ∈ 𝐴, 𝜇2 ∈ 𝐵)P(𝑍 = 0)
= 𝜌1(𝐴 × 𝐵)𝜆 + 𝜌2(𝐴 × 𝐵)(1 − 𝜆) = 𝜌(𝐴 × 𝐵).

Thus, we have

1.
((Ω, ℱ , P) ,Φ1 , (𝜇1

𝑡 )𝑇𝑡=0 , 𝑋0 , (𝜉𝑡)𝑇𝑡=1 , 𝜄, (𝑋1
𝑡 )𝑇𝑡=0) is a realisation of (𝔪0 , 𝜌1 , 𝜄),

2.
((Ω, ℱ , P) ,Φ2 , (𝜇2

𝑡 )𝑇𝑡=0 , 𝑋0 , (𝜉𝑡)𝑇𝑡=1 , 𝜄, (𝑋2
𝑡 )𝑇𝑡=0) is a realisation of (𝔪0 , 𝜌2 , 𝜄),

3.
((Ω, ℱ , P) ,Φ, (𝜇𝑡)𝑇𝑡=0 , 𝑋0 , (𝜉𝑡)𝑇𝑡=1 , 𝜄, (𝑋𝑡)𝑇𝑡=0) is a realisation of (𝔪0 , 𝜌, 𝜄).

Exploiting 1. and 2. and the fact that 𝜌1 , 𝜌2 ∈ A𝑚0 , we have, for all 𝑡 ∈ [[0, 𝑇]], P-a.s.

𝜇1
𝑡 (·) = P(𝑋1

𝑡 ∈ ·|𝜇1), (1.B.1)

𝜇2
𝑡 (·) = P(𝑋2

𝑡 ∈ ·|𝜇2).

Then, to deduce that 𝜌 ∈ A𝑚0 , we have to prove that, for any 𝑥 ∈ X,

𝜇𝑡(𝑥) = P(𝑋𝑡 = 𝑥 |𝜇), P-a.s.

Consider an arbitrary fixed 𝑥 ∈ X. By Equation (1.B.1), P-a.s. on the event {𝑍 = 1},

𝜇𝑡(𝑥) = 𝜇1
𝑡 (𝑥) = P(𝑋1

𝑡 = 𝑥 |𝜇1) = E[1{𝑥}(𝑋1
𝑡 )|𝜇1]. (1.B.2)

Then, an application of [105, Lemma 6.2] with ℱ = 𝜎(𝜇1 , 𝑍), G = 𝜎(𝜇, 𝑍), 𝐴 = {𝑍 = 1},
𝜉 = 1{𝑥}(𝑋1

𝑡 ) and 𝜂 = 1{𝑥}(𝑋𝑡), yields

E[1{𝑥}(𝑋1
𝑡 )|𝜇1 , 𝑍] = E[1{𝑥}(𝑋𝑡)|𝜇, 𝑍], P-a.s. on {𝑍 = 1}. (1.B.3)

Thus, exploiting Equation (1.B.3), the fact that (𝜇1 , 𝑋1
𝑡 ) and 𝑍 are independent together with

Equation (1.B.2) and the fact that 𝜌1 ∈ A𝑚0 , we have, P-a.s. on {𝑍 = 1},

P(𝑋𝑡 = 𝑥 |𝜇, 𝑍) = E[1{𝑥}(𝑋𝑡)|𝜇, 𝑍] = E[1{𝑥}(𝑋1
𝑡 )|𝜇1 , 𝑍] = E[1{𝑥}(𝑋1

𝑡 )|𝜇1] = 𝜇1
𝑡 (𝑥) = 𝜇𝑡(𝑥).

This is equivalent to

E[1{𝑍=1}1{𝜇𝑡 (𝑥)≠P(𝑋𝑡=𝑥 |𝜇,𝑍)}] = 0. (1.B.4)

Reasoning in a similar way, it is possible to prove

E[1{𝑍=0}1{𝜇𝑡 (𝑥)≠P(𝑋𝑡=𝑥 |𝜇,𝑍)}] = 0, (1.B.5)
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and so summing Equations (1.B.4) and (1.B.5), we obtain

0 = E[(1{𝑍=1} + 1{𝑍=0})1{𝜇𝑡 (𝑥)≠P(𝑋𝑡=𝑥 |𝜇,𝑍)}] = E[1{𝜇𝑡 (𝑥)≠P(𝑋𝑡=𝑥 |𝜇,𝑍)}] = P(𝜇𝑡(𝑥) ≠ P(𝑋𝑡 = 𝑥 |𝜇, 𝑍)).

Hence, 𝜇𝑡(𝑥) = P(𝑋𝑡 = 𝑥 |𝜇, 𝑍), P-a.s. Now, applying E[·|𝜇] to both sides and exploiting the
tower property and the fact that 𝜇𝑡(𝑥) is 𝜎(𝜇)-measurable, we get

𝜇𝑡(𝑥) = E[𝜇𝑡(𝑥)|𝜇] = E[E[1{𝑥}(𝑋𝑡)|𝜇, 𝑍]|𝜇] = E[1{𝑥}(𝑋𝑡)|𝜇] = P(𝑋𝑡 = 𝑥 |𝜇).

Finally, we conclude by the arbitrariness of 𝑥 in the finite set X.
To complete the first step, we show that the set A𝔪0 is compact in P (ℛ × P(X)𝑇+1) . Since

A𝑚0 ⊂ P
(ℛ × P(X)𝑇+1) and the latter set, endowed with weak topology, is a compact, we

have just to check that A𝑚0 is closed therein. Let (𝜌𝑛)𝑛∈N be a sequence in A𝑚0 converging to
some 𝜌 ∈ P (ℛ × P(X)𝑇+1) , weakly. We have to check that 𝜌 belongs to A𝑚0 , too. First of all,
by the continuous mapping theorem, 𝜌 ◦ 𝜋−1

2 = 𝛿𝔪0 . Indeed, 𝜌𝑛
𝑛→∞−→ 𝜌 weakly, implies that

𝜌𝑛 ◦𝜋−1
2

𝑛→∞−→ 𝜌 ◦𝜋−1
2 weakly, and, since 𝜌𝑛 ◦𝜋−1

2 = 𝛿𝔪0 , for all 𝑛 ∈ N , it should be 𝜌 ◦𝜋−1
2 = 𝛿𝔪0 ,

as well. In order to conclude that 𝜌 ∈ A𝑚0 , we have to show the validity of consistency property
for the limit 𝜌. For each 𝑛 ∈ N, on a suitable probability space (Ω𝑛 , ℱ𝑛 , P𝑛) consider a realisation
of the triple (𝔪0 , 𝜌𝑛 , 𝜄), namely ((Ω𝑛 , ℱ𝑛 , P𝑛),Φ𝑛 , (𝜇𝑛𝑡 )𝑇𝑡=0 , 𝑋

𝑛
0 , (𝜉𝑛𝑡 )𝑇𝑡=1 , 𝜄, (𝑋𝑛

𝑡 )𝑇𝑡=0). It satisfies:

i) P𝑛 ◦ (𝑋𝑛
0 )−1 = 𝔪0;

ii) P𝑛 ◦ (Φ𝑛 , (𝜇𝑛𝑡 )𝑇𝑡=0)−1 = 𝜌𝑛 ;

iii) (𝜉𝑛𝑡 )𝑇𝑡=1 are i.i.d. all distributed according to 𝜈;

iv) (𝜉𝑛𝑡 )𝑇𝑡=1, 𝑋𝑛
0 and (Φ𝑛 , (𝜇𝑛𝑡 )𝑇𝑡=0) are independent;

v) The evolution of (𝑋𝑛
𝑡 )𝑇𝑡=0 follows this dynamics: for any 𝑡 ∈ [[0, 𝑇 − 1]],
𝑋𝑛
𝑡+1 = Ψ

(
𝑡 , 𝑋𝑛

𝑡 , 𝜇
𝑛
𝑡 ,Φ𝑛(𝑡 , 𝑋𝑛

𝑡 ), 𝜉𝑛𝑡+1
)
, P𝑛-a.s..

It should satisfy the consistency condition, being 𝜌𝑛 ∈ A𝑚0 , that is, for all 𝑡 ∈ [[0, 𝑇]],

𝜇𝑛𝑡 (·) = P(𝑋𝑛
𝑡 ∈ ·|𝜇𝑛), P𝑛-a.s.

Set 𝜂𝑛 := P𝑛 ◦ (Φ𝑛 , (𝜇𝑛𝑡 )𝑇𝑡=0 , (𝜉𝑛𝑡 )𝑇𝑡=1 , (𝑋𝑛
𝑡 )𝑇𝑡=0)−1 ∈ P(ℛ × P(X)𝑇+1 × Z𝑇 × X𝑇+1). Being the set

P(ℛ × P(X)𝑇+1 × Z𝑇 × X𝑇+1) compact w.r.t. weak topology, passing in case to a suitable
subsequence, 𝜂𝑛

𝑛→∞−→ 𝜂, with 𝜂 ∈ P(ℛ × P(X)𝑇+1 × Z𝑇 × X𝑇+1). On a suitable probability
space (Ω, ℱ , P), we set 𝜂 := P ◦ (Φ, (𝜇𝑡)𝑇𝑡=0 , (𝜉𝑡)𝑇𝑡=1 , (𝑋𝑡)𝑇𝑡=0)−1. Reasoning as in [30], exploiting
the continuous mapping theorem, we see

i) P ◦ (𝑋0)−1 = 𝔪0;

iii) (𝜉𝑡)𝑇𝑡=1 are i.i.d. all distributed according to 𝜈;

iv) (𝜉𝑡)𝑇𝑡=1, 𝑋0 and (Φ, (𝜇𝑡)𝑇𝑡=0) are independent.

Furthermore, since by construction 𝜂𝑛
𝑛→∞−→ 𝜂, exploiting once more the continuous map-

ping theorem, we have 𝜌𝑛 = 𝜂𝑛 ◦ 𝜋−1
ℛ×P(X)𝑇+1

𝑛→∞−→ 𝜂 ◦ 𝜋−1
ℛ×P(X)𝑇+1 , weakly. Since, by assumption,
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𝜌𝑛
𝑛→∞−→ 𝜌 weakly, we have P ◦ (Φ, (𝜇𝑡)𝑇𝑡=0)−1 = 𝜂 ◦ 𝜋−1

ℛ×P(X)𝑇+1 = 𝜌. Finally, we notice that
property v) in Definition 1.B.1, that is the iterative dynamics, can be shown exploiting some
of the arguments used in [30]. Define functions 𝐺𝑡 : ℛ × X × P(X) × Z → X, 𝑡 ∈ [[0, 𝑇]],
𝐺𝑡(𝜑, 𝑥, 𝑚, 𝑧) = Ψ(𝑡 , 𝑥, 𝑚, 𝜑(𝑡 , 𝑥), 𝑧). By assumption (A2’) 2) and the finiteness of X and ℛ,
the function 𝐺𝑡 is 𝜎 ⊗ 𝜈-a.e. continuous for every given 𝜎 ∈ P(ℛ × X × P(X)). Now, the
independence properties iii) and iv), shown above, together with the aforementioned con-
tinuity and the joint convergence in distribution yields the thesis by an application of [30,
Lemma A.1]. Indeed, via the mapping theorem, we have the convergence in distribution of
(𝑋𝑛

𝑡+1 , (Φ𝑛 , 𝑋𝑛
𝑡 , 𝜇

𝑛
𝑡 , 𝜉

𝑛
𝑡+1)) to (𝑋𝑡+1 , (Φ, 𝑋𝑡 , 𝜇𝑡 , 𝜉𝑡+1)), as 𝑛 → ∞. Thus, we have shown that the

tuple ((Ω, ℱ , P),Φ, (𝜇𝑡)𝑇𝑡=0 , 𝑋0 , (𝜉𝑡)𝑇𝑡=1 , 𝜄, (𝑋𝑡)𝑇𝑡=0) is a realisation of (𝔪0 , 𝜌, 𝜄). Finally, exploit-
ing [30, Lemma A.3] with 𝜅𝑛 = 𝜇𝑛𝑡 = P𝑛(𝑋𝑛

𝑡 ∈ ·|𝜇𝑛), 𝑌𝑛 = 𝑋𝑛
𝑡 and 𝑍𝑛 = 𝜇𝑛𝑡 , 𝑛 ∈ N, since

(𝑋𝑛
𝑡 , (𝜇𝑛𝑡 )𝑇𝑡=0 , 𝜇

𝑛
𝑡 )

𝑛→∞−→ (𝑋𝑡 , (𝜇𝑡)𝑇𝑡=0 , 𝜇𝑡) in distribution, by the continuous mapping theorem, for
any 𝑡 ∈ [[0, 𝑇]], and since 𝜇𝑡(𝐴) is 𝜎((𝜇𝑡)𝑇𝑡=0)-measurable, for any 𝐴 ∈ ℬ(X), we get

P(𝑋𝑡 ∈ 𝐵, (𝜇𝑡)𝑇𝑡=0 ∈ 𝐶) = E[𝜇𝑡(𝐵)1𝐶((𝜇𝑡)𝑇𝑡=0)],

for any 𝐵 ∈ ℬ(X) and 𝐶 ∈ ℬ(P(X)𝑇+1 ), and 𝜇𝑡 is a regular conditional distribution of 𝑋𝑡 given
𝜇 = (𝜇𝑡)𝑇𝑡=0, as in the consistency condition. This completes the proof of the compactness ofA𝑚0 .

Step 2: Two-player zero-sum game interpretation Now, we reframe the problem similarly to
[90]. A distribution 𝜌 ∈ A𝑚0 is a correlated solution for the MFG if for any 𝑤 ∈ D,

0 ≤ 𝐽(𝔪0 , 𝜌, 𝑤) − 𝐽(𝔪0 , 𝜌, 𝜄), (1.B.6)

where 𝐽(𝔪0 , 𝜌, 𝑤) = ∑
𝜑∈ℛ

∫
P(X)𝑇+1 𝐽(𝔪0 , 𝛿(𝜑,𝑚) , 𝑤)𝜌(𝜑, d𝑚), that means

𝐽(𝔪0 , 𝛿(𝜑,𝑚) , 𝑤) = E
[
𝑇−1∑
𝑡=0

𝑓
(
𝑡 , 𝑋𝑡 , 𝑚𝑡 , 𝑤 ◦ 𝜑(𝑡 , 𝑋𝑡)

) + 𝐹 (𝑋𝑇 , 𝑚𝑇)] ,
with

i) P ◦ 𝑋−1
0 = 𝔪0;

ii) P ◦ (Φ, (𝜇𝑡)𝑇𝑡=0)−1 = 𝛿(𝜑,𝑚);

iii) (𝜉𝑡)𝑇𝑡=1 are i.i.d. all distributed according to 𝜈;

iv) (𝜉𝑡)𝑇𝑡=1 and 𝑋0 and are independent;

v) The evolution of (𝑋𝑡)𝑇𝑡=0 follows this dynamics: for any 𝑡 ∈ [[0, 𝑇 − 1]],
𝑋𝑡+1 = Ψ

(
𝑡 , 𝑋𝑡 , 𝑚𝑡 , 𝑤 ◦ 𝜑(𝑡 , 𝑋𝑡), 𝜉𝑡+1

)
, P-a.s..

Remark 1.B.5. This way of rewriting the objective functional is possible because, by definition of
realisation in the MFG, (Φ, 𝜇), (𝜉𝑡)𝑇𝑡=1, 𝑋0 and are independent.
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Thus, w.l.o.g. we write

𝐽(𝔪0 , 𝜌, 𝑤) =
∑
𝜑∈ℛ

∫
P(X)𝑇+1

𝐼(𝑤 ◦ 𝜑, (𝑚𝑡)𝑇𝑡=0)𝜌(𝜑, d𝑚),

with 𝐼(𝑤 ◦ 𝜑, (𝑚𝑡)𝑇𝑡=0) := 𝐽(𝔪0 , 𝛿(𝜑,𝑚) , 𝑤). Now, notice that condition (1.B.6) is equivalent to

0 ≤
∑
𝜑∈ℛ

∫
P(X)𝑇+1

[𝐼(𝑤 ◦ 𝜑, (𝑚𝑡)𝑇𝑡=0) − 𝐼(𝜑, (𝑚𝑡)𝑇𝑡=0)]𝜌(𝜑, d𝑚), for all 𝑤 ∈ D .

Since ℛ is a finite set, this is equivalent to the following condition∫
P(X)𝑇+1

[𝐼(𝜓, (𝑚𝑡)𝑇𝑡=0) − 𝐼(𝜑, (𝑚𝑡)𝑇𝑡=0)]𝜌(𝜑, d𝑚) ≥ 0, for all 𝜑,𝜓 ∈ ℛ . (1.B.7)

To show the existence of a correlated solution for the MFG, it is then sufficient to show the
existence of a 𝜌 ∈ A𝑚0 satisfying (1.B.7).

Now, consider the following auxiliary two-player zero-sum game, that in pure strategies
reads as follows:

- player I(the maximiser) chooses a couple (𝜑, 𝑚) ∈ ℛ × P(X)𝑇+1 ;

- player II(the minimiser) chooses a couple (𝜂,𝜓) ∈ ℛ2.

The payoff (II to I) is 𝐼(𝜓, 𝑚) − 𝐼(𝜑, 𝑚) if 𝜂 = 𝜑 and 0 otherwise. Notice that in what follows,
for convexity reasons, we work with the corresponding set of mixed strategies and a non empty
compact convex subset of it. Then, a strategy 𝜌 ∈ A𝑚0 satisfying (1.B.7) corresponds to a
strategy of player I (hence belonging toA𝑚0 , as well) yielding a non-negative payoff in the game
described above. Indeed, such a strategy corresponds to an 𝑥 ∈ A𝑚0 ⊂ P(ℛ × P(X)𝑇+1 ) such
that

0 ≤
∑
𝜑∈ℛ

∫
P(X)𝑇+1

[𝐼(𝜓, (𝑚𝑡)𝑇𝑡=0) − 𝐼(𝜂, (𝑚𝑡)𝑇𝑡=0)]𝛿𝜑(𝜂)𝑥(𝜑, d𝑚)

=
∫
P(X)𝑇+1

∑
𝜑∈ℛ
[𝐼(𝜓, (𝑚𝑡)𝑇𝑡=0) − 𝐼(𝜂, (𝑚𝑡)𝑇𝑡=0)]𝛿𝜑(𝜂)𝑥(𝜑, d𝑚)

=
∫
P(X)𝑇+1

[𝐼(𝜓, (𝑚𝑡)𝑇𝑡=0) − 𝐼(𝜑, (𝑚𝑡)𝑇𝑡=0)]𝑥(𝜑, d𝑚).

By the MinMax Theorem such a strategy exists if, for every given strategy of player II, there exists
a strategy of player I (again in A𝑚0) yielding a non-negative payoff. Now, let (𝑦(𝜂,𝜓))𝜂,𝜓∈ℛ
be a strategy of player II. By construction, the payoff associated to the couple of strategies
(𝑥, 𝑦) ∈ A𝑚0 × P(ℛ2) is given by∑

𝜂,𝜓∈ℛ

∑
𝜑∈ℛ

∫
P(X)𝑇+1

[𝐼(𝜓, 𝑚) − 𝐼(𝜂, 𝑚)]𝛿𝜑(𝜂)𝑥(𝜑, d𝑚)𝑦(𝜂,𝜓)

=
∑

𝜑,𝜓∈ℛ

∫
P(X)𝑇+1

[𝐼(𝜓, 𝑚) − 𝐼(𝜑, 𝑚)]𝑥(𝜑, d𝑚)𝑦(𝜑,𝜓)

60



CHAPTER 1. CORRELATED EQUILIBRIA FOR MFGS WITH PROGRESSIVE STRATEGIES

=
∑
𝜑∈ℛ

∫
P(X)𝑇+1

𝑥(𝜑, d𝑚)
∑
𝜓∈ℛ

𝑦(𝜑,𝜓)[𝐼(𝜓, 𝑚) − 𝐼(𝜑, 𝑚)],

where 𝑚 = (𝑚𝑡)𝑇𝑡=0 and we want it to be non negative.
Thus, we have to prove that, for any fixed 𝑦 ∈ P(ℛ2), there exists a 𝜌 ∈ A𝑚0 such that∑

𝜑∈ℛ

∫
P(X)𝑇+1

𝜌(𝜑, d𝑚)
∑
𝜓∈ℛ

𝑦(𝜑,𝜓)[𝐼(𝜓, 𝑚) − 𝐼(𝜑, 𝑚)] ≥ 0. (1.B.8)

We exploit the following proposition.

Proposition 1.B.6. For any 𝑝 ∈ P(ℛ), there exists𝑚𝑝 := (𝑚𝑝
𝑡 )𝑇𝑡=0 ∈ P(X)𝑇+1 , such that 𝜌𝑝 := 𝑝⊗𝛿𝑚𝑝

belongs toA𝑚0 .

Proof. Consider an arbitrary fixed 𝑝 ∈ P(ℛ) and a probability space (Ω, ℱ , P), endowed with an
X-valued random variable 𝑋0, a ℛ-valued random variable Φ andZ-valued random variables
(𝜉𝑡)𝑇𝑡=1, such that P ◦ 𝑋−1

0 = 𝔪0, P ◦ Φ−1 = 𝑝, (𝜉𝑡)𝑇𝑡=1 are i.i.d. all distributed according to 𝜈 and
jointly independent of 𝑋0 and Φ which are independent as well. Then, we iteratively define an
X-valued random process, (𝑋𝑡)𝑇𝑡=0, setting, P-a.s.,

𝑋1 = Ψ (0, 𝑋0 ,𝔪0 ,Φ(0, 𝑋0), 𝜉1) 𝑚𝑝
1 = P ◦ 𝑋−1

1

𝑋2 = Ψ
(
1, 𝑋1 , 𝑚

𝑝
1 ,Φ(1, 𝑋1), 𝜉2

)
𝑚𝑝

2 = P ◦ 𝑋−1
2

...
...

𝑋𝑡+1 = Ψ
(
𝑡 , 𝑋𝑡 , 𝑚

𝑝
𝑡 ,Φ(𝑡 , 𝑋𝑡), 𝜉𝑡+1

)
𝑚𝑝
𝑡+1 = P ◦ 𝑋−1

𝑡+1
...

...

𝑋𝑇 = Ψ
(
𝑇 − 1, 𝑋𝑇−1 , 𝑚

𝑝
𝑇−1 ,Φ(𝑇 − 1, 𝑋𝑇−1), 𝜉𝑇

)
𝑚𝑝
𝑇 = P ◦ 𝑋−1

𝑇 .

By construction,
((Ω, ℱ , P) ,Φ, (𝑚𝑝

𝑡 )𝑇𝑡=0 , 𝑋0 , (𝜉𝑡)𝑇𝑡=1 , 𝜄, (𝑋𝑡)𝑇𝑡=0) is a realisation of (𝔪0 , 𝜌𝑝 , 𝜄), with
𝜌𝑝 := 𝑝⊗ 𝛿(𝑚𝑝

𝑡 )𝑇𝑡=0
. Notice, in particular, that 𝜌𝑝 ◦𝜋−1

2 = 𝛿𝔪0 Furthermore, since, for any 𝑡 ∈ [[0, 𝑇]],
P-a.s.

P(𝑋𝑡 ∈ ·|(𝑚𝑝
𝑡 )𝑇𝑡=0) = P(𝑋𝑡 ∈ ·) = 𝑚𝑝

𝑡 ,

and so 𝜌𝑝 belongs toA𝔪0 . □

Now, for any fixed 𝑝 ∈ P(ℛ), the value of the objective functional associated to the couple
of strategies (𝜌𝑝 , 𝑦) is given by∑

𝜑∈ℛ

∫
P(X)𝑇+1

𝜌𝑝(𝜑, d𝑚)
∑
𝜓∈ℛ

𝑦(𝜑,𝜓)[𝐼(𝜓, 𝑚) − 𝐼(𝜑, 𝑚)]

=
∑
𝜑∈ℛ

∫
P(X)𝑇+1

𝑝(𝜑)𝛿𝑚𝑝 (d𝑚)
∑
𝜓∈ℛ

𝑦(𝜑,𝜓)[𝐼(𝜓, 𝑚) − 𝐼(𝜑, 𝑚)]

=
∑
𝜑∈ℛ

𝑝(𝜑)
∑
𝜓∈ℛ

𝑦(𝜑,𝜓)[𝐼(𝜓, 𝑚𝑝) − 𝐼(𝜑, 𝑚𝑝)].
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Now, [90, Lemma](up to a change of sign since here they are considering the corresponding
maximisation problem) guarantees that, given a probability distribution (𝑦(𝜂,𝜓))𝜂,𝜓∈ℛ , there
exists a probability vector 𝑝𝑦 = (𝑝𝑦(𝜑))𝜑∈ℛ such that, for any vector (𝑣𝜓)𝜓∈ℛ ,∑

𝜑∈ℛ
𝑝𝑦(𝜑)

∑
𝜓∈ℛ

𝑦(𝜑,𝜓)[𝑣𝜓 − 𝑣𝜑] = 0. (1.B.9)

Equation (1.B.9) holds, in particular, for 𝑣𝜓 = 𝐼(𝜓, 𝑚𝑝𝑦 ), 𝜓 ∈ ℛ, and consequently

0 =
∑
𝜑∈ℛ

𝑝𝑦(𝜑)
∑
𝜓∈ℛ

𝑦(𝜑,𝜓)[𝐼(𝜓, 𝑚𝑝𝑦 ) − 𝐼(𝜑, 𝑚𝑝𝑦 )]

=
∑
𝜑∈ℛ

∫
P(X)𝑇+1

𝑝𝑦(𝜑)𝛿𝑚𝑝𝑦 (d𝑚)
∑
𝜓∈ℛ

𝑦(𝜑,𝜓)[𝐼(𝜓, 𝑚) − 𝐼(𝜑, 𝑚)]

=
∑
𝜑∈ℛ

∫
P(X)𝑇+1

𝜌𝑝𝑦 (𝜑, 𝑚)
∑
𝜓∈ℛ

𝑦(𝜑,𝜓)[𝐼(𝜓, 𝑚) − 𝐼(𝜑, 𝑚)],

and so 𝜌𝑝𝑦 satisfies Equation (1.B.8) and we conclude.
□
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A McKean-Vlasov game of commodity production,
consumption and trading

All models are wrong, but some are useful.

George E. P. Box and Norman R. Draper

This chapter deals with a model for prices manipulation in commodity market. The corre-
sponding paper, written in collaboration with my Ph.D. co-supervisor Prof. Giorgia Callegaro
and Profs. René Aid (Université Paris Dauphine) and Luciano Campi (University of Milan), was
published in Applied Mathematics and Optimization in September 2022. We focus on a two-player
Linear-Quadratic McKean-Vlasov stochastic differential game where an energy producer and a
consumer both affect the price dynamics of the good controlling drift and volatility of produc-
tion rate and consumption rate, respectively. We compute a Nash equilibrium and characterise
the corresponding strategies and payoffs in semi-explicit form. We illustrate our results via
numerical simulations, showing that the model is consistent with economic intuition.

2.1 Introduction

In this paper, we develop an economic model of a commodity market where a representative
producer interacts with a representative processor who buys the commodity and transforms it
into a final product sold to the retail market (think of crude oil production transformed into
gasoline or wheat transformed into bread). For the sake of simplicity, the processor will be
referred to as consumer from now on. In our model, the production and the consumption rates
are described as Itô processes driven each by an independent Brownian motion and whose
coefficients are controlled by, respectively, the producer and the consumer. We stress that in our
model the producer can control, in particular, the volatility of the production rate (by investing
in devices making the production more reliable), and similarly the consumer can control the one
of the consumption rate (by investing in storage devices, for instance). Further, the players are
risk-averse (see below for details) and they are linked by a financial derivative in the commodity,
a plain forward agreement on price and volume exchanged. For some motivations on the control
of volatility, we refer the reader to the paper by [5], which focuses on the interaction between
a producer controlling the drift of the spot price and a trader controlling the volatility, and
exchanging a quadratic derivative. In that paper, it was shown that when the trader is short in
the derivative, he would increase the volatility of the spot price in order to get a higher price of
the derivative sold to the producer. In the present setting, we are interested in the joint effect of
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the costs of controlling the volatility of production or consumption rates and the players’ risk
aversion parameters on the “agreement indifference price”. Indeed, when only one player has
market power, the effect of the parameters on the forward price is clear. On the other hand,
when the two players interact, the joint effect is not obvious. In this paper, we are interested in
the outcome of the combined effect on the forward price of the relative risk aversions and the
volatility control costs of the producer and the consumer.

Both players have market power on the spot price of the commodity: the spot price depends
linearly on production and consumption rates so that the higher the rate of production, the lower
the spot price and the higher the rate of consumption, the higher the spot price. Furthermore,
they agree to exchange a forward contract with finite maturity 𝑇 over a certain quantity 𝜆 of
the commodity that will be determined at equilibrium together with its price 𝐹. This setting
is inspired from the seminal papers of [6] and [7], where the authors establish the mitigating
effect of forward agreement on the exercise of producers market power.

In our framework, since production and consumption rates are driven by two independent
Brownian motions and there is only one tradable risky asset, i.e. the commodity spot price, the
market is incomplete. Therefore, we define the forward price in the spirit of the indifference
pricing approach (see the paper [91] for an overview and [20] for an application to power
markets). The players’ goal is to maximise their respective objective functionals, which are
expectations of the following main components: the profit from selling, the sourcing costs (only
for the consumer), the costs from exerting the controls, the forward contract payoff and, finally,
the integrated variance of the market price of the derivative.

The latter component describes the risk aversion both players have towards their financial
position. More precisely, in this context where the agents can control the volatility of their state
variable, the modelling of their risk aversion using utility functions (e.g. exponential utility)
would lead to non-linear PDEs which are difficult to handle. Hence, for technical convenience we
turn to a sort of dynamic mean-variance criterion leading to the objective functionals described
above. Mathematically speaking we are dealing with a two-player stochastic differential game
with objective functionals of McKean-Vlasov type, i.e. depending on the laws of the state
variables. Economically speaking, it means that both players act as speculators on the forward
market, as they disconnect their forward position from their production or transformation
profit. Although this feature of our model originates from a computational limitation induced
by the linear-quadratic McKean-Vlasov game setting, there exists some evidence, documented
by a stream of the economic literature, that large commodity players can act as speculators on
their markets (see [36] for such evidence and references on the subject of financiarisation of
commodity markets).

This modeling approach for the risk aversion has been already investigated and used for
portfolio selection by [140] and more recently by [102] and [116]. Moreover, due to the fast
development of mean-field games as a new framework to study stochastic differential games
for a large number of players since the seminal papers by [113, 114, 115] and [99] (see also
[28] for a survey), there has been a regain of interest for control problems of McKean-Vlasov
dynamics. The latter, also known as mean field control, corresponds in some way to the limit
of a sequence of stochastic control problems for a regulator willing to optimise the average
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expected payoff of a group of agents interacting through the empirical distribution of their
states (see [109] and the two-volume book [33]). In particular, the linear-quadratic case has been
treated in [83, 19] and [12]. Recently, stochastic differential games with both state dynamics
and objective functionals of McKean-Vlasov type has been addressed in, e.g., [122, 42] and also
[70] for a Stackelberg game arising from an optimal portfolio liquidation problem. Although
a large number of applications in economics and finance have been developed with mean
field games and mean field control, the applications of games with finitely many players and
McKean-Vlasov dynamics and objective functionals in economics is much more recent, hence
less developed (see, e.g., [3]).

We will analyse the model along the following program: first we will find a Nash equilibrium
for a fixed quantity 𝜆 of the commodity exchanged through the forward contract with fixed
price 𝐹; second, we will compute the indifference prices of the forward contract for the two
players separately (they are going to depend on 𝜆); third, we will compute the quantity 𝜆 such
that the two prices are equal, hence making the exchange compatible with the equilibrium
found in the first step. This price will be called agreement indifference price.

This framework makes it possible to analyse the formation of the risk premium defined
as the difference between the (unitary) agreement indifference price and the expected spot
price of the commodity. The question of the determinants of the risk premium on commodity
markets goes back (at least) to Keynes’s Treatise on Money, (1930). Keynes formulated the normal
backwardation theory, i.e. the claim that forward prices should be lower than expected spot
prices because risk-averse producers are willing to sell forward at a premium to avoid price
risk. Presently, the hedging pressure theory (see [45, 95, 94, 93]) provides explanation of the sign of
the risk premium depending on the relative size of population types in the market (producers,
storers, speculators) and their risk-aversion (see [52] for a complete equilibrium model with
mean-variance utility players explaining the different possible sign of the premia).

Mathematical results. The main mathematical contribution of the paper (ref. Theorem 2.3.1)
consists in a complete description of a Nash equilibrium in open loop strategies of the two-player
stochastic differential game arising from the interaction model described above. More in detail,
we adopt the following resolution approach: first, we prove a suitable version of a verification
theorem exploiting the weak martingale optimality principle; second, the verification theorem
and the linear-quadratic structure of the game allows to provide a semi-explicit form for the
best response map; third, a Nash equilibrium is found as a fixed point of the best response
map with closed-form expressions for the equilibrium strategies and payoffs of both players
up to solving numerically a Riccati system of ODEs. Once we have a Nash equilibrium at
our disposal, computing the corresponding agreement indifference price together with the
exchanged quantity at equilibrium is a pretty straightforward task.

Economic insights. First, we find that the forward agreement indifference price is higher
(resp. lower) than the expected spot price when the producer is more (resp. less) risk-averse
than the consumer. Because in our model, the players act as speculators on the forward market,
a seller requires a higher forward price to enter in the agreement and a buyer asks for a lower
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price. The presence of market power of both players allows for the formation of an equilibrium.
In that sense, our model is consistent with the economic intuition of the hedging pressure
theory applied to a market populated with producers and consumers acting as speculators.
Second, we observe that producers can achieve the same agreement indifference price and the
same trading volume either by having high risk aversion and a low volatility control cost, or
a low risk aversion and a high volatility control cost. This effect manifests itself whatever the
relative risk aversion of the producer and the consumer or the relative costs of volatility control.
Nevertheless, it is more apparent when the volatility control costs are low. Thus, to the list of
determinants of the sign of the risk premium of forward commodity price, one could add the
costs of reducing the production uncertainty. For commodity where storage is utmost costly
like electricity, reducing production uncertainty is highly costly and thus, leads to higher risk
premium.

Organisation of the paper. The paper is organised in the following way. The model is
described in Section 2.2.1 together with the definition of a forward agreement indifference price
and quantity in Section 2.2.2. The main result on the existence of a Nash equilibrium is given
in Section 2.3. The proof of the main result is given is Section 2.4. Numerical results on the
comparative static of the risk premium and the joint effect of risk aversion and volatility control
costs are given in Section 2.5.

Notations. We denote by R+ (respectively R−) the closed semi-interval [0,+∞) (respectively
(−∞, 0]). Given a function 𝑓 : R → 𝑆, with 𝑆 a regular space, we denote its first derivative by
𝑓 ′. The expected value of a random variable 𝑋 will be equivalently denoted by E[𝑋], as usual,
or by �̄�, for brevity. Let (Ω, ℱ , P) be a probability space. Given a positive integer 𝑑, a strictly
positive time horizon 𝑇 and a filtration F := (ℱ𝑡)𝑡∈[0,𝑇], we set

𝐿2([0, 𝑇],R𝑑) :=
{
𝜑 : [0, 𝑇] → R𝑑 , s.t. 𝜑 is measurable and

∫ 𝑇

0
|𝜑𝑡 |2d𝑡 < ∞

}
,

𝐿∞([0, 𝑇],R𝑑) :=

{
𝜑 : [0, 𝑇] → R𝑑 , s.t. 𝜑 is measurable and sup

𝑡∈[0,𝑇]
|𝜑𝑡 | < ∞

}
,

𝐿2
ℱ𝑇 (Ω,R𝑑) :=

{
𝜓 : Ω→ R𝑑 , s.t. 𝜓 is ℱ𝑇-measurable and E

[|𝜓 |2] < ∞}
,

𝐿2
F(Ω × [0, 𝑇],R𝑑) :=

{
𝜂 : Ω × [0, 𝑇] → R𝑑 , s.t. 𝜂 is F-adapted and E

[∫ 𝑇

0
|𝜂𝑡 |2d𝑡

]
< ∞

}
,

𝑆2
F(Ω × [0, 𝑇],R𝑑) :=

{
𝜂 : Ω × [0, 𝑇] → R𝑑 , s.t. 𝜂 is F-adapted and E

[
sup
𝑡∈[0,𝑇]

|𝜂𝑡 |2
]
< ∞

}
.

2.2 The model

We consider a stochastic game between a representative producer and a representative
consumer. While the producer produces a good at a certain rate, the consumer buys the
commodity and transforms it into a final good sold in the retail market.
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2.2.1 Market model

We consider a finite time window [0, 𝑇] and a probability space (Ω, ℱ , P) endowed with
a two-dimensional Brownian motion (𝑊, 𝐵) = {(𝑊𝑡 , 𝐵𝑡)}𝑡∈[0,𝑇] and its natural filtration F =

(ℱ𝑡)𝑡∈[0,𝑇] augmented with the P-null sets in ℱ . The production rate of the producer {𝑞𝑡}𝑡∈[0,𝑇]
evolves according to a dynamics given by

d𝑞𝑡 = 𝑢𝑡d𝑡 + 𝑧𝑡d𝑊𝑡 , 𝑞0 > 0,

where {𝑢𝑡}𝑡∈[0,𝑇] and {𝑧𝑡}𝑡∈[0,𝑇] are the producer’s strategies. The associated instantaneous costs
are 𝑘𝑝

2 𝑢
2
𝑡 and ℓ𝑝

2 (𝑧𝑡 − 𝜎𝑝)2, respectively, with 𝑘𝑝 , ℓ𝑝 ≥ 0 and where 𝜎𝑝 > 0 represents the nominal
uncertainty in production without dedicated effort of the producer to reduce it. In a similar
way, the consumption rate (or selling rate to the retail market) of the consumer, {𝑐𝑡}𝑡∈[0,𝑇], has
dynamics given by

d𝑐𝑡 = 𝑣𝑡d𝑡 + 𝑦𝑡d𝐵𝑡 , 𝑐0 > 0.

Here, {𝑣𝑡}𝑡∈[0,𝑇] and {𝑦𝑡}𝑡∈[0,𝑇] are the consumer’s strategies, and the associated instantaneous
costs are, respectively, 𝑘𝑐

2 𝑣
2
𝑡 and ℓ𝑐

2 (𝑦𝑡 − 𝜎𝑐)2, with 𝑘𝑐 , ℓ𝑐 ≥ 0 and 𝜎𝑐 > 0. We assume a linear
impact on the observed market price, {𝑆𝑡}𝑡∈[0,𝑇], namely {𝑆𝑡}𝑡∈[0,𝑇] evolves according to

𝑆𝑡 := 𝑠0 − 𝜌𝑝𝑞𝑡 + 𝛾𝜌𝑐𝑐𝑡 , 𝑠0 > 0

with 𝜌𝑝 , 𝜌𝑐 > 0 and 𝛾 > 0 (the role of 𝛾 will be clear in a few lines). The instantaneous profits
at time 𝑡 of the producer 𝜋𝑝𝑡 and of the consumer 𝜋𝑐𝑡 are given by:

𝜋
𝑝
𝑡 : = 𝑞𝑡𝑆𝑡 −

𝑘𝑝
2 𝑢

2
𝑡 −

ℓ𝑝
2 (𝑧𝑡 − 𝜎𝑝)2 ,

𝜋𝑐𝑡 : = 𝑐𝑡(𝑝0 + 𝑝1𝑆𝑡) − 𝛾𝑐𝑡(𝑆𝑡 + 𝛿) − 𝑘𝑐2 𝑣
2
𝑡 −

ℓ𝑐
2 (𝑦𝑡 − 𝜎𝑐)2 ,

where 𝑐𝑡(𝑝0+ 𝑝1𝑆𝑡) is the income from selling the quantity 𝑐𝑡 at the retail price 𝑝0+ 𝑝1𝑆𝑡 , a linear
function of the commodity price, with 𝑝0 , 𝑝1 > 0 and 𝛾𝑐𝑡(𝑆𝑡 + 𝛿) represents the sourcing cost of
buying the quantity 𝛾𝑐𝑡 (which is used to obtain 𝑐𝑡 to be sold) at price 𝑆𝑡 plus the transformation
cost 𝛿, with 𝛾, 𝛿 > 0. We assume 𝛾 > 𝑝1 to ensure the concavity of the objective functional of
the consumer (i.e. the processor cannot charge increasing prices to final consumers without
seeing the demand decreasing).

Remark 2.2.1. Our producer and consumer are large players as their actions have an effect on market
prices. This is the reason why we did not impose any constraint on the relation between consumption
and production: there could be other small producers and consumers present and so the consumption
𝑐𝑡 might, in principle, be greater than 𝑞𝑡 . Moreover, we consider a commodity for which storage has
a little effect on the price and in our framework we do not include neither capacity constraints nor
consumption/production constraints for technical reasons.

The producer and the consumer exchange a forward contract of 𝜆 units of the commodity
at a fixed amount of money 𝐹 ∈ R. Both players aim at maximising their respective objective
functionals, which have two components: an expected profit term and a penalisation term
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modelling the player risk aversion (more comments below). In formulae, they are given by

𝐽𝜆,𝐹𝑝 (𝑢, 𝑧; 𝑣, 𝑦) := E
[
𝑃𝑝𝑇

] − 𝜂𝑝 ∫ 𝑇

0
V [𝜆𝑆𝑡]d𝑡 , 𝜂𝑝 > 0,

𝐽𝜆,𝐹𝑐 (𝑣, 𝑦; 𝑢, 𝑧) := E
[
𝑃𝑐𝑇

] − 𝜂𝑐 ∫ 𝑇

0
V [𝜆𝑆𝑡]d𝑡 , 𝜂𝑐 > 0, (2.2.1)

where V stands for the variance and the process 𝑃𝑝𝑇 (resp. 𝑃𝑐𝑇) represents the cumulative profit
over the time period [0, 𝑇] of the producer (resp. the consumer), i.e.

𝑃𝑝𝑇 :=
∫ 𝑇

0
𝜋
𝑝
𝑡 d𝑡 + 𝐹 − 𝜆𝑆𝑇 , 𝑃𝑐𝑇 :=

∫ 𝑇

0
𝜋𝑐𝑡d𝑡 − 𝐹 + 𝜆𝑆𝑇 .

The set of admissible strategies for the players is given by A2 := A × A, where A =

𝐿2
F(Ω × [0, 𝑇],R2).

The way risk aversion is modelled and the choice of the derivative require two comments.
First, a more standard way to take into account the players’ risk aversion would consist in
using utility functions. In our case and with an exponential utility function, where players can
control the volatility of their production and consumption rates, this approach would lead to
Monge-Ampère PDEs, which are difficult to handle. For this reason, we turn to a different way
to model risk aversion, which is reminiscent of what is done in mean-variance optimal dynamic
portfolio choice (see [140] and more recently by [102] and [116]). A similar approach was also
previously used for distributed renewable energy development in [3]. Second, we observe that
the variance penalisation term involves only the derivative and not the profit from production
or transformation. As already stated in the introduction, this representation of risk aversion
transforms players into speculators on the forward market. Indeed, players only care about the
variance of their financial position 𝜆𝑆𝑡 − 𝐹, not about their production or consumption profits.
This modeling is motivated by the desire to remain in a framework where tractable solutions can
be exhibited. Its sole consequence would be to reverse the sign of the risk premium: producers
wish to sell at a lower price than the expected spot price whereas speculators want to sell at
a higher price. For the sake of simplicity, we have chosen to consider only a static hedging
position with a simple forward contract in order to analyse the risk premium between the
forward "agreement indifference price" and the expected price at maturity (see Section 2.2.2 for
a definition of the forward agreement indifference price).

To sum up, we deal with a two-player stochastic differential game of McKean-Vlasov linear-
quadratic type. Hence, it is natural to look for Nash equilibria according to the following
definition.

Definition 2.2.2. We call the couple
((𝑢∗ , 𝑧∗)> , (𝑣∗ , 𝑦∗)>) ∈ A ×A a Nash equilibrium if

𝐽𝜆,𝐹𝑝 (𝑢∗ , 𝑧∗; 𝑣∗ , 𝑦∗) ≥ 𝐽𝜆,𝐹𝑝 (𝑢, 𝑧; 𝑣∗ , 𝑦∗), for all (𝑢, 𝑧)> ∈ A ,
𝐽𝜆,𝐹𝑐 (𝑣∗ , 𝑦∗; 𝑢∗ , 𝑧∗) ≥ 𝐽𝜆,𝐹𝑐 (𝑣, 𝑦; 𝑢∗ , 𝑧∗), for all (𝑣, 𝑦)> ∈ A.
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2.2.2 Equilibrium forward agreement

For a Nash equilibrium (𝑣∗ , 𝑦∗; 𝑢∗ , 𝑧∗), we denote by

𝐽∗𝑐(𝜆, 𝐹) = 𝐽𝜆,𝐹𝑐 (𝑣∗ , 𝑦∗; 𝑢∗ , 𝑧∗), 𝐽∗𝑝(𝜆, 𝐹) = 𝐽𝜆,𝐹𝑝 (𝑢∗ , 𝑧∗; 𝑣∗ , 𝑦∗),

the corresponding equilibrium payoffs of consumer and producer, respectively. They depend
on the number of units 𝜆, on which the forward contract is written, and the respective forward
price 𝐹. Both players determine their prices using the indifference pricing approach, namely the
consumer computes 𝐹𝜆,∗𝑐 as solution of 𝐽∗𝑐(𝜆, 𝐹) = 𝐽∗𝑐(0, 0) and analogously for the producer,
leading to a price 𝐹𝜆,∗𝑝 as a solution of 𝐽∗𝑝(𝜆, 𝐹) = 𝐽∗𝑝(0, 0). By linearity of the payoffs with respect
to 𝐹, we get

𝐽∗𝑐(𝜆, 𝐹) = 𝐽∗𝑐(𝜆, 0) − 𝐹 and 𝐽∗𝑝(𝜆, 𝐹) = 𝐽∗𝑝(𝜆, 0) + 𝐹,
yielding

𝐹𝜆,∗𝑐 = 𝐽∗𝑐(𝜆, 0) − 𝐽∗𝑐(0, 0), and 𝐹𝜆,∗𝑝 = 𝐽∗𝑝(0, 0) − 𝐽∗𝑝(𝜆, 0).
Thus, 𝐹𝜆,∗𝑐 represents the maximum amount the consumer is willing to pay, while 𝐹𝜆,∗𝑝 is the
minimum amount the producer is willing to accept for selling a forward contract on 𝜆 units of
the underlying. As a consequence, trading is possible if and only if

𝐹𝜆,∗𝑝 ≤ 𝐹𝜆,∗𝑐 .

We conclude this section with the definition of agreement indifference price.

Definition 2.2.3. Let 𝜆∗ be the number of units of the underlying for which the two parties agree on the
forward price, namely 𝐹𝜆

∗ ,∗
𝑝 = 𝐹𝜆

∗ ,∗
𝑐 . We define the agreement indifference price as

𝐹∗𝜆∗ := 𝐹𝜆
∗ ,∗
𝑝 = 𝐹𝜆

∗ ,∗
𝑐 .

In Section 2.5, we will provide some numerical illustrations on how the risk aversion pa-
rameters and the volatility control costs of the players might affect the quantity 𝜆∗ as well as the
corresponding agreement indifference price 𝐹∗𝜆∗ .

2.3 Nash equilibrium

In this section we state and comment the main result of the paper. In particular we show
that a Nash equilibrium exists and we characterise the corresponding strategies and payoffs in
a semi-explicit way. Its proof will be given in full detail in the next section.

2.3.1 Main result

Let us start with some useful notation: for 𝑡 ∈ [0, 𝑇],

𝐾𝑝(𝑡) = −
𝑘𝑝
2

√
2(𝜌𝑝 + 𝜂𝑝𝜆2𝜌2

𝑝)
𝑘𝑝

tanh ©«
√

2(𝜌𝑝 + 𝜂𝑝𝜆2𝜌2
𝑝)

𝑘𝑝
(𝑇 − 𝑡)ª®¬ , (2.3.1)
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Λ𝑝(𝑡) = −
𝑘𝑝
2

√
2𝜌𝑝
𝑘𝑝

tanh

(√
2𝜌𝑝
𝑘𝑝
(𝑇 − 𝑡)

)
,

𝐾𝑐(𝑡) = − 𝑘𝑐2

√
2(𝛾𝜌𝑐(𝛾 − 𝑝1) + 𝜂𝑐𝜆2𝛾2𝜌2

𝑐)
𝑘𝑐

tanh ©«
√

2(𝛾𝜌𝑐(𝛾 − 𝑝1) + 𝜂𝑐𝜆2𝛾2𝜌2
𝑐)

𝑘𝑐
(𝑇 − 𝑡)ª®¬ ,

Λ𝑐(𝑡) = − 𝑘𝑐2

√
2𝛾𝜌𝑐(𝛾 − 𝑝1)

𝑘𝑐
tanh ©«

√
2𝛾𝜌𝑐(𝛾 − 𝑝1)

𝑘𝑐
(𝑇 − 𝑡)ª®¬ ,

Ξ =

(
0 −𝜌𝑝𝛾𝜌𝑐𝜂𝑝𝜆2 − 𝛾𝜌𝑐

2

−𝜌𝑝𝛾𝜌𝑐𝜂𝑐𝜆2 − 𝜌𝑝(𝛾−𝑝1)
2 0

)
, Ξ̂ =

(
0 − 𝛾𝜌𝑐

2

−𝜌𝑝(𝛾−𝑝1)
2 0

)
, 𝑅 =

(
− 2
𝑘𝑝

0
0 − 2

𝑘𝑐

)
,

Φ(𝑡) =
(
− 2
𝑘𝑝
𝐾𝑝(𝑡) 0
0 − 2

𝑘𝑐
𝐾𝑐(𝑡)

)
, Φ̂(𝑡) =

(
− 2
𝑘𝑝
Λ𝑝(𝑡) 0
0 − 2

𝑘𝑐
Λ𝑐(𝑡)

)
, Ψ =

(
−𝑠0/2

− 𝑝0+𝑝1𝑠0−𝛾(𝛿+𝑠0)
2

)
.

Furthermore, let us introduce the following system of ODEs defined on 𝑡 ∈ [0, 𝑇]:{
𝜋′(𝑡) = Ξ +Φ(𝑡)𝜋(𝑡) + 𝜋(𝑡)Φ(𝑡) + 𝜋(𝑡)𝑅𝜋(𝑡), 𝜋(𝑇) = 0,
𝜋′(𝑡) = Ξ̂ + Φ̂(𝑡)𝜋(𝑡) + 𝜋(𝑡)Φ̂(𝑡) + 𝜋(𝑡)𝑅𝜋(𝑡), 𝜋(𝑇) = 0,

(2.3.2)

dℎ(𝑡) =
{[
𝜋(𝑡)𝑅 + Φ̂(𝑡)] ℎ(𝑡) +Ψ}

d𝑡 , ℎ(𝑇) = 1
2𝜆(𝜌𝑝 , 𝛾𝜌𝑐)> , (2.3.3)

and let us denote by 𝑇𝑚𝑎𝑥 the right end of the maximal interval where the system (2.3.2) admits
a unique solution according to Picard-Lindelöf Theorem (see, e.g., [39], Ch. I, Theorem 2.3,
which can be applied by standard time-inversion).

Theorem 2.3.1. Assume that the following conditions hold:

(A1) 𝑇 < 𝑇𝑚𝑎𝑥 ,

(A2) ℓ𝑝 − 2(𝐾𝑝(𝑡) + 𝜋11(𝑡)) > 0 and ℓ𝑐 − 2(𝐾𝑐(𝑡) + 𝜋22(𝑡)) > 0, for all 𝑡 ∈ [0, 𝑇].
Then,

1. there exists a Nash equilibrium ((𝑢∗ , 𝑧∗)> , (𝑣∗ , 𝑦∗)>) ∈ A2 in the following feedback form

𝑢∗𝑡 =
2
𝑘𝑝

[
(𝐾𝑝(𝑡) + 𝜋11(𝑡))(𝑞𝑡 − �̄�𝑡) + 𝜋12(𝑡)(𝑐𝑡 − �̄�𝑡) + (Λ𝑝(𝑡) + 𝜋11(𝑡))�̄�𝑡 + 𝜋12(𝑡)�̄�𝑡 + ℎ1(𝑡)

]
,

𝑧∗(𝑡) = 𝜎𝑝ℓ𝑝
ℓ𝑝 − 2(𝐾𝑝(𝑡) + 𝜋11(𝑡)) ,

𝑣∗𝑡 =
2
𝑘𝑐

[
(𝐾𝑐(𝑡) + 𝜋22(𝑡))(𝑐𝑡 − �̄�𝑡) + 𝜋21(𝑡)(𝑞𝑡 − �̄�𝑡) + (Λ𝑐(𝑡) + 𝜋22(𝑡))�̄�𝑡 + 𝜋21(𝑡)�̄�𝑡 + ℎ2(𝑡)

]
,

𝑦∗(𝑡) = 𝜎𝑐ℓ𝑐
ℓ𝑐 − 2(𝐾𝑐(𝑡) + 𝜋22(𝑡)) .

2. The equilibrium payoffs satisfy

𝐽∗𝑝(𝜆, 𝐹) = Λ𝑝(0)𝑞2
0 + 2�̄�𝑝0 𝑞0 + 𝑅𝑝(0) + 𝐹 − 𝜆𝑠0 − 1

2ℓ𝑝𝜎
2
𝑝𝑇, (2.3.4)
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𝐽∗𝑐(𝜆, 𝐹) = Λ𝑐(0)𝑐2
0 + 2�̄�𝑐0𝑐0 + 𝑅𝑐(0) − 𝐹 + 𝜆𝑠0 − 1

2ℓ𝑐𝜎
2
𝑐𝑇, (2.3.5)

�̄�
𝑝
𝑡 = 𝜋11 �̄�𝑡 + 𝜋12 �̄�𝑡 + ℎ1 , �̄�

𝑐
𝑡 = 𝜋22 �̄�𝑡 + 𝜋21 �̄�𝑡 + ℎ2 ,

where

𝑅𝑝(0) = 𝑅(𝜆)𝑝 (0) =
∫ 𝑇

0

[
2
𝑘𝑝
E[(𝑌𝑝𝑢 )2] − 𝜂𝑝𝜆2𝛾2𝜌2

𝑐V[𝑐𝑢] +
2
(
𝜋11(𝑢)𝑧∗𝑢 + ℓ𝑝𝜎𝑝

2
)2

ℓ𝑝 − 2𝐾𝑝(𝑢)

]
d𝑢 − 𝜆𝛾𝜌𝑐E[𝑐𝑇],

(2.3.6)

𝑅𝑐(0) = 𝑅(𝜆)𝑐 (0) =
∫ 𝑇

0

[
2
𝑘𝑐
E[(𝑌𝑐𝑢 )2] − 𝜂𝑐𝜆2𝜌2

𝑝V[𝑞𝑢] +
2
(
𝜋22(𝑢)𝑦∗𝑢 + ℓ𝑐𝜎𝑐

2
)2

ℓ𝑐 − 2𝐾𝑐(𝑢)

]
d𝑢 − 𝜆𝜌𝑝E[𝑞𝑇].

See Appendix 2.C for the details on the computations of the quantities involved in the
definition of 𝑅𝑝 and 𝑅𝑐 .

2.3.2 Comments

1. Although our model is close to the one presented in [122], it is not possible to directly
exploit their results, since their hypotheses (H2)(a) and (H2)(d) are not satisfied in our
case. Therefore, in order to be self contained, we decided to prove a suitable verification
theorem from scratch.

2. We observe that the functions Λ𝑖 , 𝑖 ∈ {𝑝, 𝑐}, do not depend on 𝜆. It is also the case for the
functions 𝜋𝑖 𝑗 . Furthermore, the functions ℎ𝑖 , 𝑖 = 1, 2, are linear in 𝜆 because they depend
on it only by their terminal conditions. Besides, they are also non-decreasing in 𝜆. Thus,
the average production and consumption rates, �̄�𝑡 and �̄�𝑡 , which satisfy

d�̄�𝑡 = �̄�
∗
𝑡d𝑡 =

2
𝑘𝑝

[ (
Λ𝑝(𝑡) + 𝜋11(𝑡)

)
�̄�𝑡 + 𝜋12(𝑡)�̄�𝑡 + ℎ1(𝑡)

]
d𝑡 ,

d�̄�𝑡 = �̄�∗𝑡d𝑡 =
2
𝑘𝑐

[ (
Λ𝑐(𝑡) + 𝜋22(𝑡)) �̄�𝑡 + 𝜋21(𝑡)�̄�𝑡 + ℎ2(𝑡)

]
d𝑡 ,

are increasing in𝜆. As the terminal conditions of ℎ𝑖 , 𝑖 ∈ {𝑝, 𝑐}, depend only on𝜆 and on the
parameters 𝜌𝑝 and 𝛾𝜌𝑐 , the resulting effect on the average spot price �̄�𝑡 = 𝑠0−𝜌𝑝 �̄�𝑡 +𝛾𝜌𝑐 �̄�𝑡
only depends on the relative market power of the producer and the consumer. Thus,
if 𝛾𝜌𝑐 < 𝜌𝑝 (resp. 𝜌𝑝 < 𝛾𝜌𝑐), when the quantity of the commodity 𝜆 of the producer
increases, the average spot price decreases (resp. increases).

3. The functions Λ𝑝 , Λ𝑐 and the 𝜋𝑖 𝑗 do not depend on the risk aversion parameters 𝜂𝑝 and 𝜂𝑐 ,
therefore the average production and consumption rates do not depend on them either,
as one could expect. Regarding the volatilities, while it is clear that 𝐾𝑝 and 𝐾𝑐 are non-
decreasing in 𝜂𝑝 and 𝜂𝑐 , respectively, it is not so obvious what to expect for𝜋11 and𝜋22, and
thus to deduce the effect of risk-aversion on 𝑧∗ and 𝑦∗. However, one can find numerically
that the higher the risk aversions of the players, the lower the volatilities, even in the
absence of forward agreement. Nevertheless, it is possible to provide more insight on this
issue when the producer has no market power, i.e. 𝜌𝑝 = 0, and the consumer does have
some, i.e. 𝛾𝜌𝑐 > 0. In this case, the price process appears as exogenously driven for the
producer and as a controlled variable for the consumer. Hence 𝐾𝑝 = Λ𝑝 = 0 and 𝐾𝑐 < 0,
Λ𝑐 < 0. Further, if 𝜌𝑝 = 0, then 𝜋21 = 0, leading to 𝜋11 = 0 due to 𝐾𝑝 = 0, and it holds
also that 𝜋22 = 0 and 𝜋11 = 𝜋21 = 0. Thus, 𝑧∗ = 𝜎𝑝 and the producer does not reduce her
volatility. On the other hand, the production does covariate with consumption. Indeed, in
Theorem 2.3.1, the Nash equilibrium consumer’s strategies depend on the state variables
only via 𝑐𝑡 − �̄�𝑡 and �̄�𝑡 :

𝑢∗𝑡 =
2
𝑘𝑝
{𝜋12(𝑡)(𝑐𝑡 − �̄�𝑡) + 𝜋12(𝑡)�̄�𝑡 + ℎ1(𝑡)} , 𝑧∗𝑡 = 𝜎𝑝 ,
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𝑣∗𝑡 =
2
𝑘𝑐
{𝐾𝑐(𝑡)(𝑐𝑡 − �̄�𝑡) +Λ𝑐(𝑡)�̄�𝑡 + ℎ2(𝑡)} , 𝑦∗𝑡 =

𝜎𝑐ℓ𝑐
ℓ𝑐 − 2𝐾𝑐(𝑡) < 𝜎𝑐 .

Finally, since 𝐾𝑐(𝑡) is non-increasing in 𝜆, the higher the exposure to the financial risk
coming from the forward contract, the more the consumer reduces his volatility, as the
intuition predicts.

4. Exploiting Theorem 2.3.1-2., we can specify more precisely the non-linear equations giving
the forward agreement values 𝐹∗𝜆∗ and 𝜆∗. Indeed, it holds that (see equations (2.3.4) and
(2.3.5))

𝐽∗𝑝(𝜆, 𝐹) = Λ𝑝(0)𝑞2
0 + 2�̄�𝑝(𝜆)0 𝑞0 + 𝑅(𝜆)𝑝 (0) + 𝐹 − 𝜆𝑠0 − 1

2ℓ𝑝𝜎
2
𝑝𝑇,

𝐽∗𝑐(𝜆, 𝐹) = Λ𝑐(0)𝑐2
0 + 2�̄�𝑐(𝜆)0 𝑐0 + 𝑅(𝜆)𝑐 (0) − 𝐹 + 𝜆𝑠0 − 1

2ℓ𝑐𝜎
2
𝑐𝑇,

where the superscript (𝜆) is used to emphasise the dependency on the number of options
traded. We can isolate the parts 𝑗𝑝(𝜆, 𝐹) and 𝑗𝑐(𝜆, 𝐹) depending on 𝜆 and 𝐹, defined as

𝑗𝑝(𝜆, 𝐹) = 2ℎ(𝜆)1 (0)𝑞0 + 𝑅(𝜆)𝑝 (0) + 𝐹 − 𝜆𝑠0 ,
𝑗𝑐(𝜆, 𝐹) = 2ℎ(𝜆)2 (0)𝑐0 + 𝑅(𝜆)𝑐 (0) − 𝐹 + 𝜆𝑠0.

Thus, for a fixed 𝜆 the indifference prices 𝐹𝜆,∗𝑝 and 𝐹𝜆,∗𝑐 are given by

2ℎ(0)1 (0)𝑞0 + 𝑅(0)𝑝 (0) = 2ℎ(𝜆)1 (0)𝑞0 + 𝑅(𝜆)𝑝 (0) + 𝐹𝜆,∗𝑝 − 𝜆𝑠0 ,
2ℎ(0)2 (0)𝑐0 + 𝑅(0)𝑐 (0) = 2ℎ(𝜆)2 (0)𝑐0 + 𝑅(𝜆)𝑐 (0) − 𝐹𝜆,∗𝑐 + 𝜆𝑠0.

Thus, if it exists, the equilibrium price should be given by 𝐹𝜆
∗ ,∗
𝑝 = 𝐹𝜆

∗ ,∗
𝑐 = 𝐹∗𝜆∗ , i.e.,

2(ℎ(0)1 (0) − ℎ(𝜆
∗)

1 (0))𝑞0 + 𝑅(0)𝑝 (0) − 𝑅(𝜆
∗)

𝑝 (0) = 2(ℎ(𝜆∗)2 (0) − ℎ(0)2 (0))𝑐0 + 𝑅(𝜆∗)𝑐 (0) − 𝑅(0)𝑐 (0),
or, equivalently,

2ℎ(0)1 (0)𝑞0 + 2ℎ(0)2 (0)𝑐0 + 𝑅(0)𝑐 (0) + 𝑅(0)𝑝 (0) = 2ℎ(𝜆
∗)

1 (0)𝑞0 + 2ℎ(𝜆
∗)

2 (0)𝑐0 + 𝑅(𝜆∗)𝑐 (0) + 𝑅(𝜆
∗)

𝑝 (0),
with 𝑅(𝜆

∗)
𝑝 (0) and 𝑅(𝜆

∗)
𝑐 (0) defined in Equation (2.3.6) and ℎ(𝜆∗) in Equation (2.3.3).

The last remark speeds up considerably the computations for the plots that appear in the
Section 2.5. Indeed, all the quantities that we need to compute can be obtained by solving
numerically the ODEs presented in Appendix 2.C.

2.4 Proof of Theorem 2.3.1

2.4.1 The solution approach

We prove Theorem 2.3.1 following a methodology based on a combination of a suitable
Verification Theorem and of the weak Martingale Optimality Principle. As already stressed in the
first comment below Theorem 2.3.1, despite our model is very close to the class of games studied
in [122], their results cannot be applied directly here, therefore we had to adapt the methodology
to our framework. We proceed through the following steps:

1) we compute the best response maps of both players;

2) we check that the system coming from the best response computations has a unique
solution;

3) we get a Nash equilibrium as a fixed point of the best response map;
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4) we verify that there exists a unique solution to the system characterising the fixed point
found in step 3).

2.4.2 Preliminary reformulation of the problem

For convenience, we introduce the following vector notation for the players’ strategies:

𝛼 =
((𝛼𝑝)> , (𝛼𝑐)>)> ∈ A2 , 𝛼𝑝 :=

(
𝑢

𝑧

)
=

{(
𝑢𝑡
𝑧𝑡

)}
𝑡∈[0,𝑇]

and 𝛼𝑐 :=

(
𝑣

𝑦

)
=

{(
𝑣𝑡
𝑦𝑡

)}
𝑡∈[0,𝑇]

,

so that the dynamics of the state variables can be rewritten as

d𝑞𝑡 = 𝑒>1 𝛼
𝑝
𝑡 d𝑡 + 𝑒>2 𝛼𝑝𝑡 d𝑊𝑡 , (2.4.1)

d𝑐𝑡 = 𝑒>1 𝛼
𝑐
𝑡d𝑡 + 𝑒>2 𝛼𝑐𝑡d𝐵𝑡 , 𝑡 ∈ [0, 𝑇],

with 𝑒>1 = (1, 0) and 𝑒>2 = (0, 1).

The following identity is exploited to get a suitable reformulation of our problem: using the
dynamics of 𝑆𝑡 and applying Fubini’s theorem, it is easy to see that∫ 𝑇

0
V [𝑆𝑡]d𝑡 = E

[∫ 𝑇

0

{
𝜌2
𝑝(𝑞𝑡 − E[𝑞𝑡])2 + 𝛾2𝜌2

𝑐(𝑐𝑡 − E[𝑐𝑡])2 − 2𝜌𝑝𝛾𝜌𝑐(𝑞𝑡 − E[𝑞𝑡])(𝑐𝑡 − E[𝑐𝑡])
}

d𝑡
]
.

(2.4.2)

Rearranging the terms in the expressions of the producer objective functional, we obtain

𝐽𝜆,𝐹𝑝 (𝑢, 𝑧; 𝑣, 𝑦) = �̃�𝜆𝑝 (𝑢, 𝑧; 𝑣, 𝑦) + 𝐹 − 𝜆𝑠0 −
ℓ𝑝𝜎2

𝑝𝑇

2 ,

where

�̃�𝜆𝑝 (𝑢, 𝑧; 𝑣, 𝑦) :=E

[ ∫ 𝑇

0

(
− (𝜌𝑝 + 𝜂𝑝𝜆2𝜌2

𝑝)(𝑞𝑡 − E[𝑞𝑡])2 − 𝜌𝑝E[𝑞𝑡]2 + [𝑠0 + 𝛾𝜌𝑐𝑐𝑡

+ 2𝜌𝑝𝛾𝜌𝑐𝜂𝑝𝜆2(𝑐𝑡 − E[𝑐𝑡])]𝑞𝑡 −
𝑘𝑝
2 𝑢

2
𝑡 −

ℓ𝑝
2 𝑧

2
𝑡 + ℓ𝑝𝜎𝑝𝑧𝑡 − 𝜂𝑝𝜆2𝛾2𝜌2

𝑐(𝑐𝑡 − E[𝑐𝑡])2
)
d𝑡

+ 𝜆𝜌𝑝𝑞𝑇 − 𝜆𝛾𝜌𝑐𝑐𝑇
]
.

Then, neglecting the constant terms, we can study without loss of generality the equivalent
formulation in which the producer aims at maximising �̃�𝜆𝑝 (𝑢, 𝑧; 𝑣, 𝑦).
Remark 2.4.1. Fixing a strategy 𝛼𝑝 for the producer (resp. 𝛼𝑐 for the consumer) is equivalent, from the
perspective of the competitor, to fixing the corresponding state 𝑞𝛼𝑝 (resp. 𝑐𝛼𝑐 ). Thus, with some abuse of
notation we will write simply 𝑞 (resp. 𝑐) when the strategy used is clear from the context. Moreover, to
ease the notation, we will also omit the dependence on �̄� and �̄�.
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For a given consumption process {𝑐𝑡}𝑡∈[0,𝑇], we write

�̃�𝜆𝑝 (𝛼𝑝 ; 𝛼𝑐) = �̃�𝜆𝑝 (𝛼𝑝 ; 𝑐) := E
[∫ 𝑇

0
𝑓𝑝(𝑡 , 𝑞𝑡 ,E[𝑞𝑡], 𝛼𝑝𝑡 ,E[𝛼𝑝𝑡 ]; 𝑐)d𝑡 + 𝑔𝑝(𝑞𝑇 ,E[𝑞𝑇]; 𝑐)

]
, with

𝑓𝑝(𝑡 , 𝑞, �̄� , 𝑎𝑝 , �̄�𝑝 ; 𝑐) = 𝑄𝑝(𝑞 − �̄�)2 + (𝑄𝑝 +𝑄𝑝)�̄�2 + 2𝑀𝑝(𝑐)𝑡𝑞 + 𝑎>𝑝 𝑁𝑝𝑎𝑝 + 2𝐻>𝑝 𝑎𝑝 + 𝑇𝑝(𝑐)𝑡 ,
𝑔𝑝(𝑞, �̄�; 𝑐) = 2𝐿𝑝𝑞 + 𝑇𝑝(𝑐),

where

𝑄𝑝 := −𝜌𝑝 − 𝜂𝑝𝜆2𝜌2
𝑝 , 𝑄𝑝 := 𝜂𝑝𝜆

2𝜌2
𝑝 , 𝑀𝑝(𝑐)𝑡 := 𝑠0

2 +
𝛾𝜌𝑐
2 𝑐𝑡 + 𝜌𝑝𝛾𝜌𝑐𝜂𝑝𝜆

2(𝑐𝑡 − E[𝑐𝑡]),

𝑁𝑝 :=

(
− 𝑘𝑝2 0

0 − ℓ𝑝2

)
, 𝐻𝑝 :=

(
0

𝜎𝑝ℓ𝑝
2

)
, 𝑇𝑝(𝑐)𝑡 := −𝜂𝑝𝜆2𝛾2𝜌2

𝑐(𝑐𝑡 − E[𝑐𝑡])2 , 𝐿𝑝 :=
𝜌𝑝𝜆

2 ,

and 𝑇𝑝(𝑐) := −𝜆𝛾𝜌𝑐𝑐𝑇 .

(2.4.3)

Now, let us turn to the objective functional of the consumer. From (2.2.1) and (2.4.2), we have

𝐽𝜆,𝐹𝑐 (𝑣, 𝑦; 𝑢, 𝑧) = �̃�𝜆𝑐 (𝑣, 𝑦; 𝑢, 𝑧) − 𝐹 + 𝜆𝑠0 − ℓ𝑐𝜎
2
𝑐𝑇

2 ,

where

�̃�𝜆𝑐 (𝑣, 𝑦; 𝑢, 𝑧) := E

[ ∫ 𝑇

0

(
− [𝛾𝜌𝑐(𝛾 − 𝑝1) + 𝜂𝑐𝜆2𝛾2𝜌2

𝑐](𝑐𝑡 − E[𝑐𝑡])2 − 𝛾𝜌𝑐(𝛾 − 𝑝1)E[𝑐𝑡]2

+ [(𝑝0 + 𝑠0𝑝1 − 𝛾𝛿 − 𝛾𝑠0) + 𝜌𝑝(𝛾 − 𝑝1)𝑞𝑡 + 2𝜌𝑝𝛾𝜌𝑐𝜂𝑐𝜆2(𝑞𝑡 − E[𝑞𝑡])]𝑐𝑡

− 𝑘𝑐2 𝑣
2
𝑡 −

ℓ𝑐
2 𝑦

2
𝑡 + 𝜎𝑐ℓ𝑐𝑦𝑡 − 𝜂𝑐𝜆2𝜌2

𝑝(𝑞𝑡 − E[𝑞𝑡])2
)
d𝑡 − 𝜆𝜌𝑝𝑞𝑇 + 𝜆𝛾𝜌𝑐𝑐𝑇

]
.

Analogously as above, let {𝑞𝑡}𝑡∈[0,𝑇] be a given production rate. We can write

�̃�𝜆𝑐 (𝛼𝑐 ; 𝛼𝑝) = �̃�𝜆𝑐 (𝛼𝑐 ; 𝑞) := E
[∫ 𝑇

0
𝑓𝑐
(
𝑡 , 𝑐𝑡 ,E[𝑐𝑡], 𝛼𝑐𝑡 ,E[𝛼𝑐𝑡 ]; 𝑞

)
d𝑡 + 𝑔𝑐(𝑐𝑇 ,E[𝑐𝑇]; 𝑞)

]
, with

𝑓𝑐(𝑡 , 𝑐, �̄� , 𝑎𝑐 , �̄�𝑐 ; 𝑞) = 𝑄𝑐(𝑐 − �̄�)2 + (𝑄𝑐 +𝑄𝑐)�̄�2 + 2𝑀𝑐(𝑞)𝑡𝑐 + 𝑎>𝑐 𝑁𝑐𝑎𝑐 + 2𝐻>𝑐 𝑎𝑐 + 𝑇𝑐(𝑞)𝑡 ,
𝑔𝑐(𝑐, �̄�; 𝑞) = 2𝐿𝑐𝑐 + 𝑇𝑐(𝑞),

and

𝑄𝑐 := −𝛾𝜌𝑐(𝛾 − 𝑝1) − 𝜂𝑐𝜆2𝛾2𝜌2
𝑐 , 𝑄𝑐 := 𝜂𝑐𝜆

2𝛾2𝜌2
𝑐 , 𝑁𝑐 :=

(
− 𝑘𝑐2 0
0 − ℓ𝑐2

)
,

𝑀𝑐(𝑞)𝑡 :=
𝑝0 + 𝑝1𝑠0 − 𝛾(𝑠0 + 𝛿)

2 + 𝜌𝑝(𝛾 − 𝑝1)
2 𝑞𝑡 + 𝜌𝑝𝛾𝜌𝑐𝜂𝑐𝜆

2(𝑞𝑡 − E[𝑞𝑡]),

𝐻𝑐 :=

(
0

𝜎𝑐ℓ𝑐
2

)
, 𝑇𝑐(𝑞)𝑡 := −𝜂𝑐𝜆2𝜌2

𝑝(𝑞𝑡 − E[𝑞𝑡])2 , 𝐿𝑐 :=
𝜆𝛾𝜌𝑐

2 , and 𝑇𝑐(𝑞) := −𝜆𝜌𝑝𝑞𝑇 .
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Finally, we set

𝑉𝜆
𝑝 (𝛼𝑐) := sup

𝛼𝑝∈A
�̃�𝜆𝑝 (𝛼𝑝 ; 𝛼𝑐), 𝛼𝑐 ∈ A ,

𝑉𝜆
𝑐 (𝛼𝑝) := sup

𝛼𝑐∈A
�̃�𝜆𝑐 (𝛼𝑐 ; 𝛼𝑝), 𝛼𝑝 ∈ A.

2.4.3 First step: computation of the best response maps

The first step is focused on the computation of the best response map of each player. This is
done by exploiting the following version of the Verification Theorem:

Theorem 2.4.2 (Verification Theorem). Fix a couple of strategies 𝛽𝑝 , 𝛽𝑐 ∈ A for the producer and the
consumer, respectively. LetW𝑝,𝛼𝑝

𝑡 andW𝑐,𝛼𝑐

𝑡 be defined as

W𝑝,𝛼𝑝

𝑡 = 𝑤𝑝
𝑡 (𝑞𝛼

𝑝

𝑡 ,E[𝑞𝛼
𝑝

𝑡 ]), W𝑐,𝛼𝑐

𝑡 = 𝑤𝑐
𝑡 (𝑐𝛼

𝑐

𝑡 ,E[𝑐𝛼
𝑐

𝑡 ]), 𝑡 ∈ [0, 𝑇], 𝛼𝑝 , 𝛼𝑐 ∈ A ,

where the F-adapted random fields {𝑤𝑝
𝑡 (𝑞, �̄�), 𝑡 ∈ [0, 𝑇], 𝑞, �̄� ∈ R} and {𝑤𝑐

𝑡 (𝑐, �̄�), 𝑡 ∈ [0, 𝑇], 𝑐, �̄� ∈ R}
satisfy the following growth conditions: for all 𝑡 ∈ [0, 𝑇], for all 𝑥, �̄� ∈ R,

|𝑤𝑝
𝑡 (𝑥, �̄�)| ≤ 𝐶𝑝(𝜈𝑝𝑡 + |𝑥 |2 + |�̄� |2), |𝑤𝑐

𝑡 (𝑥, �̄�)| ≤ 𝐶𝑐(𝜈𝑐𝑡 + |𝑥 |2 + |�̄� |2), (2.4.4)

for some constants 𝐶𝑝 , 𝐶𝑐 > 0 and for some non-negative processes 𝜈𝑝 and 𝜈𝑐 such that

sup
𝑡∈[0,𝑇]

E
[
𝜈
𝑝
𝑡 + 𝜈𝑐𝑡

]
< ∞.

Furthermore, we assume that the following conditions are fulfilled:

i) E[𝑤𝑝
𝑇(𝑞𝛼

𝑝

𝑇 , 𝑞�̄�𝛼
𝑝 )] = E[𝑔𝑝(𝑞𝛼𝑝𝑇 , 𝑞�̄�𝛼

𝑝 ; 𝑐𝛽𝑐 )] and E[𝑤𝑐
𝑇(𝑐𝛼

𝑐

𝑇 , 𝑐�̄�
𝛼𝑐 )] = E[𝑔𝑐(𝑐𝛼𝑐𝑇 , 𝑐�̄�𝛼

𝑐 ; 𝑞𝛽𝑝 )], for any
𝛼𝑝 , 𝛼𝑐 ∈ A.

ii) The application [0, 𝑇] 3 𝑡 ↦→ E[S𝑝,𝛼𝑝𝑡 ]
(
resp. E[S𝑐,𝛼𝑐𝑡 ]

)
is well-defined and non-increasing, for

any 𝛼𝑝 ∈ A (resp. for any 𝛼𝑐 ∈ A), where:

S𝑝,𝛼𝑝𝑡 =W𝑝,𝛼𝑝

𝑡 +
∫ 𝑡

0
𝑓𝑝(𝑠, 𝑞𝛼𝑝𝑠 , �̄�𝛼𝑝𝑠 , 𝛼𝑝𝑠 , �̄�𝑝𝑠 ; 𝑐𝛽

𝑐 )d𝑠,

S𝑐,𝛼𝑐𝑡 =W𝑐,𝛼𝑐

𝑡 +
∫ 𝑡

0
𝑓𝑐(𝑠, 𝑐𝛼𝑐𝑠 , �̄�𝛼𝑐𝑠 , 𝛼𝑐𝑠 , �̄�𝑐𝑠 ; 𝑞𝛽𝑝 )d𝑠.

(2.4.5)

iii) For some 𝛼𝑝,★ ∈ A and 𝛼𝑐,★ ∈ A, the application [0, 𝑇] 3 𝑡 ↦→ E[S𝑝,𝛼𝑝,★𝑡 ]
(
resp. E[S𝑐,𝛼𝑐,★𝑡 ]

)
is

constant.

Then, the control 𝛼★ = (𝛼𝑝,★, 𝛼𝑐,★) is the best response to the control (𝛽𝑝 , 𝛽𝑐) meaning that

𝛼𝑝,★ = B𝑝(𝛽𝑐) := arg max
𝛼𝑝∈A

�̃�𝜆𝑝 (𝛼𝑝 ; 𝛽𝑐), 𝛼𝑐,★ = B𝑐(𝛽𝑝) := arg max
𝛼𝑐∈A

�̃�𝜆𝑐 (𝛼𝑐 ; 𝛽𝑝),

and

�̃�𝜆𝑝 (𝛼𝑝,★; 𝑐𝛽𝑐 ) = 𝑉𝜆
𝑝 (𝛽𝑐) = E[W𝑃,𝛼𝑝

0 ] 𝑎𝑛𝑑 �̃�𝜆𝑐 (𝛼𝑐,★; 𝑞𝛽𝑝 ) = 𝑉𝜆
𝑐 (𝛽𝑝) = E[W𝐶,𝛼𝑐

0 ].
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Finally, if �̃� = (�̃�𝑝 , �̃�𝑐) is another best response to the control (𝛽𝑝 , 𝛽𝑐), then condition iii) holds also for
�̃�𝑝 and �̃�𝑐 .

We define the best response map B : A2 → A2 as B := (B𝑝 ,B𝑐). The Nash equilibrium we
find will be a fixed point of this map.

Once we have fixed the strategies 𝛽𝑝 and 𝛽𝑐 in A, the first step can be divided into four
sub-steps:

1.1 Since the players objective functionals are quadratic, we propose a suitable candidate
(W𝑝,𝛼𝑝

𝑡 ,W𝑐,𝛼𝑐

𝑡 ) in feedback form.

1.2 Applying Itô’s formula, we compute d
d𝑡E[S𝑝,𝛼

𝑝

𝑡 ] and d
d𝑡E[S𝑐,𝛼

𝑐

𝑡 ] corresponding to the
candidate (W𝑝,𝛼𝑝

𝑡 ,W𝑐,𝛼𝑐

𝑡 ).
1.3 We postulate that the conditions of Theorem 2.4.2 are satisfied and get a system of back-

ward SDEs involving the coefficients of the candidate (W𝑝,𝛼𝑝

𝑡 ,W𝑐,𝛼𝑐

𝑡 ).
1.4 We compute each player’s best response by looking for strategies cancelling the expectation

of the drifts of the processes S𝑝,𝛼𝑝𝑡 and S𝑐,𝛼𝑐𝑡 .

Sub-step 1.1 Given the quadratic nature of our objective functional, it seems natural to look for
a family of processes (W𝑝,𝛼𝑝

𝑡 ,W𝑐,𝛼𝑐

𝑡 )𝑡∈[0,𝑇] of the following form: W𝑝,𝛼𝑝

𝑡 = 𝑤𝑝
𝑡 (𝑞𝛼

𝑝

𝑡 ,E[𝑞𝛼
𝑝

𝑡 ]) and
W𝑐,𝛼𝑐

𝑡 = 𝑤𝑐
𝑡 (𝑐𝛼

𝑐

𝑡 ,E[𝑐𝛼
𝑐

𝑡 ]), for some parametric adapted random field {𝑤 𝑖
𝑡(𝑥, �̄�), 𝑡 ∈ [0, 𝑇], 𝑥, �̄� ∈

R}, 𝑖 ∈ {𝑝, 𝑐}, such that

𝑤 𝑖
𝑡(𝑥, �̄�) = 𝐾𝑖(𝑡)(𝑥 − �̄�)2 +Λ𝑖(𝑡)�̄�2 + 2𝑌 𝑖𝑡 𝑥 + 𝑅𝑖(𝑡),

with (𝐾𝑖 ,Λ𝑖 , 𝑌 𝑖 , 𝑅𝑖) ∈ 𝐿∞([0, 𝑇],R−)2 × 𝑆2
F(Ω × [0, 𝑇],R) × 𝐿∞([0, 𝑇],R), 𝑖 ∈ {𝑝, 𝑐}, solving the

systems of ODEs and SDEs:


𝑑𝐾𝑝(𝑡) = 𝐾′𝑝(𝑡)d𝑡 , 𝐾𝑝(𝑇) = 0,
dΛ𝑝(𝑡) = Λ′𝑝(𝑡)d𝑡 , Λ𝑝(𝑇) = 0,
d𝑌𝑝𝑡 = 𝑌𝑝𝑡

′d𝑡 + 𝑍𝑝,𝐵𝑡 d𝐵𝑡 + 𝑍𝑝,𝑊𝑡 d𝑊𝑡 , 𝑌𝑝𝑇 =
𝜆𝜌𝑝

2 ,

𝑑𝑅𝑝(𝑡) = 𝑅′𝑝(𝑡)d𝑡 , 𝑅𝑝(𝑇) = −𝜆𝛾𝜌𝑐E[𝑐𝑇],


𝑑𝐾𝑐(𝑡) = 𝐾′𝑐(𝑡)d𝑡 , 𝐾𝑐(𝑇) = 0,
dΛ𝑐(𝑡) = Λ′𝑐(𝑡)d𝑡 , Λ𝑐(𝑇) = 0,
d𝑌𝑐𝑡 = 𝑌𝑐𝑡

′d𝑡 + 𝑍𝑐,𝐵𝑡 d𝐵𝑡 + 𝑍𝑐,𝑊𝑡 d𝑊𝑡 , 𝑌𝑐𝑇 = 𝜆𝛾𝜌𝑐
2 ,

𝑑𝑅𝑐(𝑡) = 𝑅′𝑐(𝑡)d𝑡 , 𝑅𝑐(𝑇) = −𝜆𝜌𝑝E[𝑞𝑇],

for some deterministic processes 𝐾′𝑖 ,Λ
′
𝑖 , 𝑅
′
𝑖 and for some F-adapted processes 𝑌 𝑖′, 𝑍 𝑖 ,𝑊 , 𝑍 𝑖,𝐵,

𝑖 ∈ {𝑝, 𝑐}.
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Sub-step 1.2 For the sake of simplicity, from now on, we explicitly develop only the producer
case. The consumer problem can be studied in same way. Let 𝑡 ∈ [0, 𝑇] and 𝛼𝑝 ∈ A. As in
(2.4.5) in Theorem 2.4.2 (Verification Theorem), we set

S𝑝,𝛼𝑝𝑡 = 𝑤𝑝
𝑡 (𝑞𝛼

𝑝

𝑡 ,E[𝑞𝛼
𝑝

𝑡 ]) +
∫ 𝑡

0
𝑓𝑝(𝑢, 𝑞𝛼𝑝𝑢 ,E[𝑞𝛼𝑝𝑢 ], 𝛼𝑝𝑢 ,E[𝛼𝑝𝑢]; 𝑐𝛽𝑐 )d𝑢.

In the following, we write simply 𝑐 instead of 𝑐𝛽𝑐 (resp. 𝑞 instead of 𝑞𝛽𝑝 ), when the strategies
are clear from the context (see Remark 2.4.1). After some computations (see Appendix 2.B for
details), we obtain

d
d𝑡E[S

𝑝,𝛼𝑝

𝑡 ] = E
[
(𝐾′𝑝(𝑡) +𝑄𝑝)(𝑞𝑡 − E[𝑞𝑡])2 + (Λ′𝑝(𝑡) +𝑄𝑝 +𝑄𝑝)E[𝑞𝑡]2 + 2(𝑌𝑝𝑡

′ +𝑀𝑝(𝑐)𝑡)𝑞𝑡
+ 𝑅′𝑝(𝑡) + 𝑇𝑝(𝑐)𝑡 + 𝜒

𝑝
𝑡 (𝛼𝑝𝑡 )

]
,

(2.4.6)

where, for any 𝑡 ∈ [0, 𝑇], we have set

𝜒
𝑝
𝑡 (𝛼𝑝𝑡 ) := (𝛼𝑝𝑡 )>𝑆𝑝(𝑡)𝛼𝑝𝑡 + 2[𝑈𝑝(𝑡)(𝑞𝑡 − E[𝑞𝑡]) +𝑉𝑝(𝑡)𝑞𝑡 + 𝜉

𝑝
𝑡 + �̄�

𝑝
𝑡 + 𝑂𝑝(𝑡)]>𝛼𝑝(𝑡)

𝑆𝑝(𝑡) := 𝑁𝑝 + 𝑒2𝐾𝑝(𝑡)𝑒>2
𝑈𝑝(𝑡) := 𝐾𝑝(𝑡)𝑒1
𝑉𝑝(𝑡) := Λ𝑝(𝑡)𝑒1
𝑂𝑝(𝑡) := 𝐻𝑝 + 𝑒1E[𝑌𝑝𝑡 ] + 𝑒2E[𝑍𝑝,𝑊𝑡 ]
𝜉
𝑝
𝑡 := 𝐻𝑝 + 𝑒1𝑌𝑝𝑡 + 𝑒2𝑍𝑝,𝑊𝑡

�̄�
𝑝
𝑡 := 𝐻𝑝 + 𝑒1E[𝑌𝑝𝑡 ] + 𝑒2E[𝑍𝑝,𝑊𝑡 ],

(2.4.7)

where 𝑄𝑝 , 𝑄𝑝 , 𝑀𝑝(𝑐), 𝑁𝑝 , 𝐻𝑝 and 𝑇𝑝(𝑐) are defined in Equation (2.4.3).

Sub-step 1.3 Now, we find conditions granting that assumptions i), ii) and iii) of Theorem 2.4.2,
involving S𝑝,𝛼𝑝 , hold. Suppose that the matrix 𝑆𝑝(𝑡) is negative definite and thus invertible. We
check this later, verifying that 𝐾𝑝(𝑡) ≤ 0, for all 𝑡 ∈ [0, 𝑇] (see Remark 2.4.5). We complete the
squares and rewrite the equation (2.4.6) as

d
d𝑡E[S

𝑝,𝛼𝑝

𝑡 ] = E
[ (
𝐾′𝑝(𝑡) +𝑄𝑝 −𝑈𝑝(𝑡)>𝑆𝑝(𝑡)−1𝑈𝑝(𝑡))(𝑞𝑡 − E[𝑞𝑡])2
+ (

Λ′𝑝(𝑡) +𝑄𝑝 +𝑄𝑝 −𝑉𝑝(𝑡)>𝑆𝑝(𝑡)−1𝑉𝑝(𝑡))E[𝑞𝑡]2
+ 2

[
𝑌𝑝𝑡
′ +𝑀𝑝(𝑐)𝑡 −𝑈𝑝(𝑡)>𝑆𝑝(𝑡)−1(𝜉𝑝𝑡 − �̄�

𝑝
𝑡 ) −𝑉𝑝(𝑡)>𝑆𝑝(𝑡)−1𝑂𝑝(𝑡)

]
𝑞𝑡

+ 𝑅′𝑝(𝑡) + 𝑇𝑝(𝑐)𝑡 − (𝜉𝑝𝑡 − �̄�
𝑝
𝑡 )>𝑆𝑝(𝑡)−1(𝜉𝑝𝑡 − �̄�

𝑝
𝑡 ) − 𝑂𝑝(𝑡)>𝑆𝑝(𝑡)−1𝑂𝑝(𝑡)

+ (𝛼𝑝𝑡 − 𝜂𝑝𝑡 )>𝑆𝑝(𝑡)−1(𝛼𝑝𝑡 − 𝜂𝑝𝑡 )
]
,

where, for all 𝑡 ∈ [0, 𝑇], we have defined

𝜂
𝑝
𝑡 := −𝑆𝑝(𝑡)−1 [

𝑈𝑝(𝑡)(𝑞𝑡 − E[𝑞𝑡]) +𝑉𝑝(𝑡)E[𝑞𝑡] + (𝜉𝑝𝑡 − �̄�
𝑝
𝑡 ) + 𝑂𝑝(𝑡)

]
.
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Choosing processes 𝐾𝑝 ,Λ𝑝 , 𝑌𝑝 and 𝑅𝑝 , whose existence is shown in the next sub-step, that solve
the following system of BSDEs

𝐾′𝑝(𝑡) +𝑄𝑝 −𝑈𝑝(𝑡)>𝑆𝑝(𝑡)−1𝑈𝑝(𝑡) = 0, 𝐾𝑝(𝑇) = 0,
Λ′𝑝(𝑡) +𝑄𝑝 +𝑄𝑝 −𝑉𝑝(𝑡)>𝑆𝑝(𝑡)−1𝑉𝑝(𝑡) = 0, Λ𝑝(𝑇) = 0,
d𝑌𝑝𝑡 =

[−𝑀𝑝(𝑐)𝑡 +𝑈𝑝(𝑡)>𝑆𝑝(𝑡)−1(𝜉𝑝𝑡 − �̄�
𝑝
𝑡 ) +𝑉𝑝(𝑡)>𝑆𝑝(𝑡)−1𝑂𝑝(𝑡)

]
d𝑡

+𝑍𝑝,𝐵𝑡 d𝐵𝑡 + 𝑍𝑝,𝑊𝑡 d𝑊𝑡 ,

𝑌𝑝𝑇 = 𝐿𝑝 ,

𝑅′𝑝(𝑡) + E[𝑇𝑝(𝑐)𝑡 − (𝜉𝑝𝑡 − �̄�
𝑝
𝑡 )>𝑆𝑝(𝑡)−1(𝜉𝑝𝑡 − �̄�

𝑝
𝑡 ) − 𝑂𝑝(𝑡)>𝑆𝑝(𝑡)−1𝑂𝑝(𝑡)] = 0,

𝑅𝑝(𝑇) = E[𝑇𝑝(𝑐)],

we obtain

d
d𝑡E[S

𝑝,𝛼𝑝

𝑡 ] = E
[
(𝛼𝑝𝑡 − 𝜂𝑝𝑡 )>𝑆𝑝(𝑡)−1(𝛼𝑝𝑡 − 𝜂𝑝𝑡 )

]
, (2.4.8)

which is clearly non-positive for all 𝑡 ∈ [0, 𝑇], since 𝑆𝑝(𝑡) (defined in Equation (2.4.7)) is negative
definite for all 𝑡 ∈ [0, 𝑇].

Remark 2.4.3. We stress the fact that the processes 𝑌𝑝 , 𝑍𝑝,𝑊 , 𝑍𝑝,𝐵 and 𝑅𝑝 depend only on the strategy
of the consumer through the state process {𝑐𝑡}𝑡∈[0,𝑇], with 𝑐𝑡 = 𝑐𝛽

𝑐

𝑡 , 𝑡 ∈ [0, 𝑇], which is controlled only
by 𝛽𝑐 . Thus, the feedback best response control are functions of different state variables, namely the best
response for the producer is feedback in 𝑞 and its expectation, whereas the best response for the consumer
is feedback in 𝑐 and its expectation.

Sub-step 1.4 Now we combine the results in the previous steps in order to get the best response
maps.

Proposition 2.4.4. The best response maps are given by

B𝑝(𝛽𝑐)𝑡 = −(𝑁𝑝 + 𝑒2𝐾𝑝(𝑡)𝑒>2 )−1[𝑒1𝐾𝑝(𝑡)(𝑞𝑡 − E[𝑞𝑡]) + 𝑒1Λ𝑝(𝑡)E[𝑞𝑡] + 𝑒1𝑌𝑝𝑡 + 𝑒2𝑍𝑝,𝑊𝑡 + 𝐻𝑝],
B𝑐(𝛽𝑝)𝑡 = −(𝑁𝑐 + 𝑒2𝐾𝑐(𝑡)𝑒>2 )−1[𝑒1𝐾𝑐(𝑡)(𝑐𝑡 − E[𝑐𝑡]) + 𝑒1Λ𝑐(𝑡)E[𝑐𝑡] + 𝑒1𝑌𝑐𝑡 + 𝑒2𝑍𝑐,𝐵𝑡 + 𝐻𝑐], (2.4.9)

where the processes (𝐾𝑝 ,Λ𝑝 , 𝑌𝑝 , 𝑅𝑝) and (𝐾𝑐 ,Λ𝑐 , 𝑌𝑐 , 𝑅𝑐) above solve the following systems of backward
ODEs and SDEs, given 𝑐𝑡 = 𝑐𝛽

𝑐

𝑡 (respectively, given 𝑞𝑡 = 𝑞𝛽
𝑝

𝑡 ), 𝑡 ∈ [0, 𝑇]:



𝐾′𝑝(𝑡) = − 2
𝑘𝑝
𝐾𝑝(𝑡)2 + 𝜌𝑝 + 𝜂𝑝𝜆2𝜌2

𝑝 , 𝐾𝑝(𝑇) = 0,
Λ′𝑝(𝑡) = − 2

𝑘𝑝
Λ𝑝(𝑡)2 + 𝜌𝑝 , Λ𝑝(𝑇) = 0,

d𝑌𝑝𝑡 = −
{
𝑠0
2 + 𝛾𝜌𝑐

2 𝑐𝑡 + 𝜌𝑝𝛾𝜌𝑐𝜂𝑝𝜆2(𝑐𝑡 − E[𝑐𝑡]) + 2
𝑘𝑝

[
𝐾𝑝(𝑡) (𝑌𝑝𝑡 − E[𝑌𝑝𝑡 ]) +Λ𝑝(𝑡)E[𝑌𝑝𝑡 ]

]}
d𝑡

+𝑍𝑝,𝐵𝑡 d𝐵𝑡 + 𝑍𝑝,𝑊𝑡 d𝑊𝑡 ,

𝑌𝑝𝑇 =
𝜆𝜌𝑝

2 ,

𝑅′𝑝(𝑡) = 𝜂𝑝𝜆2𝛾2𝜌2
𝑐V[𝑐𝑡] − 2

𝑘𝑝
(V[𝑌𝑝𝑡 ] + E[𝑌𝑝𝑡 ]2) − 2

ℓ𝑝−2𝐾𝑝(𝑡) (V[𝑍
𝑝,𝑊
𝑡 ] + (E[𝑍𝑝,𝑊𝑡 ] +

ℓ𝑝𝜎𝑝
2 )2),

𝑅𝑝(𝑇) = −𝜆𝛾𝜌𝑐E[𝑐𝑇],
(2.4.10)
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and

𝐾′𝑐(𝑡) = − 2
𝑘𝑐
𝐾𝑐(𝑡)2 + 𝛾𝜌𝑐(𝛾 − 𝑝1) + 𝜂𝑐𝜆2𝛾2𝜌2

𝑐 = 0, 𝐾𝑐(𝑇) = 0,
Λ′𝑐(𝑡) = − 2

𝑘𝑐
Λ𝑐(𝑡)2 + 𝛾𝜌𝑐(𝛾 − 𝑝1), Λ𝑐(𝑇) = 0,

d𝑌𝑐𝑡 = −
{
𝑝0+𝑝1𝑠0−𝛾(𝑠0+𝛿)

2 + 𝜌𝑝(𝛾−𝑝1)
2 𝑞𝑡 + 𝜌𝑝𝛾𝜌𝑐𝜂𝑐𝜆2(𝑞𝑡 − E[𝑞𝑡]) + 2

𝑘𝑐

[
𝐾𝑐(𝑡)(𝑌𝑐𝑡 − E[𝑌𝑐𝑡 ])

+Λ𝑐(𝑡)E[𝑌𝑐𝑡 ]
]}

d𝑡 + 𝑍𝑐,𝐵𝑡 d𝐵𝑡 + 𝑍𝑐,𝑊𝑡 d𝑊𝑡 ,

𝑌𝑐𝑇 = 𝜆𝛾𝜌𝑐
2 ,

𝑅′𝑐(𝑡) = 𝜂𝑐𝜆2𝜌2
𝑝V[𝑞𝑡] − 2

𝑘𝑐
(V[𝑌𝑐𝑡 ] + E[𝑌𝑐𝑡 ]2) − 2

ℓ𝑐−2𝐾𝑐(𝑡) [V[𝑍
𝑐,𝐵
𝑡 ] + (E[𝑍𝑐,𝐵𝑡 ] + ℓ𝑐𝜎𝑐

2 )2],
𝑅𝑐(𝑇) = −𝜆𝜌𝑝E[𝑞𝑇].

(2.4.11)

So, we have
�̃�𝜆𝑝 (B𝑝(𝛽𝑐); 𝛽𝑐) = 𝑉𝜆

𝑝 (𝛽𝑐) and �̃�𝜆𝑐 (B𝑐(𝛽𝑝); 𝛽𝑝) = 𝑉𝜆
𝑐 (𝛽𝑝).

Moreover, we have an explicit expression for the Nash equilibrium values which are given by

𝑉𝜆
𝑝 (𝛽𝑐) = Λ𝑝(0)𝑞2

0 + 2E[𝑌𝑝0 ]𝑞0 + 𝑅𝑝(0) and

𝑉𝜆
𝑐 (𝛽𝑝) = Λ𝑐(0)𝑐2

0 + 2E[𝑌𝑐0 ]𝑐0 + 𝑅𝑐(0).

Remark 2.4.5. Notice that the first two equations in the systems (2.4.10) and (2.4.11) are one-dimensional
Riccati differential equations, for which it is known that there exists a unique global solution given by
Equation (2.3.1). In the following we face more complicated Riccati equations (non-symmetric matrix
Riccati equations) for which existence of solutions is not guaranteed. The fact that 𝐾𝑝(𝑡) and 𝐾𝑐(𝑡) are
given by a hyperbolic tangent with a positive argument multiplied by a negative constant yields that
𝐾𝑝(𝑡) ≤ 0 and 𝐾𝑐(𝑡) ≤ 0, granting that 𝑆𝑝(𝑡) = 𝑁𝑝 + 𝑒2𝐾𝑝(𝑡)𝑒>2 and 𝑆𝑐(𝑡) = 𝑁𝑐 + 𝑒2𝐾𝑐(𝑡)𝑒>2 are
negative definite for all 𝑡 ∈ [0, 𝑇], hence matching the assumptions made at the beginning of Sub-step
1.3.

Proof. To prove the proposition we need to apply Theorem 2.4.2. So, let us check that its
hypotheses are fulfilled. Fix a couple of strategies 𝛽𝑝 , 𝛽𝑐 ∈ A. First of all, condition i) is
a consequence of the terminal conditions of systems (2.4.10) and (2.4.11). Furthermore, we
notice that assumption ii) is verified, for any 𝛼𝑝 ∈ A (resp. for any 𝛼𝑐 ∈ A), because the fact
that the processes (𝐾𝑝 ,Λ𝑝 , 𝑌𝑝 , 𝑅𝑝) and (𝐾𝑐 ,Λ𝑐 , 𝑌𝑐 , 𝑅𝑐) solve the systems (2.4.10) and (2.4.11)
yields that d

d𝑡E[S𝑝,𝛼
𝑝

𝑡 ] and d
d𝑡E[S𝑐,𝛼

𝑐

𝑡 ] are negative and so the monotonicity of the functions
[0, 𝑇] 3 𝑡 ↦→ 𝐸[S𝑝,𝛼𝑝𝑡 ](resp. E[S𝑐,𝛼𝑐𝑡 ]). Then, by (2.4.8), we notice that, given 𝛽𝑐 ∈ A, d

d𝑡E[S𝑝,𝛼
𝑝

𝑡 ] =
0, for all 𝑡 ∈ [0, 𝑇], if and only if, for all 𝑡 ∈ [0, 𝑇], we have

𝛼
𝑝
𝑡 = 𝜂

𝑝
𝑡 = −𝑆𝑝(𝑡)−1

[
𝑈𝑝(𝑡)(𝑞𝑡 − E[𝑞𝑡]) −𝑉𝑝(𝑡)E[𝑞𝑡] − (𝜉𝑝𝑡 − �̄�

𝑝
𝑡 ) − 𝑂𝑝(𝑡)

]
, P-a.s.,

and analogously, given 𝛽𝑝 ∈ A, 0 = d
d𝑡E[S𝑐,𝛼

𝑐

𝑡 ], for all 𝑡 ∈ [0, 𝑇], if and only if, for all 𝑡 ∈ [0, 𝑇],
we have

𝛼𝑐𝑡 = 𝜂𝑐𝑡 = −𝑆𝑐(𝑡)−1 [
𝑈𝑐(𝑡)(𝑐𝑡 − E[𝑐𝑡]) −𝑉𝑐(𝑡)E[𝑐𝑡] − (𝜉𝑐𝑡 − �̄�

𝑐
𝑡 ) − 𝑂𝑐(𝑡)

]
, P-a.s.

Hence, the strategies in (2.4.9) satisfy iii) as well.
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Finally, let us check the admissibility of the strategies B𝑝(𝛽𝑐) and B𝑐(𝛽𝑝), i.e. B𝑝(𝛽𝑐) ∈ A and
B𝑐(𝛽𝑝) ∈ A. We need to verify their square-integrability. Let us check it for B𝑝(𝛽𝑐), the same can
be done for B𝑐(𝛽𝑝). The state variable 𝑞 = {𝑞𝑡}𝑡∈[0,𝑇] = {𝑞B𝑝(𝛽𝑐)(𝑡)}𝑡∈[0,𝑇] is the solution of a linear
SDE and so it satisfies E[sup𝑡∈[0,𝑇] |𝑞𝑡 |2] < ∞. Furthermore, 𝑆𝑝 , 𝑈𝑝 , 𝑉𝑝 , defined in (2.4.7), are
bounded, being continuous matrix-valued functions over a finite time-interval, and the process
(𝑂𝑝 , 𝜉𝑝) belongs to 𝐿2([0, 𝑇],R2) × 𝐿2

F(Ω × [0, 𝑇],R2). This implies that the feedback control
B𝑝(𝛽𝑐) ∈ 𝐿2

F(Ω × [0, 𝑇],R2). □

2.4.4 Second step: well-posedness of the best response map system

This subsection provides the proof of existence and uniqueness of solutions to the systems
in (2.4.10) and (2.4.11),

𝐾𝑝 , 𝐾𝑐 ,Λ𝑝 and Λ𝑐 ∈ 𝐿∞([0, 𝑇],R−), 𝑅𝑝 and 𝑅𝑐 ∈ 𝐿∞([0, 𝑇],R),

(𝑌𝑝 , 𝑍𝑝,𝑊 , 𝑍𝑝,𝐵) and (𝑌𝑐 , 𝑍𝑐,𝑊 , 𝑍𝑐,𝐵) ∈ 𝑆2
F(Ω × [0, 𝑇],R) × 𝐿2

F(Ω × [0, 𝑇],R)2 ,
given the state controlled by the other player.

The fact that there exist unique𝐾𝑝 , 𝐾𝑐 ,Λ𝑝 ,Λ𝑐 ∈ 𝐿∞([0, 𝑇],R+) is straightforward (see Remark
2.4.5). We also have explicit formulae for them (see Equation (2.3.1)). Moreover the non-
positivity of 𝐾𝑝 and 𝐾𝑐 implies that the matrices 𝑆𝑝 and 𝑆𝑐 , defined in (2.4.7), are negative
definite.
Now, consider the mean-field BSDE associated to the processes (𝑌𝑝 , 𝑍𝑝,𝑊 , 𝑍𝑝,𝐵), given 𝐾𝑝 and
Λ𝑝 :

d𝑌𝑝𝑡 = −
{
𝑠0
2 + 𝛾𝜌𝑐

2 𝑐𝑡 + 𝜌𝑝𝛾𝜌𝑐𝜂𝑝𝜆2(𝑐𝑡 − E[𝑐𝑡]) + 2
𝑘𝑝

(
𝐾𝑝(𝑡)(𝑌𝑝𝑡 − E[𝑌𝑝𝑡 ]) +Λ𝑝(𝑡)E[𝑌𝑝𝑡 ]

)}
d𝑡

+𝑍𝑝,𝐵𝑡 d𝐵𝑡 + 𝑍𝑝,𝑊𝑡 d𝑊𝑡 ,

𝑌𝑝𝑇 =
𝜆𝜌𝑝

2 .

Existence and uniqueness of the solution (𝑌𝑝 , 𝑍𝑝,𝑊 , 𝑍𝑝,𝐵) ∈ 𝑆2
F(Ω× [0, 𝑇],R) × 𝐿2

F(Ω× [0, 𝑇],R)2
is a consequence of [117, Theorem 2.1] and the fact that 𝑐 ∈ 𝑆2

F(Ω×[0, 𝑇],R) by the admissibility
of the associated control 𝛽𝑐 .
Finally, given (𝐾𝑝 ,Λ𝑝 , (𝑌𝑝 , 𝑍𝑝,𝑊 , 𝑍𝑝,𝐵)), the linear ODE associated to 𝑅𝑝 in system (2.4.10) has a
unique solution given by

𝑅𝑝(𝑡) = − 𝜆𝛾𝜌𝑐E[𝑐𝑇] +
∫ 𝑇

𝑡

[
− 𝜂𝑝𝜆2𝛾2𝜌2

𝑐V[𝑐𝑢] + 2
𝑘𝑝

(
V[𝑌𝑝𝑢 ] + E[𝑌𝑝𝑢 ]2

)
+ 2
ℓ𝑝 − 2𝐾𝑝(𝑢)

(
V[𝑍𝑝,𝑊𝑢 ] +

(
E[𝑍𝑝,𝑊𝑢 ] +

ℓ𝑝𝜎𝑝
2

)2
) ]

d𝑢.

The same arguments are used to prove existence and uniqueness for the processes (𝑌𝑐 , 𝑍𝑐,𝑊 , 𝑍𝑐,𝐵)
in 𝑆2

F(Ω × [0, 𝑇],R) × 𝐿2
F(Ω × [0, 𝑇],R)2 and 𝑅𝑐 ∈ 𝐿∞([0, 𝑇],R). This ends the proof of existence

and uniqueness for systems (2.4.10) and (2.4.11).

80



CHAPTER 2. A MCKEAN-VLASOV GAME FOR COMMODITY MARKETS

2.4.5 Third step: fixed point of the best response map

Here, we prove the existence of a fixed point of the best response maps in order to get a
Nash equilibrium. First of all, for convenience of notation, we rewrite the two-dimensional state
variable as 𝑋𝑡 := (𝑞𝑡 , 𝑐𝑡)> , for all 𝑡 ∈ [0, 𝑇], and so its linear dynamics is given by the following
SDE

d𝑋𝑡 =

(
d𝑞𝑡
d𝑐𝑡

)
=

(
𝑢𝑡
𝑣𝑡

)
d𝑡 +

(
𝑧𝑡
0

)
d𝑊𝑡 +

(
0
𝑦𝑡

)
d𝐵𝑡 ,

with a deterministic initial condition 𝑋0 = (𝑞0 , 𝑐0)> ∈ R2+. Then, we have

d𝑋𝑡 = 𝑏𝛼𝑡d𝑡 + 𝜎𝑊𝛼𝑡d𝑊𝑡 + 𝜎𝐵𝛼𝑡d𝐵𝑡 ,

with

𝑏 =

(
1 0 0 0
0 0 1 0

)
, 𝜎𝑊 =

(
0 1 0 0
0 0 0 0

)
, 𝜎𝐵 =

(
0 0 0 0
0 0 0 1

)
.

Then, we rewrite explicitly the form that a candidate equilibrium feedback control 𝛼∗ =

((𝛼∗,𝑃)> , (𝛼∗,𝐶)>)> should have, together with the backward dynamics of the correspond-
ing process 𝑌 = ((𝑌𝑝)> , (𝑌𝑐)>)> (we write 𝑍𝑊 for ((𝑍𝑝,𝑊 )> , (𝑍𝑐,𝑊 )>)>, respectively 𝑍𝐵 for
((𝑍𝑝,𝐵)> , (𝑍𝑐,𝐵)>)>),1

𝛼∗𝑡 − �̄�∗𝑡 = Δ(𝑡) (𝑋𝑡 − �̄� 𝑡
) + Γ (

𝑌𝑡 − �̄�𝑡
) + 𝐻𝑊 (𝑡)

(
𝑍𝑊𝑡 − �̄�𝑊𝑡

)
+ 𝐻𝐵(𝑡)

(
𝑍𝐵𝑡 − �̄�𝐵𝑡

)
, (2.4.12)

�̄�∗𝑡 = Δ̂(𝑡)�̄� 𝑡 + Γ�̄�𝑡 + 𝐻𝑊 (𝑡)�̄�𝑊𝑡 + 𝐻𝐵(𝑡)�̄�𝐵𝑡 + Θ(𝑡),

d𝑌𝑡 =
[
Ξ

(
𝑋𝑡 − �̄� 𝑡

) +Φ(𝑡) (𝑌𝑡 − �̄�𝑡 ) ] d𝑡 +
[
Ξ̂�̄� 𝑡 + Φ̂(𝑡)�̄�𝑡 +Ψ

]
d𝑡 + 𝑍𝐵𝑡 d𝐵𝑡 + 𝑍𝑊𝑡 d𝑊𝑡 , (2.4.13)

with

Δ(𝑡) =
©«

2
𝑘𝑝
𝐾𝑝(𝑡) 0
0 0
0 2

𝑘𝑐
𝐾𝑐(𝑡)

0 0

ª®®®®®¬
, Δ̂(𝑡) =

©«
2
𝑘𝑝
Λ𝑝(𝑡) 0
0 0
0 2

𝑘𝑐
Λ𝑐(𝑡)

0 0

ª®®®®®¬
, Γ =

©«
2
𝑘𝑝

0
0 0
0 2

𝑘𝑐
0 0

ª®®®®®¬
,

Θ(𝑡) =
©«

0
𝜎𝑝(1 − 2𝐾𝑝(𝑡)ℓ𝑝

)−1

0
𝜎𝑐(1 − 2𝐾𝑐(𝑡)ℓ𝑐

)−1

ª®®®®®¬
, 𝐻𝑊 (𝑡) =

©«
0 0
2

ℓ𝑝−2𝐾𝑝(𝑡) 0
0 0
0 0

ª®®®®®¬
, 𝐻𝐵(𝑡) =

©«
0 0
0 0
0 0
0 2

ℓ𝑐−2𝐾𝑐(𝑡)

ª®®®®®¬
,

1Here, we have omitted, in all the processes but 𝛼, the superscript ∗ in order to have a simpler notation.
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and Ξ, Ξ̂, Φ(𝑡), Φ̂(𝑡) and Ψ as defined at the beginning of Section 2.3.1.

Now, as an ansatz for 𝑌, we assume 𝑌 linear in the state:

𝑌𝑡 = 𝜋(𝑡)(𝑋𝑡 − �̄� 𝑡) + 𝜋(𝑡)�̄� 𝑡 + 𝜁𝑡 , (2.4.14)

with 𝜋,𝜋 deterministic R2×2-valued processes and 𝜁 ∈ 𝑆2
F(Ω × [0, 𝑇],R2) satisfying the SDE

d𝜁𝑡 = 𝜓𝑡d𝑡 + 𝜙𝑊𝑡 d𝑊𝑡 + 𝜙𝐵𝑡 d𝐵𝑡 , 𝜁𝑇 =
1
2𝜆(𝜌𝑝 , 𝛾𝜌𝑐)

> , (2.4.15)

for some 𝜓, 𝜙𝐵 , 𝜙𝑊 in suitable spaces. The affine term in the expression (2.4.14) allows 𝑌 to
have some extra stochasticity apart from the linear dependency on the state. Furthermore, the
terminal condition in (2.4.15) guarantees that 𝑌 satisfies its terminal condition.
An application of Itô’s formula to the ansatz (2.4.14) yields

d𝑌𝑡 =[𝜋′(𝑡)(𝑋𝑡 − �̄� 𝑡) + 𝜋(𝑡)𝑏(𝛼∗𝑡 − �̄�∗𝑡) + 𝜓𝑡 − �̄�𝑡]d𝑡 + (𝜋′(𝑡)�̄� 𝑡 + 𝜋(𝑡)𝑏�̄�∗𝑡 + �̄�𝑡)d𝑡
+ (𝜋(𝑡)𝜎𝑊𝛼∗𝑡 + 𝜙𝑊𝑡 )d𝑊𝑡 + (𝜋(𝑡)𝜎𝐵𝛼∗𝑡 + 𝜙𝐵𝑡 )d𝐵𝑡 .

(2.4.16)

If we match the two dynamics of𝑌 in Equations (2.4.13) and (2.4.16), and then replace𝑌 with its
ansatz (2.4.14) and 𝛼∗ with its feedback form (2.4.12), we get the following system of equations:



𝜋′(𝑡)(𝑋𝑡 − �̄� 𝑡) + 𝜋(𝑡)𝑏(I − 𝐻𝑊 (𝑡)𝜋(𝑡)𝜎𝑊 − 𝐻𝐵(𝑡)𝜋(𝑡)𝜎𝐵)−1[(Δ(𝑡)
+Γ𝜋(𝑡))(𝑋𝑡 − �̄� 𝑡) + Γ(𝜁𝑡 − �̄�𝑡) + 𝐻𝑊 (𝑡)(𝜙𝑊𝑡 − �̄�

𝑊
𝑡 ) + 𝐻𝐵(𝑡)(𝜙𝐵𝑡 − �̄�

𝐵
𝑡 )]

+𝜓𝑡 − �̄�𝑡 = Ξ(𝑋𝑡 − �̄� 𝑡) +Φ(𝑡)(𝜋(𝑡)(𝑋𝑡 − �̄� 𝑡) + 𝜁𝑡 − �̄�𝑡)

𝜋′(𝑡)�̄� 𝑡 + 𝜋(𝑡)𝑏(I − 𝐻𝑊 (𝑡)𝜋(𝑡)𝜎𝑊 − 𝐻𝐵(𝑡)𝜋(𝑡)𝜎𝐵)−1[(Δ̂(𝑡) + Γ𝜋(𝑡))�̄� 𝑡 + Γ�̄�𝑡
+Θ(𝑡) + 𝐻𝑊 (𝑡)�̄�𝑊𝑡 + 𝐻𝐵(𝑡)�̄�𝐵𝑡 ] + �̄�𝑡 = Ξ̂�̄� 𝑡 + Φ̂(𝑡)(𝜋(𝑡)�̄� 𝑡 + �̄�𝑡) +Ψ

𝑍𝐵𝑡 = 𝜋(𝑡)𝜎𝑊𝛼∗𝑡 + 𝜙𝑊𝑡
𝑍𝑊𝑡 = 𝜋(𝑡)𝜎𝐵𝛼∗𝑡 + 𝜙𝐵𝑡 .

(2.4.17)

Finally, exploiting the fact that:

𝑏
(
I − 𝐻𝑊 (𝑡)𝜋(𝑡)𝜎𝑊 − 𝐻𝐵(𝑡)𝜋(𝑡)𝜎𝐵)−1

= 𝑏,

we find the equations that the coefficients (𝜋,𝜋,𝜓, 𝜙𝑊 , 𝜙𝐵) in the ansatz for 𝑌 should solve in
order to provide a fixed point of the best response map:


𝜋′(𝑡) = Ξ +Φ(𝑡)𝜋(𝑡) + 𝜋(𝑡)Φ(𝑡) + 𝜋(𝑡)𝑅𝜋(𝑡), 𝜋(𝑇) = 0,
𝜋′(𝑡) = Ξ̂ + Φ̂(𝑡)𝜋(𝑡) + 𝜋(𝑡)Φ̂(𝑡) + 𝜋(𝑡)𝑅𝜋(𝑡), 𝜋(𝑇) = 0,
d𝜁𝑡 = 𝜓𝑡d𝑡 + 𝜙𝑊𝑡 d𝑊𝑡 + 𝜙𝐵𝑡 d𝐵𝑡 , 𝜁𝑇 = 1

2𝜆(𝜌𝑝 , 𝛾𝜌𝑐)> ,
𝜓𝑡 = 𝜓𝑡 − �̄�𝑡 + �̄�𝑡 =

(
𝜋(𝑡)𝑅 +Φ(𝑡)

)
(𝜁𝑡 − �̄�𝑡) +

(
𝜋(𝑡)𝑅 + Φ̂(𝑡)

)
�̄�𝑡 +Ψ,

(2.4.18)
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where 𝑅 =

(
−2/𝑘𝑝 0

0 −2/𝑘𝑐

)
. In fact, inserting (𝑌, 𝑍) from the ansatz and Equation (2.4.17) into

the best response given by Equations (2.4.12) provides an equilibrium strategy 𝛼∗ in feedback
form which is computed in details in the next step.

Remark 2.4.6. To obtain explicit expressions for 𝛼∗ and 𝑍, we have used Assumption (A2) in Theorem
2.3.1. Indeed, such a condition is needed for the invertibility of the matrices𝐷(𝑡) := (I−𝐻𝑊 (𝑡)𝜋(𝑡)𝜎𝑊 −
𝐻𝐵(𝑡)𝜋(𝑡)𝜎𝐵), 𝑡 ∈ [0, 𝑇], that appear in

𝑍𝑊𝑡 = 𝜙𝑊𝑡 + 𝜋(𝑡)𝜎𝑊𝛼∗𝑡 , 𝑍𝐵𝑡 = 𝜙𝐵𝑡 + 𝜋(𝑡)𝜎𝐵𝛼∗𝑡 ,

where

𝛼∗𝑡 = 𝐷(𝑡)−1[(Δ(𝑡) + Γ𝜋(𝑡))(𝑋𝑡 − �̄� 𝑡) + (Δ̂(𝑡) + Γ𝜋(𝑡))�̄� 𝑡 + Γ𝜁𝑡 + 𝐻𝑊 (𝑡)𝜙𝑊𝑡 + 𝐻𝐵(𝑡)𝜙𝐵𝑡 + Θ(𝑡)].

2.4.6 Fourth step: Nash equilibrium strategies

In order to complete the proof of the main theorem, we are left with showing that the system
(2.4.18) has a unique solution over the finite time interval [0, 𝑇]. The equations associated to 𝑡 ↦→
(𝜋(𝑡),𝜋(𝑡)) are non-symmetric matrix Riccati equations for which there is no general condition
ensuring the global existence of solutions. Nevertheless, the regularity of the coefficients and the
Picard-Lindelöf Theorem ensure the local existence and uniqueness of solutions over a compact
interval [0, 𝑇𝑚𝑎𝑥]2. Thus, we recover the existence and uniqueness condition in Assumption
(A1) of Theorem 2.3.1 choosing a time horizon 𝑇 small enough, namely 𝑇 < 𝑇𝑚𝑎𝑥 . Then, for
a given (𝜋,𝜋), the process (𝜁,𝜓, 𝜙𝑊 , 𝜙𝐵) evolves according to the following linear mean field
BSDE:

d𝜁𝑡 = 𝜓𝑡d𝑡 + 𝜙𝑊𝑡 d𝑊𝑡 + 𝜙𝐵𝑡 d𝐵𝑡 , 𝜁𝑇 =
1
2𝜆(𝜌𝑝 , 𝛾𝜌𝑐)

> ,

𝜓𝑡 = 𝜓𝑡 − �̄�𝑡 + �̄�𝑡 = (𝜋(𝑡)𝑅 +Φ(𝑡))(𝜁𝑡 − �̄�𝑡) + (𝜋(𝑡)𝑅 + Φ̂(𝑡))�̄�𝑡 +Ψ.
(2.4.19)

Exploiting once more [117, Theorem 2.1], we have a unique solution (𝜁, 𝜙𝑊 , 𝜙𝐵) ∈ 𝑆2
F(Ω ×

[0, 𝑇],R2) × 𝐿2
F(Ω × [0, 𝑇],R2)2. Furthermore, we notice that the drift 𝜓 in the system (2.4.19)

does not depend on 𝜙𝑊 and 𝜙𝐵 and all the coefficients involved in the second line of (2.4.19)
are deterministic. Moreover, the terminal condition is also deterministic. Thus, the unique
solution (𝜁, 𝜙𝑊 , 𝜙𝐵) to this system is given by (ℎ, 0, 0), where ℎ : [0, 𝑇] → R2 is the unique
(deterministic) solution to the following backward linear ODE:{

dℎ(𝑡) =
{[
𝜋(𝑡)𝑅 + Φ̂(𝑡)

]
ℎ(𝑡) +Ψ

}
d𝑡 ,

ℎ(𝑇) = 1
2𝜆(𝜌𝑝 , 𝛾𝜌𝑐)>.

2Despite it is not possible in general to obtain an explicit characterisation of 𝑇𝑚𝑎𝑥 , we notice that we did not
observe any explosion for all typical values of the parameters we have considered in the numerical experiments (ref.
Section 2.5).
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So, the system of ODEs and SDEs in (2.4.18) reduces to the one made up of Equations (2.3.2)
and (2.3.3).

We write the Nash equilibrium strategies 𝛼∗ = ((𝛼∗,𝑃), (𝛼∗,𝐶))> = ((𝑢∗ , 𝑧∗)> , (𝑣∗ , 𝑦∗)>)> ex-
plicitly as

𝛼∗𝑡 = 𝐷(𝑡)−1(Δ(𝑡) + Γ𝜋(𝑡))(𝑋𝑡 − �̄� 𝑡) + 𝐷(𝑡)−1(Δ̂(𝑡) + Γ𝜋(𝑡))�̄� 𝑡 + 𝐷(𝑡)−1(Γℎ(𝑡) + Θ(𝑡)),

that is

𝑢∗𝑡 =
2
𝑘𝑝

[(𝐾𝑝(𝑡) + 𝜋11(𝑡))(𝑞𝑡 − �̄�𝑡) + 𝜋12(𝑡)(𝑐𝑡 − �̄�𝑡) + (Λ𝑝(𝑡) + 𝜋11(𝑡))�̄�𝑡 + 𝜋12(𝑡)�̄�𝑡 + ℎ1(𝑡)
]
,

𝑧∗(𝑡) = 𝜎𝑝ℓ𝑝
ℓ𝑝 − 2(𝐾𝑝(𝑡) + 𝜋11(𝑡)) ,

𝑣∗𝑡 =
2
𝑘𝑐

[(𝐾𝑐(𝑡) + 𝜋22(𝑡))(𝑐𝑡 − �̄�𝑡) + 𝜋21(𝑡)(𝑞𝑡 − �̄�𝑡) + (Λ𝑐(𝑡) + 𝜋22(𝑡))�̄�𝑡 + 𝜋21(𝑡)�̄�𝑡 + ℎ2(𝑡)
]
,

𝑦∗(𝑡) = 𝜎𝑐ℓ𝑐
ℓ𝑐 − 2(𝐾𝑐(𝑡) + 𝜋22(𝑡)) ,

where 𝐾𝑝 , 𝐾𝑐 ,Λ𝑝 ,Λ𝑐 are defined in (2.3.1) and 𝜋,𝜋 and ℎ are respectively the solutions to the
systems (2.3.2), (2.3.3).

Finally, we derive the corresponding equilibrium dynamics for the state

d𝑋𝑡 =

{ (
2
𝑘𝑝
(𝐾𝑝(𝑡) + 𝜋11(𝑡)) 2

𝑘𝑝
𝜋12(𝑡)

2
𝑘𝑐
𝜋21(𝑡) 2

𝑘𝑐
(𝐾𝑐(𝑡) + 𝜋22(𝑡))

)
(𝑋𝑡 − �̄� 𝑡)

+
(

2
𝑘𝑝
(Λ𝑝(𝑡) + 𝜋11(𝑡)) 2

𝑘𝑝
𝜋12(𝑡)

2
𝑘𝑐
𝜋21(𝑡) 2

𝑘𝑐
(Λ𝑐(𝑡) + 𝜋22(𝑡))

)
�̄� 𝑡 +

(
2
𝑘𝑝
ℎ1(𝑡)

2
𝑘𝑐
ℎ2(𝑡)

) }
d𝑡

+
( 𝜎𝑝ℓ𝑝
ℓ𝑝−2(𝐾𝑝(𝑡)+𝜋11(𝑡))

0

)
d𝑊𝑡 +

(
0

𝜎𝑐ℓ𝑐
ℓ𝑐−2(𝐾𝑐(𝑡)+𝜋22(𝑡))

)
d𝐵𝑡 , 𝑡 ∈ [0, 𝑇],

which is a linear mean-field SDE, hence admitting a unique solution.

2.5 Numerics

We consider the following parameters setting 𝑇 = 1, 𝑘𝑝 = 𝑘𝑐 = 5, 𝜎𝑝 = 𝜎𝑐 = 10, 𝑞0 =

𝑐0 = 100, 𝑠0 = 50, 𝜌𝑝 = 𝛾𝜌𝑐 = 0.5 and 𝛾 = 1.2, 𝛿 = 5, 𝑝0 = 2𝑠0 + 𝛾𝛿, and 𝑝1 = 𝛾 − 1. With
this parametrisation, the players are symmetric in the sense that they have the same absolute
effect on the price and they share the same costs of average production rate or consumption
rate. Moreover, if they shared the same risk aversion parameters (𝜂𝑝 = 𝜂𝑐) and the same costs
of volatility control (ℓ𝑝 = ℓ𝑐), then the strategies of the producer (𝑢∗ , 𝑧∗) and of the consumer
(𝑣∗ , 𝑦∗) would be identical. The initial conditions have been chosen to be close to a long-run
stationary equilibrium that we observe when we take large 𝑇, which allows avoiding potential
transitory effects.

In the next sub-sections, we illustrate first the effect of the risk aversion parameters on the
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forward agreement indifference price when every other parameter is fixed. Second, we show
how different combinations of risk aversions and volatility control costs can lead to the same
forward agreement indifference price and volume.

2.5.1 The effect of risk aversion

(a) (b)

(c) (d)

Figure 2.5.1: (a) and (b) ℓ𝑝 = ℓ𝑐 = 5, (c) and (d) ℓ𝑝 = ℓ𝑐 = 0.7.

Figure 2.5.1 presents the unitary forward agreement indifference price 𝑓 𝜆∗ ,∗ := 𝐹∗𝜆∗/𝜆∗ and the
volume that the players agreed upon when the costs of volatility control are high (Figure 2.5.1 (a)
and (b)) and when they are low (Figure 2.5.1 (c) and (d)). We find that 𝑓 𝜆∗ ,∗ is higher (resp.
lower) than the expected spot price when the producer is more (resp. less) risk-averse than
the consumer, which is consistent with both the economic intuition and the hedging pressure
theory, once recalled that in our model players act as speculators on the forward market. In
hedging pressure theory (see [45] and [52]), the risk premium is determined by the relations
between risk aversions of producers, consumers, storers and speculators. It extends Keynes’s
normal backwardation theory which claims that in commodity markets, the forward price
should be lower than the expected spot price because the producer would be ready to pay a
premium to avoid being exposed to price risk on his production. In our case, the most risk-
averse speculator obtains the appropriate premium to enter into the agreement. This property
holds whatever the level of volatility control costs. We see on Figure 2.5.1 that the producer is
requiring a positive premium to accept the risk coming from his financial position. Regarding
the exchanged volume, we observe that it can be both non-increasing or non-decreasing in the
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risk aversion parameters of the players, depending on the costs of volatility control. When the
volatility manipulation costs are high for both players, there is a low trading volume even when
both players have a high risk aversion. On the other side, when the volatility manipulation costs
are low, there is a low trading volume when only one of the player has a high risk aversion but
the trading volume is huge when both players have a high risk aversion. This could be explained
by the fact that in the latter case the players can act on their volatilities (almost costlessly) to
stabilise the spot price and hence they would be willing to trade more.

2.5.2 Joint effect of risk aversion and volatility control cost

(a) (b)
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Figure 2.5.2: Level lines of (a) the forward agreement price 𝐹∗𝜆∗ , (b) the traded quantity 𝜆∗, (c)
the per unit agreement price 𝑓 𝜆

∗ ,∗ = 𝐹∗𝜆∗/𝜆∗, (d) the value of the producer’s equilibrium payoff
𝐽∗𝑝(𝜆∗ , 𝐹∗𝜆∗).

We freeze now the risk aversion parameter and the cost for controlling the volatility of the
consumer at 𝜂𝑐 = 0.01 and ℓ𝑐 = 5, and observe the agreement price, the traded volume, the per
unit agreement indifference price and the equilibrium payoff at the agreement of the producer.
Results are provided in Figure 2.5.2, when the producer’s risk aversion parameter 𝜂𝑝 and his
volatility manipulation cost ℓ𝑝 vary. The vertical and horizontal lines in each graph are set to
the values of ℓ𝑐 and 𝜂𝑐 .

We observe a sort of "substitution effect" between 𝜂𝑝 and ℓ𝑝 in the sense that for a producer
with a given combination of risk aversion and volatility control cost, we can find another
producer trading at the same agreement price with a higher risk aversion and a low volatility control
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cost (Figure 2.5.2 (a)). We observe that this phenomenon occurs also for the traded quantity
(Figure 2.5.2 (b)). This substitution makes sense in our model where volatility represents a cost
for the producer that can be mitigated either by requiring a payment to bear this volatility or
by paying the cost to reduce it. We note that for a fixed value of 𝜂𝑝 , the lower the value of ℓ𝑝 ,
the larger the forward agreement price and the traded volume. The Figure 2.5.2 (c) gives the
resulting unitary agreement forward price. The volatility control cost has little effect on the per
unit forward price compared to the risk aversion parameter. This figure is a way of showing
that when the volatility control costs are high, the producer has little alternative than asking
for a premium to enter in forward agreement, and thus, the price is basically determined by his
risk-aversion.

To conclude, we note that the producer’s equilibrium payoff is independent of the value of
𝜂𝑝 (Figure 2.5.2 (d)) because, by definition of the agreement forward price, it is always equal to
𝐽∗𝑝(0, 0), which is independent of 𝜂𝑝 .
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2.A. PROOF OF THEOREM 2.4.2 (VERIFICATION THEOREM)

Appendix

2.A Proof of Theorem 2.4.2 (Verification Theorem)

For any 𝛼𝑝 ∈ A (resp. for any 𝛼𝑐 ∈ A), the map [0, 𝑇] 3 𝑡 ↦→ E[S𝑝,𝛼𝑝𝑡 ]
(
resp. E[S𝑐,𝛼𝑐𝑡 ]

)
is

well-defined (it does not explode in finite time), because of the condition (2.4.4) and the linear
structure of the SDEs for the state variables (2.4.1).
Assumptions i) and ii) yields that: for any 𝛼𝑝 ∈ A𝑝 ,

E[𝑤𝑝
0 (𝑞0 , �̄�0)] = E[S𝑝,𝛼

𝑝

0 ] ii)≥ E[S𝑝,𝛼𝑝𝑇 ] = E
[
W𝑝,𝛼𝑝

𝑇 +
∫ 𝑇

0
𝑓𝑝(𝑠, 𝑞𝛼𝑝𝑠 ,E[𝑞𝛼𝑝𝑠 ], 𝛼𝑝𝑠 ,E[𝛼𝑝𝑠 ]; 𝑐𝛽𝑐 )d𝑠

]
i)
= E

[
𝑔𝑝(𝑞𝛼𝑝𝑇 ,E[𝑞𝛼𝑝𝑇 ]; 𝑐𝛽

𝑐 ) +
∫ 𝑇

0
𝑓𝑝(𝑠, 𝑞𝛼𝑝𝑠 ,E[𝑞𝛼𝑝𝑠 ], 𝛼𝑝𝑠 ,E[𝛼𝑝𝑠 ]; 𝑐𝛽𝑐 )d𝑠

]
= �̃�𝜆𝑝 (𝛼𝑝 ; 𝑐𝛽𝑐 )

= �̃�𝜆𝑝 (𝛼𝑝 ; 𝛽𝑐).

Then, the arbitrariness of 𝛼𝑝 ∈ A implies that E[𝑤𝑝
0 (𝑞0 , �̄�0)] ≥ sup𝛼𝑝∈A �̃�𝜆𝑝 (𝛼𝑝 ; 𝑐𝛽𝑐 ) = 𝑉𝜆

𝑝 (𝛽𝑐).
Performing the same computations with 𝛼𝑝,★ instead of 𝛼𝑝 , by condition iii), we get:

E[𝑤𝑝
0 (𝑞0 , �̄�0)] = �̃�𝜆𝑝 (𝛼𝑝,★; 𝛽𝑐). Then, we have showed that 𝛼𝑝,★ = B𝑝(𝛽𝑐) is the best response

to 𝛽𝑐 . The fact that 𝛼𝑐,★ = B𝑐(𝛽𝑝) is the best response to 𝛽𝑝 is proved analogously.

Now, take �̃�𝑝 ∈ A to be another best response to 𝛽𝑐 . We have

E[S𝑃,�̃�𝑝0 ] = E[𝑤𝑝
0 (𝑞0 , �̄�0)] = 𝑉𝜆

𝑝 (𝛽𝑐) = �̃�𝜆𝑝 (�̃�𝑝 , 𝛽𝑐) = E[S𝑃,�̃�
𝑝

𝑇 ].

Then, we conclude that the map [0, 𝑇] 3 𝑡 ↦→ E[S𝑃,�̃�𝑝𝑡 ] is constant, since it is non-increasing and
it takes the same value at its extremal points. This reasoning, with a few modifications, can be
replicated for �̃�𝑐 , hence concluding the proof.

2.B Computations of the best response maps

As we have done in Section 2.4.3 (Sub-step 1.2), we develop here only the computations for
the best response of the producer. The best response of the consumer is obtained following very
similar computations. In this section we show that, setting 𝑤𝑝

𝑡 (𝑞, �̄�) = 𝐾𝑝(𝑡)(𝑞 − �̄�)2 +Λ𝑝(𝑡)�̄�2 +
2𝑌𝑝𝑡 𝑞+𝑅𝑝(𝑡), with (𝐾𝑝 ,Λ𝑝 , 𝑌𝑝 , 𝑅𝑝) ∈ 𝐿∞([0, 𝑇],R−)2×𝑆2

F(Ω×[0, 𝑇],R)×𝐿∞([0, 𝑇],R), onceS𝑝,𝛼𝑝
is defined as in the Verification Theorem in Theorem 2.4.2, we have

d
d𝑡E[S

𝑝,𝛼𝑝

𝑡 ] = E
[
(𝐾′𝑝(𝑡) +𝑄𝑝)(𝑞𝑡 − E[𝑞𝑡])2 + (Λ′𝑝(𝑡) +𝑄𝑝 +𝑄𝑝)E[𝑞𝑡]2 + 2(𝑌𝑝𝑡

′ +𝑀𝑝,𝑐
𝑡 )𝑞𝑡

+ 𝑅′𝑝(𝑡) + 𝑇𝑝,𝑐𝑡 + 𝜒
𝑝
𝑡 (𝛼𝑝𝑡 )

]
,
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where, for all 𝑡 ∈ [0, 𝑇], we have set

𝜒
𝑝
𝑡 (𝛼𝑝(𝑡)) := (𝛼𝑝𝑡 )>𝑆𝑝(𝑡)𝛼𝑝𝑡
+2[𝑈𝑝(𝑡)(𝑞𝑡 − E[𝑞𝑡]) +𝑉𝑝(𝑡)𝑞𝑡 + 𝜉

𝑝
𝑡 + �̄�

𝑝
𝑡 + 𝑂𝑝(𝑡)]>𝛼𝑝𝑡

𝑆𝑝(𝑡) := 𝑁𝑝 + 𝑒2𝐾𝑝(𝑡)𝑒>2
𝑈𝑝(𝑡) := 𝐾𝑝(𝑡)𝑒1
𝑉𝑝(𝑡) := Λ𝑝(𝑡)𝑒1
𝑂𝑝(𝑡) := 𝐻𝑝 + 𝑒1E[𝑌𝑝𝑡 ] + 𝑒2E[𝑍𝑝,𝑊𝑡 ]
𝜉
𝑝
𝑡 := 𝐻𝑝 + 𝑒1𝑌𝑝𝑡 + 𝑒2𝑍𝑝,𝑊𝑡

�̄�
𝑝
𝑡 := 𝐻𝑝 + 𝑒1E[𝑌𝑝𝑡 ] + 𝑒2E[𝑍𝑝,𝑊𝑡 ].

First of all, we notice

dE[S𝑝,𝛼𝑝𝑡 ]
d𝑡 = E

[
d
d𝑡E[𝑤

𝑝
𝑡 (𝑞𝛼

𝑝

𝑡 ,E[𝑞𝛼
𝑝

𝑡 ])] + 𝑓𝑃(𝑡 , 𝑞𝛼
𝑝

𝑡 ,E[𝑞𝛼
𝑝

𝑡 ], 𝛼𝑝𝑡 ,E[𝛼𝑝𝑡 ]; 𝑐𝛽
𝑐 )
]
.

The dynamics of the state variable controlled by the producer is rewritten as

d�̄�𝛼𝑝𝑡 = 𝑒>1 �̄�
𝑝
𝑡 d𝑡 ,

d(𝑞𝛼𝑝𝑡 − �̄�𝛼
𝑝

𝑡 ) = 𝑒>1 (𝛼𝑝𝑡 − �̄�
𝑝
𝑡 )d𝑡 + 𝑒>2 𝛼𝑝𝑡 d𝑊𝑡 ,

From now on, we write 𝑞𝑡 for 𝑞𝛼𝑝𝑡 to simplify the notation. Applying Itô’s formula to𝑤𝑝
𝑡 (𝑞𝑡 ,E[𝑞𝑡]),

we get

d𝑤𝑝
𝑡 (𝑞𝑡 ,E[𝑞𝑡]) = 𝐾′𝑝(𝑡)(𝑞𝑡 − �̄�𝑡)2d𝑡 + 𝐾𝑝(𝑡)[2(𝑞𝑡 − �̄�𝑡)d(𝑞𝑡 − �̄�𝑡) + (𝑒>2 𝛼𝑝𝑡 )2d𝑡] +Λ′𝑝(𝑡)(�̄�𝑡)2d𝑡

+ 2Λ𝑝(𝑡)�̄�𝑡𝑑�̄�𝑡 + 2𝑞𝑡d𝑌
𝑝
𝑡 + 2𝑌𝑝𝑡 d𝑞𝑡 + 𝑍𝑝,𝑊𝑡 𝑒>2 𝛼

𝑝
𝑡 d𝑡 + 𝑅′𝑝(𝑡)d𝑡

= 𝐾′𝑝(𝑡)(𝑞𝑡 − �̄�𝑡)2d𝑡 + 𝐾𝑝(𝑡){2(𝑞𝑡 − �̄�𝑡)[𝑒>1 (𝛼𝑝𝑡 − �̄�
𝑝
𝑡 )d𝑡 + 𝑒>2 𝛼𝑝𝑡 d𝑊𝑡] + (𝑒>2 𝛼𝑝𝑡 )2d𝑡}

+Λ′𝑝(𝑡)(�̄�𝑡)2d𝑡 + 2Λ𝑝(𝑡)�̄�𝑡 𝑒>1 �̄�𝑝𝑡 d𝑡 + 2𝑞𝑡(𝑌𝑝𝑡
′d𝑡 + 𝑍𝑝,𝑊𝑡 d𝑊𝑡 + 𝑍𝐵𝑝d𝐵𝑡)

+ 2𝑌𝑝𝑡 (𝑒>1 𝛼𝑝𝑡 d𝑡 + 𝑒>2 𝛼𝑝𝑡 d𝑊𝑡) + 𝑍𝑝,𝑊𝑡 𝑒>2 𝛼
𝑝
𝑡 d𝑡 + 𝑅′𝑝(𝑡)d𝑡

= [𝐾′𝑝(𝑡)(𝑞𝑡 − �̄�𝑡)2 + 2𝐾𝑝(𝑡)(𝑞𝑡 − �̄�𝑡)𝑒>1 (𝛼𝑝𝑡 − �̄�
𝑝
𝑡 ) + 𝐾𝑝(𝑡)(𝑒>2 𝛼𝑝𝑡 )2 +Λ′𝑝(𝑡)(�̄�𝑡)2

+ 2Λ𝑝(𝑡)�̄�𝑡 𝑒>1 �̄�𝑝𝑡 + 2𝑌𝑝𝑡
′
𝑞𝑡 + 2𝑌𝑝𝑡 𝑒

>
1 𝛼

𝑝
𝑡 + 2𝑍𝑝,𝑊𝑡 𝑒>2 𝛼

𝑝
𝑡 + 𝑅′𝑝(𝑡)]d𝑡

+ 2[𝐾𝑝(𝑡)(𝑞𝑡 − �̄�𝑡)𝑒>2 𝛼𝑝𝑡 + 𝑍𝑝,𝑊𝑡 + 𝑌𝑝𝑡 𝑒>2 𝛼𝑝𝑡 ]d𝑊𝑡 + 2𝑍𝑝,𝐵𝑡 d𝐵𝑡

Then, taking its expected value, we obtain

d
d𝑡E[𝑤

𝑝
𝑡 (𝑞𝑡 , �̄�𝑡)] =

E[d𝑤𝑝
𝑡 (𝑞𝑡 ,E[𝑞𝑡])]

d𝑡 = E
[
𝐾′𝑝(𝑡)(𝑞𝑡 − �̄�𝑡)2 + 2𝐾𝑝(𝑡)(𝑞𝑡 − �̄�𝑡)𝑒>1 (𝛼𝑝𝑡 − �̄�

𝑝
𝑡 )

+ 𝐾𝑝(𝑡)(𝑒>2 𝛼𝑝𝑡 )2 +Λ′𝑝(𝑡)(�̄�𝑡)2 + 2Λ𝑝(𝑡)�̄�𝑡 𝑒>1 �̄�𝑝𝑡 + 2𝑌𝑝𝑡
′
𝑞𝑡 + 2𝑌𝑝𝑡 𝑒

>
1 𝛼

𝑝
𝑡

+ 𝑅′𝑝(𝑡) + 2𝑍𝑝,𝑊𝑡 𝑒>2 𝛼
𝑝
𝑡

]
(2.B.1)

= E
[
𝐾′𝑝(𝑡)(𝑞𝑡 − �̄�𝑡)2 + 2𝐾𝑝(𝑡)(𝑞𝑡 − �̄�𝑡)𝑒>1 𝛼𝑝𝑡 + 𝐾𝑝(𝑡)(𝑒>2 𝛼𝑝𝑡 )2 +Λ′𝑝(𝑡)(�̄�𝑡)2

+ 2Λ𝑝(𝑡)�̄�𝑡 𝑒>1 𝛼𝑝𝑡 + 2𝑌𝑝𝑡
′
𝑞𝑡 + 2𝑌𝑝𝑡 𝑒

>
1 𝛼

𝑝
𝑡 + 𝑅′𝑝(𝑡) + 2𝑍𝑝,𝑊𝑡 𝑒>2 𝛼

𝑝
𝑡

]
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= E
[
𝐾′𝑝(𝑡)(𝑞𝑡 − �̄�𝑡)2 +Λ′𝑝(𝑡)(�̄�𝑡)2 + 2𝑌𝑝𝑡

′
𝑞𝑡 + 𝑅′𝑝(𝑡) + 𝐾𝑝(𝑡)(𝑒>2 𝛼𝑝𝑡 )2

+
[
2(𝐾𝑝(𝑡)(𝑞𝑡 − �̄�𝑡) +Λ𝑝(𝑡)�̄�𝑡 + 𝑌𝑝𝑡 )𝑒1 + 2𝑍𝑝,𝑊𝑡 𝑒2

]>
𝛼
𝑝
𝑡

]
,

where we have used the following simplifications: E[2Λ𝑝(𝑡)𝑒>1 �̄�𝑝𝑡 �̄�𝑡] = E[2Λ𝑝(𝑡)�̄�𝑡 𝑒>1 𝛼𝑝𝑡 ] and
E[2𝐾𝑝(𝑡)𝑒>1 �̄�𝑝𝑡 (𝑞𝑡 − �̄�𝑡)] = 2𝐾𝑝(𝑡)𝑒>1 �̄�𝑝𝑡 E[𝑞𝑡 − �̄�𝑡] = 0. Moreover, since

E[ 𝑓𝑝(𝑡 , 𝑞𝑡 , �̄�𝑡 , 𝛼𝑝𝑡 , �̄�𝑝𝑡 ; 𝑐𝛽
𝑐 )] = E[𝑄𝑝(𝑞𝑡 − �̄�𝑡)2+(𝑄𝑝 +𝑄𝑝)�̄�2

𝑡 +2𝑀𝑝,𝑐
𝑡 𝑞𝑡 +(𝛼𝑝𝑡 )>𝑁𝑝𝛼

𝑝
𝑡 +2𝐻>𝑝 𝛼

𝑝
𝑡 +𝑇𝑝,𝑐𝑡 ],

(2.B.2)
by adding up (2.B.1) and (2.B.2), we get

dE[S𝑝,𝛼𝑝𝑡 ]
d𝑡 = E

[
d
d𝑡E[𝑤

𝑝
𝑡 (𝑞𝑡 , �̄�𝑡)] + 𝑓𝑝(𝑞𝑡 , �̄�𝑡 , 𝛼𝑝𝑡 , �̄�𝑝𝑡 ; 𝑐𝛽

𝑐 )
]

= E
[
(𝐾′𝑝(𝑡) +𝑄𝑝)(𝑞𝑡 − �̄�𝑡)2 + (Λ′𝑝(𝑡) +𝑄𝑝 +𝑄𝑝)(�̄�𝑡)2 + 2(𝑌𝑝𝑡

′ +𝑀𝑝(𝑐)𝑡)𝑞𝑡
+ 𝑅′𝑝(𝑡) + 𝑇𝑝(𝑐)𝑡 + 𝜒

𝑝
𝑡 (𝛼𝑝𝑡 )

]
,

where we have set

𝜒
𝑝
𝑡 (𝛼𝑝𝑡 ) : = 𝐾𝑝(𝑡)(𝑒>2 𝛼𝑝𝑡 )2 +

{
2[𝐾𝑝(𝑡)(𝑞𝑡 − �̄�𝑡) +Λ𝑝(𝑡)�̄�𝑡 + 𝑌𝑝𝑡 ]𝑒1 + 2𝑍𝑝,𝑊𝑡 𝑒2

}>
𝛼
𝑝
𝑡

+ (𝛼𝑝𝑡 )>𝑁𝑝𝛼
𝑝
𝑡 + 2𝐻>𝑝 𝛼

𝑝
𝑡

=
{
2[𝐾𝑝(𝑡)(𝑞𝑡 − �̄�𝑡) +Λ𝑝(𝑡)�̄�𝑡 + 𝑌𝑝𝑡 ]ℓ𝑝 + 2𝑍𝑝,𝑊𝑡 𝑒2 + 2𝐻𝑝

}>
𝛼
𝑝
𝑡

+ (𝛼𝑝𝑡 )>(𝑁𝑝 + 𝑒2𝐾𝑝(𝑡)𝑒>2 )𝛼𝑝𝑡
= 2[𝑈𝑝(𝑡)(𝑞𝑡 − E[𝑞𝑡]) +𝑉𝑝(𝑡)𝑞𝑡 + 𝜉

𝑝
𝑡 + �̄�

𝑝
𝑡 + 𝑂𝑝(𝑡)]>𝛼𝑝𝑡

+ (𝛼𝑝𝑡 )>𝑆𝑝(𝑡)𝛼𝑝𝑡 ,

with 

𝑆𝑝(𝑡) := 𝑁𝑝 + 𝑒2𝐾𝑝(𝑡)𝑒>2
𝑈𝑝(𝑡) := 𝐾𝑝(𝑡)𝑒1
𝑉𝑝(𝑡) := Λ𝑝(𝑡)𝑒1
𝑂𝑝(𝑡) := 𝐻𝑝 + 𝑒1E[𝑌𝑝𝑡 ] + 𝑒2E[𝑍𝑝,𝑊𝑡 ]
𝜉
𝑝
𝑡 := 𝐻𝑝 + 𝑒1𝑌𝑝𝑡 + 𝑒2𝑍𝑝,𝑊𝑡

�̄�
𝑝
𝑡 := 𝐻𝑝 + 𝑒1E[𝑌𝑝𝑡 ] + 𝑒2E[𝑍𝑝,𝑊𝑡 ].

2.C Computations of the equilibrium payoffs

In this section we perform some computations to get a more explicit formula for the objective
functionals at the equilibrium in Theorem 2.3.1. In particular, we find explicit expressions for
𝑅𝑝(0) and 𝑅𝑐(0). In all the following computations we are using the optimal strategies but we
are suppressing the stars in the notation for the sake readability (e.g. we write 𝑢𝑡 instead of 𝑢∗𝑡
and so on). For the same reason we are suppressing the dependency on time when clear from
the context.
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Proposition 2.C.1. It holds that

𝑅(𝜆)𝑝 (0) =
∫ 𝑇

0

[
2
𝑘𝑝
E[(𝑌𝑝𝑢 )2] − 𝜂𝑝𝜆2𝛾2𝜌2

𝑐V[𝑐𝑢] +
2
(
𝜋11(𝑢)𝑧𝑢 + ℓ𝑝𝜎𝑝

2
)2

ℓ𝑝 − 2𝐾𝑝(𝑢)

]
d𝑢 − 𝜆𝛾𝜌𝑐 �̄�𝑇 ,

𝑅(𝜆)𝑐 (0) =
∫ 𝑇

0

[
2
𝑘𝑐
E[(𝑌𝑐𝑢 )2] − 𝜂𝑐𝜆2𝜌2

𝑝V[𝑞𝑢] +
2
(
𝜋22(𝑢)𝑦𝑢 + ℓ𝑐𝜎𝑐

2
)2

ℓ𝑐 − 2𝐾𝑐(𝑢)

]
d𝑢 − 𝜆𝜌𝑝 �̄�𝑇 ,

where

d�̄�𝑡 =
2
𝑘𝑐

[ (
Λ𝑐 + 𝜋22

)
�̄�𝑡 + 𝜋21 �̄�𝑡 + ℎ2

]
d𝑡 ,

d�̄�𝑡 =
2
𝑘𝑝

[
𝜋12 �̄�𝑡 + (

Λ𝑝 + 𝜋11
)
�̄�𝑡 + ℎ1

]
d𝑡 ,

dE[𝑐2
𝑡 ] =

4
𝑘𝑐

[
(𝐾𝑐 + 𝜋22) (E[𝑐2

𝑡 ] − �̄�2
𝑡

) + 𝜋21
(
E[𝑐𝑡𝑞𝑡] − �̄�𝑡 �̄�𝑡

) + [
Λ𝑐 + 𝜋22

]
�̄�2
𝑡 + 𝜋21 �̄�𝑡 �̄�𝑡 + ℎ2 �̄�𝑡

]
d𝑡 + 𝑦2

𝑡 d𝑡 ,

dE[𝑞2
𝑡 ] =

4
𝑘𝑝

[ (
𝐾𝑝 + 𝜋11

) (
E[𝑞2

𝑡 ] − �̄�2
𝑡

) + 𝜋12
(
E[𝑐𝑡𝑞𝑡] − �̄�𝑡 �̄�𝑡

) + (
Λ𝑝 + 𝜋11

)
�̄�2
𝑡 + 𝜋12 �̄�𝑡 �̄�𝑡 + ℎ1 �̄�𝑡

]
d𝑡 + 𝑧2

𝑡d𝑡 ,

dE[𝑐𝑡𝑞𝑡] = 2
𝑘𝑝

[ (
𝐾𝑝 + 𝜋11

) (
E[𝑐𝑡𝑞𝑡] − �̄�𝑡 �̄�𝑡

) + 𝜋12
(
E[𝑐2

𝑡 ] − �̄�2
𝑡

) + (
Λ𝑝 + 𝜋11

)
�̄�𝑡 �̄�𝑡 + 𝜋12 �̄�2

𝑡 + ℎ1 �̄�𝑡
]
d𝑡

+ 2
𝑘𝑐

[ (
𝐾𝑐 + 𝜋22

) (
E[𝑐𝑡𝑞𝑡] − �̄�𝑡 �̄�𝑡

) + 𝜋21
(
E[𝑞2

𝑡 ] − �̄�2
𝑡

) + (
Λ𝑐 + 𝜋22

)
�̄�𝑡 �̄�𝑡 + 𝜋21 �̄�2

𝑡 + ℎ2 �̄�𝑡

]
d𝑡 ,

dE[(𝑌𝑝𝑡 )2] = −2
{1

2 𝑠0�̄�
𝑝
𝑡 +

1
2𝛾𝜌𝑐E[𝑌

𝑝
𝑡 𝑐𝑡] + 𝜌𝑝𝛾𝜌𝑐𝜂𝑝𝜆

2 (E[𝑌𝑝𝑡 𝑐𝑡] − �̄�𝑝𝑡 �̄�𝑡 ) + 2
𝑘𝑝

[
𝐾𝑝E

[(𝑌𝑝𝑡 )2 − (�̄�𝑝𝑡 )2]
+Λ𝑝(�̄�𝑝𝑡 )2

]}
d𝑡 + (

𝜋2
11𝑧

2
𝑡 + 𝜋2

12𝑦
2
𝑡

)
d𝑡 ,

dE[(𝑌𝑐𝑡 )2] = −2
{ 𝑝0 + 𝑝1𝑠0 − 𝛾(𝑠0 + 𝛿)

2 �̄�
𝑐
𝑡 +

𝜌𝑝(𝛾 − 𝑝1)
2 E[𝑌𝑐𝑡 𝑞𝑡] + 𝜌𝑝𝛾𝜌𝑐𝜂𝑐𝜆

2 (E[𝑌𝑐𝑡 𝑞𝑡] − �̄�𝑐𝑡 �̄�𝑡 )
+ 2
𝑘𝑐

[
𝐾𝑐E

[(𝑌𝑐𝑡 )2 − (�̄�𝑐𝑡 )2] +Λ𝑐(�̄�𝑐𝑡 )2
] }

d𝑡 + (
𝜋2

21𝑧
2
𝑡 + 𝜋2

22𝑦
2
𝑡

)
d𝑡 ,

with

�̄�
𝑝
𝑡 = 𝜋11 �̄�𝑡 + 𝜋12 �̄�𝑡 + ℎ1 , �̄�

𝑐
𝑡 = 𝜋21 �̄�𝑡 + 𝜋22 �̄�𝑡 + ℎ2 ,

E[𝑌𝑝𝑡 𝑐𝑡] = 𝜋11
(
E[𝑐𝑡𝑞𝑡] − �̄�𝑡 �̄�𝑡

) + 𝜋12
(
E[𝑐2

𝑡 ] − �̄�2
𝑡

) + 𝜋11 �̄�𝑡 �̄�𝑡 + 𝜋12 �̄�2
𝑡 + ℎ1 �̄�𝑡 ,

E[𝑌𝑐𝑡 𝑞𝑡] = 𝜋21
(
E[𝑞2

𝑡 ] − �̄�2
𝑡

) + 𝜋22
(
E[𝑞𝑡𝑐𝑡] − �̄�𝑡 �̄�𝑡

) + 𝜋21 �̄�2
𝑡 + 𝜋22 �̄�𝑡 �̄�𝑡 + ℎ2 �̄�𝑡 ,

and terminal conditions

(𝑌𝑝𝑇 )2 =
𝜆2𝜌2

𝑝

4 , (𝑌𝑐𝑇 )2 =
𝜆2𝛾2𝜌2

𝑐

4 .

Proof. For the terms �̄�𝑡 = E[𝑞𝑡] and �̄�𝑡 = E[𝑐𝑇]we have

d�̄�𝑡 = �̄�𝑡d𝑡 =
2
𝑘𝑝

[ (
Λ𝑝 + 𝜋11

)
�̄�𝑡 + 𝜋12 �̄�𝑡 + ℎ1

]
d𝑡 , d�̄�𝑡 = �̄�𝑡d𝑡 =

2
𝑘𝑐

[ (
Λ𝑐 + 𝜋22

)
�̄�𝑡 + 𝜋21 �̄�𝑡 + ℎ2

]
d𝑡 ,

so we have a 2-dimensional ODE giving �̄�𝑇 and �̄�𝑇 .
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2.C. COMPUTATIONS OF THE EQUILIBRIUM PAYOFFS

For the terms V[𝑞𝑡] and V[𝑐𝑡], we have

V[𝑐𝑡] = E[𝑐2
𝑡 ] − �̄�2

𝑡 , dE[𝑐2
𝑡 ] =

(
2E[𝑐𝑡𝑣𝑡] + (𝑦𝑡)2

)
d𝑡 ,

V[𝑞𝑡] = E[𝑞2
𝑡 ] − �̄�2

𝑡 , dE[𝑞2
𝑡 ] =

(
2E[𝑞𝑡𝑢𝑡] + (𝑧𝑡)2

)
d𝑡 ,

because 𝑧𝑡 and 𝑦𝑡 are deterministic. Further,

E[𝑐𝑡𝑣𝑡] = 2
𝑘𝑐

[
(𝐾𝑐 + 𝜋22)

(
E[𝑐2

𝑡 ] − �̄�2
𝑡

) + 𝜋21
(
E[𝑐𝑡𝑞𝑡] − �̄�𝑡 �̄�𝑡

) + (
Λ𝑐 + 𝜋22

)
�̄�2
𝑡 + 𝜋21 �̄�𝑡 �̄�𝑡 + ℎ2 �̄�𝑡

]
,

dE[𝑐2
𝑡 ] =

4
𝑘𝑐

[
(𝐾𝑐 + 𝜋22)

(
E[𝑐2

𝑡 ] − �̄�2
𝑡

) + 𝜋21
(
E[𝑐𝑡𝑞𝑡] − �̄�𝑡 �̄�𝑡

) + [
Λ𝑐 + 𝜋22

]
�̄�2
𝑡 + 𝜋21 �̄�𝑡 �̄�𝑡 + ℎ2 �̄�𝑡

]
d𝑡 + 𝑦2

𝑡 d𝑡 ,

E[𝑞𝑡𝑢𝑡] = 2
𝑘𝑝

[ (
𝐾𝑝 + 𝜋11

) (
E[𝑞2

𝑡 ] − �̄�2
𝑡

) + 𝜋12
(
E[𝑐𝑡𝑞𝑡] − �̄�𝑡 �̄�𝑡

) + (
Λ𝑝 + 𝜋11

)
�̄�2
𝑡 + 𝜋12 �̄�𝑡 �̄�𝑡 + ℎ1 �̄�𝑡

]
,

dE[𝑞2
𝑡 ] =

4
𝑘𝑝

[ (
𝐾𝑝 + 𝜋11

) (
E[𝑞2

𝑡 ] − �̄�2
𝑡

) + 𝜋12
(
E[𝑐𝑡𝑞𝑡] − �̄�𝑡 �̄�𝑡

) + (
Λ𝑝 + 𝜋11

)
�̄�2
𝑡 + 𝜋12 �̄�𝑡 �̄�𝑡 + ℎ1 �̄�𝑡

]
d𝑡 + 𝑧2

𝑡d𝑡 ,

and we have for E[𝑐𝑡𝑞𝑡], that dE[𝑐𝑡𝑞𝑡] = E
[
𝑐𝑡𝑢𝑡 + 𝑞𝑡𝑣𝑡

]
d𝑡, so that

dE[𝑐𝑡𝑞𝑡] = 2
𝑘𝑝

[ (
𝐾𝑝 + 𝜋11

) (
E[𝑐𝑡𝑞𝑡] − �̄�𝑡 �̄�𝑡

) + 𝜋12
(
E[𝑐2

𝑡 ] − �̄�2
𝑡

) + (
Λ𝑝 + 𝜋11

)
�̄�𝑡 �̄�𝑡 + 𝜋12 �̄�2

𝑡 + ℎ1 �̄�𝑡
]
d𝑡

+ 2
𝑘𝑐

[ (
𝐾𝑐 + 𝜋22

) (
E[𝑐𝑡𝑞𝑡] − �̄�𝑡 �̄�𝑡

) + 𝜋21
(
E[𝑞2

𝑡 ] − �̄�2
𝑡

) + (
Λ𝑐 + 𝜋22

)
�̄�𝑡 �̄�𝑡 + 𝜋21 �̄�2

𝑡 + ℎ2 �̄�𝑡

]
d𝑡.

For the term V[𝑌𝑝𝑡 ], we have V[𝑌𝑝𝑡 ] + E[𝑌𝑝𝑡 ]2 = E[(𝑌𝑝𝑡 )2], where

𝑌𝑝𝑡 = 𝜋11(𝑞𝑡 − �̄�𝑡) + 𝜋12(𝑐𝑡 − �̄�𝑡) + 𝜋11 �̄�𝑡 + 𝜋12 �̄�𝑡 + ℎ1(𝑡), �̄�
𝑝
𝑡 = 𝜋11 �̄�𝑡 + 𝜋12 �̄�𝑡 + ℎ1 ,

E[𝑌𝑝𝑡 𝑐𝑡] = 𝜋11
(
E[𝑐𝑡𝑞𝑡] − �̄�𝑡 �̄�𝑡

) + 𝜋12
(
E[𝑐2

𝑡 ] − �̄�2
𝑡

) + 𝜋11 �̄�𝑡 �̄�𝑡 + 𝜋12 �̄�2
𝑡 + ℎ1 �̄�𝑡 ,

dE[(𝑌𝑝𝑡 )2] = −2
{1

2 𝑠0�̄�
𝑝
𝑡 +

1
2𝛾𝜌𝑐E[𝑌

𝑝
𝑡 𝑐𝑡] + 𝜌𝑝𝛾𝜌𝑐𝜂𝑝𝜆

2 (E[𝑌𝑝𝑡 𝑐𝑡] − �̄�𝑝𝑡 �̄�𝑡 ) + 2
𝑘𝑝

[
𝐾𝑝E

[(𝑌𝑝𝑡 )2 − (�̄�𝑝𝑡 )2]
+Λ𝑝(�̄�𝑝𝑡 )2

]}
d𝑡 + (

𝜋2
11𝑧

2
𝑡 + 𝜋2

12𝑦
2
𝑡

)
d𝑡 , (𝑌𝑝𝑇 )2 =

1
4𝜆

2𝜌2
𝑝 ,

where we have exploited the representation of 𝑌𝑝 in Equation (2.4.10). Analogously, exploiting
the representation of 𝑌𝑐 in Equation (2.4.11), we get

𝑌𝑐𝑡 = 𝜋21(𝑞𝑡 − �̄�𝑡) + 𝜋22(𝑐𝑡 − �̄�𝑡) + 𝜋21 �̄�𝑡 + 𝜋22 �̄�𝑡 + ℎ2(𝑡), �̄�
𝑐
𝑡 = 𝜋21 �̄�𝑡 + 𝜋22 �̄�𝑡 + ℎ2 ,

+ 2
𝑘𝑐

[
𝐾𝑐E

[(𝑌𝑐𝑡 )2 − (�̄�𝑐𝑡 )2] +Λ𝑐(�̄�𝑐𝑡 )2
] }

d𝑡 ,

E[𝑌𝑐𝑡 𝑞𝑡] = 𝜋21
(
E[𝑞2

𝑡 ] − �̄�2
𝑡

) + 𝜋22
(
E[𝑞𝑡𝑐𝑡] − �̄�𝑡 �̄�𝑡

) + 𝜋21 �̄�2
𝑡 + 𝜋22 �̄�𝑡 �̄�𝑡 + ℎ2 �̄�𝑡 ,

dE[(𝑌𝑐𝑡 )2] = −2
{ 𝑝0 + 𝑝1𝑠0 − 𝛾(𝑠0 + 𝛿)

2 �̄�
𝑐
𝑡 +

𝜌𝑝(𝛾 − 𝑝1)
2 E[𝑌𝑐𝑡 𝑞𝑡] + 𝜌𝑝𝛾𝜌𝑐𝜂𝑐𝜆

2 (E[𝑌𝑐𝑡 𝑞𝑡] − �̄�𝑐𝑡 �̄�𝑡 )
+ 2
𝑘𝑐

[
𝐾𝑐E

[(𝑌𝑐𝑡 )2 − (�̄�𝑐𝑡 )2] +Λ𝑐(�̄�𝑐𝑡 )2
] }

d𝑡 + (
𝜋2

21𝑧
2
𝑡 + 𝜋2

22𝑦
2
𝑡

)
d𝑡 , (𝑌𝑝𝑇 )2 =

1
4𝜆

2𝛾2𝜌2
𝑐 ,

Summing up, we have obtained a backward ODE for E[(𝑌𝑝𝑡 )2] and E[(𝑌𝑐𝑡 )2]. Finally, we have

𝑍𝑝,𝑊𝑡 = 𝜋11𝑧𝑡 , V[𝑍𝑝,𝑊𝑡 ] = 0, E[𝑍𝑝,𝑊𝑡 ] = 𝜋11𝑧𝑡 ,
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and

𝑍𝑐,𝐵𝑡 = 𝜋22𝑦𝑡 , V[𝑍𝑐,𝐵𝑡 ] = 0, E[𝑍𝑐,𝐵𝑡 ] = 𝜋22𝑦𝑡 .

Recalling that

𝑅(𝜆)𝑝 (𝑡) = − 𝜆𝛾𝜌𝑐E[𝑐𝑇] +
∫ 𝑇

𝑡

[
− 𝜂𝑝𝜆2𝛾2𝜌2

𝑐V[𝑐𝑢] + 2
𝑘𝑝

(
V[𝑌𝑝𝑢 ] + E[𝑌𝑝𝑢 ]2

)
+ 2
ℓ𝑝 − 2𝐾𝑝(𝑢)

(
V[𝑍𝑝,𝑊𝑢 ] +

(
E[𝑍𝑝,𝑊𝑢 ] +

ℓ𝑝𝜎𝑝
2

)2
) ]

d𝑢,

and analogously

𝑅(𝜆)𝑐 (𝑡) = − 𝜆𝜌𝑝E[𝑞𝑇] +
∫ 𝑇

𝑡

[
− 𝜂𝑐𝜆2𝜌2

𝑝V[𝑞𝑢] + 2
𝑘𝑐

(
V[𝑌𝑐𝑢 ] + E[𝑌𝑐𝑢 ]2

)
+ 2
ℓ𝑐 − 2𝐾𝑐(𝑢)

(
V[𝑍𝑐,𝐵𝑢 ] +

(
E[𝑍𝑐,𝐵𝑢 ] + ℓ𝑐𝜎𝑐2

)2
) ]

d𝑢,

the results follow. □
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Functional quantization of rough volatility and applications
to volatility derivatives

We believe that FBMs provide useful models for a host of natural time series and that their
curious properties deserve to be presented to scientists, engineers and statisticians.

Benoit B. Mandelbrot and John W. Van Ness

This chapter covers paper [25], which is a joint collaboration with Prof. Giorgia Callegaro
and Prof. Antoine Jacquier. Its preliminary version is available on arXiv and it was submitted
in July 2021. Prof. Jacquier is an expert in the popular field of rough volatility, while Prof.
Callegaro has been investigating the discretisation technique called quantization and its wide
range of applications throughout her career. Together, we consider here product functional
quantization, i.e. quantization of stochastic processes in their paths’ space, and we develop it in
a rough framework. In particular, we obtain a discretisation in the trajectories space of a family
of Gaussian Volterra stochastic processes and we exploit it for the pricing of derivatives on the
VIX volatility index and realised variance. The results obtained are illustrated via numerical
simulations comparing our technique with the state of the art methodology as a benchmark
when a closed formula is not available.

3.1 Introduction

Gatheral, Jaisson and Rosenbaum [77] recently introduced a new framework for financial
modelling. To be precise — according to the reference website https://sites.google.com/
site/roughvol/home — almost twenty-four hundred days have passed since instantaneous
volatility was shown to have a rough nature, in the sense that its sample paths are 𝛼-Hölder-
continuous with 𝛼 < 1

2 . Many studies, both empirical [17, 74, 72] and theoretical [71, 8], have
confirmed this, showing that these so-called rough volatility models are a more accurate fit to
the implied volatility surface and to estimate historical volatility time series.

On equity markets, the quality of a model is usually measured by its ability to calibrate not
only to the SPX implied volatility but also VIX Futures and the VIX implied volatility. The market
standard models had so far been Markovian, in particular the double mean-reverting process [76,
100], Bergomi’s model [21] and, to some extent, jump models [35, 108]. However, they each
suffer from several drawbacks, which the new generation of rough volatility models seems to
overcome. For VIX Futures pricing, the rough version of Bergomi’s model was thoroughly
investigated in [103], showing accurate results. Nothing comes for free though and the new
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3.2. GAUSSIAN VOLTERRA PROCESSES ON R+

challenges set by rough volatility models lie on the numerical side, as new tools are needed to
develop fast and accurate numerical techniques. Since classical simulation tools for fractional
Brownian motions are too slow for realistic purposes, new schemes have been proposed to
speed it up, among which the Monte Carlo hybrid scheme [17, 121], a tree formulation [97],
quasi Monte-Carlo methods [13] and Markovian approximations [1, 141].

We suggest here a new approach, based on product functional quantization [128]. Quantiza-
tion was originally conceived as a discretisation technique to approximate a continuous signal
by a discrete one [134], later developed at Bell Laboratory in the 1950s for signal transmis-
sion [79]. It was however only in the 1990s that its power to compute (conditional) expectations
of functionals of random variables [84] was fully understood. Given an R𝑑-valued random
vector on some probability space, optimal vector quantization investigates how to select an
R𝑑-valued random vector 𝑋, supported on at most 𝑁 elements, that best approximates 𝑋 ac-
cording to a given criterion (such as the 𝐿𝑟-distance, 𝑟 ≥ 1). Functional quantization is the
infinite-dimensional version, approximating a stochastic process with a random vector taking
a finite number of values in the space of trajectories for the original process. It has been in-
vestigated precisely [119, 128] in the case of Brownian diffusions, in particular for financial
applications [129]. However, optimal functional quantizers are in general hard to compute
numerically and instead product functional quantizers provide a rate-optimal (so, in principle,
sub-optimal) alternative often admitting closed-form expressions [120, 129].

In Section 3.2 we briefly review important properties of Gaussian Volterra processes, displaying
a series expansion representation, and paying special attention to the Riemann-Liouville case in
Section 3.2.2. This expansion yields, in Section 3.3, a product functional quantization of the
processes, that shows an 𝐿2-error of order log(𝑁)−𝐻 , with 𝑁 the number of paths and 𝐻 a
regularity index. We then show, in Section 3.3.1, that these functional quantizers, although
sub-optimal, are stationary. We specialise our setup to the generalised rough Bergomi model in
Section 3.4 and show how product functional quantization applies to the pricing of VIX Futures
and VIX options, proving in particular precise rates of convergence. Finally, Section 3.5 provides
a numerical confirmation of the quality of our approximations for VIX Futures and Call Options
on the VIX in the rough Bergomi model, benchmarked against other existing schemes. In this
Section, we also discuss how product functional quantization of the Riemann-Liouville process
itself can be exploited to price options on realised variance.

We set N as the set of strictly positive natural numbers. We denote by C[0, 1] the space
of real-valued continuous functions over [0, 1] and by 𝐿2[0, 1] the Hilbert space of real-valued
square integrable functions on [0, 1], with inner product 〈 𝑓 , 𝑔〉𝐿2[0,1] :=

∫ 1
0 𝑓 (𝑡)𝑔(𝑡)d𝑡, inducing

the norm ‖ 𝑓 ‖𝐿2[0,1] := (∫ 1
0 | 𝑓 (𝑡)|2d𝑡)1/2, for each 𝑓 , 𝑔 ∈ 𝐿2[0, 1]. 𝐿2(P) denotes the space of square

integrable (with respect to P) random variables.

3.2 Gaussian Volterra processes on R+

For clarity, we restrict ourselves to the time interval [0, 1]. Let {𝑊𝑡}𝑡∈[0,1] be a standard
Brownian motion on a filtered probability space (Ω, ℱ , {ℱ𝑡}𝑡∈[0,1] , P), with {ℱ𝑡}𝑡∈[0,1] its natural
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filtration. On this probability space we introduce the Volterra process

𝑍𝑡 :=
∫ 𝑡

0
𝐾(𝑡 − 𝑠)d𝑊𝑠 , 𝑡 ∈ [0, 1], (3.2.1)

and we consider the following assumptions for the kernel 𝐾:

Assumption 3.2.1. There exist 𝛼 ∈ (−1
2 ,

1
2
) \ {0} and 𝐿 : (0, 1] → (0,∞) continuously differentiable,

slowly varying at 0, that is, for any 𝑡 > 0, lim𝑥↓0
𝐿(𝑡𝑥)
𝐿(𝑥) = 1, and bounded away from 0 function with

|𝐿′(𝑥)| ≤ 𝐶(1 + 𝑥−1), for 𝑥 ∈ (0, 1], for some 𝐶 > 0, such that

𝐾(𝑥) = 𝑥𝛼𝐿(𝑥), 𝑥 ∈ (0, 1].

This implies in particular that 𝐾 ∈ 𝐿2[0, 1], so that the stochastic integral (3.2.1) is well
defined. The Gamma kernel, with 𝐾(𝑢) = e−𝛽𝑢𝑢𝛼, for 𝛽 > 0 and 𝛼 ∈ (− 1

2 ,
1
2 ) \ {0}, is a classical

example satisfying Assumption 3.2.1. Straightforward computations show that the covariance
function of 𝑍 reads

𝑅𝑍(𝑠, 𝑡) =
∫ 𝑡∧𝑠

0
𝐾(𝑡 − 𝑢)𝐾(𝑠 − 𝑢)d𝑢, 𝑠, 𝑡 ∈ [0, 1].

Under Assumption 3.2.1, 𝑍 is a Gaussian process admitting a version which is 𝜀-Hölder
continuous for any 𝜀 < 1

2 + 𝛼 = 𝐻 and hence also admits a continuous version [17, Proposition
2.11].

3.2.1 Series expansion

We introduce a series expansion representation for the centred Gaussian process 𝑍 in (3.2.1),
which will be key to develop its functional quantization. Inspired by [120], introduce the
stochastic process

𝑌𝑡 :=
∑
𝑛≥1
K[𝜓𝑛](𝑡)𝜉𝑛 , 𝑡 ∈ [0, 1], (3.2.2)

where {𝜉𝑛}𝑛≥1 is a sequence of i.i.d. standard Gaussian random variables, {𝜓𝑛}𝑛≥1 denotes the
orthonormal basis of 𝐿2[0, 1]:

𝜓𝑛(𝑡) =
√

2 cos
(
𝑡√
𝜆𝑛

)
, with 𝜆𝑛 =

4
(2𝑛 − 1)2𝜋2 , (3.2.3)

and the operatorK : 𝐿2[0, 1] → C[0, 1] is defined for 𝑓 ∈ 𝐿2[0, 1] as

K[ 𝑓 ](𝑡) :=
∫ 𝑡

0
𝐾(𝑡 − 𝑠) 𝑓 (𝑠)d𝑠, for all 𝑡 ∈ [0, 1]. (3.2.4)

Remark 3.2.2. The stochastic process 𝑌 in (3.2.2) is defined as a weighted sum of independent centred
Gaussian variables, so for every 𝑡 ∈ [0, 1] the random variable 𝑌𝑡 is a centred Gaussian random variable
and the whole process 𝑌 is Gaussian with zero mean.

We set the following assumptions on the functions {K[𝜓𝑛]}𝑛∈N:
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Assumption 3.2.3. There exists 𝐻 ∈ (0, 1
2 ) such that

(A) there is a constant 𝐶1 > 0 for which, for any 𝑛 ≥ 1,K[𝜓𝑛] is (𝐻 + 1
2 )-Hölder continuous, with

sup
𝑠,𝑡∈[0,1],𝑠≠𝑡

|K[𝜓𝑛](𝑡) − K[𝜓𝑛](𝑠)|
|𝑡 − 𝑠 |𝐻+ 1

2
≤ 𝐶1𝑛;

(B) there exists a constant 𝐶2 > 0 such that

sup
𝑡∈[0,1]

|K[𝜓𝑛](𝑡)| ≤ 𝐶2𝑛−(𝐻+
1
2 ) , for all 𝑛 ≥ 1.

Notice that under these assumptions, the series (3.2.2) converges both almost surely and
in 𝐿2(P) for each 𝑡 ∈ [0, 1] by Khintchine-Kolmogorov Convergence Theorem [38, Theorem 1,
Section 5.1].

It is natural to wonder whether Assumption 3.2.1 implies Assumption 3.2.3 given the basis
functions (3.2.3). This is far from trivial in our general setup and we provide examples and
justifications later on for models of interest. Similar considerations with slightly different
conditions can be found in [120]. We now focus on the variance-covariance structure of the
Gaussian process 𝑌.

Lemma 3.2.4. For any 𝑠, 𝑡 ∈ [0, 1], the covariance function of 𝑌 is given by

𝑅𝑌(𝑠, 𝑡) := E[𝑌𝑠𝑌𝑡] =
∫ 𝑡∧𝑠

0
𝐾(𝑡 − 𝑢)𝐾(𝑠 − 𝑢)d𝑢.

Proof. Exploiting the definition of 𝑌 in (3.2.2), the definition ofK in (3.2.4) and the fact that the
random variable 𝜉𝑛’s are i.i.d. standard Normal, we obtain

𝑅𝑌(𝑠, 𝑡) = E[𝑌𝑠𝑌𝑡] = E
[(∑

𝑛≥1
K[𝜓𝑛](𝑠)𝜉𝑛

) ( ∑
𝑚≥1
K[𝜓𝑚](𝑡)𝜉𝑚

)]
=

∑
𝑛≥1
K[𝜓𝑛](𝑠)K[𝜓𝑛](𝑡)

=
∑
𝑛≥1

( ∫ 1

0
𝐾(𝑠 − 𝑢)1[0,𝑠](𝑢)𝜓𝑛(𝑢)d𝑢

∫ 1

0
𝐾(𝑡 − 𝑟)1[0,𝑡](𝑟)𝜓𝑛(𝑟)d𝑟

)
=

∑
𝑛≥1
〈𝐾(𝑠 − ·)1[0,𝑠](·),𝜓𝑛〉𝐿2[0,1] · 〈𝐾(𝑡 − ·)1[0,𝑡](·),𝜓𝑛〉𝐿2[0,1]

=
∑
𝑛≥1

〈
𝐾(𝑡 − ·)1[0,𝑡](·), 〈𝐾(𝑠 − ·)1[0,𝑠](·),𝜓𝑛〉𝐿2[0,1]𝜓𝑛

〉
𝐿2[0,1]

=
〈
𝐾(𝑡 − ·)1[0,𝑡](·),

∑
𝑛≥1
〈𝐾(𝑠 − ·)1[0,𝑠](·),𝜓𝑛〉𝐿2[0,1]𝜓𝑛

〉
𝐿2[0,1]

= 〈𝐾(𝑡 − ·)1[0,𝑡](·), 𝐾(𝑠 − ·)1[0,𝑠](·)〉𝐿2[0,1]

=
∫ 1

0
𝐾(𝑠 − 𝑢)1[0,𝑠](𝑢)𝐾(𝑡 − 𝑢)1[0,𝑡](𝑢)d𝑢 =

∫ 𝑡∧𝑠

0
𝐾(𝑡 − 𝑢)𝐾(𝑠 − 𝑢)d𝑢.

□

Remark 3.2.5. Notice that the centred Gaussian stochastic process 𝑌 admits a continuous version, too.
Indeed, we have shown that 𝑌 has the same mean and covariance function as 𝑍 and, consequently, that
the increments of the two processes share the same distribution. Thus, [17, Proposition 2.11] applies
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to 𝑌 as well, yielding that the process admits a continuous version. This last key property of 𝑌 can be
alternatively proved directly as done in Appendix 3.A.2.

Lemma 3.2.4 implies thatE[𝑌𝑠𝑌𝑡] = E[𝑍𝑠𝑍𝑡], for all 𝑠, 𝑡 ∈ [0, 1]. Both 𝑍 and𝑌 are continuous,
centred, Gaussian with the same covariance structure, so from now on we will work with 𝑌,
using

𝑍 =
∑
𝑛≥1
K[𝜓𝑛]𝜉𝑛 , P-a.s. (3.2.5)

3.2.2 The Riemann - Liouville case

For 𝐾(𝑢) = 𝑢𝐻− 1
2 , with 𝐻 ∈ (0, 1

2 ), the process (3.2.1) takes the form

𝑍𝐻𝑡 :=
∫ 𝑡

0
(𝑡 − 𝑠)𝐻− 1

2 d𝑊𝑠 , 𝑡 ∈ [0, 1],

where we add the superscript 𝐻 to emphasise its importance. It is called a Riemann-Liouville
process (henceforth RL) (also known as Type II fractional Brownian motion or Lévy fractional
Brownian motion), as it is obtained by applying the Riemann-Liouville fractional operator to
the standard Brownian motion, and is an example of a Volterra process. This process enjoys
properties similar to those of the fractional Brownian motion (fBM), in particular being 𝐻-
self-similar and centred Gaussian. However, contrary to the fractional Brownian motion, its
increments are not stationary. For a more detailed comparison between the fBM and 𝑍𝐻 we
refer to [131, Theorem 5.1]. In the RL case, the covariance function 𝑅𝑍𝐻 (·, ·) is available [104,
Proposition 2.1] explicitly as

𝑅𝑍𝐻 (𝑠, 𝑡) = 1
𝐻 + 1

2
(𝑠 ∧ 𝑡)𝐻+ 1

2 (𝑠 ∨ 𝑡)𝐻− 1
2 2𝐹1

(
1, 1

2 − 𝐻; 2𝐻 + 1; 𝑠 ∧ 𝑡
𝑠 ∨ 𝑡

)
, 𝑠 , 𝑡 ∈ [0, 1],

where 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) denotes the Gauss hypergeometric function [127, Chapter 5, Section 9].
More generally, [127, Chapter 5, Section 11], the generalised hypergeometric functions 𝑝𝐹𝑞(𝑧)
are defined as

𝑝𝐹𝑞(𝑧) = 𝑝𝐹𝑞(𝑎1 , 𝑎2 , . . . , 𝑎𝑝 ; 𝑐1 , 𝑐2 , . . . , 𝑐𝑞 ; 𝑧) :=
∞∑
𝑘=0

(𝑎1)𝑘(𝑎2)𝑘 · · · (𝑎𝑝)𝑘
(𝑐1)𝑘(𝑐2)𝑘 · · · (𝑐𝑞)𝑘

𝑧
𝑘! , (3.2.6)

with the Pochammer’s notation (𝑎)0 := 1 and (𝑎)𝑘 := 𝑎(𝑎 + 1)(𝑎 + 2) · · · (𝑎 + 𝑘 − 1), for 𝑘 ≥ 1,
where none of the 𝑐𝑘 are negative integers or zero. For 𝑝 ≤ 𝑞 the series (3.2.6) converges for all 𝑧
and when 𝑝 = 𝑞 + 1 convergence holds for |𝑧 | < 1 and the function is defined outside this disk
by analytic continuation. Finally, when 𝑝 > 𝑞 + 1 the series diverges for nonzero 𝑧 unless one of
the 𝑎𝑘 ’s is zero or a negative integer.

Regarding the series representation (3.2.2), we have, for 𝑡 ∈ [0, 1] and 𝑛 ≥ 1,

K𝐻[𝜓𝑛](𝑡) : =
√

2
∫ 𝑡

0
(𝑡 − 𝑠)𝐻− 1

2 cos
( 𝑠√

𝜆𝑛

)
d𝑠 (3.2.7)

=
2
√

2
1 + 2𝐻 𝑡𝐻+

1
2 1𝐹2

(
1; 3

4 +
𝐻
2 ,

5
4 +

𝐻
2 ;− 𝑡2

4𝜆𝑛

)
.
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Assumption 3.2.3 holds in the RL case here using [120, Lemma 4] (identifyingK𝐻[𝜓𝑛] to 𝑓𝑛
from [120, Equation (3.7)]). Assumption 3.2.3 (B) implies that, for all 𝑡 ∈ [0, 1],

∑
𝑛≥1
K𝐻[𝜓𝑛](𝑡)2 ≤

∑
𝑛≥1

(
sup
𝑡∈[0,1]

|K𝐻[𝜓𝑛](𝑡)|
)2

≤ 𝐶2
2

∑
𝑛≥1

1
𝑛1+2𝐻 < ∞,

and therefore the series (3.2.2) converges both almost surely and in 𝐿2(P) for each 𝑡 ∈ [0, 1] by
Khintchine-Kolmogorov Convergence Theorem [38, Theorem 1, Section 5.1].

Remark 3.2.6. The expansion (3.2.2) is in general not a Karhunen-Loève decomposition [129, Section
4.1.1]. In the RL case, it can be numerically checked that the basis {K𝐻[𝜓𝑛]}𝑛∈N is not orthogonal in
𝐿2[0, 1] and does not correspond to eigenvectors for the covariance operator of the Riemann-Liouville
process. In his PhD Thesis [41], Corlay exploited a numerical method to obtain approximations of the
first terms in the K-L expansion of processes for which an explicit form is not available.

3.3 Functional quantization and error estimation

Optimal (quadratic) vector quantization was conceived to approximate a square integrable
random vector𝑋 : (Ω, ℱ , P) → R𝑑 by another one𝑋, taking at most a finite number𝑁 of values,
on a grid Γ𝑁 := {𝑥𝑁1 , 𝑥𝑁2 , . . . , 𝑥𝑁𝑁 }, with 𝑥𝑁𝑖 ∈ R𝑑 , 𝑖 = 1, . . . , 𝑁 . The quantization of 𝑋 is defined
as 𝑋 := ProjΓ𝑁 (𝑋), where ProjΓ𝑁 : R𝑑 → Γ𝑁 denotes the nearest neighbour projection. Of
course the choice of the 𝑁-quantizer Γ𝑁 is based on a given optimality criterion: in most cases
Γ𝑁 minimises the distance E[|𝑋 − 𝑋 |2]1/2. We recall basic results for one-dimensional standard
Gaussian, which shall be needed later, and refer to [84] for a comprehensive introduction to
quantization.

Definition 3.3.1. Let 𝜉 be a one-dimensional standard Gaussian on a probability space (Ω, ℱ , P). For
each 𝑛 ∈ N, we define the optimal quadratic 𝑛-quantization of 𝜉 as the random variable �̂�𝑛 :=
ProjΓ𝑛 (𝜉) =

∑𝑛
𝑖=1 𝑥

𝑛
𝑖 1𝐶𝑖(Γ𝑛)(𝜉), where Γ𝑛 = {𝑥𝑛1 , . . . , 𝑥𝑛𝑛} is the unique optimal quadratic 𝑛-quantizer of

𝜉, namely the unique solution to the minimisation problem

min
Γ𝑛⊂R,Card(Γ𝑛)=𝑛

E[|𝜉 − ProjΓ𝑛 (𝜉)|2],

and {𝐶𝑖(Γ𝑛)}𝑖∈{1,...,𝑛} is a Voronoi partition of R, that is a Borel partition of R that satisfies

𝐶𝑖(Γ𝑛) ⊂
{
𝑦 ∈ R : |𝑦 − 𝑥𝑛𝑖 | = min

1≤ 𝑗≤𝑛 |𝑦 − 𝑥
𝑛
𝑗 |
}
⊂ 𝐶 𝑖(Γ𝑛),

where the right-hand side denotes the closure of the set in R.

The unique optimal quadratic 𝑛-quantizerΓ𝑛 = {𝑥𝑛1 , . . . , 𝑥𝑛𝑛} and the corresponding quadratic
error are available online, at http://www.quantize.maths-fi.com/gaussian_database for
𝑛 ∈ {1, . . . , 5999}.

Given a stochastic process, viewed as a random vector taking values in its trajectories
space, such as 𝐿2[0, 1], functional quantization does the analogue to vector quantization in an

100

http://www.quantize.maths-fi.com/gaussian_database


CHAPTER 3. FUNCTIONAL QUANTIZATION OF ROUGH VOLATILITY

infinite-dimensional setting, approximating the process with a finite number of trajectories. In
this section, we focus on product functional quantization of the centred Gaussian process 𝑍
from (3.2.1) of order 𝑁 (see [128, Section 7.4] for a general introduction to product functional
quantization). Recall that we are working with the continuous version of 𝑍 in the series (3.2.5).
For any𝑚, 𝑁 ∈ N, we introduce the following set, which will be of key importance all throughout
the paper:

D𝑁
𝑚 :=

{
d ∈ N𝑚 :

𝑚∏
𝑖=1

𝑑(𝑖) ≤ 𝑁
}
. (3.3.1)

Definition 3.3.2. A product functional quantization of 𝑍 of order 𝑁 is defined as

𝑍d
𝑡 :=

𝑚∑
𝑛=1
K[𝜓𝑛](𝑡)�̂�𝑑(𝑛)𝑛 , 𝑡 ∈ [0, 1], (3.3.2)

where d ∈ D𝑁
𝑚 , for some 𝑚 ∈ N, and for every 𝑛 ∈ {1, . . . , 𝑚}, �̂�𝑑(𝑛)𝑛 is the (unique) optimal quadratic

quantization of the standard Gaussian random variable 𝜉𝑛 of order 𝑑(𝑛), according to Definition 3.3.1.

Remark 3.3.3. The condition
∏𝑚

𝑖=1 𝑑(𝑖) ≤ 𝑁 in Equation (3.3.1) motivates the wording ‘product’
functional quantization. Clearly, the optimality of the quantizer also depends on the choice of 𝑚 and d,
for which we refer to Proposition 3.3.6 and Section 3.5.1.

Before proceeding, we need to make precise the explicit form for the product functional
quantizer of the stochastic process 𝑍:

Definition 3.3.4. The product functional d-quantizer of 𝑍 is defined as

𝜒d
𝑖 (𝑡) :=

𝑚∑
𝑛=1
K[𝜓𝑛](𝑡) 𝑥𝑑(𝑛)𝑖𝑛

, 𝑡 ∈ [0, 1], 𝑖 = (𝑖1 , . . . , 𝑖𝑚),

for d ∈ D𝑁
𝑚 and 1 ≤ 𝑖𝑛 ≤ 𝑑(𝑛) for each 𝑛 = 1, . . . , 𝑚.

Remark 3.3.5. Intuitively, the quantizer is chosen as a Cartesian product of grids of the one-dimensional
standard Gaussian random variables. So, we also immediately find the probability associated to every
trajectory 𝜒d

𝑖 : for every 𝑖 = (𝑖1 , . . . , 𝑖𝑚) ∈ ∏𝑚
𝑛=1{1, . . . , 𝑑(𝑛)},

P(𝑍d = 𝜒d
𝑖 ) =

𝑚∏
𝑛=1
P(𝜉𝑛 ∈ 𝐶𝑖𝑛 (Γ𝑑(𝑛))),

where 𝐶 𝑗(Γ𝑑(𝑛)) is the 𝑗-th Voronoi cell relative to the 𝑑(𝑛)-quantizer Γ𝑑(𝑛) in Definition 3.3.1.

The following, proved in Appendix 3.A.1, deals with the quantization error estimation and
its minimisation and provides hints to choose (𝑚, d). A similar result on the error can be
obtained applying [120, Theorem 2] to the first example provided in the reference. For com-
pleteness we preferred to prove the result in an autonomous way in order to further characterise
the explicit expression of the rate optimal parameters. Indeed, we then compare these rate op-
timal parameters with the (numerically computed) optimal ones in Section 3.5.1. The symbol
b·c denotes the lower integer part.
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Proposition 3.3.6. Under Assumption 3.2.3, for any 𝑁 ≥ 1, there exist 𝑚∗(𝑁) ∈ N and 𝐶 > 0 such
that

E

[𝑍d∗𝑁 − 𝑍
2

𝐿2[0,1]

] 1
2

≤ 𝐶 log(𝑁)−𝐻 ,

where d∗𝑁 ∈ D𝑁
𝑚∗(𝑁) and with, for each 𝑛 = 1, . . . , 𝑚∗(𝑁),

𝑑∗𝑁 (𝑛) =
⌊
𝑁

1
𝑚∗(𝑁) 𝑛−(𝐻+

1
2 ) (𝑚∗(𝑁)!) 2𝐻+1

2𝑚∗(𝑁)
⌋
.

Furthermore 𝑚∗(𝑁) = O(log(𝑁)).

Remark 3.3.7. In the RL case, the trajectories of 𝑍𝐻,d are easily computable and they are used in
the numerical implementations to approximate the process 𝑍𝐻 . In practice, the parameters 𝑚 and
d = (𝑑(1), . . . , 𝑑(𝑚)) are chosen as explained in Section 3.5.1.

3.3.1 Stationarity

We now show that the quantizers we are using are stationary. The use of stationary quantiz-
ers is motivated by the fact that their expectation provides a lower bound for the expectation of
convex functionals of the process (Remark 3.3.9) and they yield a lower (weak) error in cubature
formulae [128, page 26]. We first recall the definition of stationarity for the quadratic quantizer
of a random vector [128, Definition 1].

Definition 3.3.8. Let𝑋 be anR𝑑-valued random vector on (Ω, ℱ , P). A quantizer Γ for𝑋 is stationary
if the nearest neighbour projection 𝑋Γ = ProjΓ(𝑋) satisfies

E
[
𝑋 |𝑋Γ

]
= 𝑋Γ. (3.3.3)

Remark 3.3.9. Taking expectation on both sides of (3.3.3) yields

E[𝑋] = E[E[𝑋 |𝑋Γ]] = E[𝑋Γ].

Furthermore, for any convex function 𝑓 : R𝑑 → R, the identity above, the conditional Jensen’s inequality
and the tower property yield

E[ 𝑓 (𝑋Γ)] = E[ 𝑓 (E[𝑋 |𝑋Γ])] ≤ E[E[ 𝑓 (𝑋)|𝑋Γ]] = E[ 𝑓 (𝑋)].

While an optimal quadratic quantizer of order𝑁 of a random vector is always stationary [128,
Proposition 1(c)], the converse is not true in general. We now present the corresponding
definition for a stochastic process.

Definition 3.3.10. Let {𝑋𝑡}𝑡∈[𝑇1 ,𝑇2] be a stochastic process on (Ω, ℱ , {ℱ𝑡}𝑡∈[𝑇1 ,𝑇2] , P). We say that an
𝑁-quantizer Λ𝑁 := {𝜆𝑁1 , · · · ,𝜆𝑁𝑁 } ⊂ 𝐿2[𝑇1 , 𝑇2], inducing the quantization 𝑋 = 𝑋Λ𝑁 , is stationary if
E[𝑋𝑡 |𝑋𝑡] = 𝑋𝑡 , for all 𝑡 ∈ [𝑇1 , 𝑇2].

Remark 3.3.11. To ease the notation, we omit the grid Λ𝑁 in 𝑋Λ𝑁 , while the dependence on the
dimension 𝑁 remains via the superscript d ∈ D𝑁

𝑚 (recall (3.3.2)).
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As was stated in Section 3.2.1, we are working with the continuous version of the Gaussian
Volterra process 𝑍 given by the series expansion (3.2.5). This will ease the proof of stationarity
below (for a similar result in the case of the Brownian motion [128, Proposition 2]).

Proposition 3.3.12. The product functional quantizers inducing 𝑍d in (3.3.2) are stationary.

Proof. For any 𝑡 ∈ [0, 1], by linearity, we have the following chain of equalities:

E
[
𝑍𝑡 |{�̂�𝑑(𝑛)𝑛 }1≤𝑛≤𝑚

]
= E

[∑
𝑘≥1
K[𝜓𝑘](𝑡)𝜉𝑘

���{�̂�𝑑(𝑛)𝑛 }1≤𝑛≤𝑚
]
=

∑
𝑘≥1
K[𝜓𝑘](𝑡)E

[
𝜉𝑘

���{�̂�𝑑(𝑛)𝑛 }1≤𝑛≤𝑚
]
.

Since theN(0, 1)-Gaussian 𝜉𝑛’s are i.i.d., by definition of optimal quadratic quantizers (hence
stationary), we have E[𝜉𝑘 |�̂�𝑑(𝑖)𝑖 ] = 𝛿𝑖𝑘 �̂�

𝑑(𝑖)
𝑖 , for all 𝑖 , 𝑘 ∈ {1, . . . , 𝑚}, and therefore

E
[
𝜉𝑘

���{�̂�𝑑(𝑛)𝑛 }1≤𝑛≤𝑚
]
= E

[
𝜉𝑘

����̂�𝑑(𝑘)𝑘

]
= �̂�𝑑(𝑘)𝑘 , for all 𝑘 ∈ {1, . . . , 𝑚}.

Thus, we obtain
E

[
𝑍𝑡

���{�̂�𝑑(𝑛)𝑛 }1≤𝑛≤𝑚
]
=

∑
𝑘≥1
K[𝜓𝑘](𝑡)�̂�𝑑(𝑘)𝑘 = 𝑍d

𝑡 .

Finally, exploiting the tower property and the fact that the 𝜎-algebra generated by 𝑍d
𝑡 is included

in the 𝜎-algebra generated by {�̂�𝑑(𝑛)𝑛 }𝑛∈{1,...,𝑚} by Definition 3.3.2, we obtain

E
[
𝑍𝑡

���𝑍d
𝑡

]
= E

[
E

[
𝑍𝑡

���{�̂�𝑑(𝑛)𝑛 }𝑛∈{1,...,𝑚}
] ���𝑍d

𝑡

]
= E

[
𝑍d
𝑡

���𝑍d
𝑡

]
= 𝑍d

𝑡 ,

which concludes the proof. □

3.4 Application to VIX derivatives in rough Bergomi

We now specialise the setup above to the case of rough volatility models. These models are
extensions of classical stochastic volatility models, introduced to better reproduce the market
implied volatility surface. The volatility process is stochastic and driven by a rough process,
by which we mean a process whose trajectories are 𝐻-Hölder continuous with 𝐻 ∈ (0, 1

2 ). The
empirical study [77] was the first to suggest such a rough behaviour for the volatility, and ignited
tremendous interest in the topic. The website https://sites.google.com/site/roughvol/
home contains an exhaustive and up-to-date review of the literature on rough volatility. Unlike
continuous Markovian stochastic volatility models, which are not able to fully describe the steep
implied volatility skew of short-maturity options in equity markets, rough volatility models have
shown accurate fit for this crucial feature. Within rough volatility, the rough Bergomi model [14]
is one of the simplest, yet decisive frameworks to harness the power of the roughness for pricing
purposes. We show how to adapt our functional quantization setup to this case.

103

https://sites.google.com/site/roughvol/home
https://sites.google.com/site/roughvol/home
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3.4.1 The generalised Bergomi model

We work here with a slightly generalised version of the rough Bergomi model, defined as
𝑋𝑡 = −1

2

∫ 𝑡

0
V𝑠d𝑠 +

∫ 𝑡

0

√
V𝑠d𝐵𝑠 , 𝑋0 = 0,

V𝑡 = 𝑣0(𝑡) exp
{
𝛾𝑍𝑡 − 𝛾2

2

∫ 𝑡

0
𝐾(𝑡 − 𝑠)2d𝑠

}
, V0 > 0,

where 𝑋 is the log-stock price, V the instantaneous variance process driven by the Gaussian
Volterra process 𝑍 in (3.2.1), 𝛾 > 0 and 𝐵 is a Brownian motion defined as 𝐵 := 𝜌𝑊 +√

1 − 𝜌2𝑊⊥

for some correlation 𝜌 ∈ [−1, 1] and 𝑊,𝑊⊥ orthogonal Brownian motions. The filtered proba-
bility space is therefore taken as ℱ𝑡 = ℱ𝑊

𝑡 ∨ℱ𝑊⊥
𝑡 , 𝑡 ≥ 0. This is a non-Markovian generalization

of Bergomi’s second generation stochastic volatility model [21], letting the variance be driven
by a Gaussian Volterra process instead of a standard Brownian motion. Here, 𝑣𝑇(𝑡) denotes the
forward variance for a remaining maturity 𝑡, observed at time 𝑇. In particular, 𝑣0 is the initial
forward variance curve, assumed to be ℱ0-measurable. Indeed, given market prices of variance
swaps 𝜎2

𝑇(𝑡) at time 𝑇 with remaining maturity 𝑡, the forward variance curve can be recovered
as 𝑣𝑇(𝑡) = 𝑑

d𝑡
(
𝑡𝜎2
𝑇(𝑡)

)
, for all 𝑡 ≥ 0, and the process {𝑣𝑠(𝑡 − 𝑠)}0≤𝑠≤𝑡 is a martingale for all fixed

𝑡 > 0.

Remark 3.4.1. With 𝐾(𝑢) = 𝑢𝐻− 1
2 , 𝛾 = 2𝜈𝐶𝐻 , for 𝜈 > 0, and 𝐶𝐻 :=

√
2𝐻Γ(3/2−𝐻)

Γ(𝐻+1/2)Γ(2−2𝐻) , we recover the
standard rough Bergomi model [14].

3.4.2 VIX Futures in the generalised Bergomi

We consider the pricing of VIX Futures (www.cboe.com/tradable_products/vix/) in the
rough Bergomi model. They are highly liquid Futures on the Chicago Board Options Exchange
Volatility Index, introduced on March 26, 2004, to allow for trading in the underlying VIX. Each
VIX Future represents the expected implied volatility for the 30 days following the expiration
date of the Futures contract itself. The continuous version of the VIX at time 𝑇 is determined
by the continuous-time monitoring formula

VIX2
𝑇 : = E𝑇

[
1
Δ

∫ 𝑇+Δ

𝑇
d〈𝑋𝑠 , 𝑋𝑠〉

]
=

1
Δ

∫ 𝑇+Δ

𝑇
E[V𝑠 |ℱ𝑇]d𝑠 (3.4.1)

=
1
Δ

∫ 𝑇+Δ

𝑇
E𝑇

[
𝑣0(𝑠)e𝛾𝑍𝑠−

𝛾2
2

∫ 𝑠
0 𝐾(𝑠−𝑢)2d𝑢

]
d𝑠

=
1
Δ

∫ 𝑇+Δ

𝑇
𝑣0(𝑠)e𝛾

∫ 𝑇
0 𝐾(𝑠−𝑢)d𝑊𝑢− 𝛾2

2
∫ 𝑠
0 𝐾(𝑠−𝑢)2d𝑢E𝑇

[
e𝛾

∫ 𝑠
𝑇 𝐾(𝑠−𝑢)d𝑊𝑢

]
d𝑠

=
1
Δ

∫ 𝑇+Δ

𝑇
𝑣0(𝑠)e𝛾

∫ 𝑇
0 𝐾(𝑠−𝑢)d𝑊𝑢− 𝛾2

2
∫ 𝑠
0 𝐾(𝑠−𝑢)2d𝑢e

𝛾2
2

∫ 𝑠
𝑇 𝐾(𝑠−𝑢)2d𝑢d𝑠,
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similarly to [103], where Δ is equal to 30 days, and we write E𝑇[·] := E[·|ℱ𝑇] (dropping the
subscript when 𝑇 = 0). Thus, the price of a VIX Future with maturity 𝑇 is given by

P𝑇 := E [VIX𝑇] = E

(

1
Δ

∫ 𝑇+Δ

𝑇
𝑣0(𝑡)e𝛾𝑍

𝑇,Δ
𝑡 + 𝛾2

2

(∫ 𝑡−𝑇
0 𝐾(𝑠)2d𝑠−∫ 𝑡0 𝐾(𝑠)2d𝑠

)
d𝑡

) 1
2
 ,

where the process (𝑍𝑇,Δ𝑡 )𝑡∈[𝑇,𝑇+Δ] is given by

𝑍𝑇,Δ𝑡 =
∫ 𝑇

0
𝐾(𝑡 − 𝑠)d𝑊𝑠 , 𝑡 ∈ [𝑇, 𝑇 + Δ].

To develop a functional quantization setup for VIX Futures, we need to quantize the pro-
cess 𝑍𝑇,Δ, which is close, yet slightly different, from the Gaussian Volterra process 𝑍 in (3.2.1).

3.4.3 Properties of 𝑍𝑇

To retrieve the same setting as above, we normalise the time interval to [0, 1], that is𝑇+Δ = 1.
Then, for 𝑇 fixed, we define the process 𝑍𝑇 := 𝑍𝑇,1−𝑇 as

𝑍𝑇𝑡 :=
∫ 𝑇

0
𝐾(𝑡 − 𝑠)d𝑊𝑠 , 𝑡 ∈ [𝑇, 1],

which is well defined by the square integrability of 𝐾. By definition, the process 𝑍𝑇 is centred
Gaussian and Itô isometry gives its covariance function as

𝑅𝑍𝑇 (𝑡 , 𝑠) =
∫ 𝑇

0
𝐾(𝑡 − 𝑢)𝐾(𝑠 − 𝑢)d𝑢, 𝑡, 𝑠 ∈ [𝑇, 1].

Proceeding as previously, we introduce a Gaussian process with same mean and covariance as
those of 𝑍𝑇 , represented as a series expansion involving standard Gaussian random variables;
from which product functional quantization follows. It is easy to see that the process 𝑍𝑇

has continuous trajectories. Indeed, (𝑍𝑇𝑡 − 𝑍𝑇𝑠 )2 ≤ E[|𝑍𝑡 − 𝑍𝑠 |2 |ℱ𝑊
𝑇 ], by conditional Jensen’s

inequality since 𝑍𝑇𝑡 = E[𝑍𝑡 |ℱ𝑊
𝑇 ]. Then, applying tower property, for any 𝑇 ≤ 𝑠 < 𝑡 ≤ 1,

E
[��𝑍𝑇𝑡 − 𝑍𝑇𝑠 ��2] ≤ E [|𝑍𝑡 − 𝑍𝑠 |2] ,

and therefore the H-Hölder regularity of 𝑍 (Section 3.2) implies that of 𝑍𝑇 .

Series expansion

Let {𝜉𝑛}𝑛≥1 be an i.i.d. sequence of standard Gaussian and {𝜓𝑛}𝑛≥1 the orthonormal basis
of 𝐿2[0, 1] from (3.2.3). Denote by K𝑇(·) the operator from 𝐿2[0, 1] to C[𝑇, 1] that associates to
each 𝑓 ∈ 𝐿2[0, 1],

K𝑇[ 𝑓 ](𝑡) :=
∫ 𝑇

0
𝐾(𝑡 − 𝑠) 𝑓 (𝑠)d𝑠, 𝑡 ∈ [𝑇, 1]. (3.4.2)
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We define the process 𝑌𝑇 as (recall the analogous (3.2.2)):

𝑌𝑇𝑡 :=
∑
𝑛≥1
K𝑇[𝜓𝑛](𝑡)𝜉𝑛 , 𝑡 ∈ [𝑇, 1].

The lemma below follows from the corresponding results in Remark 3.2.2 and Lemma 3.2.4:

Lemma 3.4.2. The process 𝑌𝑇 is centred, Gaussian and with covariance function

𝑅𝑌𝑇 (𝑠, 𝑡) := E
[
𝑌𝑇𝑠 𝑌

𝑇
𝑡

]
=

∫ 𝑇

0
𝐾(𝑡 − 𝑢)𝐾(𝑠 − 𝑢)d𝑢, for all 𝑠, 𝑡 ∈ [𝑇, 1].

To complete the analysis of 𝑍𝑇 , we require an analogue version of Assumption 3.2.3.

Assumption 3.4.3. Assumption 3.2.3 holds for the sequence (K𝑇[𝜓𝑛])𝑛≥1 on [𝑇, 1] with the con-
stants 𝐶1 and 𝐶2 depending on 𝑇.

3.4.4 The truncated RL case

We again pay special attention to the RL case, for which the operator (3.4.2) reads, for each
𝑛 ∈ N,

K𝑇
𝐻[𝜓𝑛](𝑡) :=

∫ 𝑇

0
(𝑡 − 𝑠)𝐻− 1

2𝜓𝑛(𝑠)d𝑠, for all 𝑡 ∈ [𝑇, 1],

and satisfies the following, proved in Appendix 3.A.4:

Lemma 3.4.4. The functions {K𝑇
𝐻[𝜓𝑛]}𝑛≥1 satisfy Assumption 3.4.3.

A key role in this proof is played by an intermediate lemma, proved in Appendix 3.A.3,
which provides a convenient representation for the integral

∫ 𝑇
0 (𝑡 − 𝑢)𝐻−

1
2 ei𝜋𝑢d𝑢, 𝑡 ≥ 𝑇 ≥ 0, in

terms of the generalised hypergeometric function 1𝐹2(·).
Lemma 3.4.5. For any 𝑡 ≥ 𝑇 ≥ 0, the representation∫ 𝑇

0
(𝑡 − 𝑢)𝐻− 1

2 ei𝜋𝑢d𝑢 = ei𝜋𝑡
[(
𝜁 1

2
(𝑡 , ℎ1) − 𝜁 1

2
((𝑡 − 𝑇), ℎ1)

)
− i𝜋

(
𝜁 3

2
(𝑡 , ℎ2) − 𝜁 3

2
((𝑡 − 𝑇), ℎ2)

)]
holds, where ℎ1 := 1

2 (𝐻 + 1
2 ) and ℎ2 = 1

2 + ℎ1, 𝜒(𝑧) := − 1
4𝜋

2𝑧2 and

𝜁𝑘(𝑧, ℎ) := 𝑧2ℎ

2ℎ 1𝐹2 (ℎ; 𝑘, 1 + ℎ; 𝜒(𝑧)) , for 𝑘 ∈
{

1
2 ,

3
2

}
. (3.4.3)

Remark 3.4.6. The representation in Lemma 3.4.5 can be exploited to obtain an explicit formula for
K𝑇
𝐻[𝜓𝑛](𝑡), 𝑡 ∈ [𝑇, 1] and 𝑛 ∈ N:

K𝑇
𝐻[𝜓𝑛](𝑡) =

√
2

𝑚𝐻+ 1
2

∫ 𝑚𝑇

0 (𝑚𝑡 − 𝑢)𝐻− 1
2 cos(𝜋𝑢)d𝑢 =

√
2

𝑚𝐻+ 1
2
<

{∫ 𝑚𝑇

0 (𝑚𝑡 − 𝑢)𝐻− 1
2 ei𝜋𝑢d𝑢

}
=

√
2

𝑚𝐻+ 1
2
<

{
ei𝜋𝑚𝑡

[(
𝜁 1

2
(𝑚𝑡, ℎ1) − 𝜁 1

2
(𝑚(𝑡 − 𝑇), ℎ1)

)
− i𝜋

(
𝜁 3

2
(𝑚𝑡, ℎ2) − 𝜁 3

2
(𝑚(𝑡 − 𝑇), ℎ2)

)]}
=

√
2

𝑚𝐻+ 1
2

{
cos(𝑚𝑡𝜋)

(
𝜁 1

2
(𝑚𝑡, ℎ1) − 𝜁 1

2
(𝑚(𝑡 − 𝑇), ℎ1)

)
+ 𝜋 sin(𝑚𝑡𝜋)

(
𝜁 3

2
(𝑚𝑡, ℎ2) − 𝜁 3

2
(𝑚(𝑡 − 𝑇), ℎ2)

)}
,
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with 𝑚 := 𝑛 − 1
2 and 𝜁 1

2
(·), 𝜁 3

2
(·) in (3.4.3). We shall exploit this in our numerical simulations.

3.4.5 VIX Derivatives Pricing

We can now introduce the quantization for the process 𝑍𝑇,Δ, similarly to Definition 3.3.2,
recalling the definition of the setD𝑁

𝑚 in (3.3.1):

Definition 3.4.7. A product functional quantization for 𝑍𝑇,Δ of order 𝑁 is defined as

𝑍𝑇,Δ,d𝑡 :=
𝑚∑
𝑛=1
K𝑇,Δ[𝜓𝑇,Δ𝑛 ](𝑡)�̂�𝑑(𝑛)𝑛 , 𝑡 ∈ [𝑇, 𝑇 + Δ],

where d ∈ D𝑁
𝑚 , for some 𝑚 ∈ N, and for every 𝑛 ∈ {1, . . . , 𝑚}, �̂�𝑑(𝑛)𝑛 is the (unique) optimal quadratic

quantization of the Gaussian variable 𝜉𝑛 of order 𝑑(𝑛).
The sequence {𝜓𝑇,Δ𝑛 }𝑛∈N denotes the orthonormal basis of 𝐿2[0, 𝑇 + Δ] given by

𝜓𝑇,Δ𝑛 (𝑡) =
√

2
𝑇 + Δ cos

(
𝑡√

𝜆𝑛(𝑇 + Δ)
)
, with 𝜆𝑛 =

4
(2𝑛 − 1)2𝜋2 ,

and the operatorK𝑇,Δ : 𝐿2[0, 𝑇 + Δ] → C[𝑇, 𝑇 + Δ] is defined for 𝑓 ∈ 𝐿2[0, 𝑇 + Δ] as

K𝑇,Δ[ 𝑓 ](𝑡) :=
∫ 𝑇

0
𝐾(𝑡 − 𝑠) 𝑓 (𝑠)d𝑠, 𝑡 ∈ [𝑇, 𝑇 + Δ].

Adapting the proof of Proposition 3.3.12 it is possible to prove that these quantizers are station-
ary, too.

Remark 3.4.8. The dependence on Δ is due to the fact that the coefficients in the series expansion depend
on the time interval [𝑇, 𝑇 + Δ].

In the RL case for each 𝑛 ∈ N, we can write, using Remark 3.4.6, for any 𝑡 ∈ [𝑇, 𝑇 + Δ]:

K𝑇,Δ
𝐻 [𝜓𝑇,Δ𝑛 ](𝑡) =

√
2

𝑇 + Δ
∫ 𝑇

0
(𝑡 − 𝑠)𝐻− 1

2 cos
(

𝑠√
𝜆𝑛(𝑇 + Δ)

)
d𝑠,

=

√
2(𝑇 + Δ)𝐻
(𝑛 − 1/2)𝐻+ 1

2

∫ (𝑛−1/2)
𝑇+Δ 𝑇

0

( (𝑛 − 1/2)
𝑇 + Δ 𝑡 − 𝑢

)𝐻− 1
2 cos(𝜋𝑢)d𝑢

=

√
2(𝑇 + Δ)𝐻
(𝑛 − 1

2 )𝐻+
1
2

{
cos

( (𝑛 − 1
2 )

𝑇 + Δ 𝑡𝜋
) (
𝜁 1

2

( (𝑛 − 1
2 )

𝑇 + Δ 𝑡 , ℎ1

)
− 𝜁 1

2

( (𝑛 − 1
2 )

𝑇 + Δ (𝑡 − 𝑇), ℎ1

))
+ 𝜋 sin

( (𝑛 − 1
2 )

𝑇 + Δ 𝑡𝜋
) (
𝜁 3

2

( (𝑛 − 1
2 )

𝑇 + Δ 𝑡 , ℎ2

)
− 𝜁 3

2

( (𝑛 − 1
2 )

𝑇 + Δ (𝑡 − 𝑇), ℎ2

))}
.

We thus exploit 𝑍𝑇,Δ,d to obtain an estimation of VIX𝑇 and of VIX Futures through the
following

V̂IX
d
𝑇 :=

(
1
Δ

∫ 𝑇+Δ

𝑇
𝑣0(𝑡) exp

{
𝛾𝑍𝑇,Δ,d𝑡 + 𝛾2

2

(∫ 𝑡−𝑇

0
𝐾(𝑠)2d𝑠 −

∫ 𝑡

0
𝐾(𝑠)2d𝑠

)}
d𝑡

) 1
2

, (3.4.4)
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P̂d
𝑇 := E


(

1
Δ

∫ 𝑇+Δ

𝑇
𝑣0(𝑡) exp

{
𝛾𝑍𝑇,Δ,d𝑡 + 𝛾2

2

(∫ 𝑡−𝑇

0
𝐾(𝑠)2d𝑠 −

∫ 𝑡

0
𝐾(𝑠)2d𝑠

)}
d𝑡

) 1
2
 .

Remark 3.4.9. The expectation above reduces to the following deterministic summation, making its
computation immediate:

P̂d
𝑇 = E


(

1
Δ

∫ 𝑇+Δ

𝑇
𝑣0(𝑡)e𝛾

∑𝑚
𝑛=1K𝑇,Δ[𝜓𝑇,Δ𝑛 ](𝑡)�̂�𝑑(𝑛)𝑛 + 𝛾2

2

(∫ 𝑡−𝑇
0 𝐾(𝑠)2d𝑠−∫ 𝑡0 𝐾(𝑠)2d𝑠

)
d𝑡

) 1
2


=
∑
𝑖∈𝐼𝑑

(
1
Δ

∫ 𝑇+Δ

𝑇
𝑣0(𝑡)e𝛾

∑𝑚
𝑛=1K𝑇,Δ[𝜓𝑇,Δ𝑛 ](𝑡)𝑥𝑑(𝑛)𝑖𝑛

+ 𝛾2
2

(∫ 𝑡−𝑇
0 𝐾(𝑠)2d𝑠−∫ 𝑡0 𝐾(𝑠)2d𝑠

)
d𝑡

) 1
2

·
𝑚∏
𝑛=1
P(𝜉𝑛 ∈ 𝐶𝑖𝑛 (Γ𝑑(𝑛))),

where �̂�𝑑(𝑛)𝑛 is the (unique) optimal quadratic quantization of 𝜉𝑛 of order 𝑑(𝑛), 𝐶 𝑗(Γ𝑑(𝑛)) is the 𝑗-th
Voronoi cell relative to the 𝑑(𝑛)-quantizer (Definition 3.3.1), with 𝑗 = 1, . . . , 𝑑(𝑛) and 𝑖 = (𝑖1 , . . . , 𝑖𝑚) ∈∏𝑚

𝑗=1{1, . . . , 𝑑(𝑗)}. In the numerical illustrations displayed in Section 3.5, we exploited Simpson rule to
evaluate these integrals. In particular, we used simps function from scipy.integrate with 300 points.

3.4.6 Quantization error of VIX Derivatives

The following 𝐿2-error estimate is a consequence of Assumption 3.4.3 (B) and its proof is
omitted since it is analogous to that of Proposition 3.3.6:

Proposition 3.4.10. Under Assumption 3.4.3, for any 𝑁 ≥ 1, there exist 𝑚∗𝑇(𝑁) ∈ N, 𝐶 > 0 such that

E

[𝑍𝑇,Δ,d∗𝑇,𝑁 − 𝑍𝑇,Δ2

𝐿2[𝑇,𝑇+Δ]

] 1
2

≤ 𝐶 log(𝑁)−𝐻 ,

for d∗𝑇,𝑁 ∈ D𝑁
𝑚∗𝑇 (𝑁)

and with, for each 𝑛 = 1, . . . , 𝑚∗𝑇(𝑁),

𝑑∗𝑇,𝑁 (𝑛) =
⌊
𝑁

1
𝑚∗𝑇 (𝑁) 𝑛−(𝐻+

1
2 ) (𝑚∗𝑇(𝑁)!) 2𝐻+1

2𝑚∗𝑇 (𝑁)
⌋
.

Furthermore 𝑚∗𝑇(𝑁) = O(log(𝑁)).

As a consequence, we have the following error quantification for European options on the
VIX:

Theorem 3.4.11. Let 𝐹 : R → R be a globally Lipschitz-continuous function and d ∈ N𝑚 for some
𝑚 ∈ N. There exists 𝔎 > 0 such that���E [𝐹 (VIX𝑇)] − E

[
𝐹

(
V̂IX

d
𝑇

)] ��� ≤ 𝔎 E

[𝑍𝑇,Δ − 𝑍𝑇,Δ,d2

𝐿2([𝑇,𝑇+Δ])

] 1
2

. (3.4.5)
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Furthermore, for any 𝑁 ≥ 1, there exist 𝑚∗𝑇(𝑁) ∈ N and ℭ > 0 such that, with d∗𝑇,𝑁 ∈ D𝑁
𝑚∗𝑇 (𝑁)

,���E [𝐹 (VIX𝑇)] − E
[
𝐹

(
V̂IX

d∗𝑇,𝑁
𝑇

)] ��� ≤ ℭ log(𝑁)−𝐻 . (3.4.6)

The upper bound in (3.4.6) is an immediate consequence of (3.4.5) and Proposition 3.4.10.
The proof of (3.4.5) is much more involved and is postponed to Appendix 3.A.5.

Remark 3.4.12.
• When 𝐹(𝑥) = 1, we obtain the price of VIX Futures and the quantization error���P𝑇 − P̂d

𝑇

��� ≤ 𝔎 E

[𝑍𝑇,Δ − 𝑍𝑇,Δ,d2

𝐿2([𝑇,𝑇+Δ])

] 1
2

,

and, for any 𝑁 ≥ 1, Theorem 3.4.11 yields the existence of 𝑚∗𝑇(𝑁) ∈ N, ℭ > 0 such that���P𝑇 − P̂d∗𝑇,𝑁
𝑇

��� ≤ ℭ log(𝑁)−𝐻 .
• Since the functions 𝐹(𝑥) := (𝑥 − 𝐾)+ and 𝐹(𝑥) := (𝐾 − 𝑥)+ are globally Lipschitz continuous, the

same bounds apply for European Call and Put options on the VIX.

3.5 Numerical results for the RL case

We now test the quality of the quantization on the pricing of VIX Futures in the standard
rough Bergomi model, considering the RL kernel in Remark 3.4.1.

3.5.1 Practical considerations for 𝑚 and d

Proposition 3.3.6 provides, for any fixed 𝑁 ∈ N, some indications on 𝑚∗(𝑁) and d∗𝑁 ∈ D𝑁
𝑚

(see (3.3.1)), for which the rate of convergence of the quantization error is log(𝑁)−𝐻 . We
present now a numerical algorithm to compute the optimal parameters. For a given number
of trajectories 𝑁 ∈ N, the problem is equivalent to finding 𝑚 ∈ N and d ∈ D𝑁

𝑚 such that
E[‖𝑍𝐻 −𝑍𝐻,d‖2

𝐿2[0,1]] is minimal. Starting from (3.A.1) and adding and subtracting the quantity∑𝑚
𝑛=1(

∫ 1
0 K𝐻[𝜓𝑛](𝑡)2d𝑡), we obtain

E

[𝑍𝐻 − 𝑍𝐻,d2

𝐿2[0,1]

]
=

𝑚∑
𝑛=1

(∫ 1

0
K𝐻[𝜓𝑛](𝑡)2d𝑡

)
[𝜺𝑑(𝑛)(𝜉𝑛)]2 +

∑
𝑘≥𝑚+1

∫ 1

0
K𝐻[𝜓𝑘](𝑡)2d𝑡

=
𝑚∑
𝑛=1

(∫ 1

0
K𝐻[𝜓𝑛](𝑡)2d𝑡

) { [
𝜺𝑑(𝑛)(𝜉𝑛)

]2 − 1
}
+

∑
𝑘≥1

∫ 1

0
K𝐻[𝜓𝑘](𝑡)2d𝑡 , (3.5.1)

where 𝜺𝑑(𝑛)(𝜉𝑛) denotes the optimal quadratic quantization error for the quadratic quantizer of
order 𝑑(𝑛) of the standard Gaussian random variable 𝜉𝑛 (see Appendix 3.A.1 for more details).
Notice that the last term on the right-hand side of (3.5.1) does not depend on 𝑚, nor on d. We
therefore simply look for 𝑚 and d that minimise

𝐴(𝑚, d) :=
𝑚∑
𝑛=1

(∫ 1

0
K𝐻[𝜓𝑛]2(𝑡)d𝑡

) (
[𝜺𝑑(𝑛)(𝜉𝑛)]2 − 1

)
.
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This can be easily implemented: the functions K𝐻[𝜓𝑛] can be obtained numerically from the
hypergeometric function and the quadratic errors 𝜺𝑑(𝑛)(𝜉𝑛) are available at www.quantize.
maths-fi.com/gaussian_database, for 𝑑(𝑛) ∈ {1, . . . , 5999}. The algorithm therefore reads as
follows

(i) fix 𝑚;

(ii) minimise 𝐴(𝑚, d) over d ∈ D𝑁
𝑚 and call it 𝐴(𝑚);

(iii) minimise 𝐴(𝑚) over 𝑚 ∈ N.

Table 3.5.1: Optimal parameters.

𝑁 𝑚(𝑁) d𝑁 𝑁 𝑡𝑟𝑎 𝑗

10 2 5 - 2 10
102 4 8 - 3 - 2 - 2 96
103 6 10 - 4 - 3 - 2 - 2 - 2 960
104 8 10 - 5 - 4 - 3 - 2 - 2 - 2 - 2 9600
105 10 14 - 6 - 4 - 3 - 3 - 2 - 2 - 2 - 2 - 2 96768
106 12 14 - 6 - 5 - 4 - 3 - 3 - 2 - 2 - 2 - 2 - 2 - 2 967680

Table 3.5.2: Rate-optimal parameters.

𝑁 𝑚∗(𝑁) = blog(𝑁)c Relative error d∗𝑁 𝑁 ∗𝑡𝑟𝑎 𝑗
10 2 2.75% 3 - 2 6
102 4 1.30% 5 - 3 - 2 - 2 60
103 6 1.09% 6 - 4 - 3 - 2 - 2 - 2 576
104 9 3.08% 6 - 4 - 3 - 2 - 2 - 2 - 2 - 1 - 1 1152
105 11 3.65% 7 - 4 - 3 - 3 - 2 - 2 - 2 - 2 - 1 - 1 - 1 4032
106 13 2.80% 8 - 5 - 4 - 3 - 3 - 2 - 2 - 2 - 2 - 2 - 1 - 1 - 1 46080

𝑁 𝑚∗(𝑁) = blog(𝑁)c - 1 Relative error d∗𝑁 𝑁 ∗𝑡𝑟𝑎 𝑗
10 1 2.78% 10 10
102 3 1.13% 6 - 4 - 3 72
103 5 1.22% 7 - 4 - 3 - 3 - 2 504
104 8 1.35% 7 - 4 - 3 - 3 - 2 - 2 - 2 - 2 4032
105 10 2.29% 7 - 5 - 4 - 3 - 2 - 2 - 2 - 2 - 2 - 1 13440
106 12 2.25% 8 - 5 - 4 - 3 - 3 - 2 - 2 - 2 - 2 - 2 - 2 - 1 92160

𝑁 𝑚∗(𝑁) = blog(𝑁)c - 2 Relative error d∗𝑁 𝑁 ∗𝑡𝑟𝑎 𝑗
102 2 2.53% 12 - 8 96
103 4 1.44% 9 - 5 - 4 - 3 540
104 7 1.46% 7 - 5 - 4 - 3 - 2 - 2 - 2 3360
105 9 1.57% 8 - 5 - 4 - 3 - 3 - 2 - 2 - 2 - 2 23040
106 11 1.48% 9 - 6 - 4 - 3 - 3 - 3 - 2 - 2 - 2 - 2 - 2 186624
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The results of the algorithm for some reference values of 𝑁 ∈ N are available in Table 3.5.1,
where 𝑁 𝑡𝑟𝑎 𝑗 :=

∏𝑚(𝑁)
𝑖=1 𝑑𝑁 (𝑖) represents the number of trajectories actually computed in the

optimal case. In Table 3.5.2, we compute the rate optimal parameters derived in Proposi-
tion 3.3.6: the column ‘Relative error’ contains the normalised difference between the 𝐿2-
quantization error made with the optimal choice of 𝑚(𝑁) and d𝑁 in Table 3.5.1 and the 𝐿2-
quantization error made with 𝑚∗(𝑁) and d∗𝑁 of the corresponding line of the table, namely
|‖𝑍𝐻−𝑍𝐻,d𝑁 ‖𝐿2[0,1]−‖𝑍𝐻−𝑍𝐻,d

∗
𝑁 ‖𝐿2[0,1] |

‖𝑍𝐻−𝑍𝐻,d𝑁 ‖𝐿2[0,1]
. In the column 𝑁 ∗𝑡𝑟𝑎 𝑗 :=

∏𝑚∗(𝑁)
𝑖=1 𝑑∗𝑁 (𝑖) we display the number of

trajectories actually computed in the rate-optimal case. The optimal quadratic vector quantiza-
tion of a standard Gaussian of order 1 is the random variable identically equal to zero and so
when 𝑑(𝑖) = 1 the corresponding term is uninfluential in the representation.

3.5.2 The functional quantizers

The computations in Section 3.2 and 3.3 for the RL process, respectively the ones in Sec-
tion 3.4.3 and 3.4.4 for 𝑍𝐻,𝑇 , provide a way to obtain the functional quantizers of the processes.

Quantizers of the RL process

For the RL process, Definition 3.3.4 shows that its quantizer is a weighted Cartesian product
of grids of the one-dimensional standard Gaussian random variables. The time-dependent
weightsK𝐻[𝜓𝑛](·) are computed using (3.2.7), and for a fixed number of trajectories 𝑁 , suitable
𝑚(𝑁) and d𝑁 ∈ D𝑁

𝑚(𝑁) are chosen according to the algorithm in Section 3.5.1. Not surprisingly,
Figures 3.5.1 show that as the paths of the process get smoother (𝐻 increases) the trajectories
become less fluctuating and shrink around zero. For 𝐻 = 0.5, where the RL process reduces to
the standard Brownian motion, we recover the well-known quantizer from [128, Figures 7-8].
This is consistent as in that case K𝐻[𝜓𝑛](𝑡) =

√
𝜆𝑛
√

2 sin
(

𝑡√
𝜆𝑛

)
, and so 𝑌𝐻 is the Karhuenen-

Loève expansion for the Brownian motion [128, Section 7.1].

Quantizers of 𝑍𝐻,𝑇

A quantizer for 𝑍𝐻,𝑇 is defined analogously to that of 𝑍𝐻 using Definition 3.3.4. The
weights K𝑇

𝐻[𝜓𝑛](·) in the summation are available in closed form, as shown in Remark 3.4.6. It
is therefore possible to compute the 𝑁-product functional quantizer, for any 𝑁 ∈ N, as Figure
3.5.2 displays.

3.5.3 Pricing and comparison with Monte Carlo

In this section we show and comment some plots related to the estimation of prices of
derivatives on the VIX and realised variance. We set the values 𝐻 = 0.1 and 𝜈 = 1.18778 for the
parameters and investigate three different initial forward variance curves 𝑣0(·), as in [103]:

Scenario 1. 𝑣0(𝑡) = 0.2342;

Scenario 2. 𝑣0(𝑡) = 0.2342(1 + 𝑡)2;

Scenario 3. 𝑣0(𝑡) = 0.2342
√

1 + 𝑡.
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Figure 3.5.1: Product functional quantization of the RL process with 𝑁-quantizers, for 𝐻 ∈
{0.1, 0.25, 0.5}, for 𝑁 = 10 and 𝑁 = 100.

Figure 3.5.2: Product functional quantization of 𝑍𝐻,𝑇 via N-quantizers, with 𝐻 = 0.1, 𝑇 = 0.7,
for 𝑁 ∈ {10, 100}.
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The choice of such 𝜈 is a consequence of the choice 𝜂 = 1.9, consistently with [17], and of
the relationship 𝜈 = 𝜂

√
2𝐻

2𝐶𝐻 . In all these cases, 𝑣0 is an increasing function of time, whose value
at zero is close to the square of the reference value of 0.25.

VIX Futures Pricing

One of the most recent and effective way to compute the price of VIX Futures is a Monte-
Carlo-simulation method based on Cholesky decomposition, for which we refer to [103, Section
3.3.2]. It can be considered as a good approximation of the true price when the number 𝑀 of
computed paths is large. In fact, in [103] the authors tested three simulation-based methods
(Hybrid scheme + forward Euler, Truncated Cholesky, SVD decomposition) and ‘all three meth-
ods seem to approximate the prices similarly well’. We thus consider the truncated Cholesky
approach as a benchmark and take 𝑀 = 106 trajectories and 300 equidistant point for the time
grid.

In Figure 3.5.3, we plot the VIX Futures prices as a function of the maturity 𝑇, where 𝑇
ranges in {1, 2, 3, 6, 9, 12} months (consistently with actual quotations) on the left, and the cor-
responding relative error w.r.t. the Monte Carlo benchmark on the right. It is clear that the
quantization approximates the benchmark from below and that the accuracy increases with the
number of trajectories.
We highlight that the quantization scheme for VIX Futures can be sped up considerably by stor-
ing ahead the quantized trajectories for 𝑍𝐻,𝑇,Δ, so that we only need to compute the integrations
and summations in Remark 3.4.9, which are extremely fast.

Table 3.5.3: Grid organisation times (in seconds) as a function of the maturity (rows, in months)
and of the number of trajectories (columns).

Grid organisation time
102 103 104 105 106

1 0.474 0.491 0.99 4.113 37.183
2 0.476 0.487 0.752 4.294 39.134
3 0.617 0.536 0.826 4.197 37.744
6 0.474 0.475 0.787 4.432 37.847
9 0.459 0.6 0.858 3.73 41.988
12 0.498 0.647 1.016 3.995 38.045

Furthermore, the grid organisation time itself is not that significant. In Table 3.5.3 we
display the grid organisation times (in seconds) as a function of the maturity (rows) expressed
in months and of the number of trajectories (columns). From this table one might deduce that
the time needed for the organisation of the grids is suitable to be performed once per day (say
every morning) as it should be for actual pricing purposes. It is interesting to note that the
estimations obtained with quantization (which is an exact method) are consistent in that they
mimic the trend of benchmark prices over time even for very small values of 𝑁 . However, as
a consequence of the variance in the estimations, the Monte Carlo prices are almost useless for
small values of 𝑀. Moreover, improving the estimations with Monte Carlo requires to increase
the number of points in the time grid with clear impact on computational time, while this is

113



3.5. NUMERICAL RESULTS FOR THE RL CASE

Figure 3.5.3: VIX Futures prices (left) and relative error (right) computed with quantization and
with Monte-Carlo as a function of the maturity 𝑇, for different numbers of trajectories, for each
forward variance curve scenario.
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not the case with quantization since the trajectories in the quantizers are smooth. Indeed, the
trajectories in the quantizers are not only smooth but also almost constant over time, hence
reducing the number of time steps to get the desired level of accuracy. Notice that here we
may refer also to the issue of complexity related to discretisation: a quadrature formula over
𝑛 points has a cost O(𝑛), while the simulation with a Cholesky method over the same grid
has cost O(𝑛2). Finally, our quantization method does not require much RAM. Indeed, all the
simulations performed with quantization can be easily run on a personal laptop1, while this
is not the case for the Monte Carlo scheme proposed here2. For the sake of completeness, we
also recall that combining Monte Carlo pricing of VIX futures/options with an efficient control
variate speeds up the computations significantly [98].

Figure 3.5.4: Log-log (natural logarithm) plot of the empirical absolute error with the theoreti-
cally predicted one for Scenario 1, with 𝑇 ∈ {1, 12} months.

In Figure 3.5.4, we show some plots comparing the behaviour of the empirical error with
the theoretically predicted one. We have decided to display only a couple of maturities for the
first scenario since the other plots are very similar. The figures display in a clear way that the
order of convergence of the empirical error should be bigger than the theoretically predicted
one: in particular, we expect it to be O(log(𝑁)−1).

VIX Options Pricing

To complete the discussion on VIX Options pricing, we present in Figure 3.5.5 the approx-
imation of the prices of ATM Call Options on the VIX obtained via quantization as a function
of the maturity 𝑇 and for different numbers of trajectories against the same price computed
via Monte Carlo simulations with 𝑀 = 106 trajectories, as a benchmark. Each plot represents
a different scenario for the initial forward variance curve. For all scenarios, as the number 𝑁
of trajectories goes to infinity, the prices in Figure 3.5.5 are clearly converging, and the limiting
curve is increasing in the maturity, as it should be.

1The personal computer used to run the quantization codes has the following technical specifications: RAM:
8.00 GB, SSD memory: 512 GB, Processor: AMD Ryzen 7 4700U with Radeon Graphics 2.00 GHz.

2The computer used to run the Monte Carlo codes is a virtual machine (OpenStack/Nova/KVM/Qemu, www.
openstack.org) with the following technical specifications: RAM: 32.00 GB, CPU: 8 virtual cores, Hypervisor CPU:
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Figure 3.5.5: Prices of ATM Call Options on the VIX via quantization.

Pricing of Continuously Monitored Options on Realised Variance

Product functional quantization of the process (𝑍𝐻𝑡 )𝑡∈[0,𝑇] can be exploited for (meaningful)
pricing purposes, too. We first price variance swaps, whose price is given by the following
expression

𝔖𝑇 := E
[

1
𝑇

∫ 𝑇

0
V𝑡d𝑡

����ℱ0

]
.

Let us recall that, in the rough Bergomi model,

V𝑡 = 𝑣0(𝑡) exp
(
2𝜈𝐶𝐻𝑍𝐻𝑡 −

𝜈2𝐶2
𝐻

𝐻
𝑡2𝐻

)
,

where𝐶𝐻 =
√

2𝐻Γ(3/2−𝐻)
Γ(𝐻+1/2)Γ(2−2𝐻) , 𝜈 > 0 is an endogenous constant and 𝑣0(𝑡) being the initial forward

variance curve. Thus, exploiting the fact that, for any fixed 𝑡 ∈ [0, 𝑇], 𝑍𝐻𝑡 is distributed according
to a centred Gaussian random variable with variance

∫ 𝑡

0 (𝑡 − 𝑠)2𝐻−1d𝑠 = 𝑡2𝐻
2𝐻 , the quantity 𝔖𝑇 can

be explicitly computed:

𝔖𝑇 =
1
𝑇

∫ 𝑇

0
𝑣0(𝑡)d𝑡.

This is particularly handy and provides us a simple benchmark. The price 𝔖𝑇 is, then, approx-

Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz, RAM 128GB, Storage: CEPH cluster (www.ceph.com).
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imated via quantization through

�̂�d
𝑇 =

∑
𝑖∈𝐼𝑑

(
1
𝑇

∫ 𝑇

0
𝑣0(𝑡) exp

(
2𝜈𝐶𝐻

𝑚∑
𝑛=1
K𝐻[𝜓𝑛](𝑡)𝑥𝑑(𝑛)𝑖𝑛

− 𝜈2𝐶2
𝐻

𝐻
𝑡2𝐻

)
d𝑡

)
𝑚∏
𝑛=1
P(𝜉𝑛 ∈ 𝐶𝑖𝑛 (Γ𝑑(𝑛))).

True price 0.0548
Quantization, 𝑁 = 102 0.0230
Quantization, 𝑁 = 103 0.0246
Quantization, 𝑁 = 104 0.0257
Quantization, 𝑁 = 105 0.0266
Quantization, 𝑁 = 106 0.0273

Figure 3.5.6: Prices and errors of variance swaps.

Numerical results are presented in Figure 3.5.6. On the left-hand side we display a table
with the approximations (depending on 𝑁 , the number of trajectories) of the price of a swap
on the realised variance in Scenario 1, for 𝑇 = 1, and the true value computed by integration.
On the right-hand side a log-log (natural logarithm) plot of the error against the function
𝑐 log(𝑁)−𝐻 , with 𝑐 being a suitable positive constant. For variance swaps the error is not
performing very well. It is indeed very close to the upper bound 𝑐 log(𝑁)−𝐻 that we have
computed theoretically. One possible theoretical motivation for this behaviour lies in the
difference between strong and weak error rates. Weak error and strong error do not necessarily
share the same order of convergence, being the weak error faster in general. See [15, 16, 75] for
recent developments on the topic in the rough volatility framework. For pricing purposes, we are
interested in weak error rates. Indeed, the pricing error should in principle have the following
form E[ 𝑓 (𝑊𝐻)] − E[ 𝑓 (�̂�𝐻)], where �̂�𝐻 is the process that we are using to approximate the
original𝑊𝐻 and 𝑓 is a functional that comes from the payoff function and that we can interpret
as a test function. Thus, the functional 𝑓 has a smoothing effect. On the other hand, the upper
bound for the quantization error we have computed is a strong error rate. This theoretical
discrepancy motivates the findings in Figure 3.5.4 when pricing VIX Futures and other options
on the VIX: the empirical error seems to converge with order O(log(𝑁)−1), while the predicted
order is O(log(𝑁)−𝐻). When pricing variance swaps, there is no functional 𝑓 involved, so we
expect a lower discrepancy between the two errors. Moreover, the different empirical rates
that are seen in Figure 3.5.4 for VIX futures (roughly O(log(𝑁)−1))) and in Figure 3.5.6 for
variance swaps (much closer to O(log(𝑁)−𝐻)) could be also related to the different degree of
pathwise regularity of the processes 𝑍 and 𝑍𝑇 . While 𝑡 → 𝑍𝑡 =

∫ 𝑡

0 𝐾(𝑡 − 𝑠)d𝑊𝑠 is a.s. (𝐻 − 𝜀)-
Hölder, for fixed 𝑇, the trajectories 𝑡 → 𝑍𝑇𝑡 =

∫ 𝑇
0 𝐾(𝑡 − 𝑠)d𝑊𝑠 of 𝑍𝑇 are much smoother when

𝑡 ∈ (𝑇, 𝑇 + Δ) and 𝑡 is bounded away from 𝑇. When pricing VIX derivatives, we are quantizing
almost everywhere a smooth Gaussian process (hence error rate of order log(𝑁)−1), while when
pricing derivatives on realised variance, we are applying quantization to a rough Gaussian
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process (hence error rate of order O(log(𝑁)−𝐻)), resulting in a deteriorated accuracy for the
prices of realised volatility derivatives such as the variance swaps in Figure 3.5.6.

Furthermore, it can be easily shown that, for any d ∈ D𝑁
𝑚 and for any𝑚, 𝑁 ∈ N, with𝑚 < 𝑁 ,

�̂�d
𝑇 always provides a lower bound for the true price 𝔖𝑇 . Indeed, since the quantizers 𝑍𝐻,d of

the process 𝑍𝐻 are stationary (cfr. Proposition 3.3.12), an application of Remark 3.3.9 to the
convex function 𝑓 (𝑥) = exp(2𝜈𝐶𝐻𝑥) together with the positivity of 𝑣0(𝑡) exp(− 𝜈2𝐶2

𝐻 𝑡
2𝐻

𝐻 ), for any
𝑡 ∈ [0, 𝑇], yields

�̂�d
𝑇 = E

[
1
𝑇

∫ 𝑇

0
𝑣0(𝑡) exp

(
−𝜈

2𝐶2
𝐻 𝑡

2𝐻

𝐻

)
exp

(
2𝜈𝐶𝐻𝑍𝐻,d𝑇

)
d𝑡

����ℱ0

]
=

1
𝑇

∫ 𝑇

0
𝑣0(𝑡) exp

(
−𝜈

2𝐶2
𝐻 𝑡

2𝐻

𝐻

)
E0

[
exp

(
2𝜈𝐶𝐻𝑍𝐻,d𝑇

)]
d𝑡

≤ 1
𝑇

∫ 𝑇

0
𝑣0(𝑡) exp

(
−𝜈

2𝐶2
𝐻 𝑡

2𝐻

𝐻

)
E0

[
exp

(
2𝜈𝐶𝐻𝑍𝐻𝑇

) ]
d𝑡 = 𝔖𝑇 .

Figure 3.5.7: Prices of European Call Option on realised variance as a function of 𝐾, via
Monte Carlo with 𝑀 = 106 trajectories and via quantization with 𝑁 ∈ {102 , 103 , 104 , 105 , 106}
trajectories.

To complete this section, we plot in Figure 3.5.7 approximated prices of European Call
Options on the realised variance via quantization with 𝑁 ∈ {102 , 103 , 104 , 105 , 106} trajectories
and via Monte Carlo with 𝑀 = 106 trajectories, as a benchmark. In order to take advantage of
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the trajectories obtained, we compute the price of a realised variance Call option with strike 𝐾
and maturity 𝑇 = 1 as

C(𝐾, 𝑇) = E
[(

1
𝑇

∫ 𝑇

0
V𝑡d𝑡 − 𝐾

)
+

����ℱ0

]
,

and we approximate it via quantization through

Ĉd(𝐾, 𝑇) =
∑
𝑖∈𝐼𝑑

(
1
𝑇

∫ 𝑇

0
𝑣0(𝑡) exp

(
2𝜈𝐶𝐻

𝑚∑
𝑛=1
K𝐻[𝜓𝑛](𝑡)𝑥𝑑(𝑛)𝑖𝑛

− 𝜈2𝐶2
𝐻

𝐻
𝑡2𝐻

)
d𝑡−𝐾

)
+

𝑚∏
𝑛=1
P(𝜉𝑛 ∈ 𝐶𝑖𝑛 (Γ𝑑(𝑛))).

The three plots in Figure 3.5.7 display the behaviour of the price of a European Call on
the realised variance as a function of the strike price 𝐾 (close to the ATM value) for the three
scenarios considered before.

Quantization and MC comparison

In order to make a fair comparison between quantization and Monte Carlo simulations,
we present a figure to display, for each methodology, the computational work needed for a
given error tolerance for the pricing of VIX Futures. The plots in Figure 3.5.8 should be read
as follows. First, for any 𝑀, 𝑁 ∈ {102 , 103 , 104 , 105 , 106}, we have computed the corresponding
pricing errors: 𝜀𝑀𝐶(𝑀) := |Price𝑀𝐶(𝑀) −RefPrice| and 𝜀𝑄(𝑁) := |Price𝑄(𝑁) −RefPrice| where
Price𝑀𝐶(𝑀) is the Monte Carlo price obtained via truncated Cholesky with 𝑀 trajectories,
Price𝑄(𝑁) is the price computed via quantization with 𝑁 trajectories and RefPrice comes from
the lower-bound in Equation (3.4) in [103] and the associated computational time in seconds
𝑡𝑀𝐶(𝑀) and 𝑡𝑄(𝑁), respectively for Monte Carlo simulation and quantization. Then, each point
in the plot is associated either to a value of 𝑀 in case of Monte Carlo (the circles in Figure 3.5.8),
or 𝑁 in case of quantization (the triangles in Figure 3.5.8), and its 𝑥-coordinate provides the
absolute value of the associated pricing error, while its 𝑦-coordinate represents the associated
computational cost in seconds.

These plots lead to the following observations:

• For quantization, which is an exact method, the error is strictly monotone in the number
of trajectories.

• When a small number of trajectories is considered, quantization provides a lower error
with respect to Monte Carlo, at a comparable cost.

• For large numbers of trajectories Monte Carlo overcomes quantization both in terms of
accuracy and of computational time.

To conclude, quantization can always be run with an arbitrary number of trajectories and
furthermore for 𝑁 ∈ {102 , 103 , 104} it leads to a lower error with respect to Monte Carlo, at
a comparable computational cost, as it is visible from Figure 3.5.8. This makes quantization
particularly suitable to be used when dealing with standard machines, i.e., laptops with a RAM
memory smaller or equal to 16GB.
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Figure 3.5.8: Computational costs for quantization vs Monte Carlo for Scenario 1, with 𝑇 = 1
month (left-hand side) and 𝑇 = 12 months (right-hand side). The number of trajectories, 𝑀 for
Monte Carlo and 𝑁 for quantization, corresponding to a specific dot is displayed above it.

3.6 Conclusion

In this paper we provided, on the theoretical side, a precise and detailed result on the
convergence of product functional quantizers of Gaussian Volterra processes, showing that the
𝐿2-error is of order log(𝑁)−𝐻 , with 𝑁 the number of trajectories and 𝐻 the regularity index.

Furthermore, we explicitly characterised the rate optimal parameters, 𝑚∗𝑁 and d∗𝑁 and we
compared them with the corresponding optimal parameters, 𝑚𝑁 and d𝑁 , computed numeri-
cally.

In the rough Bergomi model, we applied product functional quantization to the pricing of
VIX options, with precise rates of convergence, and of options on realised variance, comparing
those – whenever possible – to standard Monte Carlo methods. Product functional quantization
has proved to be rather flexible and suitable to price a wide range of options on different
underlyings, in the context of rough stochastic volatility models. Moreover, this methodology
achieves its best performances when pricing path-dependent options, which opens the gate to
future investigations.

It is also worth mentioning that product functional quantization, being an exact method,
could be exploited to obtain a control variate to reduce the variance in Monte Carlo simulations.
Another direction to investigate is the comparison with product functional quantization ob-
tained starting from alternative series representation of the Riemann-Liouville process. Finally,
it would be interesting to apply this technique to alternative rough volatility models such as
rough Heston.
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Appendix

3.A Proofs

3.A.1 Proof of Proposition 3.3.6

Consider a fixed 𝑁 ≥ 1 and (𝑚, d) for d ∈ D𝑁
𝑚 . We have

E

[𝑍 − 𝑍d
2

𝐿2[0,1]

]
= E


∑
𝑛≥1
K[𝜓𝑛](·)𝜉𝑛 −

𝑚∑
𝑛=1
K[𝜓𝑛](·)�̂�𝑑(𝑛)𝑛

2

𝐿2[0,1]


= E


 𝑚∑
𝑛=1
K[𝜓𝑛](·)(𝜉𝑛 − �̂�𝑑(𝑛)𝑛 ) +

∑
𝑘≥𝑚+1

K[𝜓𝑘](·)𝜉𝑘
2

𝐿2[0,1]


= E


∫ 1

0

����� 𝑚∑
𝑛=1
K[𝜓𝑛](𝑡)(𝜉𝑛 − �̂�𝑑(𝑛)𝑛 ) +

∑
𝑘≥𝑚+1

K[𝜓𝑘](𝑡)𝜉𝑘
�����2 d𝑡


=

∫ 1

0

(
𝑚∑
𝑛=1
K[𝜓𝑛]2(𝑡)E

[
|𝜉𝑛 − �̂�𝑑(𝑛)𝑛 |2

]
+

∑
𝑘≥𝑚+1

K[𝜓𝑘]2(𝑡)
)

d𝑡

=
∫ 1

0

(
𝑚∑
𝑛=1
K[𝜓𝑛]2(𝑡)𝜺𝑑(𝑛)(𝜉𝑛)2 +

∑
𝑘≥𝑚+1

K[𝜓𝑘]2(𝑡)
)

d𝑡 , (3.A.1)

using Fubini’s Theorem and the fact that {𝜉𝑛}𝑛≥1 is a sequence of i.i.d. Gaussian and where
𝜺𝑑(𝑛)(𝜉𝑛) := inf(𝛼1 ,...,𝛼𝑑(𝑛))∈R𝑑(𝑛)

√
E[min1≤𝑖≤𝑑(𝑛) |𝜉𝑛 − 𝛼𝑖 |2]. The Extended Pierce Lemma [128, The-

orem 1(b)] ensures that 𝜺𝑑(𝑛)(𝜉𝑛) ≤ 𝐿
𝑑(𝑛) for a suitable positive constant 𝐿. Exploiting this error

bound and the property (B) forK[𝜓𝑛] in Assumption 3.2.3, we obtain

E
[
‖𝑍 − 𝑍d‖2𝐿2[0,1]

]
=

𝑚∑
𝑛=1

(∫ 1

0
K[𝜓𝑛]2(𝑡)d𝑡

)
𝜺𝑑(𝑛)(𝜉𝑛)2 +

∑
𝑘≥𝑚+1

∫ 1

0
K[𝜓𝑘]2(𝑡)d𝑡 (3.A.2)

≤ 𝐶2
2

{
𝑚∑
𝑛=1

𝑛−(2𝐻+1)𝜺𝑑(𝑛)(𝜉𝑛)2 +
∑
𝑘≥𝑚+1

𝑘−(2𝐻+1)
}

≤ 𝐶2
2

{
𝑚∑
𝑛=1

𝑛−(2𝐻+1) 𝐿2

𝑑(𝑛)2 +
∑
𝑘≥𝑚+1

𝑘−(2𝐻+1)
}

≤ 𝐶
(
𝑚∑
𝑛=1

1
𝑛2𝐻+1𝑑(𝑛)2 +

∑
𝑘≥𝑚+1

𝑘−(2𝐻+1)
)
,

with 𝐶 = max{𝐿2𝐶2
2 , 𝐶

2
2}. Inspired by [119, Section 4.1], we now look for an “optimal” choice

of 𝑚 ∈ N and d ∈ D𝑁
𝑚 . This reduces the error in approximating 𝑍 with a product quantization

of the form in (3.3.2). Define the optimal product functional quantization 𝑍𝑁,★ of order 𝑁 as
the 𝑍d which realises the minimal error:

E

[𝑍 − 𝑍𝑁,★2

𝐿2[0,1]

]
= min

{
E

[𝑍 − 𝑍d
2

𝐿2[0,1]

]
, 𝑚 ∈ N, d ∈ D𝑁

𝑚

}
.
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From (3.A.2) we deduce

E

[𝑍 − 𝑍𝑁,★2

𝐿2[0,1]

]
≤ 𝐶 inf

𝑚∈N

{ ∑
𝑘≥𝑚+1

1
𝑘2𝐻+1 + inf

{
𝑚∑
𝑛=1

1
𝑛2𝐻+1𝑑(𝑛)2 , d ∈ D

𝑁
𝑚

}}
. (3.A.3)

For any fixed 𝑚 ∈ N we associate to the internal minimisation problem the one we get by
relaxing the hypothesis that 𝑑(𝑛) ∈ N:

ℑ := inf
{ 𝑚∑
𝑛=1

1
𝑛2𝐻+1𝑧(𝑛)2 , {𝑧(𝑛)}𝑛=1,...,𝑚 ∈ (0,∞) :

𝑚∏
𝑛=1

𝑧(𝑛) ≤ 𝑁
}
.

For this infimum, we derive a simple solution exploiting the arithmetic-geometric inequality

using Lemma 3.B.2. Setting �̃�(𝑛) := 𝛾𝑁,𝑚𝑛−(𝐻+
1
2 ), with 𝛾𝑁,𝑚 := 𝑁

1
𝑚

(∏𝑚
𝑗=1 𝑗

−(2𝐻+1)
)− 1

2𝑚 ,
𝑛 = 1, . . . , 𝑚, we get

ℑ =
𝑚∑
𝑛=1

1
𝑛2𝐻+1 �̃�(𝑛)2 = 𝑁−

2
𝑚𝑚

( 𝑚∏
𝑛=1

𝑛−(2𝐻+1)
) 1
𝑚
,

and notice that the sequence {�̃�(𝑛)} is decreasing. Since ultimately the vector d consists of
integers, we use �̃�(𝑛) = b�̃�(𝑛)c, 𝑛 = 1, . . . , 𝑚. In fact, this choice guarantees that

𝑚∏
𝑛=1

�̃�(𝑛) =
𝑚∏
𝑛=1
b�̃�(𝑛)c ≤

𝑚∏
𝑛=1

�̃�(𝑛) = 𝑁.

Furthermore, setting �̃�(𝑗) = b�̃�(𝑗)c for each 𝑗 ∈ {1, . . . , 𝑚}, we obtain

�̃�(𝑗) + 1

(𝑗−(2𝐻+1)) 12
= 𝑗𝐻+

1
2 (b�̃�(𝑗)c + 1) ≥ 𝑗𝐻+ 1

2 �̃�(𝑗) = 𝑗𝐻+ 1
2𝑁

1
𝑚

𝑗𝐻+ 1
2

{
𝑚∏
𝑛=1

1
𝑛2𝐻+1

}− 1
2𝑚

= 𝑁
1
𝑚

{
𝑚∏
𝑛=1

1
𝑛2𝐻+1

}− 1
2𝑚

.

Ordering the terms, we have (̃𝑑(𝑗)+1)2𝑁− 2
𝑚

(∏𝑚
𝑛=1 𝑛

−(2𝐻+1)
) 1
𝑚 ≥ 𝑗−(2𝐻+1), for each 𝑗 ∈ {1, . . . , 𝑚}.

From this we deduce the following inequality (notice that the left-hand side term is defined
only if �̃�(1), . . . , �̃�(𝑚) > 0):

𝑚∑
𝑗=1

𝑗−(2𝐻+1) �̃�(𝑗)−2 ≤
𝑚∑
𝑗=1

( �̃�(𝑗) + 1
�̃�(𝑗)

)2
𝑁−

2
𝑚

( 𝑚∏
𝑛=1

𝑛−(2𝐻+1)
) 1
𝑚 (3.A.4)

= 𝑁−
2
𝑚

( 𝑚∏
𝑛=1

𝑛−(2𝐻+1)
) 1
𝑚

𝑚∑
𝑗=1

( �̃�(𝑗) + 1
�̃�(𝑗)

)2

≤ 4𝑚𝑁−
2
𝑚

( 𝑚∏
𝑛=1

𝑛−(2𝐻+1)
) 1
𝑚
.
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Hence, we are able to make a first error estimation, placing in the internal minimisation of the
right-hand side of (3.A.3) the result of inequality in (3.A.4).

E

[𝑍 − 𝑍𝑁,★2

𝐿2[0,1]

]
≤ 𝐶 inf


∑
𝑘≥𝑚+1

1
𝑘2𝐻+1 + 4𝑚𝑁−

2
𝑚

(
𝑚∏
𝑛=1

𝑛−(2𝐻+1)
) 1
𝑚

, 𝑚 ∈ 𝐼(𝑁)
 (3.A.5)

≤ 𝐶′ inf


∑
𝑘≥𝑚+1

1
𝑘2𝐻+1 + 𝑚𝑁−

2
𝑚

(
𝑚∏
𝑛=1

𝑛−(2𝐻+1)
) 1
𝑚

, 𝑚 ∈ 𝐼(𝑁)
 ,

where 𝐶′ = 4𝐶 and the set

𝐼(𝑁) := {𝑚 ∈ N : 𝑁
2
𝑚𝑚−(2𝐻+1)

( 𝑚∏
𝑛=1

𝑛−(2𝐻+1)
)− 1

𝑚 ≥ 1}, (3.A.6)

which represents all 𝑚’s such that all �̃�(1), . . . , �̃�(𝑚) are positive integers. This is to avoid
the case where

∏𝑚
𝑖=1 �̃�(𝑖) ≤ 𝑁 holds only because one of the factors is zero. In fact, for all

𝑛 ∈ {1, . . . , 𝑚}, �̃�(𝑛) = b�̃�(𝑛)c is a positive integer if and only if �̃�(𝑛) ≥ 1. Thanks to the
monotonicity of {𝑧(𝑛)}𝑛=1,...,𝑚 , we only need to check that

�̃�(𝑚) = 𝑁
1
𝑚𝑚−(𝐻+

1
2 )
( 𝑚∏
𝑛=1

𝑛−(2𝐻+1)
)− 1

2𝑚 ≥ 1.

First, let us show that 𝐼(𝑁), defined in (3.A.6) for each 𝑁 ≥ 1, is a non-empty finite set with
maximum given by 𝑚∗(𝑁) of order log(𝑁). We can rewrite it as 𝐼(𝑁) = {𝑚 ≥ 1 : 𝑎𝑚 ≤ log(𝑁)},
where

𝑎𝑛 =
1
2 log ©«

𝑛∏
𝑗=1

𝑛2𝐻+1

𝑗2𝐻+1
ª®¬ .

We can now verify that the sequence 𝑎𝑛 is increasing in 𝑛 ∈ N:

𝑎𝑛 ≤ 𝑎𝑛+1

⇐⇒
𝑛∑
𝑗=1

log
(
𝑗−(2𝐻+1)

)
− 𝑛 log

(
𝑛−(2𝐻+1)

)
≤

𝑛+1∑
𝑗=1

log
(
𝑗−(2𝐻+1)

)
− (𝑛 + 1) log

(
(𝑛 + 1)−(2𝐻+1)

)
⇐⇒ −𝑛 log

(
𝑛−(2𝐻+1)

)
≤ log

(
(𝑛 + 1)−(2𝐻+1)

)
− (𝑛 + 1) log

(
(𝑛 + 1)−(2𝐻+1)

)
⇐⇒ log

(
𝑛−(2𝐻+1)

)
≥ log

(
(𝑛 + 1)−(2𝐻+1)

)
,

which is obviously true. Furthermore the sequence (𝑎𝑛)𝑛 diverges to infinity since

𝑛∏
𝑗=1

𝑛(2𝐻+1)

𝑗(2𝐻+1) = 𝑛(2𝐻+1)𝑛
𝑛∏
𝑗=1

1
𝑗(2𝐻+1) ≥ 𝑛(2𝐻+1)𝑛

𝑛∏
𝑗=2

1
𝑗(2𝐻+1) ≥ 𝑛(2𝐻+1)𝑛 1

𝑛(2𝐻+1)(𝑛−1) ≥ 𝑛(2𝐻+1).

and 𝐻 ∈ (0, 1
2 ). We immediately deduce that 𝐼(𝑁) is finite and, since {1} ⊂ 𝐼(𝑁), it is also

non-empty. Hence 𝐼(𝑁) = {1, . . . , 𝑚∗(𝑁)}. Moreover, for all 𝑁 ≥ 1, 𝑎𝑚∗(𝑁) ≤ log(𝑁) < 𝑎𝑚∗(𝑁)+1,
which implies that 𝑚∗(𝑁) = O(log(𝑁)).
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Now, the error estimation in (3.A.5) can be further simplified exploiting the fact that, for each
𝑚 ∈ 𝐼(𝑁),

𝑚𝑁−
2
𝑚

(
𝑚∏
𝑛=1

𝑛−(2𝐻+1)
) 1
𝑚

= 𝑚𝑚−(2𝐻+1) ©«𝑚−(2𝐻+1)𝑁
2
𝑚

(
𝑚∏
𝑛=1

𝑛−(2𝐻+1)
)− 1

𝑚 ª®¬
−1

≤ 𝑚−2𝐻 .

The last inequality is a consequence of the fact that
(∏𝑚

𝑛=1 𝑛
−(2𝐻+1))− 1

𝑚 ≥ 1 by definition. Hence,

E
[
‖𝑍 − 𝑍𝑁,★‖2𝐿2[0,1]

]
≤ 𝐶′ inf

{ ∑
𝑘≥𝑚+1

1
𝑘2𝐻+1 + 𝑚−2𝐻 , 𝑚 ∈ 𝐼(𝑁)

}
, (3.A.7)

for some suitable constant 𝐶′ > 0.

Consider now the sequence {𝑏𝑛}𝑛∈N, given by 𝑏𝑛 =
∑
𝑘≥𝑛+1

1
𝑘2𝐻+1 + 𝑛−2𝐻 . For 𝑛 ≥ 1,

𝑏𝑛+1−𝑏𝑛 =
∑
𝑘≥𝑛+2

1
𝑘2𝐻+1 +

1
(𝑛 + 1)2𝐻 −

[ ∑
𝑘≥𝑛+1

1
𝑘2𝐻+1 +

1
𝑛2𝐻

]
= − 1
(𝑛 + 1)2𝐻 +

1
(𝑛 + 1)2𝐻+1 −

1
𝑛2𝐻 ≤ 0,

so that the sequence is decreasing and the infimum in (3.A.7) is attained at 𝑚 = 𝑚∗(𝑁). There-
fore,

E
[
‖𝑍 − 𝑍𝑁,★‖2𝐿2[0,1]

]
≤ 𝐶′ inf

{ ∑
𝑘≥𝑚+1

1
𝑘2𝐻+1 + 𝑚−2𝐻 , 𝑚 ∈ 𝐼(𝑁)

}
= 𝐶′ ©«

∑
𝑘≥𝑚∗(𝑁)+1

1
𝑘2𝐻+1 + 𝑚∗(𝑁)−2𝐻ª®¬ ≤ 𝐶′

(
𝑚∗(𝑁)−2𝐻−1+1 + 𝑚∗(𝑁)−2𝐻 )

= 2𝐶′𝑚∗(𝑁)−2𝐻 ≤ 𝐶 log(𝑁)−2𝐻 .

3.A.2 Proof of Remark 3.2.5

This can be proved specialising the computations done in [120, page 656]. Consider an
arbitrary index 𝑛 ≥ 1. For all 𝑡 , 𝑠 ∈ [0, 1], exploiting Assumption 3.2.3, we have that, for any
𝜌 ∈ [0, 1],��K[𝜓𝑛](𝑡) − K[𝜓𝑛](𝑠)�� =

��K[𝜓𝑛](𝑡) − K[𝜓𝑛](𝑠)��𝜌��K[𝜓𝑛](𝑡) − K[𝜓𝑛](𝑠)��1−𝜌
≤

(
sup

𝑢,𝑣∈[0,1],𝑢≠𝑣

|K[𝜓𝑛](𝑢) − K[𝜓𝑛](𝑣)|
|𝑢 − 𝑣 |𝐻+ 1

2
|𝑡 − 𝑠 |𝐻+ 1

2

)𝜌 (
2 sup
𝑡∈[0,1]

K[𝜓𝑛](𝑡)
)1−𝜌

≤ (𝐶1𝑛)𝜌(2𝐶2𝑛−(𝐻+
1
2 ))1−𝜌 |𝑡 − 𝑠 |𝜌(𝐻+ 1

2 ) = 𝐶𝜌𝑛𝜌(𝐻+
3
2 )−(𝐻+ 1

2 ) |𝑡 − 𝑠 |𝜌(𝐻+ 1
2 ) ,

where 𝐶𝜌 := 𝐶𝜌
1 (2𝐶2)1−𝜌 < ∞. Therefore

[K[𝜓𝑛]]𝜌(𝐻+ 1
2 ) = sup

𝑡≠𝑠∈[0,1]

��K[𝜓𝑛](𝑡) − K[𝜓𝑛](𝑠)��
|𝑡 − 𝑠 |𝜌(𝐻+ 1

2 )
≤ 𝐶𝜌𝑛𝜌(𝐻+

3
2 )−(𝐻+ 1

2 ). (3.A.8)
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Notice that 𝜌(𝐻 + 3
2 ) − (𝐻 + 1

2 ) < −1
2 when 𝜌 ∈ [0, 𝐻

𝐻+3/2 ] so that (3.A.8) implies

∞∑
𝑛=1

[K[𝜓𝑛]]2
𝜌(𝐻+ 1

2 ) ≤ 𝐶
2
𝜌

∞∑
𝑛=1

𝑛2𝜌(𝐻+ 3
2 )−2(𝐻+ 1

2 ) ≤ 𝐶2
𝜌

∞∑
𝑛=1

𝑛−(1+𝜀) = 𝐾 < ∞.

In particular,

E
[|𝑌𝑡 − 𝑌𝑠 |2] = ∞∑

𝑛=1

��K[𝜓𝑛](𝑡) − K[𝜓𝑛](𝑠)��2 ≤ ∞∑
𝑛=1

[K[𝜓𝑛]]2
𝜌(𝐻+ 1

2 ) |𝑡 − 𝑠 |
2𝜌(𝐻+ 1

2 ) ≤ 𝐾 |𝑡 − 𝑠 |2𝜌(𝐻+ 1
2 ).

As noticed in Remark 3.2.2 the process 𝑌 is centred Gaussian. Hence, for each 𝑡 , 𝑠 ∈ [0, 1] so is
𝑌𝑡 − 𝑌𝑠 . Proposition 3.B.1 therefore implies that, for any 𝑟 ∈ N,

E
[|𝑌𝑡 − 𝑌𝑠 |2𝑟 ] = E [|𝑌𝑡 − 𝑌𝑠 |2] 𝑟 (2𝑟 − 1)!! ≤ 𝐾′ |𝑡 − 𝑠 |2𝑟𝜌(𝐻+ 1

2 ) ,

where 𝐾′ = 𝐾𝑟(2𝑟 − 1)!!, yielding existence of a continuous version of 𝑌 since choosing 𝑟 ∈ N
such that 2𝑟𝜌(𝐻 + 1

2 ) > 1, Kolmogorov continuity theorem [105, Theorem 3.23] applies directly.

3.A.3 Proof of Lemma 3.4.5

Let 𝐻+ := 𝐻 + 1
2 . Using [107, Corollary 1, Equation (12)] (with 𝜓 = 𝑏2 + 𝑏1 − 𝑎 > 1/2), the

identity

1𝐹2(𝑎, 𝑏1 , 𝑏2 ,−𝑟) = Γ(𝑏1)Γ(𝑏2)
Γ(𝑎)√𝜋

∫ 1

0
𝐺2,0

2,2

(
[𝑏1 , 𝑏2],

[
𝑎,

1
2

]
, 𝑢

)
cos

(
2
√
𝑟𝑢

) d𝑢
𝑢
,

holds for all 𝑟 > 0, where 𝐺 denotes the Meĳer-G function, generally defined through the
so-called Mellin-Barnes type integral [118, Equation (1), Section 5.2]) as

𝐺𝑚,𝑛
𝑝,𝑞

([𝑎1 , . . . , 𝑎𝑝], [𝑏1 , . . . , 𝑏𝑞], 𝑧
)
=

1
2𝜋𝑖

∫
𝐿

∏𝑚
𝑗=1 Γ(𝑏 𝑗 − 𝑠)

∏𝑛
𝑗=1 Γ(1 − 𝑎 𝑗 + 𝑠)∏𝑞

𝑗=𝑚+1 Γ(1 − 𝑏 𝑗 + 𝑠)
∏𝑝

𝑗=𝑛+1 Γ(𝑎 𝑗 − 𝑠)
𝑧𝑠 d𝑠.

This representation holds if 𝑧 ≠ 0, 0 ≤ 𝑚 ≤ 𝑞 and 0 ≤ 𝑛 ≤ 𝑝, for integers𝑚, 𝑛, 𝑝, 𝑞, and 𝑎𝑘 − 𝑏 𝑗 ≠
1, 2, 3, . . . , for 𝑘 = 1, 2, . . . , 𝑛 and 𝑗 = 1, 2, . . . , 𝑚. The last constraint is set to prevent any pole of
any Γ(𝑏 𝑗 − 𝑠), 𝑗 = 1, 2, . . . , 𝑚, from coinciding with any pole of any Γ(1 − 𝑎𝑘 + 𝑠), 𝑘 = 1, 2, . . . , 𝑛.
With 𝑎 > 0, 𝑏2 = 1 + 𝑎 and 𝑏1 = 1

2 , since 𝐺2,0
2,2

( [ 1
2 , 𝑎 + 1

]
,
[
𝑎, 1

2
]
, 𝑢

)
= 𝑢𝑎 , we can therefore write∫ 1

0
𝑢𝑎−1 cos

(
2
√
𝑟𝑢

)
d𝑢 =

1
𝑎 1𝐹2

(
𝑎; 1

2 , 𝑎 + 1;−𝑟
)
. (3.A.9)

Similarly, using integration by parts and properties of generalised hypergeometric functions,∫ 1

0
𝑢𝑎−1 sin

(
2
√
𝑟𝑢

)
d𝑢 =

sin(2√𝑟)
𝑎

−
√
𝑟
𝑎

∫ 1

0
𝑢𝑎−

1
2 cos(2√𝑟𝑢)d𝑢 (3.A.10)

=
sin(2√𝑟)

𝑎
−
√
𝑟

𝑎(𝑎 + 1
2 )

1𝐹2

(
𝑎 + 1

2; 1
2 , 𝑎 +

3
2;−𝑟

)
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=
2
√
𝑟

𝑎 + 1
2

1𝐹2

(
𝑎 + 1

2; 3
2 , 𝑎 +

3
2;−𝑟

)
,

where the last step follows from the definition of generalised sine function sin(𝑧) = 𝑧 0𝐹1(32 ,−1
4 𝑧

2).
Indeed, exploiting (3.2.6), we have

sin(2√𝑟)
𝑎

−
√
𝑟

𝑎(𝑎 + 1
2 )

1𝐹2

(
𝑎 + 1

2; 1
2 , 𝑎 +

3
2;−𝑟

)
=

2
√
𝑟
𝑎 0𝐹1

(
3
2 ,−𝑟

)
−
√
𝑟

𝑎(𝑎 + 1
2 )

1𝐹2

(
𝑎 + 1

2; 1
2 , 𝑎 +

3
2;−𝑟

)
=

2
√
𝑟

𝑎
(
𝑎 + 1

2
) [(

𝑎 + 1
2

)
0𝐹1

(
3
2;−𝑟

)
− 1

21𝐹2

(
𝑎 + 1

2; 1
2 , 𝑎 +

3
2;−𝑟

)]
=

2
√
𝑟

𝑎
(
𝑎 + 1

2
) [(

𝑎 + 1
2

) ∞∑
𝑘=0

(−𝑟)𝑘
𝑘!(3/2)𝑘 −

1
2

∞∑
𝑘=0

(𝑎 + 1/2)𝑘
𝑘!(1/2)𝑘(𝑎 + 3/2)𝑘 (−𝑟)

𝑘

]
=

2
√
𝑟

𝑎
(
𝑎 + 1

2
) ∞∑
𝑘=0

1
𝑘!

[ (𝑎 + 1/2)
(3/2)𝑘 −

1/2(𝑎 + 1/2)𝑘
(1/2)𝑘(𝑎 + 3/2)𝑘

]
(−𝑟)𝑘

=
2
√
𝑟

𝑎
(
𝑎 + 1

2
) ∞∑
𝑘=0

1
𝑘!

[
𝑎(𝑎 + 1/2)𝑘

(3/2)𝑘(𝑎 + 3/2)𝑘
]
(−𝑟)𝑘

=
2
√
𝑟(

𝑎 + 1
2
) ∞∑
𝑘=0

1
𝑘!

(𝑎 + 1/2)𝑘
(3/2)𝑘(𝑎 + 3/2)𝑘 (−𝑟)

𝑘 =
2
√
𝑟(

𝑎 + 1
2
) 1𝐹2

(
𝑎 + 1

2; 3
2 , 𝑎 +

3
2;−𝑟

)
.

Letting 𝛼 := 𝐻 − 1
2 , 𝜏 := 𝑡 − 𝑇, and mapping 𝑣 := 𝑡 − 𝑢, 𝑤 := 𝑣

𝑡 and 𝑦 := 𝑤2, we write∫ 𝑇

0
(𝑡 − 𝑢)𝛼ei𝜋𝑢d𝑢 = ei𝜋𝑡

∫ 𝑡

(𝑡−𝑇)
𝑣𝛼e−i𝜋𝑣d𝑣 = ei𝜋𝑡

[∫ 𝑡

0
𝑣𝛼e−i𝜋𝑣d𝑣 −

∫ 𝜏

0
𝑣𝛼e−i𝜋𝑣d𝑣

]
= ei𝜋𝑡

[
𝑡1+𝛼

∫ 1

0
𝑤𝛼e−i𝜋𝑤𝑡d𝑤 − 𝜏1+𝛼

∫ 1

0
𝑤𝛼e−i𝜋𝑤𝜏d𝑤

]
=

ei𝜋𝑡
2

[
𝑡1+𝛼

∫ 1

0
𝑦

𝛼−1
2 e−i𝜋𝑡

√
𝑦d𝑦 − 𝜏1+𝛼

∫ 1

0
𝑦

𝛼−1
2 e−i𝜋𝑦𝜏

√
𝑦d𝑦

]
=

ei𝜋𝑡
2 [𝐼(𝑡) − 𝐼(𝜏)] , (3.A.11)

where 𝐼(𝑧) := 𝑧1+𝛼 ∫ 1
0 𝑣

𝛼−1
2 e−i𝜋𝑧

√
𝑣d𝑣.

We therefore write, for 𝑧 ∈ {𝑡 , 𝜏}, using (3.A.9)-(3.A.10), 𝜋𝑧 = 2
√
𝑟, and identifying 𝑎 − 1 = 𝛼−1

2 ,

𝐼(𝑧) = 𝑧1+𝛼
∫ 1

0
𝑣

𝛼−1
2 e−i𝜋𝑧

√
𝑣d𝑣 = 𝑧1+𝛼

∫ 1

0
𝑣

𝛼−1
2 cos(𝜋𝑧√𝑣)d𝑣 − i𝑧1+𝛼

∫ 1

0
𝑣

𝛼−1
2 sin(𝜋𝑧√𝑣)d𝑣

=
2𝑧1+𝛼
𝐻+ 1𝐹2

(
𝐻+
2 ; 1

2 , 1 +
𝐻+
2 ;−𝑟

)
− i𝑧𝐻+ 4

√
𝑟

1 + 𝐻+ 1𝐹2

(
1
2 +

𝐻+
2 ; 3

2 ,
3
2 +

𝐻+
2 ;−𝑟

)
=
𝑧𝐻+

ℎ1
1𝐹2

(
ℎ1; 1

2 , 1 + ℎ1;−𝜋
2𝑧2

4

)
− i𝜋𝑧

1+𝐻+
ℎ2

1𝐹2

(
ℎ2; 3

2 , 1 + ℎ2;−𝜋
2𝑧2

4

)
,
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since 𝛼 = 𝐻 − 1
2 = 𝐻+ − 1, ℎ1 = 𝐻+

2 and ℎ2 = 1
2 + ℎ1. Plugging these into (3.A.11), we obtain∫ 𝑇

0
(𝑡 − 𝑢)𝛼ei𝜋𝑢d𝑢 =

ei𝜋𝑡
2 [𝐼(𝑡) − 𝐼(𝜏)]

=
ei𝜋𝑡

2

[
𝑧𝐻+

ℎ1
1𝐹2

(
ℎ1; 1

2 , 1 + ℎ1;−𝜋
2𝑧2

4

)
− i𝜋𝑧

1+𝐻+
ℎ2

1𝐹2

(
ℎ2; 3

2 , 1 + ℎ2;−𝜋
2𝑧2

4

) ]
𝑧=𝑡

− ei𝜋𝑡
2

[
𝑧𝐻+

ℎ1
1𝐹2

(
ℎ1; 1

2 , 1 + ℎ1;−𝜋
2𝑧2

4

)
− i𝜋𝑧

1+𝐻+
ℎ2

1𝐹2

(
ℎ2; 3

2 , 1 + ℎ2;−𝜋
2𝑧2

4

)]
𝑧=𝜏

=
ei𝜋𝑡
2ℎ1

[
(𝑡)𝐻+1𝐹2

(
ℎ1; 1

2 , 1 + ℎ1;−𝜋
2𝑡2

4

)
− (𝜏)𝐻+1𝐹2

(
ℎ1; 1

2 , 1 + ℎ1;−𝜋
2𝜏2

4

)]
− i𝜋ei𝜋𝑡

2ℎ2

[
(𝑡)1+𝐻+1𝐹2

(
ℎ2; 3

2 , 1 + ℎ2;−𝜋
2𝑡2

4

)
− (𝜏)1+𝐻+1𝐹2

(
ℎ2; 3

2 , 1 + ℎ2;−𝜋
2𝜏2

4

)]
= ei𝜋𝑡

[
𝜁 1

2
(𝑡 , ℎ1) − 𝜁 1

2
(𝜏, ℎ1) − i𝜋

(
𝜁 3

2
(𝑡 , ℎ2) − 𝜁 3

2
(𝜏, ℎ2)

)]
,

where 𝜒(𝑧) := −1
4𝜋

2𝑧2 and 𝜁 1
2

and 𝜁 3
2

as defined in the lemma.

3.A.4 Proof of Lemma 3.4.4

We first prove (A). For each 𝑛 ∈ N and all 𝑡 ∈ [𝑇, 1], recall that

K𝑇
𝐻[𝜓𝑛](𝑡) =

√
2
∫ 𝑇

0
(𝑡 − 𝑢)𝐻− 1

2 cos
(
𝑢√
𝜆𝑛

)
d𝑢 =

√
2
∫ 𝑡

𝑡−𝑇
𝑣𝐻−

1
2 cos

(
𝑡 − 𝑣√
𝜆𝑛

)
d𝑣,

with the change of variables 𝑣 = 𝑡 − 𝑢. Assume 𝑇 ≤ 𝑠 < 𝑡 ≤ 1. Two situations are possible:

• If 0 ≤ 𝑠 − 𝑇 < 𝑡 − 𝑇 ≤ 𝑠 < 𝑡 ≤ 1, we have��K𝑇
𝐻[𝜓𝑛](𝑡) − K𝑇

𝐻[𝜓𝑛](𝑠)
�� =

√
2
����∫ 𝑡

𝑡−𝑇
𝑣𝐻−

1
2 cos

(
𝑡 − 𝑣√
𝜆𝑛

)
d𝑣 −

∫ 𝑠

𝑠−𝑇
𝑣𝐻−

1
2 cos

(
𝑠 − 𝑣√
𝜆𝑛

)
d𝑣

����
≤ √

2

( ����∫ 𝑠

𝑡−𝑇
𝑣𝐻−

1
2

(
cos

(
𝑡 − 𝑣√
𝜆𝑛

)
− cos

(
𝑠 − 𝑣√
𝜆𝑛

))
d𝑣

����
+

����∫ 𝑡

𝑠
𝑣𝐻−

1
2 cos

(
𝑡 − 𝑣√
𝜆𝑛

)
d𝑣

���� + ����∫ 𝑡−𝑇

𝑠−𝑇
𝑣𝐻−

1
2 cos

(
𝑠 − 𝑣√
𝜆𝑛

)
d𝑣

���� )
≤ √

2

( ∫ 𝑠

𝑡−𝑇
𝑣𝐻−

1
2

����cos
(
𝑡 − 𝑣√
𝜆𝑛

)
− cos

(
𝑠 − 𝑣√
𝜆𝑛

)����d𝑣
+

∫ 𝑡

𝑠
𝑣𝐻−

1
2 d𝑣 +

∫ 𝑡−𝑇

𝑠−𝑇
𝑣𝐻−

1
2 d𝑣

)
≤ √

2

( ∫ 𝑠

𝑡−𝑇
𝑣𝐻−

1
2

���� 𝑡 − 𝑠√𝜆𝑛
����d𝑣 + 𝐾 |𝑡 − 𝑠 |𝐻+ 1

2 + 𝐾 |𝑡 − 𝑠 |𝐻+ 1
2

)
≤ √

2

(
|𝑡 − 𝑠 |√

𝜆𝑛

∫ 𝑠

𝑡−𝑇
𝑣𝐻−

1
2 d𝑣 + 2𝐾 |𝑡 − 𝑠 |𝐻+ 1

2

)
≤ √

2

(
|𝑡 − 𝑠 |√

𝜆𝑛
‖(·)𝐻− 1

2 ‖𝐿1[0,1] + 2𝐾 |𝑡 − 𝑠 |𝐻+ 1
2

)
≤ 𝐶𝑇1 |𝑡 − 𝑠 |𝐻+

1
2 ,

with 𝐶𝑇1 = max
{
2
√

2𝐾,
√

2
𝜆𝑛
‖(·)𝐻− 1

2 ‖𝐿1[0,1]
}
= max

{
2
√

2𝐾,
√

2(2𝑛−1)𝜋
2 ‖(·)𝐻− 1

2 ‖𝐿1[0,1]
}
, since
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cos(·) is Lipschitz on any compact and
∫ ·

0 𝑣
𝐻− 1

2 d𝑣 is
(
𝐻 + 1

2
)
-Hölder continuous.

• If 0 ≤ 𝑠 − 𝑇 ≤ 𝑠 ≤ 𝑡 − 𝑇 ≤ 𝑡 ≤ 1,��K𝑇
𝐻[𝜓𝑛](𝑡) − K𝑇

𝐻[𝜓𝑛](𝑠)
�� =

√
2
����∫ 𝑡

𝑡−𝑇
𝑣𝐻−

1
2 cos

(
𝑡 − 𝑣√
𝜆𝑛

)
d𝑣 −

∫ 𝑠

𝑠−𝑇
𝑣𝐻−

1
2 cos

(
𝑠 − 𝑣√
𝜆𝑛

)
d𝑣

����
=

√
2

����� ∫ 𝑡

𝑡−𝑇
𝑣𝐻−

1
2 cos

(
𝑡 − 𝑣√
𝜆𝑛

)
d𝑣 −

∫ 𝑠

𝑠−𝑇
𝑣𝐻−

1
2 cos

(
𝑠 − 𝑣√
𝜆𝑛

)
d𝑣

+
∫ 𝑡−𝑇

𝑠
𝑣𝐻−

1
2 cos

(
𝑡 − 𝑣√
𝜆𝑛

)
d𝑣 −

∫ 𝑡−𝑇

𝑠
𝑣𝐻−

1
2 cos

(
𝑡 − 𝑣√
𝜆𝑛

)
d𝑣

+
∫ 𝑡−𝑇

𝑠
𝑣𝐻−

1
2 cos

(
𝑠 − 𝑣√
𝜆𝑛

)
d𝑣 −

∫ 𝑡−𝑇

𝑠
𝑣𝐻−

1
2 cos

(
𝑠 − 𝑣√
𝜆𝑛

)
d𝑣

�����
≤ √

2

( ����∫ 𝑡−𝑇

𝑠
𝑣𝐻−

1
2

(
cos

(
𝑡 − 𝑣√
𝜆𝑛

)
− cos

(
𝑠 − 𝑣√
𝜆𝑛

))
d𝑣

����
+

����∫ 𝑡

𝑠
𝑣𝐻−

1
2 cos

(
𝑡 − 𝑣√
𝜆𝑛

)
d𝑣

���� + ����∫ 𝑡−𝑇

𝑠−𝑇
𝑣𝐻−

1
2 cos

(
𝑠 − 𝑣√
𝜆𝑛

)
d𝑣

���� )
≤ · · · ≤ 𝐶𝑇1 |𝑡 − 𝑠 |𝐻+

1
2 ,

where the dots correspond to the same computations as in the previous case and leads to
the same estimation with the same constant 𝐶𝑇1 .

This proves (A).
To prove (B), recall that, for 𝑇 ∈ [0, 1] and 𝑛 ∈ N, the functionK𝑇

𝐻[𝜓𝑛] : [𝑇, 1] → R reads

K𝑇
𝐻[𝜓𝑛](𝑡) =

√
2
∫ 𝑇

0
(𝑡 − 𝑠)𝐻− 1

2 cos
((
𝑛 − 1

2

)
𝜋𝑠

)
d𝑠

=

√
2

𝑚𝐻+ 1
2

∫ 𝑚𝑇

0
(𝑚𝑡 − 𝑢)𝐻− 1

2 cos (𝜋𝑢)d𝑢 =: Φ𝑚(𝑡). (3.A.12)

with the change of variable 𝑢 = (𝑛 − 1
2 )𝑠 =: 𝑚𝑠. Denote from now on Ñ := {𝑚 = 𝑛 − 1

2 , 𝑛 ∈ N}.
From (3.A.12), we deduce, for each 𝑚 ∈ Ñ and 𝑡 ∈ [𝑇, 1],

𝑚𝐻+ 1
2Φ𝑚(𝑡) =

√
2
∫ 𝑚𝑇

0
(𝑚𝑡 − 𝑢)𝐻− 1

2 cos (𝜋𝑢)d𝑢 =:
√

2𝜙𝑚(𝑡). (3.A.13)

To end the proof of (B), it therefore suffices to show that (𝜙𝑚(𝑡))𝑚∈Ñ,𝑡∈[𝑇,1] is uniformly bounded
since, in that case we have

‖K𝑇
𝐻[𝜓𝑛]‖∞ = sup

𝑡∈[𝑇,1]
|K𝑇

𝐻[𝜓𝑛](𝑡)| = sup
𝑡∈[𝑇,1]

|Φ𝑛− 1
2
(𝑡)| =

√
2

(𝑛 − 1
2 )𝐻+

1
2

sup
𝑡∈[𝑇,1]

|𝜙𝑛− 1
2
(𝑡)|

≤
√

2
(𝑛 − 1

2 )𝐻+
1
2

sup
𝑡∈[𝑇,1],𝑚∈Ñ

|𝜙𝑚(𝑡)| ≤
√

2
(𝑛 − 1

2 )𝐻+
1
2
𝐶 ≤ 𝐶𝑇2 𝑛−(𝐻+

1
2 ) ,

for some 𝐶𝑇2 > 0, proving (B). The following guarantees the uniform boundedness of 𝜙𝑥
in (3.A.13).

Proposition 3.A.1. For any𝑇 ∈ [0, 1], there exists𝐶 > 0 such that |𝜙𝑥(𝑡)| ≤ 𝐶 for all 𝑥 ≥ 0, 𝑡 ∈ [𝑇, 1].
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Proof. For 𝑥 > 0, we write

𝜙𝑥(𝑡) =
∫ 𝑥𝑇

0
(𝑥𝑡 − 𝑢)𝐻− 1

2 cos (𝜋𝑢)d𝑢 =<
{∫ 𝑥𝑇

0
(𝑥𝑡 − 𝑢)𝐻− 1

2 ei𝜋𝑢d𝑢
}
.

Using the representation in Lemma 3.4.5, we are thus left to prove that the maps 𝜁 1
2
(·, ℎ1) and

𝜁 3
2
(·, ℎ2), defined in (3.4.3), are bounded on [0,∞) by, say 𝐿 1

2
and 𝐿 3

2
. Indeed, in this case,

sup
𝑥>0,𝑡∈[𝑇,1]

|𝜙𝑥(𝑡)| = sup
𝑥>0,𝑡∈[𝑇,1]

�����∫ 𝑥𝑇

0
(𝑥𝑡 − 𝑢)𝐻− 1

2 ei𝜋𝑢d𝑢

�����
≤ sup

𝑥>0,𝑡∈[𝑇,1]

�����ei𝜋𝑥𝑡2

[(
𝜁 1

2
(𝑥𝑡, ℎ1) − 𝜁 1

2
(𝑥(𝑡 − 𝑇), ℎ1)

)
− i𝜋

(
𝜁 3

2
(𝑥𝑡, ℎ2) − 𝜁 3

2
(𝑥(𝑡 − 𝑇), ℎ2)

)] �����
≤ 1

2 sup
𝑦,𝑧∈[0,∞)

�����(𝜁 1
2
(𝑦, ℎ1) − 𝜁 1

2
(𝑧, ℎ1)

)
− i𝜋

(
𝜁 3

2
(𝑦, ℎ2) − 𝜁 3

2
(𝑧, ℎ2)

)�����
≤ 𝜋

{
sup

𝑦∈[0,∞)

���𝜁 1
2
(𝑦, ℎ1)

��� + sup
𝑦∈[0,∞)

���𝜁 3
2
(𝑦, ℎ2)

���} ≤ 𝐿 1
2
+ 𝐿 3

2
= 𝐶 < +∞.

The maps 𝜁 1
2
(·, ℎ1) and 𝜁 3

2
(·, ℎ2) are both clearly continuous. Moreover, as 𝑧 tends to infinity

𝜁𝑘(𝑧, ℎ) converges to a constant 𝑐𝑘 , for (𝑘, ℎ) ∈ ({ 1
2 ,

3
2 }, {ℎ1 , ℎ2}). The identities

1𝐹2
(
ℎ; 1

2 , 1 + ℎ;−𝑥)
ℎ

=
∫ 1

0

cos(2√𝑥𝑢)
𝑢1−ℎ d𝑢 and 1𝐹2

(
ℎ; 3

2 , 1 + ℎ;−𝑥)
ℎ

=
1

2
√
𝑥

∫ 1

0

sin(2√𝑥𝑢)
𝑢3/2−ℎ d𝑢

hold (this can be checked with Wolfram Mathematica for example) and therefore,

𝜁 1
2
(𝑧, ℎ1) =

𝑧2ℎ1

2ℎ1
1𝐹2

(
ℎ1; 1

2 , 1 + ℎ1;−𝜋
2𝑧2

4

)
=
𝑧2ℎ1

2

∫ 1

0
𝑢ℎ1−1 cos(𝜋𝑧√𝑢)d𝑢

=
𝑧2ℎ1

2

∫ 𝜋𝑧

0

𝑥2(ℎ1−1)

(𝜋𝑧)2(ℎ1−1) cos(𝑥) 2𝑥
𝜋2𝑧2 d𝑥 =

1
𝜋2ℎ1

∫ 𝜋𝑧

0
𝑥2ℎ1−1 cos(𝑥)d𝑥,

where, in the second line, we used the change of variables 𝑥 = 𝜋𝑧
√
𝑢. In particular, as 𝑧 tends

to infinity, this converges to 𝜋−2ℎ1
∫ +∞

0 𝑥2ℎ1−1 cos(𝑥)d𝑥 = cos(𝜋ℎ1)
𝜋2ℎ1

Γ(2ℎ1) =: 𝑐1/2 ≈ 0.440433.
Analogously, for 𝑘 = 3

2 ,

𝜁 3
2
(𝑧, ℎ2) =

𝑧2ℎ2

2ℎ2
1𝐹2

(
ℎ2; 3

2 , 1 + ℎ2;−𝜋
2𝑧2

4

)
=
𝑧2ℎ2

2𝜋𝑧

∫ 1

0
𝑢ℎ2−3/2 sin(𝜋𝑧√𝑢)d𝑢

=
𝑧2ℎ2−1

2𝜋

∫ 𝜋𝑧

0

𝑥2ℎ2−3)

(𝜋𝑧)2ℎ2−3) sin(𝑥) 2𝑥
𝜋2𝑧2 d𝑥 =

1
𝜋2ℎ2

∫ 𝜋𝑧

0
𝑥2(ℎ2−1) sin(𝑥)d𝑥,

with the same change of variables as before. This converges to 𝜋−2ℎ2
∫ +∞

0 𝑥2ℎ2−2 sin(𝑥)d𝑥 =
− cos(𝜋ℎ2)

𝜋2ℎ2
Γ(2ℎ2 − 1) =: 𝑐3/2 ≈ 0.193 as 𝑧 tends to infinity. For 𝑘 > 0, 𝜁𝑘(𝑧, ℎ) = 𝑧2ℎ(1 + O(𝑧2))

at zero. Since 𝐻 ∈ (0, 1
2 ), the two functions are continuous and bounded and the proposition

follows. □
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3.A.5 Proof of Theorem 3.4.11

We only provide the proof of (3.4.5) since, as already noticed, that of (3.4.6) follows immedi-
ately. Suppose that 𝐹 : R→ R is Lipschitz continuous with constant 𝑀. By Definitions (3.4.1)
and (3.4.4), we have���E [𝐹 (VIX𝑇)] − E

[
𝐹

(
V̂IX

d
𝑇

)] ���
=

�����E 𝐹 ©«
���� 1Δ ∫ 𝑇+Δ

𝑇
𝑣0(𝑡) exp

{
𝛾𝑍𝑇,Δ𝑡 + 𝛾2

2

(∫ 𝑡−𝑇

0
𝐾(𝑠)2d𝑠 −

∫ 𝑡

0
𝐾(𝑠)2d𝑠

)}
d𝑡

���� 1
2 ª®¬


−E

𝐹 ©«
���� 1Δ ∫ 𝑇+Δ

𝑇
𝑣0(𝑡) exp

{
𝛾𝑍𝑇,Δ,d𝑡 + 𝛾2

2

(∫ 𝑡−𝑇

0
𝐾(𝑠)2d𝑠 −

∫ 𝑡

0
𝐾(𝑠)2d𝑠

)}
d𝑡

���� 1
2 ª®¬


�����.

For clarity, let 𝑍 := 𝑍𝑇,Δ, 𝑍 := 𝑍𝑇,Δ,d, ℌ :=
∫ 𝑇+Δ
𝑇 ℎ(𝑡)e𝛾𝑍𝑡d𝑡 and ℌ̂ :=

∫ 𝑇+Δ
𝑇 ℎ(𝑡)e𝛾𝑍𝑡d𝑡, with

ℎ(𝑡) := 𝑣0(𝑡)
Δ

exp
{
𝛾2

2

(∫ 𝑡−𝑇

0
𝐾(𝑠)2d𝑠 −

∫ 𝑡

0
𝐾(𝑠)2d𝑠

)}
, for 𝑡 ∈ [𝑇, 𝑇 + Δ].

We can therefore write, using the Lipschitz property of 𝐹 (with constant 𝑀) and Lemma 3.B.3,���E [𝐹 (VIX𝑇)] − E
[
𝐹

(
V̂IX

d
𝑇

)] ��� = ���E [
𝐹

(
ℌ

1
2

)]
− E

[
𝐹

(
ℌ̂

1
2

)] ��� ≤ E [���𝐹 (
ℌ

1
2

)
− 𝐹

(
ℌ̂

1
2

)���]
≤ 𝑀E

[���ℌ 1
2 − ℌ̂ 1

2

���] ≤ 𝑀E[ (
1
ℌ
+ 1

ℌ̂

) ���ℌ − ℌ̂��� ]
=: 𝑀E

[
𝐴

���ℌ − ℌ̂���] ≤ 𝑀E[𝐴∫ 𝑇+Δ

𝑇
ℎ(𝑡)

���e𝛾𝑍𝑡 − e𝛾𝑍𝑡
���d𝑡]

≤ 𝑀E
[
𝐴

∫ 𝑇+Δ

𝑇
ℎ(𝑡)𝛾

(
e𝛾𝑍𝑡 + e𝛾𝑍𝑡

) ���𝑍𝑡 − 𝑍𝑡 ���d𝑡] .
Now, an application of Hölder’s inequality yields

���E [𝐹 (VIX𝑇)] − E
[
𝐹

(
V̂IX

d
𝑇

)] ��� ≤ 𝑀E 𝛾𝐴
����∫ 𝑇+Δ

𝑇
ℎ(𝑡)2

(
e𝛾𝑍𝑡 + e𝛾𝑍𝑡

)2
d𝑡

���� 1
2
����∫ 𝑇+Δ

𝑇

���𝑍𝑡 − 𝑍𝑡 ���2 d𝑡
���� 1

2


≤ 𝑀E
[
(𝛾𝐴)2

∫ 𝑇+Δ

𝑇
ℎ(𝑡)2

(
e𝛾𝑍𝑡 + e𝛾𝑍𝑡

)2
d𝑡

] 1
2

E

[∫ 𝑇+Δ

𝑇

���𝑍𝑡 − 𝑍𝑡 ���2 d𝑡
] 1

2

= 𝔎 E

[∫ 𝑇+Δ

𝑇

���𝑍𝑡 − 𝑍𝑡 ���2 d𝑡
] 1

2

,

where 𝔎 := 𝑀E[𝛾2𝐴2
∫ 𝑇+Δ
𝑇 ℎ(𝑡)2(e𝛾𝑍𝑡 +e𝛾𝑍𝑡 )2d𝑡] 12 . It remains to show that 𝔎 is a strictly positive

finite constant. This follows from the fact that {𝑍𝑡}𝑡∈[𝑇,𝑇+Δ] does not explode in finite time (and
so does not its quantization 𝑍 either). The identity (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2) and Hölder’s inequality
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imply

𝔎2 ≤ 4𝑀2𝛾2E

[(
1
ℌ
+ 1

ℌ̂

) ∫ 𝑇+Δ

𝑇
ℎ(𝑡)2

(
e2𝛾𝑍𝑡 + e2𝛾𝑍𝑡

)
d𝑡

]

≤ 4𝑀2𝛾2E


����� 1
ℌ
+ 1

ℌ̂

�����2
1
2

E

[����∫ 𝑇+Δ

𝑇
ℎ(𝑡)2

(
e2𝛾𝑍𝑡 + e2𝛾𝑍𝑡

)
d𝑡

����2] 1
2

≤ 16𝑀2𝛾2E

[
1
ℌ2 +

1
ℌ̂2

] 1
2

E

[����∫ 𝑇+Δ

𝑇
ℎ(𝑡)2e2𝛾𝑍𝑡d𝑡

����2 + ����∫ 𝑇+Δ

𝑇
ℎ(𝑡)2e2𝛾𝑍𝑡d𝑡

����2] 1
2

= : 16𝑀2𝛾2(𝐴1 + 𝐴2) 12 (𝐵1 + 𝐵2) 12 .

We only need to show that 𝐴1 , 𝐴2 , 𝐵1 and 𝐵2 are finite. Since ℎ is a positive continuous function
on the compact interval [𝑇, 𝑇 + Δ], we have

ℌ ≥
∫ 𝑇+Δ

𝑇
inf

𝑠∈[𝑇,𝑇+Δ]
(
ℎ(𝑠)e𝛾𝑍𝑠 ) d𝑡 ≥ Δ inf

𝑠∈[𝑇,𝑇+Δ]
ℎ(𝑠)e𝛾𝑍𝑠 (3.A.14)

≥ Δ inf
𝑡∈[𝑇,𝑇+Δ]

ℎ(𝑡) inf
𝑠∈[𝑇,𝑇+Δ]

e𝛾𝑍𝑠 ≥ Δℎ̃ exp
{
𝛾 inf
𝑠∈[𝑇,𝑇+Δ]

𝑍𝑠

}
,

with ℎ̃ := inf𝑡∈[𝑇,𝑇+Δ] ℎ(𝑡) > 0. The inequality (3.A.14) implies

𝐴1 = E
[
ℌ−2] ≤ E [

exp
{−2𝛾 inf𝑠∈[𝑇,𝑇+Δ] 𝑍𝑠

}]
Δ2 ℎ̃2

=
E

[
exp

{
2𝛾 sup𝑠∈[𝑇,𝑇+Δ](−𝑍𝑠)

}]
Δ2 ℎ̃2

=
1

Δ2 ℎ̃2
E

[
exp

{
2𝛾 sup

𝑠∈[𝑇,𝑇+Δ]
𝑍𝑠

}]
,

since −𝑍 and 𝑍 have the same law. The process 𝑍 = (𝑍𝑡)𝑡∈[𝑇,𝑇+Δ] is a continuous centred
Gaussian process defined on a compact set. Thus, by Theorem 1.5.4 in [2], it is almost surely
bounded there. Furthermore, exploiting Lemma 3.B.4 and Borel-TIS inequality [2, Theorem
2.1.1], we have

E
[
e2𝛾 sup𝑠∈[𝑇,𝑇+Δ] 𝑍𝑠

]
=: E

[
e2𝛾‖𝑍‖] = ∫ +∞

0
P

(
e2𝛾‖𝑍‖ > 𝑢

)
d𝑢 =

∫ +∞

0
P

(
‖𝑍‖ > log(𝑢)

2𝛾

)
d𝑢

=
∫ e2𝛾E[‖𝑍‖]

0
d𝑢 +

∫ +∞

e2𝛾E[‖𝑉 ‖]
P

(
‖𝑍‖ > log(𝑢)

2𝛾

)
d𝑢 = e2𝛾E[‖𝑍‖] +

∫ +∞

e2𝛾E[‖𝑉 ‖]
e
− 1

2

(
1

2𝛾 log(𝑢)−E[‖𝑍‖]
𝜎𝑇

)2

d𝑢

≤ e2𝛾E[‖𝑍‖] +
∫ +∞

0
e
− 1

2

(
1

2𝛾 log(𝑢)−E[‖𝑍‖]
𝜎𝑇

)2

d𝑢, (3.A.15)
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with ‖𝑍‖ := sup𝑠∈[𝑇,𝑇+Δ] 𝑍𝑠 and 𝜎2
𝑇 := sup𝑡∈[𝑇,𝑇+Δ] E[𝑍2

𝑡 ]. The change of variable log(𝑢)
2𝛾 = 𝑣 in

the last term in (3.A.15) yields

∫ +∞

0
e
− 1

2

(
1

2𝛾 log(𝑢)−E[‖𝑍‖]
𝜎𝑇

)2

d𝑢 = 2𝛾
∫
R

e−
1
2

(
𝑣−E[‖𝑍‖]

𝜎𝑇

)2

e2𝛾𝑣d𝑣 =
√

2𝜋2𝛾E[e2𝛾𝑌],

since 𝑌 ∼ N(E[‖𝑍‖], 𝜎𝑇), and hence 𝐴1 is finite. Now, notice that, in analogy to the last line of
the proof of Proposition 3.3.12, for any 𝑡 ∈ [𝑇, 𝑇 + Δ], we have

E
[
𝑍𝑡

���(𝑍𝑠)𝑠∈[𝑇,𝑇+Δ]] = E
[
E

[
𝑍𝑡

���{�̂�𝑑(𝑛)𝑛 }𝑛=1,...,𝑚

] ���(𝑍𝑠)𝑠∈[𝑇,𝑇+Δ]] = E
[
𝑍𝑡

���(𝑍𝑠)𝑠∈[𝑇,𝑇+Δ]] = 𝑍𝑡 ,

(3.A.16)

since the sigma-algebra generated by (𝑍𝑠)𝑠∈[𝑇,𝑇+Δ] is included in the sigma-algebra gener-
ated by {�̂�𝑑(𝑛)𝑛 }𝑛=1,...,𝑚 . Now, exploiting, in sequence, (3.A.16), the conditional version of
sup𝑡∈[𝑇1 ,𝑇2] E[ 𝑓𝑡] ≤ E[sup𝑡∈[𝑇1 ,𝑇2] 𝑓𝑡], conditional Jensen’s inequality together with the convex-
ity of 𝑥 ↦→ e𝛾𝑥 , for 𝛾 > 0 and the tower property, we obtain

E

[
exp

{
𝛾 sup
𝑡∈[𝑇,𝑇+Δ]

𝑍𝑡

}]
= E

[
exp

{
𝛾 sup
𝑡∈[𝑇,𝑇+Δ]

E
[
𝑍𝑡

���(𝑍𝑠)𝑠∈[𝑇,𝑇+Δ]]}]
≤ E

[
exp

{
𝛾E

[
sup

𝑡∈[𝑇,𝑇+Δ]
𝑍𝑡

���(𝑍𝑠)𝑠∈[𝑇,𝑇+Δ]]}]
≤ E

[
E

[
exp

{
𝛾 sup
𝑡∈[𝑇,𝑇+Δ]

𝑍𝑡

} ���(𝑍𝑠)𝑠∈[𝑇,𝑇+Δ]] ]
= E

[
exp

{
𝛾 sup
𝑡∈[𝑇,𝑇+Δ]

𝑍𝑡

}]
.

Thus, we have

𝐴2 = E
[
ℌ̂−2

]
≤ 1

Δ2 ℎ̃2
E

[
exp

{
𝛾 sup
𝑡∈[𝑇,𝑇+Δ]

𝑍𝑡

}]
≤ 1

Δ2 ℎ̃2
E

[
exp

{
𝛾 sup
𝑡∈[𝑇,𝑇+Δ]

𝑍𝑡

}]
,

which is finite because of the proof of the finiteness of 𝐴1, above.
Exploiting Fubini’s theorem we rewrite 𝐵1 as

𝐵1 = E

[(∫ 𝑇+Δ

𝑇
ℎ(𝑡)2e2𝛾𝑍𝑡d𝑡

)2]
=

∫ 𝑇+Δ

𝑇

∫ 𝑇+Δ

𝑇
ℎ(𝑡)2ℎ(𝑠)2E [

e2𝛾(𝑍𝑡+𝑍𝑠 )] d𝑡d𝑠.

Since (𝑍𝑡)𝑡∈[𝑇,𝑇+Δ] is centred Gaussian with covariance E[𝑍𝑡𝑍𝑠] =
∫ 𝑇

0 𝐾(𝑡 − 𝑢)𝐾(𝑠 − 𝑢)d𝑢, then
(𝑍𝑡 +𝑍𝑠) ∼ N(0, 𝑔(𝑡 , 𝑠)), with 𝑔(𝑡 , 𝑠) := E[(𝑍𝑡 +𝑍𝑠)2] =

∫ 𝑇
0 (𝐾(𝑡 −𝑢)+𝐾(𝑠 −𝑢))2d𝑢 and therefore

𝐵1 =
∫ 𝑇+Δ

𝑇

∫ 𝑇+Δ

𝑇
ℎ(𝑡)2ℎ(𝑠)2e2𝛾2𝑔(𝑡 ,𝑠)d𝑡d𝑠

is finite since both ℎ and 𝑔 are continuous on compact intervals. Finally, for 𝐵2 we have
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𝐵2 = E

[(∫ 𝑇+Δ

𝑇
ℎ(𝑡)2e2𝛾𝑍𝑡d𝑡

)2]
=

∫ 𝑇+Δ

𝑇

∫ 𝑇+Δ

𝑇
ℎ(𝑡)2ℎ(𝑠)2E

[
e2𝛾(𝑍𝑡+𝑍𝑠 )

]
d𝑡d𝑠

≤
∫ 𝑇+Δ

𝑇

∫ 𝑇+Δ

𝑇
ℎ(𝑡)2ℎ(𝑠)2E [

e2𝛾(𝑍𝑡+𝑍𝑠 )] d𝑡d𝑠 = 𝐵1 ,

where we have used the fact that for all 𝑡 , 𝑠 ∈ [𝑇, 𝑇 + Δ], (𝑍𝑡 + 𝑍𝑠) is a stationary quantizer
for (𝑍𝑡 + 𝑍𝑠) and so E[e2𝛾(𝑍𝑡+𝑍𝑠 )] ≤ E[e2𝛾(𝑍𝑡+𝑍𝑠 )] since 𝑓 (𝑥) = e2𝛾𝑥 is a convex function (see
Remark 3.3.9 in Section 3.3.1). Therefore 𝐵2 is finite and the proof follows.

3.B Some useful results

We recall some important results used throughout the text. Straightforward proofs are
omitted.

Proposition 3.B.1. For a Gaussian random variable 𝑍 ∼ N(𝜇, 𝜎),

E
[|𝑍 − 𝜇|𝑝] = {

(𝑝 − 1)!!𝜎𝑝 , if 𝑝 is even,
0, if 𝑝 is odd.

We recall [138, Problem 8.5], correcting a small error, used in the proof of Proposition 3.3.6:

Lemma 3.B.2. Let 𝑚, 𝑁 ∈ N and 𝑝1 , . . . , 𝑝𝑚 positive real numbers. Then

inf

{
𝑚∑
𝑛=1

𝑝𝑛
𝑥2
𝑛

: 𝑥1 , . . . , 𝑥𝑚 ∈ (0,∞),
𝑚∏
𝑛=1

𝑥𝑛 ≤ 𝑁
}
= 𝑚𝑁−

2
𝑚
©«
𝑚∏
𝑗=1

𝑝 𝑗
ª®¬

1
𝑚

,

where the infimum is attained for 𝑥𝑛 = 𝑁
1
𝑚 𝑝

1
2
𝑛

(∏𝑚
𝑗=1 𝑝 𝑗

)− 1
2𝑚

, for all 𝑛 ∈ {1, . . . , 𝑚}.
Proof. The general arithmetic-geometric inequalities imply

1
𝑚

𝑚∑
𝑛=1

𝑝𝑛
𝑥2
𝑛
≥

(
𝑚∏
𝑛=1

𝑝𝑛
𝑥2
𝑛

) 1
𝑚

=

(
𝑚∏
𝑛=1

𝑝𝑛

) 1
𝑚

(
𝑚∏
𝑛=1

1
𝑥2
𝑛

) 1
𝑚

≥
(
𝑚∏
𝑛=1

𝑝𝑛

) 1
𝑚

𝑁−
2
𝑚 ,

since
∏𝑚

𝑛=1 𝑥𝑛 ≥ 𝑁 by assumption. The right-hand side does not depend on 𝑥1 , . . . , 𝑥𝑚 , so

inf

{
𝑚∑
𝑛=1

𝑝𝑛
𝑥2
𝑛

: 𝑥1 , . . . , 𝑥𝑚 ∈ (0,∞),
𝑚∏
𝑛=1

𝑥𝑛 ≤ 𝑁
}
≥ 𝑚

(
𝑚∏
𝑛=1

𝑝𝑛

) 1
𝑚

𝑁−
2
𝑚 .

Choosing �̃�𝑛 = 𝑁
1
𝑚 𝑝

1
2
𝑛

(∏𝑚
𝑗=1 𝑝 𝑗

)− 1
2𝑚 , for all 𝑛 ∈ {1, . . . , 𝑚}, we obtain

𝑚

(
𝑚∏
𝑛=1

𝑝𝑛
𝑁2

) 1
𝑚

=
𝑚∑
𝑛=1

𝑝𝑛
�̃�2
𝑛
≥ inf

{
𝑚∑
𝑛=1

𝑝𝑛
𝑥2
𝑛

: 𝑥1 , . . . , 𝑥𝑚 ∈ (0,∞),
𝑚∏
𝑛=1

𝑥𝑛 ≤ 𝑁
}
≥ 𝑚

(
𝑚∏
𝑛=1

𝑝𝑛
𝑁2

) 1
𝑚

,
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which concludes the proof. □

Lemma 3.B.3. The following hold:

(i) For any 𝑥, 𝑦 > 0, |√𝑥 − √𝑦 | ≤
(

1√
𝑥
+ 1√

𝑦

)
|𝑥 − 𝑦 |.

(ii) Set 𝐶 > 0. For any 𝑥, 𝑦 ∈ R, |e𝐶𝑥 − e𝐶𝑦 | ≤ 𝐶 (
e𝐶𝑥 + e𝐶𝑦

) |𝑥 − 𝑦 |.
Lemma 3.B.4. For a positive random variable 𝑋 on (Ω, ℱ , P), E[𝑋] = ∫ +∞

0 P(𝑋 > 𝑢)d𝑢.
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A theoretical analysis of Guyon’s toy volatility model

Whenever a theory appears to you as the only possible one, take this as a sign that you have
neither understood the theory nor the problem which it was intended to solve.

Karl Popper

Here we discuss paper [27], available on arXiv. This project results from a collaboration with
Prof. A. Jacquier and Ph.D. Chloé Lacombe and it was submitted for publication in November
2022. In 2014, Guyon introduced a toy model with path dependent volatility, see [86]. In the
aforementioned paper, we carry a detailed theoretical analysis of this model. In particular,
we first prove existence and uniqueness of a strong solution and characterise its behaviour at
boundary points. Then, leveraging on these results, we provide asymptotic closed-form option
prices and we derive small-time behaviour estimates as well.

4.1 Introduction

Stochastic volatility models have been used extensively over the past three decades in order
to reproduce particular features of market data, on Equities, FX and Fixed Income markets, both
under the historical measure and for pricing purposes. Most of them are based on a Markovian
assumption for the underlying process, essentially for mathematical convenience, as PDE tech-
niques and Monte Carlo schemes are more readily available then. However, recent models have
departed from this Markovian confinement and have shown to provide extremely accurate fit
to market data. One approach considers instantaneous volatility driven by fractional Brownian
motion, giving rise to the rough volatility generation and its numerous descendants [8, 14, 53,
61, 71, 77, 85]. A less stridden, yet very intuitive, path, originally introduced by Engle [56]
and Bollerslev [24] in the early 1980s suggested to consider models where volatility depends
on the past history of the stock price process. Their approach, though, was under the historical
measure, and Duan [48] investigated these discrete-time models in the context of option pricing.
With this in mind, Hobson and Rogers [96] extended this approach to continuous time, propos-
ing that instantaneous volatility should depend on exponentially weighted moments of the
stock price. Contrary to stochastic volatility models, the market here is complete. Hobson and
Rogers [96] showed that such models generate implied volatility smiles and skews consistent
with market data. Further results investigated some theoretical properties of these models, in
particular [124] proving existence and uniqueness of strong solutions. This path has recently
been given new highlights by Guyon [86], who assumed that the underlying stock price process
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4.2. SET UP AND NOTATIONS

behaves as
d𝑆𝑡
𝑆𝑡

= 𝜎(𝑡 , 𝑆𝑡 , 𝑌𝑡)𝑙(𝑡 , 𝑆𝑡)d𝑊𝑡 , 𝑆0 := 𝑠0 > 0,

where 𝑊 is a standard Brownian motion, 𝑌 an adapted process and 𝑙(·) a leverage function
ensuring that European options are fully recovered. Inspired by Hobson and Rogers [96],
Guyon [87] suggested to choose 𝑌 as an exponentially weighted moving average of 𝑆. Not
only does this model calibrate perfectly to the observed smile, but the diffusion map 𝜎(·) can
be chosen in such a way that joint calibration with VIX data becomes feasible, a notoriously
difficult task.

Motivated by his empirical results, we investigate the theoretical properties of this model.
We provide a full characterisation of the behaviour of the volatility process at its boundaries,
together with its ergodic behaviour, and derive closed-form asymptotics for the corresponding
option prices in small time. In Section 4.2, we set the notations and present Guyon’s model.
Section 4.3 gathers the main theoretical results, proving existence and uniqueness of a strong
solution (Section 4.3.2), deriving the stationary distribution (Section 4.3.3), which we use to
obtain an expansion of the option price in Section 4.3.4. We finally provide small-time option
price and implied volatility asymptotics for this model in Section 4.3.5. We gather all (lengthy)
proofs in the appendix.

This project arises as an empirical analysis carried out by Guyon [87] (see also [86]) to
describe the relationship between the VIX index and the VVIX, a volatility of volatility index.
Figure 4.1.1 below shows a scatter plot of one versus the other over a five-year period. The
approximate linear relationship highlighted by the least-square regression fit was first noted by
Guyon [87], and we follow his recommendations here.

Figure 4.1.1: Historical VVIX vs historical VIX (13/4/12-8/5/17). Source: CBOE.

4.2 Set up and notations

The underlying process 𝑆, describing the evolution of the S&P index follows the general
dynamics

d𝑆𝑡
𝑆𝑡

= 𝜎(𝑌𝑡)d𝑊𝑡 , 𝑆0 = 𝑠0 > 0,

for some given Brownian motion 𝑊 generating a filtration ℱ = (ℱ𝑡)𝑡≥0, where 𝜎 : R∗+ → R
is non anticipative. Following Guyon [87] and Hobson and Rogers [96], we assume that the
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process 𝑌 is adapted to ℱ and is a function of the past history of the stock 𝑆, making the latter
non-Markovian, in the sense

𝑌𝑡 := 𝑆𝑡

𝑆
ℎ
𝑡

, for 𝑡 ∈ [0, 𝑇], where 𝑆
ℎ
𝑡 := 1

ℎ

∫ 𝑡

−∞
exp

{
− 𝑡 − 𝑢

ℎ

}
𝑆𝑢d𝑢

is the exponentially weighted moving average (EWMA) of the stock price process. Here, the
time horizon is set to be 𝑇. The constant ℎ > 0, denoting the length of the time window, is
left unspecified for now. Using Itô’s formula and denoting 𝑋 := log(𝑆), we can summarise the
dynamics for the couple (𝑋,𝑌) as d𝑋𝑡 = −1

2𝜎(𝑌𝑡)
2d𝑡 + 𝜎(𝑌𝑡)d𝑊𝑡 , 𝑋0 = 𝑥0 := log(𝑠0),

d𝑌𝑡 = 𝑏(𝑌𝑡)d𝑡 + �̃�(𝑌𝑡)d𝑊𝑡 , 𝑌0 = 𝑦0 > 0,
(4.2.1)

with 𝑏(𝑦) := 1
ℎ 𝑦(1− 𝑦) and �̃�(𝑦) := 𝑦𝜎(𝑦), for 𝑦 > 0 and some ℎ > 0. Guyon [87] showed that, for

the linear relationship between the VIX and the VVIX to hold, one needs to consider a diffusion
coefficient of the form

𝜎(𝑦) := −𝛼
𝛽
+ 𝛾𝑦−𝛽 ,

with 𝛼, 𝛽, 𝛾 > 0. In that case, �̃� is null at 𝑦𝜎 :=
(
𝛽𝛾
𝛼

)1/𝛽
, and

�̃�(0) =


not defined, if 𝛽 > 1,
0, if 𝛽 < 1,
𝛾, if 𝛽 = 1.

We note that, for 𝑦 ∈ (𝑦𝜎 ,∞), 𝜎(𝑦) < 0 and therefore �̃�(𝑦) < 0 as well. While this may appear
odd, it is not however an issue as Brownian increments are symmetric around the origin.
While Figure 4.1.1 provides strong empirical arguments in favour of such a model, a theoretical
analysis thereof is however needed in order to investigate further its practical benefits. For
example, since �̃�(𝑦)2 ∼ 𝛾2𝑦2(1−𝛽) as 𝑦 approaches zero, the map �̃� is square integrable around
the origin if and only if 𝛽 < 3

2 , and theoretical issues will arise if this is not satisfied (therefore
ruling out such values out of calibration). That said, as we will show below, our main interest
will be on the behaviour of the process on (𝑦𝜎 ,∞), and therefore this restriction on 𝛽 will not
be enforced. Here and in the following, given two functions 𝑓 , 𝑔 : R → R, we shall write
𝑓 (𝑦) ∼ 𝑔(𝑦) as 𝑦 tends to a (possible infinite) point �̄� whenever lim𝑦→�̄� 𝑓 (𝑦)/𝑔(𝑦) = 1. We write
P𝑦(·) for the conditional probability P𝑦(·|𝑌0 = 𝑦) and consequently E𝑦[·] for E𝑦[·|𝑌0 = 𝑦].
We now step into this theoretical analysis by first concentrating on the existence and uniqueness
of a strong solution for (4.2.1), then by deriving a precise classification of the special points 0,
𝑦𝜎 and ∞, before diving into the asymptotic behaviour of the process and the corresponding
option prices.
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4.3 Main results

4.3.1 Existence and uniqueness of strong solutions

Following [101, Definition 2.1], the definition of a strong solution allows for explosion in
finite time. It is enough to check existence and uniqueness of solutions for the one-dimensional
equation associated to the process 𝑌 since the process 𝑋 = log(𝑆) is uniquely determined as a
function of 𝑌 and 𝑊 . A localised version of [101, Corollary to Theorem 3.2] which, according
to the authors, can be proved similarly to Theorem 3.1 therein, yields the existence of a unique
strong solution, provided that the drift 𝑏(·) is locally Lipschitz and the volatility �̃�(·) is 1

2 -Hölder
(as mentioned in [101, page 184], this condition is in some sense maximal). Alternatively, one
can exploit [47, Proposition 2.3], since the conditions therein are a direct consequence of local
Lipschitzianity and local Hölderianity of 𝑏 and 𝜎. Notice that the fact that we are just focusing
here on the positive half-line and not on R can be overcome just by setting 𝜎 and 𝑏 identically
equal to zero for negative arguments. The local Lipschitz property of the drift is straightforward:
for any 𝑁 ∈ N and any 𝑥, 𝑦 ∈ [−𝑁, 𝑁], we have

|𝑏(𝑥) − 𝑏(𝑦)| =
��𝑥 − 𝑥2 − (

𝑦 − 𝑦2) ��
ℎ

≤ |𝑥 − 𝑦 | +
��𝑥2 − 𝑦2

��
ℎ

≤ |𝑥 − 𝑦 | + 2𝑁 |𝑥 − 𝑦 |
ℎ

≤ 𝐾𝑁 |𝑥 − 𝑦 |,

from which the local Lipschitz property with constant 𝐾𝑁 := 2𝑁+1
ℎ follows. Now, the volatility

function is 𝛼-Hölder with 𝛼 ≥ 1
2 if and only if 0 < 𝛽 ≤ 1

2 or 𝛽 = 1: for 𝛽 = 1, �̃�(𝑦) = − 𝛼
𝛽 𝑦 + 𝛾 is

affine hence globally Lipschitz. Now, for any 𝑁 ∈ N and 𝑥, 𝑦 ∈ [−𝑁, 𝑁],���̃�(𝑥) − �̃�(𝑦)�� = ����−𝛼𝛽 𝑥 + 𝛾𝑥1−𝛽 + 𝛼
𝛽
𝑦 − 𝛾𝑦1−𝛽

���� ≤ 𝛼
𝛽
|𝑥 − 𝑦 | + 𝛾

��𝑥1−𝛽 − 𝑦1−𝛽��
≤ 2 max

{
𝛼
𝛽
, 𝛾

}
|𝑥 − 𝑦 |1−𝛽 ,

which is locally 1
2 -Hölder continuous if and only if 𝛽 ≤ 1

2 . We will below consider the process𝑌,
not on the positive half line, but on the open interval (𝑦𝜎 ,∞), on which it enjoys nice ergodic
properties. There, the regularity of �̃� is improved since, for any 𝑥, 𝑦 ∈ (𝑦𝜎 ,∞),���̃�(𝑥) − �̃�(𝑦)�� = ����𝛼𝛽 (𝑦 − 𝑥) + 𝛾

(
𝑥1−𝛽 − 𝑦1−𝛽) ���� ≤ 𝛼

𝛽
|𝑥 − 𝑦 | + 𝛾(1 − 𝛽)

𝑦𝛽𝜎
|𝑥 − 𝑦 |

≤
(
𝛼
𝛽
+ 𝛾(1 − 𝛽) 𝛼

𝛽𝛾

)
|𝑥 − 𝑦 | = 𝛼(2 − 𝛽)

𝛽
|𝑥 − 𝑦 |.

4.3.2 Boundary classification

Now, we need to analyse its behaviour in its domain and in particular at the boundary of the
latter. To do so, we follow the boundary classification in [106, Chapter 15, Section 6]. The reason
for this choice is that it seems the most suitable reference here. First, it includes both Feller and
Russian boundary classifications, therefore allowing for a precise comparison. Second, it only
requires the volatility coefficient to be non-null in the interior of the domain considered. On
the contrary, the treatise in [37], although more complete in some sense, requires the volatility
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process to be non null everywhere in R. Consider a regular (in the sense of [106]) diffusion
process 𝑌 = {𝑌𝑡}𝑡≥0, on a domain 𝔇 ⊂ R, with left and right boundaries 𝑙 and 𝑟:

d𝑌𝑡 = 𝜇(𝑌𝑡)d𝑡 + 𝜎(𝑌𝑡)d𝑊𝑡 , 𝑌0 = 𝑦0 ∈ 𝔇.

For any point 𝑦 in the interior of 𝔇, namely 𝑦 ∈ (𝑙, 𝑟), we assume that the drift and variance
coefficients 𝜇(·) and 𝜎(·) are continuous and that 𝜎(𝑦) > 0 for all 𝑦 in the interior of 𝔇. For any
𝑥, 𝑦 ∈ R, introduce the hitting times 𝜏𝑥 := inf {𝑡 ≥ 0 : 𝑌𝑡 = 𝑥} and 𝜏𝑥,𝑦 := min

{
𝜏𝑥 , 𝜏𝑦

}
.

We study the left boundary 𝑙, the discussion for the right boundary 𝑟 being similar. To
provide a precise description, we recall some standard notions. The scale function 𝑆 : 𝔇→ R is
defined in terms of the so-called the scale density 𝑠 : 𝔇→ R via

𝑠(𝜉) := exp
(
−

∫ 𝜉

𝜉0

2𝜇(𝑣)
𝜎2(𝑣)d𝑣

)
, 𝑆(𝑥) :=

∫ 𝑥

𝑥0

𝑠(𝜉)d𝜉,

where 𝜉0 , 𝑥0 ∈ (𝑙, 𝑟) are arbitrary fixed points. The particular choice of these points has no
importance for the boundary discussion [106, Chapter 15, Section 3]. For any closed interval
𝐼 := [𝑎, 𝑏] ⊂ (𝑙, 𝑟), we also introduce the scale measure, namely the map 𝑆 : 𝐼 ↦→ 𝑆(𝑏)−𝑆(𝑎). Then,
we define the speed density 𝑚 and speed measure 𝑀:

𝑚(𝜉) := 1
𝜎2(𝜉)𝑠(𝜉) , 𝑀[𝐼] = 𝑀[𝑎, 𝑏] :=

∫ 𝑏

𝑎
𝑚(𝑥)d𝑥.

Notice that both 𝑆 and 𝑀 are positive and finite on their domain. Finally,

𝑁(𝑙) :=
∫ 𝑥

𝑙
𝑆[𝜂, 𝑥]d𝑀(𝜂) =

∫ 𝑥

𝑙
𝑀(𝑙, 𝜉]d𝑆(𝜉) =

∫ 𝑥

𝑙
𝑆[𝜂, 𝑥] d𝜂

𝜎2(𝜂)𝑠(𝜂) .

Since we are only interested in whether the integrals are finite or not, the upper bound 𝑥 is
irrelevant, explaining why we omit it from the notations. Through the quantity 𝑀(𝑙, 𝑥], we can
in some sense estimate the velocity of the process near 𝑙 and with the quantity 𝑁(𝑙) we can
approximately quantify how long it takes to hit a point 𝑥 ∈ (𝑙, 𝑟) starting at the left boundary 𝑙.
Now, we are ready to give the first classification:

Definition 4.3.1.

- The left boundary 𝑙 is attracting if 𝑆(𝑙, 𝑥0] < ∞ for some 𝑥0 in (𝑙 , 𝑟). Then,
P(𝜏𝑙+ ≤ 𝜏𝑏 |𝑌0 = 𝑥) > 0, for any 𝑙 < 𝑥 < 𝑏 < 𝑟.

- The left boundary 𝑙 is unattracting when 𝑆(𝑙 , 𝑥0] = ∞ for some 𝑥0 in (𝑙, 𝑟). Then,
P(𝜏𝑙+ < 𝜏𝑏 |𝑌0 = 𝑥) = 0, for any 𝑙 < 𝑥 < 𝑏 < 𝑟.

A left boundary 𝑙 is therefore attracting when there is a positive probability that the process
reaches 𝑙 prior to the arbitrary state 𝑏 (not necessarily in finite time), when its initial condition
is 𝑥 < 𝑏. To complete our discussion of boundary classification we introduce the quantity
Σ(𝑙) :=

∫ 𝑥

𝑙 𝑆(𝑙, 𝜉] d𝜉
𝜎2(𝜉)𝑠(𝜉) , where again the upper bound 𝑥 in the integration is irrelevant. Roughly
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speaking, Σ(𝑙) determines the time required by the process, starting from an interior point 𝑥, to
reach the boundary 𝑙 or another interior point 𝑏 > 𝑥.

Definition 4.3.2. The boundary 𝑙 is attainable if Σ(𝑙) < ∞; otherwise it is unattainable.

A straightforward argument shows that if 𝑙 is attainable, then it is attracting. Indeed,
𝑆(𝑙, 𝑥0] < ∞whenever Σ(𝑙) < ∞. This is in contrast to unattainable boundaries that may or may
not be attracting. For an attracting attainable boundary 𝑙, for any 𝑙 < 𝑥 < 𝑏 < 𝑟,

P(𝜏𝑙+ < ∞|𝑦0 = 𝑥) > 0 and E[𝜏𝑙+ ∧ 𝜏𝑏 |𝑦0 = 𝑥] < ∞.

Table 6.1 in [106] provides a complete portrait of Feller and Russian characterisations in terms
of 𝑆(𝑙 , 𝑥], 𝑀(𝑙 , 𝑥], Σ(𝑙) and 𝑁(𝑙). We give here a short description in words of Feller’s:

- Regular boundary: A regular boundary is attracting and attainable. A diffusion process
can enter but also leave from such a boundary point.

- Exit boundary: An exit boundary is attracting and attainable too, but when the initial
point gets closer to it, the process cannot reach any interior point 𝑏 regardless how close 𝑏
is to 𝑙. Indeed, in this case it should hold: lim𝑏↘𝑙 lim𝑥↘𝑙 P(𝜏𝑏 < 𝑡 |𝑌0 = 𝑥) = 0, for any
𝑡 > 0. No continuous sample path can exit 𝑙 after touching it.

- Entrance boundary: An entrance boundary is unattracting and unattainable. A process
starting from any point in the interior of the domain𝔇 can not reach the entrance boundary.
Nevertheless, one can consider a process starting at the entrance boundary 𝑙: in this case,
the process moves to the interior of the domain and never comes back to the boundary.

- Natural (Feller) boundary: A point is a natural boundary when it is unattainable (it can
be attracting or not). In general, such boundaries are discarded from the state space of
the process since a diffusion process cannot start from nor reach it in finite time.

The following theorem, proved in Appendix 4.A, provides a detailed analysis of the be-
haviour of the process 𝑌 in Equation (4.2.1) at the boundaries of its domain.

Theorem 4.3.3.

- Consider the process 𝑌 in (4.2.1) over the domain 𝔇 = (𝑦𝜎 ,∞). The right boundary 𝑟 = ∞ is
entrance (unattracting, unattainable) while the left boundary 𝑙 = 𝑦𝜎 is

Left boundary 𝑦𝜎 Feller Russian
𝑦𝜎 > 1 exit-trap-absorbing attracting attainable
𝑦𝜎 = 1 natural attracting unattainable
𝑦𝜎 < 1 entrance unattracting unattainable

- If the process 𝑌 in (4.2.1) is defined over 𝔇 = (0, 𝑦𝜎), then the left boundary 𝑙 = 0 is

Left boundary 0 Feller Russian
𝛽 < 1

2 regular attracting attainable
𝛽 ≥ 1

2 exit-trap-absorbing attracting attainable

while the right boundary 𝑟 = 𝑦𝜎 is

Right boundary 𝑦𝜎 Feller Russian
𝑦𝜎 > 1 entrance unattracting unattainable
𝑦𝜎 = 1 natural attracting unattainable
𝑦𝜎 < 1 exit-trap-absorbing attracting attainable
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Remark 4.3.4. As a consequence of this classification we limit our discussion to the domain (𝑦𝜎 ,∞)with
𝑦𝜎 < 1. On (0, 𝑦𝜎) the strict positivity of 𝑌 is not guaranteed as the origin is attracting and attainable.
Moreover, the case where 𝔇 = (𝑦𝜎 ,∞)with 𝑦𝜎 ≥ 1, should be ruled out as well since 𝑦𝜎 is attracting and
attainable, so that 𝑌 may then exit it to enter (0, 𝑦𝜎) with strictly positive probability. An application
of [101, Theorem 3.2, Section 4, Chapter 4] guarantees that 𝑌 does not explode in finite time, or more
precisely that

P
(
inf

{
𝑡 ≥ 0 : 𝑌𝑡 ∈ {𝑦𝜎 ,+∞}

}
= ∞|𝑌0 = 𝑦0

)
= 1, for any 𝑦0 ∈ (𝑦𝜎 ,∞).

4.3.3 Ergodic behaviour and stationary distribution

Ergodic behaviour

We now discuss the ergodic behaviour of the process 𝑌 in (4.2.1) through the following
theorem proved in Appendix 4.B.1. To do so, introduce the probabilities

P(𝑧) := P𝑦0

(
lim
𝑡↑𝜏𝔇

𝑌𝑡 = 𝑧

)
, for 𝑧 ∈ {𝑙, 𝑟},

where 𝜏𝔇 denotes the lifetime of the process in 𝔇 = (𝑙, 𝑟). Following [132, Section 2.7-2.8],
transience of the process then corresponds to P(𝑙) + P(𝑟) = 1.

Theorem 4.3.5. The ergodic behaviour of the process 𝑌 in (4.2.1) is as follows:

𝔇 = (0, 𝑦𝜎) 𝔇 = (𝑦𝜎 ,∞)
𝑦𝜎 < 1 𝑌 transient and P(𝑦𝜎) in (4.3.1) 𝑌 recurrent
𝑦𝜎 = 1 𝑌 transient and P(𝑦𝜎) in (4.3.1) 𝑌 transient and P(𝑦𝜎) = 1
𝑦𝜎 > 1 𝑌 transient and P(0) = 1 𝑌 transient and P(𝑦𝜎) = 1

with

P(𝑦𝜎) =
∫ 𝑦0

0 exp
{
− ∫ 𝑦

𝑥
2𝑏(𝑠)
�̃�2(𝑠)d𝑠

}
d𝑦∫ 𝑦𝜎

0 exp
{
− ∫ 𝑦

𝑥
2𝑏(𝑠)
�̃�2(𝑠)d𝑠

}
d𝑦

and P(0) = 1 − P(𝑦𝜎), for any 𝑥 ∈ (0, 𝑦𝜎). (4.3.1)

An immediate consequence of the fact that 𝑌 is recurrent when 𝑦𝜎 < 1 on the domain
(𝑦𝜎 ,∞) is that 𝑌 does not explode in finite time with probability one. This will thus be the case
of interest, for which a stationary distribution is available (Proposition 4.3.7).

Stationary distribution over the domain 𝔇 = (𝑦𝜎 ,∞)
We now investigate the ergodic properties of the process 𝑌 in Equation (4.2.1) over the

domain 𝔇 = (𝑦𝜎 ,∞). Recall that its infinitesimal generator is defined, for any 𝑦 ∈ 𝔇, as

(ℒ𝑌𝜑)(𝑦) := lim
𝑡↓0
E[𝜑(𝑌𝑡)|𝑌0 = 𝑦] − 𝜑(𝑦)

𝑡
,

for all functions 𝜑 such that the limit is finite for all 𝑦 ∈ 𝔇. We recall [67, Section 3.2] that a
process (𝑌𝑡)𝑡>0 is ergodic if it admits a unique, stationary distributionΠ, and for any measurable
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bounded function 𝜙, the almost sure limit

lim
𝑡↑∞

1
𝑡

∫ 𝑡

0
𝜙(𝑌𝑠)d𝑠 =

∫
𝔇
𝜙(𝑦)Π(d𝑦)

holds. If this limit exists, an ergodic solution must satisfy ℒ∗𝑌Π = 0, where ℒ∗𝑌 is the adjoint of
the infinitesimal generator ℒ𝑌 , defined in [67, Section 1.5.3] via the identity∫

𝑔(𝜉)ℒ𝑌 𝑓 (𝜉)d𝜉 =
∫

𝑓 (𝜉)ℒ∗𝑌 𝑔(𝜉)d𝜉, (4.3.2)

for any rapidly decaying smooth test functions 𝑓 and 𝑔. The generator and its adjoint are
available explicitly here:

Proposition 4.3.6. For any 𝑦 ∈ 𝔇, we have

(ℒ𝑌 𝑓 )(𝑦) = 1
ℎ
𝑦(1 − 𝑦)𝜕𝑦 𝑓 (𝑦) + 1

2 𝑦
2𝜎2(𝑦)𝜕2

𝑦 𝑓 (𝑦),

(ℒ∗𝑌 𝑔)(𝑦) = −
1
ℎ
𝜕𝑦

(
𝑦(1 − 𝑦)𝑔(𝑦)

)
+ 1

2𝜕
2
𝑦

(
𝑦2𝜎2(𝑦)𝑔(𝑦)

)
.

Proof. The expression forℒ𝑌 is standard and the one forℒ∗𝑌 follows using (4.3.2) and integration
by parts. Given 𝑦 ∈ 𝔇 and 𝑓 , 𝑔 : 𝔇 → R twice continuously differentiable functions with
bounded derivatives, and such that the two functions and their derivatives tend to zero fast
enough at the boundaries, we have

〈 𝑓 ,ℒ∗𝑌 𝑔〉 = 〈ℒ𝑌 𝑓 , 𝑔〉 =
∫
𝔇

[
𝑦(1 − 𝑦)

ℎ
𝜕𝑦 𝑓 (𝑦) + 1

2 𝑦
2𝜎2(𝑦)𝜕2

𝑦 𝑓 (𝑦)
]
𝑔(𝑦)d𝑦

=
1
ℎ

∫
𝔇
𝜕𝑦 𝑓 (𝑦)𝑦(1 − 𝑦)𝑔(𝑦)d𝑦 + 1

2

∫
𝔇
𝜕2
𝑦 𝑓 (𝑦)𝑦2𝜎2(𝑦)𝑔(𝑦)d𝑦

=
1
ℎ

∫
𝔇
𝜕𝑦 𝑓 (𝑦)𝑦(1 − 𝑦)𝑔(𝑦)d𝑦 − 1

2

∫
𝔇
𝜕𝑦 𝑓 (𝑦)𝜕𝑦 (

𝑦2𝜎2(𝑦)𝑔(𝑦)) d𝑦

= −
∫
𝔇
𝜕𝑦 𝑓 (𝑦)

{
− 1
ℎ
𝑦(1 − 𝑦)𝑔(𝑦) + 1

2𝜕𝑦
(
𝑦2𝜎2(𝑦)𝑔(𝑦))} d𝑦

=
∫
𝔇
𝑓 (𝑦)

[
−𝜕𝑦

(
1
ℎ
𝑦(1 − 𝑦)𝑔(𝑦)

)
+ 1

2𝜕
2
𝑦
(
𝑦2𝜎2(𝑦)𝑔(𝑦)) ] d𝑦,

and the proposition follows. □

For 𝑓 : 𝔇 → R, finding the explicit solution of the Poisson equation is tedious. Indeed,
(ℒ∗𝑌 𝑓 )(𝑦) = 0 is equivalent to

1
2 𝑦

2 𝑓 ′′(𝑦)
[(

𝛼
𝛽

)2

− 2𝛼𝛾
𝛽
𝑦−𝛽 + 𝛾2𝑦−2𝛽

]
+ 𝑦 𝑓 ′(𝑦)

[
2

{(
𝛼
𝛽

)2

− 𝛼𝛾

𝛽
(2 − 𝛽)𝑦−𝛽 + (1 − 𝛽)𝛾2𝑦−2𝛽

}
− 1
ℎ
(1 − 𝑦)

]
+ 𝑓 (𝑦)

[(
𝛼
𝛽

)2

− 𝛼𝛾

𝛽
(1 − 𝛽)(2 − 𝛽)𝑦−𝛽 + 𝛾2(1 − 𝛽)(1 − 2𝛽)𝑦−2𝛽 − 1

ℎ
(1 − 2𝑦)

]
= 0,
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with the constraint
∫
𝔇 𝑓 (𝑦)d𝑦 = 1. This is a highly non-linear problem, which does not admit

any obvious explicit solution. However, using the probabilistic tools developed in [106, page
242], such a closed-form expression can be derived as in the following proposition, proved in
Appendix 4.B.2).

Proposition 4.3.7. If 𝑦𝜎 < 1, 𝔇 = (𝑦𝜎 ,∞), the unique stationary distribution reads

Π(d𝑦) =
(∫ ∞

𝑦𝜎

d𝜉
�̃�2(𝜉)𝑠(𝜉)

)−1 d𝑦
�̃�2(𝑦)𝑠(𝑦) . (4.3.3)

4.3.4 Pricing PDE and expansion

Pricing options on the stock price given in (4.2.1) can obviously be done with Monte Carlo
simulations. However, through Feynman-Kac, PDE techniques are (when available) often faster
and may also (as we shall see below) provide closed-form expressions. Consider an option with
payoff ℎ(𝑋𝑇) at expiry 𝑇, and denote its price 𝑃(𝑡 , 𝑋𝑡 , 𝑌𝑡) at time 𝑡 ≤ 𝑇. Introduce the operators

ℒ1 := 𝑦𝜎2(𝑦)𝜕𝑥𝑦 and ℒ𝜎(𝑦)
BS := 𝜕𝑡 + 𝜎2(𝑦)

2 𝜕2
𝑥 −

𝜎2(𝑦)
2 𝜕𝑥 . (4.3.4)

and recall that ℒ𝑌 is defined in Proposition 4.3.6, while the operator ℒ𝜎(𝑦)
BS is nothing else than

the Black-Scholes infinitesimal generator with volatility 𝜎(𝑦).

Proposition 4.3.8. Under the risk-neutral measure, the pricing PDE associated to (4.2.1) is(
ℒ𝑌 + ℒ1 + ℒ𝜎(𝑦)

BS

)
𝑃(𝑡 , 𝑥, 𝑦) = 0,

for all 𝑡 ∈ [0, 𝑇), 𝑥 ∈ R and 𝑦 ∈ 𝔇 = (𝑦𝜎 ,∞), with terminal condition 𝑃(𝑇, 𝑥, 𝑦) = ℎ(𝑥).

Note that the PDE is stated in the domain 𝔇 = (𝑦𝜎 ,∞) and not on the whole positive
half-line in the 𝑦-dimension. On 𝔇, the drift is quadratic (so that this representation follows
from [23] for example),while the diffusion coefficient is at most of linear growth. Note that
since 𝜎(·) is not bounded away from zero, the operator ℒ𝜎(𝑦)

BS is not strictly elliptic, but only
hypoelliptic. Unfortunately, this pricing PDE does not admit an obvious explicit solution.
However, approximate solutions can be found by expanding the solution using perturbation
methods, as developed in [67]. A key ingredient is the (unique) stationary distribution of the
ergodic process 𝑌, which we proved above for the case 𝔇 = (𝑦𝜎 ,∞). This perturbation analysis
relies on a few other items that we need to tackle. In particular, we assume that the pricing PDE
admits a unique classical solution.

Following [57, 58, 64, 66, 65, 67], consider a ‘fast’ version of the original process 𝑌, defined
as 

d𝑋𝑡 = −1
2𝜎(𝑌𝑡)

2d𝑡 + 𝜎(𝑌𝑡)d𝑊𝑡 , 𝑋0 = 𝑥0 ∈ R,
d𝑌𝑡 =

1
𝜀
𝑏(𝑌𝑡)d𝑡 + 1√

𝜀
�̃�(𝑌𝑡)d𝑊𝑡 , 𝑌0 = 𝑦0 > 0,
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for 𝜀 > 0. Proposition 4.3.8 then implies that the option price 𝑃𝜀, with payoff ℎ, satisfies[
1
𝜀
ℒ𝑌 + 1√

𝜀
ℒ1 + ℒ𝜎(𝑦)

BS

]
𝑃𝜀(𝑡 , 𝑥, 𝑦) = 0, (4.3.5)

for all 𝑡 ∈ [0, 𝑇), 𝑥 ∈ R and 𝑦 ∈ 𝔇, with boundary condition 𝑃𝜀(𝑇, 𝑥, 𝑦) = ℎ(𝑥). Inspired by [64,
66, 67], we now provide an approximation for the price 𝑃𝜀, proved in Appendix 4.B.3:

Proposition 4.3.9. If the payoff ℎ is smooth, then the equality

𝑃𝜀(𝑡 , 𝑥, 𝑦) = 𝑃0(𝑡 , 𝑥) +
√
𝜀𝑃1(𝑡 , 𝑥) + O(𝜀)

holds pointwise in (𝑡 , 𝑥, 𝑦) ∈ [0, 𝑇)×R×𝔇 as 𝜀 tends to zero, where 𝑃0 corresponds to the Black-Scholes
price of the option having payoff ℎ with volatility 𝝒 :=

√〈𝜎2 ,Π〉 and

𝑃1(𝑡 , 𝑥) = −𝑇 − 𝑡2 〈𝜛,Π〉 (𝜕3
𝑥 − 𝜕2

𝑥
)
𝑃0(𝑡 , 𝑥),

for all (𝑥, 𝑡) ∈ R × [0, 𝑇) with boundary condition 𝑃1(𝑇, 𝑥) = 0 and with

𝜛(𝑦) := 𝑦𝜎2(𝑦)𝜓′(𝑦). (4.3.6)

Finally 𝜓 is the unique solution to

ℒ𝑌𝜓(𝑦) = 𝜎2(𝑦) − 𝝒2 , for all 𝑦 ∈ (𝑦𝜎 ,∞). (4.3.7)

Remark 4.3.10. The assumption of a smooth payoff follows that in [64, 67]. Using mollification
arguments, it could be relaxed to include standard European Call and Put options, but we leave this
subtlety for later.

4.3.5 Small-time asymptotics

We finally investigate the small-time behaviour of the solution to (4.2.1) using large devia-
tions techniques, leading to closed-form asymptotics for option prices and implied volatilities.
We refer the reader to [69] for an overview of this topic. For 𝜀 > 0, 𝑡 ∈ [0, 𝑇], introduce the
small-time rescaling (𝑋𝜀

𝑡 , 𝑌
𝜀
𝑡 ) := (𝑋𝜀𝑡 , 𝑌𝜀𝑡), which satisfies{

d𝑋𝜀
𝑡 = −𝜀2𝜎

2(𝑌𝜀
𝑡 )d𝑡 +

√
𝜀 𝜎(𝑌𝜀

𝑡 )d𝑊𝑡 , 𝑋𝜀
0 := 𝑥0 ∈ R,

d𝑌𝜀
𝑡 = 𝜀𝑏(𝑌𝜀

𝑡 )d𝑡 +
√
𝜀 �̃�(𝑌𝜀

𝑡 )d𝑊𝑡 , 𝑌𝜀
0 = 𝑦0 > 0.

(4.3.8)

Letℋ denote the space of absolutely continuous functions starting at the origin, with square
integrable derivatives, such that

ℋ :=
{
𝑓 : [0, 𝑇] → Rwith 𝑓 =

∫
𝑔(𝑠)d𝑠 for some 𝑔 ∈ 𝐿2([0, 𝑇]), and inf

𝑡∈[0,𝑇]
𝑓𝑡 ≥ 1

𝛼
log

(
1 − 𝑦𝛽0

𝛼
𝛽𝛾

)}
.
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Remark 4.3.11. When 𝑦0 ≥ 𝑦𝜎, the condition

inf
𝑡∈[0,𝑇]

𝑓𝑡 ≥ 1
𝛼

log
(
1 − 𝑦𝛽0

𝛼
𝛽𝛾

)
, (4.3.9)

is automatically satisfied andℋ is the usual Cameron-Martin space. When 𝑦0 < 𝑦𝜎, (4.3.9) is needed to
ensure that the solution of the controlled ODE introduced below is positive.

We now state and prove (in Appendix 4.C.2) a pathwise large deviations principle for the
log-stock price process. With x0 := (𝑥0 , 𝑦0), introduce the map I𝑋,𝑌 on C([0, 𝑇],R × R∗+) by

I𝑋,𝑌(g) := inf
{
Λ( 𝑓 ), 𝑓 ∈ ℋ ,Sx0( 𝑓 ) = g

}
,

where Λ is the usual rate function driving the large deviations of the Brownian motion:

Λ( 𝑓 ) :=


1
2

∫ 𝑇

0

 𝑓¤ 𝑡2
d𝑡 , if 𝑓 ∈ ℋ ,

∞, otherwise,

and Sx0( 𝑓 ) on [0, 𝑇] is the solution to the controlled ODE g¤ 𝑡 = 𝑓¤ 𝑡
(
𝜎(g𝑡), �̃�(g𝑡))>, with 𝜎(𝑥, 𝑦) =

𝜎(𝑦) and �̃�(𝑥, 𝑦) = �̃�(𝑦), starting from g0 = x0.

Theorem 4.3.12. The rescaled log-stock price process 𝑋𝜀 in (4.3.8) satisfies a pathwise large deviations
principle on C([0, 𝑇],R) as 𝜀 tends to zero with speed 𝜀 and rate function

I𝑋(𝑔) := inf
{
I𝑋,𝑌(h), h := (𝑔, 𝑙), 𝑙 ∈ C([0, 𝑇],R∗+), 𝑙0 = 𝑦0

}
,

The proof of the theorem relies on first obtaining a large deviations principle for the rescaled
process 𝑌𝜀, which we state below (and defer its proof to Appendix 4.C.1). Similarly to above,
denote S𝑦2 ( 𝑓 ) the solution to the controlled ODE 𝑔¤ 𝑡 = �̃�(𝑔𝑡) 𝑓¤ 𝑡 , with 𝑔0 = 𝑦0.

Proposition 4.3.13. The rescaled process𝑌𝜀 satisfies a pathwise large deviations principle onC([0, 𝑇],R∗+)
as 𝜀 tends to zero with speed 𝜀 and rate function

I𝑌(𝑔) := inf
{
Λ( 𝑓 ), 𝑓 ∈ ℋ ,S𝑦0

2 ( 𝑓 ) = 𝑔
}
.

Large deviations have been used extensively in Mathematical Finance to derive asymptotic
behaviours of the implied volatility and we refer the reader to the monograph [69] for a thorough
overview. The latter, Σ𝑡(𝑘), is the unique non-negative solution to CBS(𝑡 , e𝑘 ,Σ𝑡(𝑘)) = C𝑜𝑏𝑠(𝑡 , e𝑘),
with C𝑜𝑏𝑠(𝑡 , e𝑘) an observed (or computed) Call option price with maturity 𝑡 and strike e𝑘 ,
and CBS is the corresponding Call price in the Black-Scholes model. A large deviations principle
is the first step to understand the short-time behaviour of the process, and going from there to
the corresponding behaviour of the implied volatility requires a few small steps that we follow
in Appendix 4.C.3.
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Corollary 4.3.14. For 𝑦0 ∈ 𝔇 = (𝑦𝜎 ,∞), with 𝑦𝜎 < 1, small-time out-of-the-money options behave as

lim𝑡↓0 𝑡 logE
[ (
𝑆𝑡 − e𝑘

)
+
]
= − inf𝑦≥𝑘 I𝑋(𝑔)|𝑔(1)=𝑦 , if 𝑘 > 0,

lim𝑡↓0 𝑡 logE
[ (

e𝑘 − 𝑆𝑡 )+] = − inf𝑦≤𝑘 I𝑋(𝑔)|𝑔(1)=𝑦 , if 𝑘 < 0.

Similarly to [60, Theorem 2.4], we finally deduce the behaviour of the short-time smile:

Corollary 4.3.15. For 𝑦0 ∈ 𝔇 = (𝑦𝜎 ,∞), with 𝑦𝜎 < 1, the implied volatility behaves as

lim
𝑡↓0

Σ𝑡(𝑘) =


𝑘2

2

(
inf
𝑦≥𝑘

I𝑋(𝑔)|𝑔(1)=𝑦
)−1

, if 𝑘 > 0,

𝑘2

2

(
inf
𝑦≤𝑘

I𝑋(𝑔)|𝑔(1)=𝑦
)−1

, if 𝑘 < 0.
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Appendix

4.A Proof of Theorem 4.3.3

The proof below relies on the techniques developed in [106, Chapter 15, Section 6].

4.A.1 Proof for the domain 𝔇 = (𝑦𝜎 ,∞)
Left boundary 𝑦𝜎

The classification of the left boundary 𝑦𝜎 follows from Lemma 4.A.1. Introduce, on the
domain (0,∞), the process 𝑍 := (𝑌 − 𝑦𝜎), satisfying the SDE

d𝑍𝑡 = 𝑏(𝑍𝑡)d𝑡 + 𝜎(𝑍𝑡)d𝑊𝑡 , 𝑍0 := 𝑦0 − 𝑦𝜎 > 0,

with 𝑏(𝑧) := 𝑏(𝑧 + 𝑦𝜎) and 𝜎(𝑧) := �̃�(𝑧 + 𝑦𝜎), for 𝑧 > 0. Armed with Lemma 4.A.1, we attack the
boundary classification of the origin for 𝑍, which corresponds to the classification of the left
boundary 𝑦𝜎 for the original process𝑌. The classification for the different cases, namely 𝑦𝜎 > 1,
𝑦𝜎 = 1 and 𝑦𝜎 < 1 follows from a careful inspection of [106, Table 6.1, Chapter 15] together
with [106, Lemma 6.3, Chapter 15]. Introduce

𝑠(𝑥) := exp

{∫ 𝑎

𝑥

2𝑏(𝑦)
𝜎2(𝑦)d𝑦

}
, 𝑆(0, 𝑎] :=

∫ 𝑎

0
𝑠(𝑦)d𝑦, 𝑆[𝑥, 𝑎] :=

∫ 𝑎

𝑥
𝑠(𝑦)d𝑦,

𝑀(0, 𝑎] :=
∫ 𝑎

0

d𝑥
𝜎2(𝑥)𝑠(𝑥) , Σ(0) :=

∫ 𝑎

0

𝑆(0, 𝑥]
𝜎2(𝑥)𝑠(𝑥)d𝑥, 𝑁(0) :=

∫ 𝑎

0

𝑆[𝑥, 𝑎]d𝑥
𝜎2(𝑥)𝑠(𝑥) ,

(4.A.1)

for 𝑎 > 0 and 𝑥 ∈ (0, 𝑎]. We then deduce their behaviour.

Lemma 4.A.1. The following hold:

𝑆(0, 𝑎] < ∞, 𝑀(0, 𝑎] = ∞, Σ(0) < ∞, if 𝑦𝜎 > 1,
𝑆(0, 𝑎] < ∞, Σ(0) = ∞, if 𝑦𝜎 = 1,
𝑆(0, 𝑎] = ∞, 𝑁(0) < ∞, if 𝑦𝜎 < 1.

Remark 4.A.2. We do not need 𝑀(0, 𝑎] in the second and third cases because only a few combinations
for boundedness/unboundedness of these quantities are possible. They are displayed in [106, Table 6.1,
page 233]. In particular, in the second line, 𝑆(0, 𝑎] can be finite and Σ(0) not if and only if 𝑀(0, 𝑎]
and 𝑁(0) are infinite. In the third line 𝑁(0) finite implies 𝑀(0, 𝑎] finite and 𝑆(0, 𝑎] infinite implies
Σ(0) infinite by [106, Lemma 6.3, page 231]. Similar arguments motivate the form of the statements in
Lemmas 4.A.3-4.A.4-4.A.5.

Proof of Lemma 4.A.1. We start with the limiting behaviour of the function 𝑠 and its integral, the
scale measure. Since

2𝑏(𝑦)
𝜎2(𝑦) =

2(1 − 𝑦𝜎 − 𝑦)
ℎ𝛾2(𝑦 + 𝑦𝜎)1−2𝛽

(
1 − (1 + 𝑦

𝑦𝜎
)𝛽

)2 ,
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a straightforward Taylor expansion around the origin yields(
1 −

(
1 + 𝑦

𝑦𝜎

)𝛽)−2

=
𝑦2
𝜎

𝛽2𝑦2

[
1 − 𝜒1

𝑦
𝑦𝜎
+ 𝜒2

𝑦2

𝑦2
𝜎

− 𝜒3
𝑦3

𝑦3
𝜎

+ O(𝑦4)
]
, (4.A.2)

with

𝜒1 := 𝛽 − 1, 𝜒2 :=
(5𝛽 − 1)(𝛽 − 1)

12 , 𝜒3 :=
(𝛽2 − 1)𝛽

12 . (4.A.3)

Introduce 𝐾 := 2𝑦2𝛽+1
𝜎 (1−𝑦𝜎)
ℎ𝛽2𝛾2 , and 𝐾𝑎𝛽 := − 1

𝑎 + 𝜒1 log(𝑎) + 𝜒2𝑎. Using (4.A.2), we obtain the
asymptotic behaviour, as 𝑦 approaches zero,

2𝑏(𝑦)
𝜎2(𝑦) =

𝐾
𝑦2

(
1 + 𝜒1𝑦 + 𝜒2𝑦

2 − 𝜒3𝑦
3 + O (

𝑦4) ) ,
for some constants 𝜒1 , 𝜒2 , 𝜒3 depending on 𝜒1 , 𝜒2 , 𝜒3, the values of which are not important1.
Notice that 𝐾 < 0, as 𝑦𝜎 > 1. Since the expansion is uniform on [𝑥, 𝑎], one obtains

𝑠(𝑥) = exp

{
2
∫ 𝑎

𝑥

𝑏(𝑦)
𝜎2(𝑦)d𝑦

}
= exp

{
𝐾
𝑥

(
1 − 𝜒1𝑥 log 𝑥

)}
e𝐾𝐾

𝑎
𝛽 exp

{−𝜒2𝐾𝑥 + O(𝑥2)}
= exp

{
𝐾
𝑥
+ 𝐾𝐾𝑎𝛽

}
𝑥−𝐾𝜒1(1 + O(𝑥)). (4.A.4)

Since 𝐾 < 0, 𝑠(𝑥) tends to zero as 𝑥 tends to zero from above, and 𝑆(0, 𝑎] is finite.
In the case 𝑦𝜎 < 1, the expansion (4.A.4) is still valid, albeit with 𝐾 > 0. Therefore, 𝑠 explodes

at the origin and 𝑆(0, 𝑎] = ∫ 𝑎

0 𝑠(𝑦)d𝑦 is infinite.
The case 𝑦𝜎 = 1 is slightly different and has to be studied separately. First of all, a Taylor

expansion around the origin provides[
1 − (

1 + 𝑦)𝛽]−2
=

1
𝛽2𝑦2

[
1 − 𝜒1𝑦 + 𝜒2𝑦2 − 𝜒3𝑦3 + O (

𝑦4) ] , (4.A.5)

with 𝜒1 , 𝜒2 and 𝜒3 in (4.A.3). This implies, as 𝑦 approaches zero,

2𝑏(𝑦)
𝜎2(𝑦) = −

2𝑦
ℎ𝛾2(𝑦 + 1)1−2𝛽

1
(1 − (1 + 𝑦)𝛽)2 = 𝐾

(
1
𝑦
+ 𝜒1 + 𝜒2𝑥 + 𝜒3𝑦

2 + O (
𝑦3) ) ,

with 𝐾 := − 2
ℎ𝛽2𝛾2 < 0, and 𝐾

𝑎

𝛽 := log(𝑎) + 𝜒1𝑎 + 𝜒2
2 𝑎

2 + 𝜒3
3 𝑎

3. Since the expansion is uniform on

1In the following the symbols 𝜒1 , 𝜒2 , 𝜒3 will refer to different quantities whose specific values are not important
for the convergence of the quantities we are interested in.
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[𝑥, 𝑎], one obtains

𝑠(𝑥) = exp

{
2
∫ 𝑎

𝑥

𝑏(𝑦)
𝜎2(𝑦)d𝑦

}
= exp

{
𝐾

(− log(𝑥) − 𝜒1𝑥 + O(𝑥2))} exp
{
𝐾 𝐾

𝑎

𝛽

}
= exp

{
−𝐾 log(𝑥) + 𝐾 𝐾

𝑎

𝛽

}
(1 + O(𝑥)) = exp

{
𝐾 𝐾

𝑎

𝛽

}
𝑥−𝐾(1 + O(𝑥)).

(4.A.6)

Since 𝐾 < 0, 𝑠(𝑥) tends to zero as 𝑥 tends to zero and therefore 𝑆(0, 𝑎] = ∫ 𝑎

0 𝑠(𝑥)d𝑥 is finite.

Now, for 𝑦𝜎 > 1, it is straightforward to see that

𝑀(0, 𝑎] =
∫ 𝑎

0

d𝑥
𝑠(𝑥)𝜎2(𝑥) =

∫ 𝑎

0

d𝑥
𝑠(𝑥)�̃�2(𝑥 + 𝑦𝜎) ≥

∫ 𝑎

0

d𝑥
�̃�2(𝑥 + 𝑦𝜎) ,

which is clearly infinite, because 𝑠 is bounded above by 1 on (0, 𝑎] and from the asymptotic
behaviour of the integrand around the origin. Indeed, for 𝜀 > 0,∫ 𝜀

0

1
�̃�2(𝑥 + 𝑦𝜎)d𝑥 ≥

𝐾𝜀

𝛾2

∫ 𝜀

0

(
1 −

(
1 + 𝑥

𝑦𝜎

)𝛽)−2

d𝑥

with 𝐾𝜀 := (𝑦𝜎+ 𝜀)−2(1−𝛽) for 𝛽 ∈ (0, 1), 𝐾𝜀 := 𝑦2(𝛽−1)
𝜎 for 𝛽 > 1 and 𝐾𝜀 := 1 for 𝛽 = 1. Recalling the

Taylor expansion in (4.A.2), we see that the integrand is not integrable around zero. We thus
conclude about the right behaviour of 𝑦𝜎 by noting that the integral representation of 𝑀(0, 𝑎]
diverges.

We now prove the last statement of the lemma, and start with the case 𝑦𝜎 > 1. Using (4.A.4),
we write the asymptotic behaviour of 𝑆(0, 𝑥] around the origin by integrating the asymptotic
behaviour of 𝑠(·) around zero. Classical asymptotic expansions for integrals [123, Chapter 3.3,
pages 62 and 67] (note that the leading contribution arises at the right boundary of the integration
domain) yields, after the change of variable 𝑦 ↦→ 𝑧𝑥,

𝑆(0, 𝑥] =
∫ 𝑥

0
𝑠(𝑦)d𝑦

= e𝐾𝐾
𝑎
𝛽𝑥−𝐾𝜒1+1

∫ 1

0
exp

{
𝐾
𝑧𝑥

}
𝑧−𝐾𝜒1d𝑧 = e𝐾𝐾

𝑎
𝛽𝑥−𝐾𝜒1+1 exp

{
𝐾
𝑥

} (
− 𝑥
𝐾
+ O(𝑥2)

)
,

as 𝑥 tends to zero. Combining this with (4.A.2) and (4.A.4), we obtain

𝑆(0, 𝑥]
𝑠(𝑥)𝜎2(𝑥) =

𝑦2𝛽
𝜎

𝛽2𝛾2 𝑥
(
− 𝑥
𝐾
+ O(𝑥2)

) 1
𝑥2 (1 + O(𝑥)) = −

𝑦2𝛽
𝜎

𝐾𝛽2𝛾2 (1 + O(𝑥)) ,

which is integrable on (0, 𝑎] and concludes the proof, using the fact that

Σ(0) =
∫ 𝑎

0

𝑆(0, 𝑥]
𝑠(𝑥)𝜎2(𝑥)d𝑥 < ∞.

When 𝑦𝜎 = 1, using (4.A.6), we can write the asymptotic behaviour of 𝑆(0, ·] around the origin
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by integrating that of 𝑠(·) around zero. This yields, after the change of variable 𝑦 ↦→ 𝑧𝑥,

𝑆(0, 𝑥] =
∫ 𝑥

0
𝑠(𝑦)d𝑦 = e𝐾𝐾

𝑎

𝛽𝑥−𝐾+1
∫ 1

0
𝑧−𝐾d𝑧 = e𝐾𝐾

𝑎

𝛽

1 − 𝐾
𝑥−𝐾+1 (1 + O(𝑥)) ,

as 𝑥 tends to zero. Exploiting this together with (4.A.5) and (4.A.6), we obtain

𝑆(0, 𝑥]
𝑠(𝑥)𝜎2(𝑥) =

1

𝛽2𝛾2(1 − 𝐾)
1
𝑥
(1 + O(𝑥)) ,

which is not integrable on (0, 𝑎] and thus

Σ(0) =
∫ 𝑎

0

𝑆(0, 𝑥]
𝑠(𝑥)𝜎2(𝑥)d𝑥 = ∞.

When 𝑦𝜎 < 1, we look at 𝑁(0) = ∫ 𝑎

0
𝑆[𝑥,𝑎]

𝜎2(𝑥)𝑠(𝑥)d𝑥. Since both 𝑆[𝑎, ·] and 𝑠(·)𝜎2(·) diverge to
infinity at the origin, we study the behaviour of the integrand around zero. For 𝛿 > 0 such
that 𝑥 < 𝛿 < 𝑎 and 𝑥 > 0, 𝑆[𝑥, 𝑎] = ∫ 𝑎

𝑥 𝑠(𝑦)d𝑦 =
∫ 𝛿

𝑥 𝑠(𝑦)d𝑦 +
∫ 𝑎

𝛿
𝑠(𝑦)d𝑦. The second integral

exists since 𝑠 is continuous on compacts in R+. Regarding the first one, classical asymptotic
expansions for integrals and (4.A.4), yield, after the change of variable 𝑦 ↦→ 𝑧𝑥,∫ 𝛿

𝑥
𝑠(𝑦)d𝑦 = e𝐾𝐾

𝑎
𝛽𝑥1−𝐾𝜒1

∫ 𝛿/𝑥

1
exp

{
𝐾
𝑥𝑧

}
𝑧−𝐾𝜒1d𝑧 = e𝐾𝐾

𝑎
𝛽𝑥1−𝐾𝜒1e

𝐾
𝑥

( 𝑥
𝐾
+ O(𝑥2)

)
,

and the asymptotic behaviour of the integrand around the origin becomes

𝑆[𝑥, 𝑎]
𝑠(𝑥)𝜎2(𝑥) =

𝑦2𝛽
𝜎

𝛽2𝛾2

(
𝑥2

𝐾
+ O(𝑥3)

)
1
𝑥2 (1 + O(𝑥)) =

𝑦2𝛽
𝜎

𝛽2𝛾2𝐾
(1 + O(𝑥)),

which is integrable at the origin, and the claim is proved. □

Right boundary∞

To end the boundary classification for the first domain we are left to study the behaviour
at the right boundary ∞. We exploit the Lemma 4.A.3 and [106, Table 6.1, Chapter 15]. First,
for 𝑦 > 𝑦𝜎, let 𝑠(𝑦) = exp

{
− ∫ 𝑦

𝑎
2𝑏(𝑥)
�̃�2(𝑥)d𝑥

}
, with 𝑎 > 𝑦𝜎 fixed. Then, recall the definitions of some

quantities:

𝑆[𝑎,∞) =
∫ ∞

𝑎
𝑠(𝑥)d𝑥, 𝑀[𝑎,∞) =

∫ ∞

𝑎

d𝑥
�̃�2(𝑥)𝑠(𝑥) , 𝑁(∞) =

∫ ∞

𝑎

𝑆[𝑎, 𝑥]
�̃�2(𝑥)𝑠(𝑥)d𝑥.

Lemma 4.A.3. The following hold:

𝑆[𝑎,∞) = ∞, 𝑀[𝑎,∞) < ∞, 𝑁(∞) < ∞.
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Proof. As 𝑦 tends to infinity,

2𝑏(𝑦)
�̃�2(𝑦) =

2(1 − 𝑦)
ℎ𝑠

(
−𝛼
𝛽
+ 𝛾𝑦−𝛽

)−2

∼ − 2
ℎ

(
𝛽

𝛼

)2

,

and therefore, as 𝑥 tends to infinity,

−
∫ 𝑥

𝑎

2𝑏(𝑦)
�̃�2(𝑦)d𝑦 ∼

2
ℎ

(
𝛽

𝛼

)2

𝑥. (4.A.7)

Then, 𝑆[𝑎,∞) = ∫ ∞
𝑎 exp

(
− ∫ 𝑥

𝑎
2𝑏(𝑦)
�̃�2(𝑦)d𝑦

)
d𝑥 ∼ ∫ ∞

𝑎 exp
(

2
ℎ

(
𝛽
𝛼

)2
𝑥

)
d𝑥 is infinite. Now 𝑀[𝑎,∞) is

finite since 1
�̃�2(𝑥)𝑠(𝑥) ∼

exp
(
− 2
ℎ

(
𝛽
𝛼

)2
𝑥

)
𝑥2

(
− 𝛽

𝛼+𝛾𝑥−𝛽
) as 𝑥 ↑ ∞, which is integrable.

Finally, 𝑆[𝑎, 𝑥] ∼
[

2
ℎ

(
𝛽
𝛼

)2
]−1

exp
(

2
ℎ ( 𝛽𝛼 )2𝑥

)
as 𝑥 ↑ ∞, and so 𝑆[𝑎,𝑥]

�̃�2(𝑥)𝑠(𝑥) ∼ 𝛼3ℎ
2𝛽3

1
𝑥2 , which is integrable

at infinity and 𝑁(∞) is finite. □

4.A.2 Proof for the domain 𝔇 = (0, 𝑦𝜎)

Left boundary 0

Consider �̃�(𝑥) = exp
{∫ �̃�

𝑥
2𝑏(𝜉)
�̃�2(𝜉)d𝜉

}
for 𝑦𝜎 > �̃� > 0, 𝑥 ∈ (0, �̃�], and

𝑆(0, �̃�] :=
∫ �̃�

0
�̃�(𝑦)d𝑦, �̃�(0, �̃�] :=

∫ �̃�

0

d𝑥
�̃�2(𝑥)̃𝑠(𝑥) , Σ̃(0) :=

∫ �̃�

0

𝑆(0, 𝑥]
�̃�2(𝑥)𝑠(𝑥)d𝑥.

The following lemma, together with [106, Table 6.1, Chapter 15], helps for the left boundary 0:

Lemma 4.A.4. For any �̃� ∈ (0, 𝑦𝜎),

𝑆(0, �̃�] < ∞, �̃�(0, �̃�] < ∞, Σ̃(0) < ∞, if 𝛽 <
1
2 ,

𝑆(0, �̃�] < ∞, �̃�(0, �̃�] = ∞, Σ̃(0) < ∞, if 𝛽 ≥ 1
2 .

Proof of Lemma 4.A.4. We start by showing that 𝑆(0, �̃�] is always finite. The only possible issue
for integrability is at zero, so we expand the integrand in a neighborhood of the origin:

2𝑏(𝑠)
�̃�2(𝑠) =

2(1 − 𝑠)
ℎ𝛾2𝑠1−2𝛽

[
1 − 𝛼

𝛽𝛾
𝑠𝛽

]−2

=
2𝑠2𝛽−1

ℎ𝛾2

[
1 + 2𝛼

𝛽𝛾
𝑠𝛽 + 3

(
𝛼
𝛽𝛾

)2

𝑠2𝛽 + O(𝑠3𝛽)
]
.

Since the expansion is uniform on (0, �̃�),

−
∫ 𝑥

�̃�

2𝑏(𝑠)
�̃�2(𝑠)d𝑠 = −

2
𝛽ℎ𝛾2

(
𝑥2𝛽

2 +
2𝛼
3𝛽𝛾 𝑥

3𝛽 + 3𝛼2

4𝛽2𝛾2 𝑥
4𝛽 + O(𝑥5𝛽) + 𝐾

𝑎

𝛽

)
,
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with 𝐾
𝑎

𝛽 := − �̃�2𝛽

2 − 2𝛼
3𝛽𝛾 �̃�

3𝛽 − 3𝛼2

4𝛽2𝛾2 �̃�4𝛽, we obtain

�̃�(𝑥) = exp
{
−

∫ 𝑥

�̃�

2𝑏(𝑠)
�̃�2(𝑠)d𝑠

}
= exp

−
𝑥2𝛽 + O(𝑥3𝛽)

𝛽ℎ𝛾2 − 2𝐾
𝑎

𝛽

𝛽ℎ𝛾2

 = exp
{
− 2
𝛽ℎ𝛾2𝐾

𝑎

𝛽

} (
1 + O (

𝑥2𝛽) ) ,
and so 𝑆(0, �̃�] is always finite.

Now, around zero we have the Taylor expansions

�̃�(𝑥) = exp

−
2𝐾

𝑎

𝛽

𝛽ℎ𝛾2


(
1 + O (

𝑥2𝛽) ) ,
�̃�2(𝑥) = 1

𝛾2𝑥2−2𝛽

(
1 − 𝛼

𝛽𝛾
𝑥𝛽

)2

=
1

𝛾2𝑥2−2𝛽

(
1 + 2 𝛼

𝛽𝛾
𝑥𝛽 + 3 𝛼2

𝛽2𝛾2 𝑥
2𝛽 + O(𝑥3𝛽)

) (4.A.8)

and so (�̃�2(𝑥)̃𝑠(𝑥))−1 = exp
{
− 2

𝛽ℎ𝛾2𝐾
𝑎

𝛽

}
1

𝛾2𝑥2−2𝛽

(
1 + 2 𝛼

𝛽𝛾 𝑥
𝛽 + O(𝑥2𝛽)

)
, which is integrable around

zero, and so �̃�(0, �̃�] finite, if and only if 𝛽 > 1
2 .

Finally, we easily compute a Taylor expansion for 𝑆(0, 𝑥] around the origin by integration:

𝑆(0, 𝑥] = exp
{
− 2
𝛽ℎ𝛾2𝐾

𝑎

𝛽

}
𝑥
(
1 + O (

𝑥2𝛽) ) ,
hence using (4.A.8), the Taylor expansion around the origin for the integrand in Σ̃(0) reads

𝑆(0, 𝑥]
�̃�2(𝑥)̃𝑠(𝑥) =

1 + O(𝑥𝛽)
𝛾2𝑥1−2𝛽 .

Since this is integrable around the origin if and only if 𝛽 > 0, Σ̃(0) is finite for all 𝛽 > 0. □

Right boundary 𝑦𝜎

The strategy to prove the third table in the theorem is similar, albeit with different compu-
tations, to the first case. Similarly to before, introduce the process 𝑍 := 𝑦𝜎 − 𝑌 satisfying the
SDE

d𝑍𝑡 = �̂�(𝑍𝑡)d𝑡 + �̂�(𝑍𝑡)d𝑊𝑡 , 𝑍0 := 𝑦𝜎 − 𝑦0 > 0,

as well as the maps �̂�(𝑥) := −𝑏(𝑦𝜎 − 𝑥) and �̂�(𝑥) := −�̃�(𝑦𝜎 − 𝑥) for 𝑥 > 0. With Lemma 4.A.5, we
obtain the boundary classification of the origin as left boundary for 𝑍 on the domain 𝔇 = (0, 𝑦𝜎)
corresponding to the right boundary classification of 𝑦𝜎 for 𝑌 on the same domain. All the
cases 𝑦𝜎 < 1, 𝑦𝜎 = 1 and 𝑦𝜎 > 1 follow [106, Table 6.1, Chapter 15] and the following lemma.
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Introduce, for 𝑦𝜎 > �̂� > 0 and 𝑥 ∈ (0, �̂�],

�̂�(𝑥) := exp

{∫ �̂�

𝑥

2�̂�(𝑦)
�̂�2(𝑦)d𝑦

}
, 𝑆(0, �̂�] :=

∫ �̂�

0
�̂�(𝑦)d𝑦, �̂�(0, �̂�] :=

∫ �̂�

0

d𝑥
�̂�2(𝑥)̂𝑠(𝑥) ,

𝑁(0) :=
∫ �̂�

0

𝑆[𝑥, �̂�]
�̂�2(𝑥)̂𝑠(𝑥)d𝑥, Σ̂(0) :=

∫ �̂�

0

𝑆(0, 𝑥]
�̂�2(𝑥)̂𝑠(𝑥)d𝑥, 𝑆[𝑥, �̂�] :=

∫ �̂�

𝑥
�̂�(𝑦)d𝑦.

Lemma 4.A.5. The following hold:

𝑆(0, �̂�] = ∞, 𝑁(0) < ∞, if 𝑦𝜎 > 1,
𝑆(0, �̂�] < ∞, Σ̂(0) = ∞, if 𝑦𝜎 = 1,
𝑆(0, �̂�] < ∞, �̂�(0, �̂�] = ∞, Σ̂(0) < ∞, if 𝑦𝜎 < 1.

Proof of Lemma 4.A.5. A straightforward Taylor expansion around the origin yields{
1 −

(
1 − 𝑦

𝑦𝜎

)𝛽}−2

=
𝑦2
𝜎

𝛽2𝑦2

{
1 + 𝜒1

𝑦
𝑦𝜎
+ 𝜒2

𝑦2

𝑦2
𝜎

+ 𝜒3
𝑦3

𝑦3
𝜎

+ O(𝑥4)
}
, (4.A.9)

with 𝜒1 , 𝜒2 and 𝜒3 defined in (4.A.3). We start with the behaviour of the function �̂� and its
integrated version. Consider first the case 𝑦𝜎 > 1. We split the range of possibilities into two
possible intervals for �̂�:

(i) If �̂� < 𝑦𝜎 − 1, then 𝑦𝜎 − 𝑥 ≥ 𝑦𝜎 − �̂� > 1 and 𝑏 is negative on [𝑦𝜎 − �̂� , 𝑦𝜎 − 𝑥]. Then, for
𝑥 ∈ (0, �̂�],∫ �̂�

𝑥

�̂�(𝑦)
�̂�2(𝑦)d𝑦 =

∫ �̂�

𝑥

−𝑏(𝑦𝜎 − 𝑦)
�̃�2(𝑦𝜎 − 𝑦) d𝑦 = −

∫ �̂�

𝑥

𝑏(𝑦𝜎 − 𝑦)d𝑦
(𝑦𝜎 − 𝑦)2(1−𝛽)𝛾2

(
1 − (1 − 𝑦

𝑦𝜎
)𝛽

)2

=
1
ℎ

∫ �̂�

𝑥

(𝑦𝜎 − 𝑦)2𝛽−1(𝑦𝜎 − 𝑦 − 1)
𝛾2

(
1 − (1 − 𝑦

𝑦𝜎
)𝛽

)2 d𝑦

≥
(
𝑦𝜎 − �̂�

)2𝛽−1 (
𝑦𝜎 − �̂� − 1

)
𝛾2ℎ

∫ �̂�

𝑥

(
1 −

(
1 − 𝑦

𝑦𝜎

)𝛽)−2

d𝑦,

as min𝑦∈[𝑥,̂𝑎]
[(𝑦𝜎 − 𝑦)2𝛽−1(𝑦𝜎 − 𝑦 − 1)] =

(
𝑦𝜎 − �̂�)2𝛽−1 (

𝑦𝜎 − �̂� − 1
)
> 0. Indeed the map

𝑦 ↦→ 𝑦2𝛽−1(𝑦 − 1) is increasing on [𝑦𝜎 − �̂� , 𝑦𝜎 − 𝑥] because 𝑦𝜎 − �̂� > 1. Noting that (4.A.9)
is uniform on [𝑥, �̂�], we obtain, as 𝑥 approaches zero

exp
©«

2
(
𝑦𝜎 − �̂�)2𝛽−1 (

𝑦𝜎 − �̂� − 1
)

𝛾2ℎ

∫ �̂�

𝑥

d𝑦(
1 − (1 − 𝑦

𝑦𝜎
)𝛽

)2

ª®®¬
= exp

(
𝐾
𝑥

)
e𝐾

˜̂𝐾 �̂�𝛽𝑥− 𝜒1𝐾
𝑦𝜎 (1 + O(𝑥)),

with 𝐾 := 2(𝑦𝜎−�̂�)2𝛽−1(𝑦𝜎−�̂�−1)𝑦2
𝜎

ℎ𝛽2𝛾2 > 0 and ˜̂𝐾 �̂�𝛽 := − 1
�̂� + 𝜒1

𝑦𝜎
log(̂𝑎)+ 𝜒2

𝑦2
𝜎
�̂�, and therefore lim𝑥↓0 �̂�(𝑥) =

∞ and 𝑆(0, �̂�] = ∫ �̂�

0 �̂�(𝑥)d𝑥 = ∞.
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(ii) If 𝑦𝜎 − 1 ≤ �̂� < 𝑦𝜎, then for 𝑥 ∈ (0, �̂�],∫ �̂�

𝑥

�̂�(𝑦)
�̂�2(𝑦)d𝑦 =

∫ 𝑦𝜎−1

𝑥

�̂�(𝑦)
�̂�2(𝑦)d𝑦 +

∫ �̂�

𝑦𝜎−1

�̂�(𝑦)
�̂�2(𝑦)d𝑦.

Similarly to (i), one can prove that lim𝑥↓0
∫ 𝑦𝜎−1
𝑥

�̂�(𝑦)
�̂�2(𝑦)d𝑦 = ∞. Then, on (𝑦𝜎 − 1, �̂�], �̂� is

not null and is continuous, thus bounded; similarly, �̂� is negative and continuous, hence
bounded on (𝑦𝜎 − 1, �̂�]. Therefore

∫ �̂�

𝑦𝜎−1
�̂�(𝑦)
�̂�2(𝑦)d𝑦 < ∞, for 𝑥 ∈ (0, �̂�], and

lim
𝑥↓0

�̂�(𝑥) = exp

{∫ �̂�

𝑦𝜎−1

�̂�(𝑦)
�̂�2(𝑦)d𝑦

}
exp

{∫ 𝑦𝜎−1

𝑥

�̂�(𝑦)
�̂�2(𝑦)d𝑦

}
= ∞.

Let us now describe the case 𝑦𝜎 = 1. Using the Taylor expansion around zero[
1 − (

1 − 𝑦)𝛽]−2
=

1
𝛽2𝑦2

[
1 + 𝜒1𝑦 + 𝜒2𝑦2 + 𝜒3𝑦3 + O(𝑦4)] , (4.A.10)

with 𝜒1 , 𝜒2 and 𝜒3 as in (4.A.3), we have, as 𝑦 approaches zero,

2�̂�(𝑦)
�̂�2(𝑦) =

𝐾
𝑦

(
1 + 𝜒1𝑦 + 𝜒2𝑦

2 + 𝜒3𝑦
3 + O(𝑦4)) ,

with 𝐾 = − 2
ℎ𝛽2𝛾2 < 0 and ̂̂𝐾 �̂�𝛽 := log(̂𝑎) + 𝜒1 �̂� + 𝜒2

2 �̂�
2 + 𝜒3

3 �̂�
3. Since the expansion is again uniform

on [𝑥, �̂�], we obtain

�̂�(𝑥) = exp

{
2
∫ �̂�

𝑥

�̂�(𝑦)
�̂�2(𝑦)d𝑦

}
= exp

{
𝐾

(− log(𝑥) − 𝜒1𝑥 + 𝑜(𝑥)
)}

exp
{
𝐾̂̂𝐾 �̂�𝛽} ,

= exp
{
𝐾̂̂𝐾 �̂�𝛽} 𝑥−𝐾(1 + O(𝑥)). (4.A.11)

Since 𝐾 < 0, we easily deduce that lim𝑥↓0 �̂�(𝑥) = 0, and 𝑆(0, �̂�] = ∫ �̂�

0 �̂�(𝑥)d𝑥 is finite.
Consider now the case 𝑦𝜎 < 1. Using (4.A.9), we have, as 𝑦 approaches zero,

2�̂�(𝑦)
�̂�2(𝑦) = −

𝐾
𝑦2

(
1 + 𝜒1𝑦 + 𝜒2𝑦

2 + 𝜒3𝑦
3 + O(𝑦4)) ,

with 𝐾 = 2𝑦2𝛽+1
𝜎 (1−𝑦𝜎)
ℎ𝛽2𝛾2 > 0, as 𝑦𝜎 < 1. Since the expansion is uniform on [𝑥, �̂�], we obtain

�̂�(𝑥) = exp

{
2
∫ �̂�

𝑥

�̂�(𝑦)
�̂�2(𝑦)d𝑦

}
= exp

{
−𝐾
𝑥

[
1 − 𝜒1𝑥 log 𝑥

]}
exp

{
−𝐾𝐾 �̂�𝛽 + 𝜒2𝐾𝑥 + O(𝑥2)

}
,

= exp
{
−𝐾
𝑥
− 𝐾𝐾 �̂�𝛽

}
𝑥𝐾𝜒1(1 + O(𝑥)), (4.A.12)

where 𝐾 �̂�𝛽 = − 1
�̂� + 𝜒1 log(̂𝑎) + 𝜒1 �̂�. Since 𝐾 > 0, we easily deduce that lim𝑥↓0 �̂�(𝑥) = 0, and

𝑆(0, �̂�] = ∫ �̂�

0 �̂�(𝑥)d𝑥 is finite.
The middle statement (when 𝑦𝜎 < 1) in the lemma is straightforward. When 𝑥 ∈ (0, �̂�],
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∫ �̂�

𝑥
�̂�(𝑦)
�̂�2(𝑦)d𝑦 = − ∫ 𝑦𝜎−𝑥

𝑦𝜎−�̂�
𝑏(𝑦)
�̃�2(𝑦)d𝑦. Since 0 < 𝑦𝜎 − �̂� < 𝑦𝜎 − 𝑥 < 1, 𝑏 is positive on [𝑦𝜎 − �̂� , 𝑦𝜎 − 𝑥] and

the above integral is therefore negative. Hence, �̂� is bounded by 1 on (0, �̂�], and

�̂�(0, �̂�] =
∫ �̂�

0

1
�̂�(𝑥)�̂�2(𝑥)d𝑥 ≥

∫ �̂�

0

d𝑥
�̃�2(𝑦𝜎 − 𝑥) = ∞,

using (4.A.9), which concludes the proof.

The final integrals in the lemma are delicate. We start with the case 𝑦𝜎 < 1. Using (4.A.12),
we obtain the asymptotic behaviour of 𝑆(0, ·] around zero by integrating that of �̂�(·) around 0.
Classical asymptotic expansions for integrals (note that the leading contribution arises at the
right boundary of the integration domain) yield, after the change of variable 𝑦 ↦→ 𝑥𝑧,

𝑆(0, 𝑥] =
∫ 𝑥

0
�̂�(𝑦)d𝑦 = e−𝐾𝐾

�̂�
𝛽𝑥1+𝐾𝜒1

∫ 1

0
exp

{
− 𝐾
𝑥𝑧

}
𝑧𝐾𝜒1d𝑧,

= e−𝐾𝐾
�̂�
𝛽𝑥1+𝐾𝜒1 exp

{
−𝐾
𝑥

} ( 𝑥
𝐾
+ O(𝑥2)

)
, as 𝑥 ↓ 0.

(4.A.13)

Therefore, combining (4.A.9), (4.A.12) and (4.A.13), we obtain

𝑆(0, 𝑥]
�̂�(𝑥)�̂�2(𝑥) = 𝑥

(
1
𝐾
𝑥 + O(𝑥2)

)
𝑦2𝛽
𝜎

𝛽2𝛾2
1
𝑥2 (1 + O(𝑥)) =

𝑦2𝛽
𝜎

𝛽2𝛾2𝐾
(1 + O(𝑥)),

which is integrable on (0, 𝑎] and concludes the proof.

In the case 𝑦𝜎 = 1, exploiting (4.A.11), we obtain the asymptotic behaviour of 𝑆(0, ·] around
zero by integrating that of �̂�(·) around 0. Indeed, after the change of variable 𝑦 ↦→ 𝑥𝑧,

𝑆(0, 𝑥] =
∫ 𝑥

0
�̂�(𝑦)d𝑦 =

exp
{
𝐾̂̂𝐾 �̂�𝛽}

𝑥𝐾−1

∫ 1

0
𝑧−𝐾d𝑧 = exp

{
𝐾̂̂𝐾 �̂�𝛽} 𝑥1−𝐾(1 + O(𝑥)), (4.A.14)

as 𝑥 tends to zero. Then, exploiting (4.A.10), (4.A.11) and (4.A.14), we obtain

𝑆(0, 𝑥]
�̂�(𝑥)�̂�2(𝑥) =

1
𝛽2𝛾2

1
𝑥
(1 + O(𝑥)) ,

which is not integrable on (0, �̂�] and thus Σ̂(0) = ∞.

Finally, we move to the case 𝑦𝜎 > 1. Since lim𝑥↓0 𝑆[𝑥, �̂�] = ∞ and lim𝑥↓0 �̂�(𝑥)�̂�2(𝑥) = ∞,
one needs to study the behaviour of the integrand around zero to conclude. For 𝛿 > 0 such
that 𝑥 < 𝛿 < �̂� and 𝑥 > 0,

∫ �̂�

𝑥 �̂�(𝑦)d𝑦 =
∫ 𝛿

𝑥 �̂�(𝑦)d𝑦 +
∫ �̂�

𝛿
�̂�(𝑦)d𝑦. Note that the second integral is

convergent as the integral of a continuous function over a closed interval of R.

Classical asymptotic expansions for integrals [123, Chapter 3.3] and (4.A.12), yield, after
mapping 𝑦 ↦→ 𝑧𝑥,∫ 𝛿

𝑥
�̂�(𝑦)d𝑦 = e−𝐾𝐾

�̂�
𝛽𝑥1+𝐾𝜒1

∫ 𝛿/𝑥

1
exp

{
− 𝐾
𝑥𝑧

}
𝑧𝐾𝜒1d𝑧 = e−𝐾𝐾

�̂�
𝛽𝑥1+𝐾𝜒1e−

𝐾
𝑥

(
− 𝑥
𝐾
+ O(𝑥2)

)
,
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and the asymptotic behaviour of the integrand around the origin is given by

𝑆[𝑥, �̂�]
�̂�(𝑥)�̂�2(𝑥) = −

𝑦2𝛽
𝜎

𝛽2𝛾2

(
𝑥2

𝐾
+ O(𝑥3)

)
1 + O(𝑥)

𝑥2 = − 𝑦2𝛽
𝜎

𝛽2𝛾2𝐾
(1 + O(𝑥)),

which is integrable at the origin, and concludes the proof since 𝑁(0) is therefore finite. □

4.B Ergodicity proofs

4.B.1 Proof of Theorem 4.3.5

This study is based on [132, Theorem 1.1, Chapter 5.1]. Since �̃� is null at 𝑦𝜎 (and possibly
at zero), we consider separately the two domains 𝔇1 := (0, 𝑦𝜎) and 𝔇2 := (𝑦𝜎 ,∞) so that
Assumption A iii) in the aforementioned theorem is satisfied. We start with 𝑦0 ∈ 𝔇2 = (𝑦𝜎 ,∞).
We have to check the finiteness of

A :=
∫ 𝑦0

𝑦𝜎
exp

{
−

∫ 𝑦

𝑦0

2𝑏(𝑠)
�̃�2(𝑠)d𝑠

}
d𝑦 and B :=

∫ ∞

𝑦0

exp
{
−

∫ 𝑦

𝑦0

2𝑏(𝑠)
�̃�2(𝑠)d𝑠

}
d𝑦.

Starting with A, the changes of variables 𝑦 → 𝑥 + 𝑦𝜎 and 𝑠 → 𝑣 + 𝑦𝜎 yield

A =
∫ 𝑦0−𝑦𝜎

0
exp

{∫ 𝑦0−𝑦𝜎

𝑥

2𝑏(𝑣 + 𝑦𝜎)
�̃�2(𝑣 + 𝑦𝜎)d𝑣

}
d𝑥 =

∫ 𝑦0−𝑦𝜎

0
exp

{∫ 𝑦0−𝑦𝜎

𝑥

2𝑏(𝑣)
𝜎2(𝑣)d𝑣

}
d𝑥,

with 𝑏(𝑣) := 𝑏(𝑣+ 𝑦𝜎) and 𝜎(𝑣) := �̃�(𝑣+ 𝑦𝜎), 𝑣 ≥ 0. Notice that A =
∫ 𝑎

0 𝑠(𝑥)d𝑥, with 𝑠 as in (4.A.1)
and 𝑎 := 𝑦0− 𝑦𝜎 ≥ 0. Thus, exploiting the proof of Lemma 4.A.1, A is finite if and only if 𝑦𝜎 ≥ 1.
Regarding B, we need to study the integrand at infinity. Since, as 𝑠 ↑ ∞,

2𝑏(𝑠)
�̃�2(𝑠) =

2(1 − 𝑠)
ℎ𝑠

(
− 𝛼

𝛽 + 𝛾𝑠−𝛽
)2 ∼ −

2
ℎ

(
𝛽

𝛼

)2

,

then
∫ 𝑦

𝑦0

2𝑏(𝑠)
�̃�2(𝑠)d𝑠 ∼ −

2𝛽2

ℎ𝛼2 𝑦, as 𝑦 ↑ ∞, so B is infinite, concluding the 𝑦0 ∈ 𝔇2 discussion.
Consider now the domain 𝔇1 = (0, 𝑦𝜎). We have to check the finiteness of

C :=
∫ 𝑦0

0
exp

{
−

∫ 𝑦

𝑦0

2𝑏(𝑠)
�̃�2(𝑠)d𝑠

}
d𝑦, and D :=

∫ 𝑦𝜎

𝑦0

exp
{
−

∫ 𝑦

𝑦0

2𝑏(𝑠)
�̃�2(𝑠)d𝑠

}
d𝑦.

For C, the only possible issue for integrability is at zero, so we expand the integrand in a
neighborhood of the origin:

2𝑏(𝑠)
�̃�2(𝑠) =

2(1 − 𝑠)
ℎ𝛾2𝑠1−2𝛽

(
1 − 𝛼

𝛽𝛾
𝑠𝛽

)−2

=
2𝑠2𝛽−1

ℎ𝛾2

[
1 + 2𝛼

𝛽𝛾
𝑠𝛽 + 3

(
𝛼
𝛽𝛾

)2

𝑠2𝛽 + O (
𝑠3𝛽) ] .
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Since the expansion is uniform on (0, 𝑦0),∫ 𝑥

𝑦0

2𝑏(𝑠)
�̃�2(𝑠)d𝑠 =

2
𝛽ℎ𝛾2

(
𝑥2𝛽

2 +
2𝛼
3𝛽𝛾 𝑥

3𝛽 + 3𝛼2

4𝛽2𝛾2 𝑥
4𝛽 + 𝑜 (

𝑥4𝛽) + 𝐾𝑦0
𝛽

)
,

with 𝐾𝑦0
𝛽 := − 𝑦

2𝛽
0
2 − 2𝛼

3𝛽𝛾 𝑦
3𝛽
0 − 3𝛼2

4𝛽2𝛾2 𝑦
4𝛽
0 . We then obtain

exp
{
−

∫ 𝑥

𝑦0

2𝑏(𝑠)
�̃�2(𝑠)d𝑠

}
= exp

−
𝑥2𝛽 + 𝑜 (

𝑥2𝛽)
𝛽ℎ𝛾2 −

2𝐾𝑦0
𝛽

𝛽ℎ𝛾2

 = exp
−

2𝐾𝑦0
𝛽

𝛽ℎ𝛾2


(
1 + 𝑜 (

𝑥2𝛽) ) ,
and so C is always finite. Finally, regarding D, the following sequence of change of variables,
as 𝑥 ↓ 𝑦𝜎 − 𝑦 and 𝑠 ↓ 𝑦𝜎 − 𝑣, yields

D =
∫ 𝑦𝜎

𝑦0

exp
{
−

∫ 𝑥

𝑦0

2𝑏(𝑠)
�̃�2(𝑠)d𝑠

}
d𝑥 =

∫ 𝑦𝜎−𝑦0

0
exp

{
−

∫ 𝑦𝜎−𝑦0

𝑦

2𝑏(𝑦𝜎 − 𝑣)
�̃�2(𝑦𝜎 − 𝑣)d𝑣

}
d𝑦

=
∫ 𝑦𝜎−𝑦0

0
exp

{∫ 𝑦𝜎−𝑦0

𝑦

2�̂�(𝑣)
�̂�2(𝑦𝜎 − 𝑣)d𝑣

}
d𝑦,

with �̂�(𝑣) = −𝑏(𝑦𝜎 − 𝑣) and �̂�(𝑣) = −�̃�(𝑦𝜎 − 𝑣), for 𝑣 ∈ (0, 𝑦𝜎). Now, notice that D =
∫ 𝑎

0 �̂�(𝑥)d𝑥,
with �̂� defined in (4.A.1) and 𝑎 = 𝑦𝜎 − 𝑦0. Thus, exploiting the proof of Lemma 4.A.5, the
integral D is finite if and only if 𝑦𝜎 ≤ 1, and the theorem follows.

4.B.2 Proof of Proposition 4.3.7

Pursuing the analysis in [106, page 242], we can prove that

𝑆Π(𝑦𝜎 , 𝑥] :=
∫ 𝑥

𝑦𝜎
𝑠(𝜉)d𝜉 = ∞, 𝑆Π[𝑥,∞) :=

∫ ∞

𝑥
𝑠(𝜉)d𝜉 = ∞,

𝑀Π(𝑦𝜎 , 𝑥] :=
∫ 𝑥

𝑦𝜎

d𝜉
�̃�2(𝜉)𝑠(𝜉) < ∞, 𝑀Π[𝑥,∞) :=

∫ ∞

𝑥

d𝜉
�̃�2(𝜉)𝑠(𝜉) < ∞,

where 𝑠(𝜉) := exp
{
− ∫ 𝜉

𝑎
2𝑏(𝜂)
�̃�2(𝜂)d𝜂

}
, with 𝑎 > 𝑦𝜎 fixed. Thus, the stationary probability measure

is given by (4.3.3). Let us start by showing that 𝑆Π(𝑦𝜎 , 𝑥] and 𝑆Π[𝑥,∞) are infinite. Exploiting
the computations in the proof of Theorem 4.3.5, for the case 𝑦𝜎 < 1 and 𝔇 = (𝑦𝜎 ,∞), we obtain
the unboundedness of

𝑆Π(𝑦𝜎 , 𝑥] =
∫ 𝑥

𝑦𝜎
𝑠(𝜉)d𝜉 =

∫ 𝑥−𝑦𝜎

0
exp

{
−

∫ 𝑥−𝑦𝜎

𝑦

2𝑏(𝜂 + 𝑦𝜎)
�̃�2(𝜂 + 𝑦𝜎)d𝜂

}
d𝑦 =

∫ 𝑥−𝑦𝜎

0
𝑠(𝑦)d𝑦,

and

𝑆Π[𝑥,∞) =
∫ ∞

𝑥
𝑠(𝜉)d𝜉 =

∫ ∞

𝑥
exp

{
− 2
ℎ

∫ 𝜉

𝑥

(1 − 𝜂)d𝜂
𝜂(− 𝛼

𝛽 + 𝛾𝜂−𝛽)

}
d𝑦 ∼

∫ ∞

𝑥
exp

{
2
ℎ

∫ 𝜉

𝑥

𝛽

𝛼
𝜂d𝜂

}
d𝑦.
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We are only left to prove that 𝑀Π(𝑦𝜎 , 𝑥] and 𝑀Π[𝑥,∞) are finite. Exploiting the changes of
variables 𝜉 = 𝑣 + 𝑦𝜎 and 𝜂 = 𝑧 + 𝑦𝜎, 𝑀Π(𝑦𝜎 , 𝑥] can be rewritten as

𝑀Π(𝑦𝜎 , 𝑥] =
∫ 𝑥

𝑦𝜎

d𝜉
�̃�2(𝜉)𝑠(𝜉) =

∫ 𝑥

𝑦𝜎

1
�̃�2(𝜉) exp

{∫ 𝜉

𝑥

2𝑏(𝜂)
�̃�2(𝜂)d𝜂

}
d𝜉

=
∫ 𝑥−𝑦𝜎

0

1
�̃�2(𝑣 + 𝑦𝜎) exp

{∫ 𝑣

𝑥−𝑦𝜎

2𝑏(𝑧 + 𝑦𝜎)
�̃�2(𝑧 + 𝑦𝜎)d𝑧

}
d𝑣

=
∫ 𝑥−𝑦𝜎

0

d𝑣
�̃�2(𝑣 + 𝑦𝜎)𝑠(𝑣) =

∫ 𝑥−𝑦𝜎

0

d𝑣
𝜎2(𝑣)𝑠(𝑣) = 𝑀(0, 𝑥 − 𝑦𝜎].

Then, in a neighborhood of zero we have

1
𝜎2(𝑣)𝑠(𝑣) =

𝑦2𝛽
𝜎

𝛽2𝛾2 e−𝐾𝐾
𝑥−𝑦𝜎
𝛽 exp

{
−𝐾
𝑣

}
𝑣𝐾𝜒1−2(1 + O(𝑣)),

which is integrable around zero since 𝐾 > 0 and thus 𝑀Π(𝑦𝜎 , 𝑥] is finite.
To conclude we have to study the finiteness of 𝑀Π[𝑥,∞), which means that we have to check

the integrability of 1
�̃�2(𝜉)𝑠(𝜉) at infinity. Since

1
�̃�2(𝜉)𝑠(𝜉) =

1
�̃�2(𝜉) exp

{∫ 𝜉

𝑥

2𝑏(𝜂)
�̃�2(𝜂)d𝜂

}
∼ 𝜉2𝛽−2

𝛾
exp

{∫ 𝜉

𝑥
− 2
ℎ
(1 + O(𝜂))d𝜂

}
∼ 𝜉2𝛽−2

𝛾
e−

2
ℎ 𝜉

is integrable at infinity, the result follows.

4.B.3 Proof of Proposition 4.3.9

The aim is to approximate the price of an option with smooth payoff ℎ as 𝑃𝜀 ≈ 𝑄𝜀 :=
𝑃0 +√𝜀𝑃1, that is 𝑃𝜀 = 𝑄𝜀 + O(𝜀). We show that both 𝑃0 and 𝑃1 in fact do not depend on 𝑦 and
provide a precise estimate for the error term. A Taylor expansion of 𝑃𝜀 around 𝜀 = 0 gives

𝑃𝜀 = 𝑃0 +
√
𝜀𝑃1 + 𝜀𝑄2 + 𝜀3/2𝑄3 + O

(
𝜀3/2

)
= 𝑄𝜀 + 𝜀𝑄2 + 𝜀3/2𝑄3 + O

(
𝜀3/2

)
.

The pricing PDE (4.3.5) then reads

0 =

(
1
𝜀
ℒ𝑌 + 1√

𝜀
ℒ1 + ℒ𝜎(𝑦)

BS

)
𝑃𝜀

=

(
1
𝜀
ℒ𝑌 + 1√

𝜀
ℒ1 + ℒ𝜎(𝑦)

BS

) (
𝑃0 +
√
𝜀𝑃1 + 𝜀𝑄2 + 𝜀3/2𝑄3 + O

(
𝜀3/2

))
=
ℒ𝑌𝑃0
𝜀
+ ℒ𝑌𝑃1 + ℒ1𝑃0√

𝜀
+

[
ℒ𝑌𝑄2 + ℒ1𝑃1 + ℒ𝜎(𝑦)

BS 𝑃0

]
+ √𝜀

[
ℒ𝑌𝑄3 + ℒ1𝑄2 + ℒ𝜎(𝑦)

BS 𝑃1

]
+ O(𝜀).

Since this should be null for all (small) 𝜀, each term should be equal to zero. More specifically,

a. ℒ𝑌𝑃0 = 0. Since ℒ𝑌 has no 𝑥-derivative, 𝑃0(𝑡 , 𝑥, 𝑦) = 𝑃0(𝑡 , 𝑥)with 𝑃0(𝑇, 𝑥) = ℎ(𝑥);
b. ℒ𝑌𝑃1 + ℒ1𝑃0 = 0 = ℒ𝑌𝑃1 using a.. Similarly 𝑃1(𝑡 , 𝑥, 𝑦) = 𝑃1(𝑡 , 𝑥)with 𝑃1(𝑇, 𝑥) = 0;

c. 0 = ℒ𝑌𝑄2+ℒ1𝑃1+ℒ𝜎(𝑦)
BS 𝑃0 = ℒ𝑌𝑄2+ℒ𝜎(𝑦)

BS 𝑃0. This is a Poisson equation associated toℒ𝑌
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and requires a suitable solvability condition: Similarly to [63], the Fredholm alternative2
imposes the condition

0 = 〈ℒ𝜎
BS𝑃0 ,Π〉 =

∫ ∞

𝑦𝜎

(ℒ𝜎
BS𝑃0

)
Π(d𝑦) =

∫ ∞

𝑦𝜎

[
𝜕𝑡 + 𝜎2(𝑦)

2 D𝑥

]
𝑃0(𝑡 , 𝑥)Π(d𝑦)

=

[
𝜕𝑡 + 1

2

∫ ∞

𝑦𝜎
𝜎2(𝑦)Π(d𝑦)

]
D𝑥𝑃0(𝑡 , 𝑥),

where Π is the unique stationary distribution of 𝑌 on 𝔇 = (𝑦𝜎 ,∞) from Proposition 4.3.7,
and with the operatorD𝑥 := 𝜕2

𝑥 − 𝜕𝑥 .
This last computation in particular reveals that〈ℒ𝜎

BS ,Π
〉
= ℒ𝝒

BS ,

so that 𝑃0 in fact satisfies ℒ𝝒
BS𝑃0(𝑡 , 𝑥) = 0, with boundary condition 𝑃0(𝑇, 𝑥) = ℎ(𝑥), so that 𝑃0

corresponds to the Black-Scholes option price with payoff ℎ and variance 𝝒2 := 〈𝜎2 ,Π〉 =∫ ∞
𝑦𝜎

𝜎2(𝑦)Π(d𝑦), as given in the proposition.

Remark 4.B.1. The variance 𝝒2 is clearly finite: using the asymptotic computations in the previous
section, as 𝑦 ↑ ∞, the integrand behaves as exp{− 2

ℎ ( 𝛼𝛽 )2𝑦}𝑦−2 which is integrable at infinity (4.A.7).
When 𝑦 ↓ 𝑦𝜎 it behaves as exp{− 𝐾

(𝑦−𝑦𝜎) − 𝐾𝐾𝛼
𝛽 }(𝑦 − 𝑦𝜎)−𝜒1−2(1 + O(𝑦 − 𝑦𝜎)), also integrable since

𝐾 > 0 (4.A.4).

Observe now from c. above that

𝑄2 = −ℒ−1
𝑌

(
ℒ1𝑃1 + ℒ𝜎(𝑦)

BS 𝑃0

)
= −ℒ−1

𝑌

(
ℒ𝜎(𝑦)

BS 𝑃0

)
= −ℒ−1

𝑌

(
ℒ𝜎(𝑦)

BS − ℒ𝝒
BS

)
𝑃0. (4.B.1)

Note that we do not formally need to invert ℒ𝑌 , but it makes the notations below clearer.

d. Regarding the
√
𝜀 term,ℒ𝑌𝑄3+ℒ1𝑄2+ℒ𝜎(𝑦)

BS 𝑃1 = 0. This is again a Poisson equation with
solvability condition (using (4.B.1))

ℒ𝝒
BS𝑃1 =

〈ℒ𝜎
BS ,Π

〉
𝑃1 = −〈ℒ1𝑄2 ,Π〉 =

〈ℒ1ℒ−1
𝑌

(ℒ𝜎
BS − ℒ𝝒

BS
)
,Π

〉
𝑃0. (4.B.2)

Combining this with the terminal condition on 𝑃1 obtained in b., we obtain{
ℒ𝝒

BS𝑃1(𝑡 , 𝑥) =
〈ℒ1ℒ−1

𝑌

(ℒ𝜎
BS − ℒ𝝒

BS
)
,Π

〉
𝑃0 ,

𝑃1(𝑇, 𝑥) = 0,

so that 𝑃1 is the solution of a Black-Scholes system with variance 𝝒2 and source〈ℒ1ℒ−1
𝑌

(ℒ𝜎
BS − ℒ𝝒

BS
)
,Π

〉
𝑃0 =

1
2

〈ℒ1ℒ−1
𝑌

(
𝜎2 − 𝝒2) ,Π〉D𝑥𝑃0.

Setting 𝜓 to be the solution to ℒ𝑌𝜓(𝑦) = 𝜎2(𝑦) − 𝝒2 in (4.3.7), we obtain〈ℒ1ℒ−1
𝑌

(ℒ𝜎
BS − ℒ𝝒

BS
)
,Π

〉
𝑃0 =

1
2

〈ℒ1𝜓(·),Π
〉D𝑥𝑃0 =

1
2 〈𝜛,Π〉 𝜕𝑥D𝑥𝑃0 ,

2As far as we know, there is no general Fredholm alternative for hypoelliptic operators. Numerical tests seem to
clearly indicate the presence of a spectral gap in our case, which would be enough, but we leave this very lengthy
and detailed analysis to further research.
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by definition of ℒ1 in (4.3.4) and of 𝜛 in (4.3.6). The last term on the right-hand side is well
defined provided that (4.3.7) admits a unique solution such that 〈𝜛,Π〉 is finite. The existence
of such a unique (up to some positive constant) solution is ensured by the validity of the
corresponding solvability condition, consequence of 𝝒2 being finite (as proved in Remark 4.B.1).
A similar argument shows that 〈𝜛,Π〉 is also finite once we prove polynomial growth at infinity
and the boundedness of 𝜓 around 𝑦𝜎. Indeed, in that case, for 𝑦 ↑ ∞, the integrand behaves
like exp{− 2

ℎ ( 𝛼𝛽 )2𝑦}𝑦−1𝜓′(𝑦) ∼ exp{− 2
ℎ ( 𝛼𝛽 )2𝑦}(1 + 𝑦𝑛−1), which is integrable. As 𝑦 ↓ 𝑦𝜎, we have

exp{− 𝐾
(𝑦−𝑦𝜎) −𝐾𝐾𝛼

𝛽 }(𝑦 − 𝑦𝜎)−𝐾𝜒1−1𝜓′(𝑦)(1+O(𝑦 − 𝑦𝜎)), which is integrable since 𝐾 > 0. We thus
conclude that √

𝜀𝑃1(𝑡 , 𝑥) = −(𝑇 − 𝑡)Ω𝜀𝜕𝑥D𝑥𝑃0(𝑡 , 𝑥), (4.B.3)

with Ω𝜀 :=
√
𝜀

2 〈𝜛,Π〉. This implies 𝑃1(𝑇, 𝑥) = 0 and, since 〈ℒ𝜎
BS ,Π〉𝑃0 = ℒ𝝒

BS𝑃0 = 0,

ℒ𝝒
BS𝑃1 =

1√
𝜀
ℒ𝝒

BS

(
− (𝑇 − 𝑡)Ω𝜀𝜕𝑥D𝑥𝑃0

)
=

Ω𝜀𝜕𝑥D𝑥𝑃0 − (𝑇 − 𝑡)Ω𝜀𝜕𝑥D𝑥ℒ𝝒
BS𝑃0√

𝜀
=

Ω𝜀

√
𝜀
𝜕𝑥D𝑥𝑃0 =

〈ℒ1ℒ−1
𝑌

(ℒ𝜎
BS − ℒ𝝒

BS
)
,Π

〉
𝑃0 ,

which corresponds precisely to (4.B.2).

We now move on to the proof of the error term, assuming a smooth payoff ℎ. With
ℒ𝜀 := 1

𝜀ℒ𝑌 + 1√
𝜀
ℒ1 + ℒ𝜎(𝑦)

BS and

𝑍𝜀 := 𝜀𝑄2 + 𝜀
√
𝜀𝑄3 − (𝑃𝜀 −𝑄𝜀) = 𝜀𝑄2 + 𝜀

√
𝜀𝑄3 −

[
𝑃𝜀 −

(
𝑃0 + 𝑃1

√
𝜀
)]
,

the pricing PDE (4.3.5) now yields

ℒ𝜀𝑍𝜀 = ℒ𝜀

(
𝜀𝑄2 + 𝜀

√
𝜀𝑄3 −

[
𝑃𝜀 −

(
𝑃0 + 𝑃1

√
𝜀
)] )

= ℒ𝜀

(
𝑃0 + 𝑃1

√
𝜀 + 𝜀𝑄2 + 𝜀

√
𝜀𝑄3 − 𝑃𝜀

)
=
ℒ𝑌𝑃0
𝜀
+ ℒ𝑌𝑃1 + ℒ1𝑃0√

𝜀
+

(
ℒ𝑌𝑄2 + ℒ1𝑃1 + ℒ𝜎(𝑦)

BS 𝑃0

)
+ √𝜀

(
ℒ𝑌𝑄3 + ℒ1𝑄2 + ℒ𝜎(𝑦)

BS 𝑃1

)
+ 𝜀

(
ℒ1𝑄3 + ℒ𝜎(𝑦)

BS 𝑄2

)
+ 𝜀
√
𝜀ℒ𝜎(𝑦)

BS 𝑄3 − ℒ𝜀𝑃𝜀

= 𝜀
(
ℒ1𝑄3 + ℒ𝜎(𝑦)

BS 𝑄2 +
√
𝜀ℒ𝜎(𝑦)

BS 𝑄3

)
.

Setting {
𝐹𝜀(𝑡 , 𝑥, 𝑦) := ℒ1𝑄3 + ℒ𝜎(𝑦)

BS 𝑄2 +
√
𝜀ℒ𝜎(𝑦)

BS 𝑄3

𝐺𝜀(𝑥, 𝑦) := 𝑄2(𝑇, 𝑥, 𝑦) +
√
𝜀𝑄3(𝑇, 𝑥, 𝑦),

(4.B.4)

we write a parabolic PDE associated to 𝑍𝜀:

ℒ𝜀𝑍𝜀 = 𝜀𝐹𝜀 , with boundary condition 𝑍𝜀(𝑇, 𝑥, 𝑦) = 𝜀𝐺𝜀(𝑥, 𝑦). (4.B.5)

The first is a consequence of the identities above, while the second follows from

𝑍𝜀(𝑇, 𝑥, 𝑦) = 𝜀𝑄2(𝑇, 𝑥, 𝑦) + 𝜀
√
𝜀𝑄3(𝑇, 𝑥, 𝑦) − [𝑃𝜀(𝑇, 𝑥, 𝑦) − (𝑃0(𝑇, 𝑥, 𝑦) + 𝑃1(𝑇, 𝑥, 𝑦)

√
𝜀)]

= 𝜀𝑄2(𝑇, 𝑥, 𝑦) + 𝜀
√
𝜀𝑄3(𝑇, 𝑥, 𝑦) − [ℎ(𝑥) − (ℎ(𝑥) + 0)]
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= 𝜀𝑄2(𝑇, 𝑥, 𝑦) + 𝜀
√
𝜀𝑄3(𝑇, 𝑥, 𝑦) = 𝜀𝐺𝜀(𝑥, 𝑦)

We now investigate the form of 𝑄2 , 𝑄3. From the third identity in (4.B.1), 𝑄2 = −1
2𝜓(𝑦)D𝑥𝑃0,

where 𝜓 is the solution to (4.3.7), which implies (recall that 𝑃0 does not depend on 𝑦)

ℒ𝑌𝑄2 = −1
2ℒ𝑌

[
𝜓(𝑦)D𝑥𝑃0

]
= −𝜎

2(𝑦) − 𝝒2

2 D𝑥𝑃0 = −
(
ℒ𝜎(𝑦)

BS − ℒ𝝒
BS

)
𝑃0 = −ℒ𝜎(𝑦)

BS 𝑃0

The core idea here is to rewrite 𝐹𝜀 and 𝐺𝜀 to obtain the order of convergence of the first-order
price approximation 𝑄𝜀. In the following computations, 𝑃0 has smooth derivatives since the
payoff ℎ is smooth by assumption. The identity

ℒ𝜎(𝑦)
BS = 𝜕𝑡 + 𝜎2(𝑦)

2 D𝑥 = ℒ𝝒
BS +

𝜎2(𝑦) − 𝝒2

2 D𝑥 (4.B.6)

holds, yielding an explicit expression for the second term on the right-hand side of (4.B.4):

ℒ𝜎(𝑦)
BS 𝑄2 =

(
ℒ𝝒

BS +
𝜎2(𝑦) − 𝝒2

2 D𝑥

) (
−𝜓(𝑦)2 D𝑥𝑃0

)
= −𝜓(𝑦)2

(
ℒ𝝒

BSD𝑥𝑃0 + 𝜎2(𝑦) − 𝝒2

2 D2
𝑥𝑃0

)
= −𝜎

2(𝑦) − 𝝒2

4 𝜓(𝑦)D2
𝑥𝑃0 , (4.B.7)

since these differential operators commute. Now,𝑄3 is solution to the Poisson equationℒ𝑌𝑄3 =

−
(
ℒ1𝑄2 + ℒ𝜎(𝑦)

BS 𝑃1

)
, and the validity of the centering condition for the Poisson equation is

guaranteed by the choice of 𝑃1. Equivalently,

𝑄3 = −ℒ−1
𝑌

(
ℒ1𝑄2 + ℒ𝜎(𝑦)

BS 𝑃1

)
= −ℒ−1

𝑌

(
ℒ1𝑄2 + ℒ𝜎(𝑦)

BS 𝑃1 −
〈ℒ1𝑄2 + ℒ𝜎

BS𝑃1 ,Π
〉)

= −ℒ−1
𝑌

(
ℒ1𝑄2 − 〈ℒ1𝑄2 ,Π〉 +

(
ℒ𝜎(𝑦)

BS − ℒ𝝒
BS

)
𝑃1

)
. (4.B.8)

We make the terms on the right more explicit

ℒ1𝑄2 = − (
𝑦𝜎2(𝑦)𝜕𝑥𝑦 ) (

𝜓(𝑦)
2 D𝑥𝑃0

)
= − 𝑦𝜎

2(𝑦)
2 𝜕𝑥

(
𝜓′(𝑦)D𝑥𝑃0 + 𝜓(𝑦)D𝑥𝜕𝑦𝑃0

)
= −𝜛(𝑦)2 𝜕𝑥D𝑥𝑃0. (4.B.9)

Now, let 𝜗 be the solution to the Poisson equation

ℒ𝑌𝜗 = 𝜛(𝑦) − 〈𝜛,Π〉 , (4.B.10)

and plug (4.B.6) and (4.B.9) into (4.B.8) to obtain

𝑄3 = −ℒ−1
𝑌

(
−𝜛(𝑦)2 𝜕𝑥D𝑥𝑃0 + 〈𝜛,Π〉2 𝜕𝑥D𝑥𝑃0 + 𝜎2(𝑦) − 𝝒2

2 D𝑥𝑃1

)
(4.B.11)

=
1
2ℒ
−1
𝑌

[(
𝜛(𝑦) − 〈𝜛,Π〉

)
𝜕𝑥D𝑥𝑃0 −

(
𝜎2(𝑦) − 𝝒2)D𝑥𝑃1

]
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=
1
2ℒ
−1
𝑌

(
ℒ𝑌𝜗𝜕𝑥D𝑥𝑃0 − ℒ𝑌𝜓D𝑥𝑃1

)
=

1
2

(
𝜗𝜕𝑥D𝑥𝑃0 − 𝜓D𝑥𝑃1

)
.

Exploiting the definition of ℒ1, we obtain the first term in the expansion for 𝐹𝜀:

ℒ1𝑄3 =
𝑦𝜎2(𝑦)

2 𝜕𝑥𝑦
(
𝜗𝜕𝑥D𝑥𝑃0 − 𝜓D𝑥𝑃1

)
=
𝑦𝜎2(𝑦)

2

(
𝜗′(𝑦)𝜕2

𝑥D𝑥𝑃0 − 𝜓′(𝑦)𝜕𝑥D𝑥𝑃1

)
. (4.B.12)

Finally, exploiting (4.B.6)-(4.B.11), together with (4.B.3), we write

ℒ𝜎(𝑦)
BS 𝑄3 =

1
2

(
ℒ𝝒

BS +
𝜎2(𝑦) − 𝝒2

2 D𝑥

) (
𝜗𝜕𝑥D𝑥𝑃0 − 𝜓D𝑥𝑃1

)
= −𝜓(𝑦)2 Ω̃𝜕𝑥D2

𝑥𝑃0 + 𝜎2(𝑦) − 𝝒2

4 𝜗(𝑦)𝜕𝑥D2
𝑥𝑃0 − 𝜎2(𝑦) − 𝝒2

4 𝜓(𝑦)D2
𝑥𝑃1 , (4.B.13)

where Ω̃ := 1√
𝜀
Ω𝜀 = 1

2 〈𝜛,Π〉.

Placing (4.B.12)-(4.B.7)-(4.B.13) in (4.B.4), we then obtain

𝐹𝜀(𝑡 , 𝑥, 𝑦) = ℒ1𝑄3 + ℒ𝜎(𝑦)
BS 𝑄2 +

√
𝜀ℒ𝜎(𝑦)

BS 𝑄3

=
𝑦𝜎2(𝑦)

2

(
𝜗′(𝑦)𝜕2

𝑥D𝑥𝑃0 − 𝜓′(𝑦)𝜕𝑥D𝑥𝑃1

)
− 𝜎2(𝑦) − 𝝒2

4 𝜓(𝑦)D2
𝑥𝑃0

+ √𝜀
[
−𝜓(𝑦)2 Ω̃𝜕𝑥D2

𝑥𝑃0 + 𝜎2(𝑦) − 𝝒2

4 𝜗(𝑦)𝜕𝑥D2
𝑥𝑃0 − 𝜎2(𝑦) − 𝝒2

4 𝜓(𝑦)D2
𝑥𝑃1

]
=
𝑦𝜎2(𝑦)

2 𝜗′(𝑦) (𝜕4
𝑥 − 𝜕3

𝑥
)
𝑃0 − 𝜛(𝑦)

2
(
𝜕3
𝑥 − 𝜕2

𝑥
)
𝑃1 − 𝜎2(𝑦) − 𝝒2

4 𝜓(𝑦) (𝜕4
𝑥 − 2𝜕3

𝑥 + 𝜕2
𝑥
)
𝑃0

+
√
𝜀

2

[ (
𝜎2(𝑦) − 𝝒2

2 𝜗(𝑦) − 𝜓(𝑦)Ω̃
) (

𝜕5
𝑥 − 2𝜕4

𝑥 + 𝜕3
𝑥
)
𝑃0 − 𝜎2(𝑦) − 𝝒2

2 𝜓(𝑦) (𝜕4
𝑥 − 2𝜕3

𝑥 + 𝜕2
𝑥
)
𝑃1

]
.

Exploiting the fact that we chose 𝑃1 = −(𝑇 − 𝑡)Ω̃ (
𝜕3
𝑥 − 𝜕2

𝑥
)
𝑃0 (as in (4.B.3)), we obtain

𝐹𝜀(𝑡 , 𝑥, 𝑦) = −𝜎
2(𝑦) − 𝝒2

4 𝜓(𝑦)𝜕2
𝑥𝑃0 +

(
− 𝑦𝜎

2(𝑦)
2 𝜗′(𝑦) + 𝜎2(𝑦) − 𝝒2

2 𝜓(𝑦)
)
𝜕3
𝑥𝑃0

+
(
𝑦𝜎2(𝑦)

2 𝜗′(𝑦) − 𝜎2(𝑦) − 𝝒2

4 𝜓(𝑦)
)
𝜕4
𝑥𝑃0 + 𝑇 − 𝑡2 𝜛(𝑦)Ω̃ (

𝜕4
𝑥 − 2𝜕5

𝑥 + 𝜕6
𝑥
)
𝑃0

+
√
𝜀

2

{ [
𝜎2(𝑦) − 𝝒2

2 𝜗(𝑦) − 𝜓(𝑦)Ω̃
] (

𝜕3
𝑥 − 2𝜕4

𝑥 + 𝜕5
𝑥
)
𝑃0

+ (𝑇 − 𝑡)
(
𝜎2(𝑦) − 𝝒2

2 𝜓(𝑦)Ω̃
) (−𝜕4

𝑥 + 3𝜕5
𝑥 − 3𝜕6

𝑥 + 𝜕7
𝑥
)
𝑃0

}
. (4.B.14)

Performing similar computations for 𝐺𝜀, we obtain

𝐺𝜀(𝑥, 𝑦) = 𝑄2(𝑇, 𝑥, 𝑦) +
√
𝜀𝑄3(𝑇, 𝑥, 𝑦)

= −𝜓(𝑦)2 D𝑥𝑃0 +
√
𝜀

(
𝜗(𝑦)

2 𝜕𝑥D𝑥𝑃0 − 𝜓(𝑦)
2 D𝑥𝑃1

)
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= −𝜓(𝑦)2
(
𝜕2
𝑥 − 𝜕𝑥

)
𝑃0 +

√
𝜀

2

[
𝜗(𝑦) (𝜕3

𝑥 − 𝜕2
𝑥
) + 𝜓(𝑦)(𝑇 − 𝑇)Ω̃ (

𝜕5
𝑥 − 2𝜕4

𝑥 + 𝜕3
𝑥
) ]
𝑃0

= −𝜓(𝑦)2
(
𝜕2
𝑥 − 𝜕𝑥

)
𝑃0 +

√
𝜀

2 𝜗(𝑦) (𝜕3
𝑥 − 𝜕2

𝑥
)
𝑃0 , (4.B.15)

with 𝑃0 , 𝑃1 evaluated at (𝑇, 𝑥). The probabilistic representation of 𝑍𝜀 as the solution of the
Poisson equation in (4.B.5) reads

𝑍𝜀(𝑡 , 𝑥, 𝑦) = 𝜀 E𝑡 ,𝑥,𝑦

[
𝐺𝜀(𝑋𝑇 , 𝑌𝑇) +

∫ 𝑇

𝑡
𝐹𝜀(𝑠, 𝑋𝑠 , 𝑌𝑠)d𝑠

]
. (4.B.16)

To show that this is of order O(𝜀) as 𝜀 ↓ 0, it is enough to bound 𝐹𝜀 and 𝐺𝜀 uniformly in 𝜀. The
key ingredients here are the following two lemmas. The proof of the first one, being long and
technical, is postponed to Appendix 4.B.4.

Lemma 4.B.2. Let 𝜉 be a solution to the Poisson equation ℒ𝑌𝜉 = 𝑔 on (𝑦𝜎 ,∞), with
|𝑔(𝑦)| ≤ 𝐶, for 𝑦 ∈ (𝑦𝜎 , 𝑦),
|𝑔(𝑦)| ≤ 𝐶 (

1 + |𝑦 |𝑛 ) , for 𝑦 ≥ 𝑦,
〈𝑔,Π〉 = 0,

for some 𝐶 > 0, 𝑛 ∈ N, 𝑦 ∈ (𝑦𝜎 , 𝑦). Then there exist 𝐶′ > 0, 𝑛′ ∈ N, 𝑦𝜎 < 𝑦′ < 𝑦′ such that{
|𝜉′(𝑦)| ≤ 𝐶′, for 𝑦 ∈ (𝑦𝜎 , 𝑦′),
|𝜉′(𝑦)| ≤ 𝐶′(1 + |𝑦 |𝑛′), for 𝑦 ≥ 𝑦,

and consequently {
|𝜉(𝑦)| ≤ 𝐶′′, for 𝑦 ∈ (𝑦𝜎 , 𝑦′),
|𝜉(𝑦)| ≤ 𝐶′′(1 + |𝑦 |𝑛′+1), for 𝑦 ≥ 𝑦,

with 𝐶′′ suitable positive constant.

Lemma 4.B.3. If ℎ is smooth and bounded with bounded derivatives, then 𝜕𝑛𝑥𝑃0 exists and is bounded
for any 𝑛 ∈ N.

Proof. Since 𝑃0(𝑡 , 𝑥) is the BS price with constant volatility 𝝒2, denoting 𝑓 (·) the density function
of N

(
− 1

2𝝒
2(𝑇 − 𝑡),𝝒2

√
𝑇 − 𝑡

)
and assuming that the first 𝑛 derivatives of the function ℎ are

uniformly bounded by 𝐾 > 0, we have, for 𝑛 = 0,

|𝑃0(𝑡 , 𝑥)| =
����∫
R
ℎ(e𝑥+𝑧) 𝑓 (𝑧)d𝑧

���� ≤ ∫
R
|ℎ(e𝑥+𝑧)| 𝑓 (𝑧)d𝑧 ≤ 𝐾

and then, for any 𝑛 ≥ 1,

𝜕𝑛𝑥𝑃0(𝑡 , 𝑥) = 𝜕𝑛𝑥

(∫
R
ℎ(e𝑥+𝑧) 𝑓 (𝑧)d𝑧

)
= 𝜕𝑛−1

𝑥

(∫
R
ℎ′(e𝑥+𝑧)e𝑥+𝑧 𝑓 (𝑧)d𝑧

)
= 𝜕𝑛−2

𝑥

(∫
R
(ℎ′′(e𝑥+𝑧)e2(𝑥+𝑧) + ℎ′(e𝑥+𝑧)e𝑥+𝑧) 𝑓 (𝑧)d𝑧

)
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= · · · =
∫
R

𝑛∑
𝑘=1

(
𝑛
𝑘

)
𝜕𝑘𝑥ℎ(e𝑥+𝑧)e𝑘(𝑥+𝑧) 𝑓 (𝑧)d𝑧

=
∫
R

𝑛∑
𝑘=1

(
𝑛
𝑘

)
𝜕𝑘𝑥ℎ(e𝑥+𝑧)e𝑘(𝑥+𝑧) 𝑓 (𝑧)d𝑧,

and so

|𝜕𝑛𝑥𝑃0(𝑡 , 𝑥)| ≤
𝑛∑
𝑘=1

(
𝑛
𝑘

) ∫
R

��𝜕𝑘𝑥ℎ(e𝑥+𝑧)�� e𝑘(𝑥+𝑧) 𝑓 (𝑧)d𝑧 ≤ 𝐾 ∫
R

𝑛∑
𝑘=1

(
𝑛
𝑘

)
e𝑘(𝑥+𝑧) 𝑓 (𝑧)d𝑧

= 𝐾
𝑛∑
𝑘=1

(
𝑛
𝑘

)
e𝑘𝑥e−𝑘

1
2𝝒

2(𝑇−𝑡)e𝑘2 1
2𝝒

2(𝑇−𝑡) = 𝐾
𝑛∑
𝑘=1

(
𝑛
𝑘

)
e𝑘𝑥+(𝑘2−𝑘) 12𝝒2(𝑇−𝑡).

Since this is clearly finite, the lemma follows. □

Now, 𝜓 and 𝜗 are respectively the solutions to the Poisson equations (4.3.7)-(4.B.10) and
satisfy the hypotheses in Lemma 4.B.2. Indeed, for 𝜓, the function 𝑔 : 𝑦 ↦→ 𝜎2(𝑦) − 𝝒2 clearly
satisfies 〈𝑔,Π〉 = 〈𝜎2(·) − 𝝒2 ,Π〉 = 〈𝜎2(·),Π〉 − 𝝒2 = 𝝒2 − 𝝒2 = 0. Furthermore, on (𝑦𝜎 ,∞),

|𝑔(𝑦)| = |𝜎2(𝑦) − 𝝒2 | ≤ 𝜎2(𝑦) + 𝝒2 =

(
𝛼
𝛽
− 𝛾𝑦−𝛽

)2

+ 𝝒2 ≤ 𝛼2

𝛽2 + 𝝒2

is finite. Analogously, for 𝜗, the function 𝑔 : 𝑦 ↦→ 𝜛(𝑦) − 〈𝜛,Π〉 clearly satisfies 〈𝑔,Π〉 =
〈𝜛(𝑦) − 〈𝜛,Π〉,Π〉 = 〈𝜛,Π〉 − 〈𝜛,Π〉 = 0. Clearly, 〈𝜛,Π〉 is a finite positive constant. Let us
check the polynomial growth assumption on (𝑦𝜎 ,∞). Since 𝜎 is bounded there and since 𝜓 (and
its first derivative) has polynomial growth, then

|𝑔(𝑦)| = |𝜛(𝑦) − 〈𝜛,Π〉| = |𝜛(𝑦)| + 〈𝜛,Π〉 ≤ |𝑦 | |𝜎2(𝑦)| |𝜓′(𝑦)| + 〈𝜛,Π〉
≤ |𝑦 | 𝛼

2

𝛽2 𝐾
′
(
1 + |𝑦 |𝑛′

)
+ 〈𝜛,Π〉 ≤

(
𝛼2

𝛽2 𝐾
′ + 〈𝜛,Π〉

) (
1 + |𝑦 |𝑛′+1

)
,

which yields the desired growth condition. Thus, 𝜓 and 𝜗 have at most polynomial growth at
infinity, which we denote 𝑛𝜓 and 𝑛𝜗, and are bounded by a suitable constant when approach-
ing 𝑦𝜎. Plugging (4.B.14) and (4.B.15) in (4.B.16), we can write

𝑍𝜀(𝑡 , 𝑥, 𝑦) = 𝜀E𝑡 ,𝑥,𝑦

[
𝐺𝜀(𝑋𝑇 , 𝑌𝑇) +

∫ 𝑇

𝑡
𝐹𝜀(𝑠, 𝑋𝑠 , 𝑌𝑠)d𝑠

]
= 𝜀E𝑡 ,𝑥,𝑦

[
− 1

2𝜓(𝑌𝑇)(𝜕
2
𝑥 − 𝜕𝑥)𝑃0(𝑇, 𝑋𝑇) +

√
𝜀

2 𝜗(𝑌𝑇)(𝜕3
𝑥 − 𝜕2

𝑥)𝑃0(𝑇, 𝑋𝑇)

+
∫ 𝑇

𝑡

{
− 𝜎2(𝑌𝑠) − 𝝒2

4 𝜓(𝑌𝑠)𝜕2
𝑥 +

(
−𝜎

2(𝑌𝑠)
2 𝑌𝑠𝜗′(𝑌𝑠) + 𝜎2(𝑌𝑠) − 𝝒2

2 𝜓(𝑌𝑠)
)
𝜕3
𝑥

+
[
𝜎2(𝑌𝑠)

2 𝑌𝑠𝜗′(𝑌𝑠) − 𝜎2(𝑌𝑠) − 𝝒2

4 𝜓(𝑌𝑠)
]
𝜕4
𝑥 + 𝑇 − 𝑠2 𝑌𝑠𝜎2(𝑌𝑠)𝜓′(𝑌𝑠)Ω̃ (

𝜕4
𝑥 − 2𝜕5

𝑥 + 𝜕6
𝑥
)

+ √𝜀
{

1
2

[
𝜎2(𝑌𝑠) − 𝝒2

2 𝜗(𝑌𝑠) − 𝜓(𝑌𝑠)Ω̃
] (

𝜕3
𝑥 − 2𝜕4

𝑥 + 𝜕5
𝑥
)
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+ (𝑇 − 𝑠)𝜎
2(𝑌𝑠) − 𝝒2

4 𝜓(𝑌𝑠)Ω̃ (−𝜕4
𝑥 + 3𝜕5

𝑥 − 3𝜕6
𝑥 + 𝜕7

𝑥
) }
𝑃0(𝑠, 𝑋𝑠)d𝑠

]
.

Now, an application of Lemma 4.B.3 yields (with 𝜁 := 𝛼2

𝛽2 + 𝝒2)

|𝑍𝜀(𝑡 , 𝑥, 𝑦)| � 𝜀E𝑡 ,𝑥,𝑦

[
|𝜓(𝑌𝑇)| +

√
𝜀|𝜗(𝑌𝑇)|

+
∫ 𝑇

𝑡

{
𝜁
4 |𝜓(𝑌𝑠)| +

𝛼2

𝛽2 |𝑌𝑠 | |𝜗′(𝑌𝑠)| + |𝜓(𝑌𝑠)|
𝜁
2 +

𝛼2

2𝛽2 |𝑌𝑠 | |𝜗′(𝑌𝑠)| +
𝜁
4 |𝜓(𝑌𝑠)|

+ 2𝛼2(𝑇 − 𝑠)
𝛽2 |𝑌𝑠 | |𝜓′(𝑌𝑠)|Ω̃ +

√
𝜀

[
𝜁 |𝜗(𝑌𝑠)| + 2|𝜓(𝑌𝑠)|Ω̃ + 2(𝑇 − 𝑠)𝜁 |𝜓(𝑌𝑠)|Ω̃

]}
d𝑠

]
� 𝜀E𝑡 ,𝑥,𝑦

[
|𝜓(𝑌𝑇)| +

√
𝜀|𝜗(𝑌𝑇)| +

∫ 𝑇

𝑡

{
|𝜓(𝑌𝑠)| + |𝑌𝑠 | |𝜗′(𝑌𝑠)| + (𝑇 − 𝑠)|𝑌𝑠 | |𝜓′(𝑌𝑠)|

+ √𝜀
(
|𝜗(𝑌𝑠)| + |𝜓(𝑌𝑠)| + (𝑇 − 𝑠)|𝜓(𝑌𝑠)|

)}
d𝑠

]
,

where � means less than modulo multiplication by some strictly positive constant. Finally,
applying Lemma 4.B.2, we obtain��𝑍𝜀(𝑡 , 𝑥, 𝑦)�� � 𝜀 E𝑡 ,𝑥,𝑦

[
(1 + |𝑌𝑇 |𝑛𝜓 ) +

√
𝜀 (1 + |𝑌𝑇 |𝑛𝜗)

+
∫ 𝑇

𝑡

{
1 + |𝑌𝑠 |𝑛𝜓 + |𝑌𝑠 |

{[
1 + |𝑌𝑠 |𝑛𝜗−1] + (𝑇 − 𝑠) [1 + |𝑌𝑠 |𝑛𝜓−1]}

+ √𝜀{1 + |𝑌𝑠 |𝑛𝜗 + (1 + (𝑇 − 𝑠))|𝑌𝑠 |𝑛𝜓
}}

d𝑠
]
� 𝜀.

The finiteness in the last line is a consequence of Appendix 4.B.5 on the uniform finiteness of
the moments of 𝑌, and the proposition thus follows.

4.B.4 Proof of Lemma 4.B.2

With the notations introduced in Section 4.3.2, the third assumption on 𝑔 can be rewritten
as

0 = 〈𝑔,Π〉 =
∫ ∞

𝑦𝜎
𝑔(𝑦)Π(d𝑦) =

(∫ ∞

𝑦𝜎

d𝜉
�̃�2(𝜉)𝑠(𝜉)

)−1 ∫ ∞

𝑦𝜎
𝑔(𝑦)𝑚(𝑦)d𝑦,

and therefore ∫ ∞

𝑦𝜎
𝑔(𝑦)𝑚(𝑦)d𝑦 = 0. (4.B.17)

Recall that the equation ℒ𝑌𝜉 = 𝑔 solved by 𝜉 on (𝑦𝜎 ,∞) is equivalent to

1
2

d
d𝑀

(
d

d𝑆𝜉(𝑦)
)
= 𝑔(𝑦).
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Integrating both sides yields

𝜉′(𝑦) = 2𝑠(𝑦)
∫ 𝑦

𝑦𝜎
𝑔(𝑧)𝑚(𝑧)d𝑧. (4.B.18)

We first study the behaviour around 𝑦𝜎. Consider 𝑦 ∈ (𝑦𝜎 , 𝑦), for a sufficiently small 𝑦. Since
the function 𝑔 is bounded by assumption, then

|𝜉′(𝑦)| = 2𝐶𝑠(𝑦)
∫ 𝑦

𝑦𝜎
𝑚(𝑧)d𝑧 = 2𝐶𝑠(𝑦)𝑀Π(𝑦𝜎 , 𝑦].

In the proof of the boundary classification of the left boundary point 𝑦𝜎 < 1 for the domain
(𝑦𝜎 ,∞), we have seen that (4.A.4)

𝑠(𝑦) = exp
(

𝐾
𝑦 − 𝑦𝜎 + 𝐾𝐾

𝑎
𝛽

)
(𝑦 − 𝑦𝜎)−𝐾𝜒1(1 + O(𝑦 − 𝑦𝜎)), for 𝑦 ∈ (𝑦𝜎 , 𝑦),

with 𝐾 = 2𝑦2𝛽+1
𝜎 (1−𝑦𝜎)
ℎ𝛽2𝛾2 , positive constant, and 𝑀Π(𝑦𝜎 , 𝑦] =

∫ 𝑦−𝑦𝜎
0

d𝑥
𝜎2(𝑥)𝑠(𝑥) , with

𝑠(𝑥) = exp
(
𝐾
𝑥
+ 𝐾𝐾𝑎𝛽

)
𝑥−𝐾𝜒1(1 + O(𝑥)), for 𝑥 ∈ (0, 𝑦 − 𝑦𝜎),

and 𝜎(𝑥)−2 = 𝑦2+2𝛽
𝜎

𝛽2𝛾2𝑥2 (1+O(𝑥)), for 𝑥 ∈ (𝑦𝜎 , 𝑦). Thus, exploiting these two expansions, the change
of variables 𝑥 = (𝑦 − 𝑦𝜎)𝑧 and the asymptotic expansion for integrals in [123, Chapter 3.3,
pages 62 and 67], we obtain

𝑀(𝑦𝜎 , 𝑦] =
∫ 𝑦−𝑦𝜎

0

d𝑥
𝜎2(𝑥)𝑠(𝑥) =

𝑦2+2𝛽
𝜎

𝛽2𝛾2

∫ 𝑦−𝑦𝜎

0
exp

{
−𝐾
𝑥
− 𝐾𝐾𝑎𝛽

}
𝑥𝐾𝜒1−2(1 + O(𝑥))d𝑥

=
𝑦2+2𝛽
𝜎

𝛽2𝛾2 e−𝐾𝐾
𝑎
𝛽 (𝑦 − 𝑦𝜎)𝐾𝜒1−1

∫ 1

0
exp

{
− 𝐾
(𝑦 − 𝑦𝜎)𝑧

}
𝑧𝐾𝜒1−2(1 + O(𝑧))d𝑧

=
𝑦2+2𝛽
𝜎

𝛽2𝛾2 e−𝐾𝐾
𝑎
𝛽 (𝑦 − 𝑦𝜎)𝐾𝜒1−1 exp

{
− 𝐾
𝑦 − 𝑦𝜎

} ( 𝑦 − 𝑦𝜎
𝐾
+ O((𝑦 − 𝑦𝜎)2)

)
=

𝑦2+2𝛽
𝜎

𝛽2𝛾2𝐾
e−𝐾𝐾

𝑎
𝛽 (𝑦 − 𝑦𝜎)𝐾𝜒1 exp

{
− 𝐾
𝑦 − 𝑦𝜎

} (
1 + O(𝑦 − 𝑦𝜎)) .

Thus, we conclude

|𝜉′(𝑦)| ≤ 2𝐶𝑠(𝑦)𝑀(𝑦𝜎 , 𝑦] = 2𝑦2+2𝛽
𝜎

𝛽2𝛾2 (1 + O(𝑦 − 𝑦𝜎)),

which yields the boundedness of 𝜉′(𝑦) and of 𝜉(𝑦) itself as 𝑦 approaches 𝑦𝜎.

About the behaviour at infinity, applying the centering condition (4.B.17) to (4.B.18) yields

𝜉′(𝑦) = 2𝑠(𝑦)
∫ 𝑦

𝑦𝜎
𝑔(𝑧)𝑚(𝑧)d𝑧
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= 2𝑠(𝑦)
(∫ 𝑦

𝑦𝜎
𝑔(𝑧)𝑚(𝑧)d𝑧 +

∫ ∞

𝑦
𝑔(𝑧)𝑚(𝑧)d𝑧 −

∫ ∞

𝑦
𝑔(𝑧)𝑚(𝑧)d𝑧

)
= −2𝑠(𝑦)

∫ ∞

𝑦
𝑔(𝑧)𝑚(𝑧)d𝑧

Since 𝑠 and 𝑚 are non-negative, the polynomial growth assumption in the statement of
Lemma 4.B.2 and the definition of 𝑚 give

|𝜉′(𝑦)| = 2𝑠(𝑦)
�����∫ ∞

𝑦
𝑔(𝑧)𝑚(𝑧)d𝑧

����� ≤ 2𝑠(𝑦)
∫ ∞

𝑦
|𝑔(𝑧)|𝑚(𝑧)d𝑧 (4.B.19)

≤ 2𝐶𝑠(𝑦)
∫ ∞

𝑦
𝑧𝑛𝑚(𝑧)d𝑧 ≤ 2𝐶𝑠(𝑦)

∫ ∞

𝑦

𝑧𝑛−2

𝜎2(𝑧)𝑠(𝑧)d𝑧.

Since 𝑦 can be picked as 𝑦 > 1, then |𝑧 |𝑛−2 ≤ 1 for 𝑛 ∈ {0, 1}, and we thus take 1 in place of 𝑧𝑛−2.
We make a short digression to study 𝑠(𝑦), for 𝑦 ∈ (𝑎,∞)with 𝑎 > 𝑦𝜎. By definition,

𝑠(𝑦) = exp
{
−

∫ 𝑦

𝑎

2𝑏(𝜂)
�̃�2(𝜂)d𝜂

}
= e− 𝑓𝑎(𝑦) ,

with 𝑓𝑎(𝑦) :=
∫ 𝑦

𝑎
2𝑏(𝜂)
�̃�2(𝜂)d𝜂, which we can compute explicitly as

𝑓𝑎(𝑦) = 2
ℎ

©«
∫ 𝑦

𝑎

d𝜂

𝜂
(
− 𝛼

𝛽 + 𝛾𝜂−𝛽
)2 −

∫ 𝑦

𝑎

d𝜂(
− 𝛼

𝛽 + 𝛾𝜂−𝛽
)2

ª®®¬ =
2
ℎ

(
𝐼1(𝑎, 𝑦) − 𝐼2(𝑎, 𝑦)

)
,

where

𝐼1(𝑎, 𝑦) :=
𝛽

𝛼2 log
(
𝛽𝛾 − 𝛼𝑦𝛽

𝛽𝛾 − 𝛼𝑎𝛽

)
+ 𝛽2𝛾

𝛼

𝑎−𝛽 − 𝑦−𝛽
(𝛼 − 𝛽𝛾𝑎−𝛽)(𝛼 − 𝛽𝛾𝑦−𝛽) ,

𝐼2(𝑎, 𝑦) := 1
𝛾(2𝛽 + 1)

[
𝑦2𝛽+1

2𝐹1

(
2, 2 + 1

𝛽
; 3 + 1

𝛽
;
𝛼𝑦𝛽

𝛽𝛾

)
− 𝑎2𝛽+1

2𝐹1

(
2, 2 + 1

𝛽
; 3 + 1

𝛽
; 𝛼𝑎

𝛽

𝛽𝛾

)]
.

- Since 𝑦 > 𝑎, then the first term in 𝐼1 satisfies 𝛽𝛾−𝛼𝑦𝛽
𝛽𝛾−𝛼𝑎𝛽 ∈ (0, 1] so that its logarithm is

well-posed and negative.

- Likewise, the second term in 𝐼1 is positive and (as a function of 𝑦) increasing and bounded
by its∞-limit equal to 𝑎−𝛽

(𝛼−𝛽𝛾𝑎−𝛽)𝛼 .

- The two terms in 𝐼2 can be rewritten exploiting the following series representation of the
hypergeometric function [118, Volume I, Chapter III, Section 3.6, Equation (1)], which
holds for any |𝑧 | > 1 and 𝑎 − 𝑏 ∉ Z:

2𝐹1 (𝑎, 𝑏; 𝑐; 𝑧) = Γ(𝑏 − 𝑎)Γ(𝑐)
Γ(𝑏)Γ(𝑐 − 𝑎)

1
(−𝑧)𝑎

∞∑
𝑘=0

(𝑎)𝑘(𝑎 − 𝑐 + 1)𝑘
𝑘!(𝑎 − 𝑏 + 1)𝑘

1
𝑧𝑘

+ Γ(𝑎 − 𝑏)Γ(𝑐)
Γ(𝑎)Γ(𝑐 − 𝑏)

1
(−𝑧)𝑏

∞∑
𝑘=0

(𝑏)𝑘(𝑏 − 𝑐 + 1)𝑘
𝑘!(𝑏 − 𝑎 + 1)𝑘

1
𝑧𝑘
.
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In our specific case this reads

2𝐹1

(
2, 2 + 1

𝛽
; 3 + 1

𝛽
; 𝑧

)
= (2𝛽 + 1)

∞∑
𝑘=0

𝑘 + 1
1 − 𝑘𝛽 𝑧

−(2+𝑘) + 1
2Γ

(
−1
𝛽

)
Γ

(
3 + 1

𝛽

) (
−1
𝑧

)2+ 1
𝛽

,

which implies −𝐼2(𝑎, 𝑦) = ∑
𝑘≥0 𝑘(𝑎1−𝛽𝑘ג − 𝑦1−𝛽𝑘), where we define 𝑘ג := 𝑘+1

1−𝑘𝛽𝛾
𝑘+1

(
𝛼
𝛽

) 𝑘+2

for convenience. We further introduce the useful quantities∑𝑧

𝑛
:=

𝑛−1∑
𝑘=0
𝑘𝑧1−𝛽𝑘ג and

∑𝑧

𝑛
:=
∞∑
𝑘=𝑛

𝑘𝑧1−𝛽𝑘ג .

Then, for any 𝛽 ∈ (0, 1
2 ), there exists 𝑛𝛽 ∈ N \ {0, 1, 2} such that 1− 𝛽𝑛 < 0, for 𝑛 ≥ 𝑛𝛽, and

1 − 𝛽𝑛 ≥ 0, for 𝑛 < 𝑛𝛽. Hence, for any 𝑧 ∈ (𝑦,∞), with 𝑦 > 𝑎 > 𝑦𝜎,

−𝐼2(𝑎, 𝑧) = 𝐶𝑎 −
∞∑
𝑘=0
𝑘𝑧1−𝛽𝑘ג = 𝐶𝑎 −

∑𝑧

𝑛𝛽
−

∑𝑧

𝑛𝛽
≤ 𝐶𝑎 −

∑𝑧

𝑛𝛽
−

∑𝑦

𝑛𝛽
,

where the constant 𝐶𝑎 :=
∑𝑎
∞ is finite.

As a consequence of these bullet points, we deduce

1
𝑠(𝑧) = e 𝑓𝑎(𝑧) =

(
𝛽𝛾 − 𝛼𝑧𝛽

𝛽𝛾 − 𝛼𝑎𝛽

) 2𝛽
ℎ𝛼2

exp
{

2𝛽2𝛾

ℎ𝛼
𝑎−𝛽 − 𝑧−𝛽

(𝛼 − 𝛽𝛾𝑎−𝛽)(𝛼 − 𝛽𝛾𝑧−𝛽)
}

e−
2
ℎ 𝐼2(𝑎,𝑧)

≤ exp
{

2𝛽2𝛾

ℎ𝛼
𝑎−𝛽

(𝛼 − 𝛽𝛾𝑎−𝛽)𝛼
}

exp
{

2
ℎ

[
𝐶𝑎 −

∑𝑧

𝑛𝛽
−

∑𝑦

𝑛𝛽

]}
= exp

{
2𝛽2𝛾𝑎−𝛽

(𝛼 − 𝛽𝛾𝑎−𝛽)𝛼2ℎ
+ 2𝐶𝑎

ℎ

}
exp

{
− 2
ℎ

(∑𝑧

𝑛𝛽
+

∑𝑦

𝑛𝛽

)}
.

Let us now go back to the starting problem and consider 𝑦 > 𝑎 > 𝑦𝜎. Replacing the expression
in (4.B.19), we have

|𝜉′(𝑦)| ≤ 2𝐶𝑠(𝑦)
∫ ∞

𝑦

𝑧𝑛−2(
𝛼
𝛽 − 𝛾𝑧−𝛽

)2
𝑠(𝑧)

d𝑧 ≤ 2𝐶
(
𝛼
𝛽
− 𝛾

𝑦𝛽

)−2

𝑠(𝑦)
∫ ∞

𝑦

𝑧𝑛−2

𝑠(𝑧) d𝑧

= 2𝐶
(
𝛼
𝛽
− 𝛾

𝑦𝛽

)−2 (
𝛽𝛾 − 𝛼𝑎𝛽

𝛽𝛾 − 𝛼𝑦𝛽

) 2𝛽
ℎ𝛼2

e
𝛽2𝛾
𝛼

𝑦−𝛽−𝑎−𝛽
(𝛼−𝛽𝛾𝑎−𝛽 )(𝛼−𝛽𝛾𝑦−𝛽 ) e

2
ℎ 𝐼2(𝑎,𝑦)

∫ ∞

𝑦

𝑧𝑛−2

𝑠(𝑧) d𝑧

≤ 2𝐶
(
𝛼
𝛽
− 𝛾

𝑦𝛽

)−2 (
𝛽𝛾 − 𝛼𝑎𝛽

𝛽𝛾 − 𝛼𝑦𝛽

) 2𝛽
𝛼2ℎ

exp
{
− 2
ℎ

[
𝐶𝑎 −

∑𝑦

𝑛𝛽
−

∑𝑦

𝑛𝛽

]}
×

×
∫ ∞

𝑦
𝑧𝑛−2e

2𝛽2𝛾𝑎−𝛽
(𝛼−𝛽𝛾𝑎−𝛽 )𝛼2ℎ

+ 2
ℎ 𝐶𝑎 exp

{
− 2
ℎ

∑𝑧

𝑛𝛽
− 2
ℎ

∑𝑦

𝑛𝛽

}
d𝑧

≤ 2𝐶e
2𝛽2𝛾𝑎−𝛽

(𝛼−𝛽𝛾𝑎−𝛽 )𝛼2ℎ

(
𝛼
𝛽
− 𝛾

𝑦𝛽

)−2 (
𝛽𝛾 − 𝛼𝑎𝛽

𝛽𝛾 − 𝛼𝑦𝛽

) 2𝛽
ℎ𝛼2

exp
{

2
ℎ

∑𝑦

𝑛𝛽

} ∫ ∞

𝑦
𝑧𝑛−2 exp

{
− 2
ℎ

∑𝑧

𝑛𝛽

}
d𝑧.

Now, suppose that the integral in the last line satisfies a bound of the form∫ ∞

𝑦
𝑧𝑛−2 exp

{
− 2
ℎ

∑𝑧

𝑛𝛽

}
d𝑧 ≤ 𝐾

𝑁∑
𝑗=0

𝑁 !
𝑗!

(
2
ℎ

∑𝑦

𝑛𝛽

) 𝑗
exp

{
− 2
ℎ

∑𝑦

𝑛𝛽

}
, (4.B.20)
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for some 𝐾 > 0 and some integer 𝑁 > 0. Plugging this in the equation above, we obtain

|𝜉′(𝑦)| ≤ 2𝐾𝐶 exp
{

2𝛽2𝛾𝑎−𝛽

(𝛼 − 𝛽𝛾𝑎−𝛽)ℎ𝛼2

} (
𝛼
𝛽
− 𝛾𝑦−𝛽

)−2 (
𝛽𝛾 − 𝛼𝑎𝛽

𝛽𝛾 − 𝛼𝑦𝛽

) 2𝛽
ℎ𝛼2 𝑁∑

𝑗=0

𝑁 !
𝑗!

(
2
ℎ

∑𝑦

𝑛𝛽

) 𝑗
= 2𝐾𝐶 exp

{
2𝛽2𝛾𝑎−𝛽

(𝛼 − 𝛽𝛾𝑎−𝛽)ℎ𝛼2

} (
𝛽𝛾 − 𝛼𝑎𝛽

) 2𝛽
ℎ𝛼2

𝛽2
𝑦2𝛽(

𝛽𝛾 − 𝛼𝑦𝛽
)2+ 2𝛽

𝛼2ℎ

𝑁∑
𝑗=0

𝑁 !
𝑗!

(
2
ℎ

∑𝑦

𝑛𝛽

) 𝑗
≤ 2𝐾𝐶 exp

{
2𝛽2𝛾𝑎−𝛽

(𝛼 − 𝛽𝛾𝑎−𝛽)ℎ𝛼2

} (
𝛽𝛾 − 𝛼𝑎𝛽

)−2

𝛽2 𝑦2𝛽
𝑁∑
𝑗=0

𝑁 !
𝑗!

(
2
ℎ

∑𝑦

𝑛𝛽

) 𝑗
≤ 𝐾𝑎

(
1 + |𝑦 |2𝛽+𝑁(1−𝛽𝑛𝛽)

)
= 𝐾𝑎

(
1 + |𝑦 |𝑁𝛽

)
,

where 𝑁𝛽 and 𝐾𝑎 are respectively a suitably chosen positive integer and a positive constant.
Thus, this last inequality yields the desired polynomial growth for 𝜉′ and 𝜉. Finally the
inequality in (4.B.20) is a consequence of the following lemma.

Lemma 4.B.4. Let 𝑦 > 𝑎 > 1, 𝑘, 𝑁 ∈ N0 and 𝐼 :=
∫ ∞
𝑦 𝑧𝑘 exp{−∑𝑁

𝑗=0 𝐴 𝑗𝑧𝑑𝑗 }d𝑧, with (𝐴 𝑗)𝑗∈{0,...,𝑁} ≥ 0
and (𝑑 𝑗)𝑗∈{0,...,𝑁} ∈ (0, 1). Then, there exists 𝑟 ∈ N and 𝐶 > 0 such that

𝐼 ≤ 𝐶 exp
−

𝑁∑
𝑗=0

𝐴 𝑗𝑦𝑑𝑗


𝑟∑
𝑘=0

𝑟!
𝑘!

©«
𝑁∑
𝑗=0

𝐴 𝑗𝑦𝑑𝑗
ª®¬
𝑘

.

Proof. The function 𝑔 : (𝑦,∞) → R+, defined as 𝑔(𝑧) :=
∑𝑁
𝑗=0 𝐴 𝑗𝑧𝑑𝑗 , is positive and strictly

increasing, hence invertible. Its inverse 𝑔← is thus strictly increasing and lim𝑧↑∞ 𝑔(𝑧) = +∞.
The change of variables 𝑔(𝑧) = 𝑢 thus implies

𝐼 =
∫ ∞

𝑔(𝑦)
e−𝑢

𝑔←(𝑢)𝑘
𝑔′

(
𝑔←(𝑦)) d𝑢.

Notice that the first derivative of 𝑔, given by 𝑔′(𝑧) = ∑𝑁
𝑗=0 𝐴 𝑗𝑑 𝑗𝑧𝑑𝑗−1, is clearly positive and

strictly decreasing on (𝑦,∞). Now, set 𝛼0 = min𝑗∈{0,...,𝑁} 𝐴 𝑗 and 𝛿0 = min𝑗∈{0,...,𝑁} 𝑑 𝑗 . Since

𝑔(𝑧) ≥ 𝛼0𝑧𝛿0 , then 𝑔
((

𝑧
𝛼0

) 1
𝛿0

)
≥ 𝑧, and so, by the monotonicity of 𝑔←, we have

𝑔←(𝑧) ≤ 𝑔←
(
𝑔

((
𝑧
𝛼0

) 1
𝛿0

))
≤ 𝛼

− 1
𝛿0

0 𝑧
1
𝛿0 , (4.B.21)

as well as 𝑔′(𝑧) ≥ 𝛼0𝛿0𝑧𝛿0−1. Applying this inequality and then (4.B.21) to the chain of inequal-
ities for 𝐼, gives, for a suitably chosen positive integer 𝑟 some constant 𝐶 > 0,

𝐼 ≤
∫ ∞

𝑔(𝑦)
e−𝑢

𝑔←(𝑢)𝑘
𝛼0𝛿0𝑔←(𝑢)𝛿0−1 d𝑢 =

1
𝛼0𝛿0

∫ ∞

𝑔(𝑦)
e−𝑢 𝑔←(𝑢)𝑘+1−𝛿0d𝑢

≤ 1
𝛼0𝛿0

∫ ∞

𝑔(𝑦)
e−𝑢

(
𝑢
𝛼0

) 1
𝛿0
(𝑘+1−𝛿0)

d𝑢 = 𝛼
− 𝑘+1

𝛿0
0 𝛿−1

0

∫ ∞

𝑔(𝑦)
e−𝑢𝑢

1
𝛿0
(𝑘+1−𝛿0)d𝑢
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≤ 𝐶
∫ ∞

𝑔(𝑦)
e−𝑢𝑢𝑟d𝑢 = e−𝑔(𝑦)

𝑟∑
𝑗=0

𝑟!
𝑗! 𝑔(𝑦)

𝑗 ,

which ends the proof of the inequality in the statement of the theorem. □

4.B.5 Uniform bounds for the moments of 𝑌

Because of Section 4.3.1, Theorem 4.3.5 and Proposition 4.3.7, we restrict our interest to the

case with 𝛽 ∈ (0, 1
2 ) ∪ {1} and domain 𝔇 = (𝑦𝜎 ,∞), with 𝑦𝜎 :=

(
𝛽𝛾
𝛼

)1/𝛽
< 1. We need to prove

that, for any 𝑛 ∈ N, the uniform (in time) bound sup𝑡≥0 E[𝑌𝑛𝑡 ] ≤ 𝐾 holds. We shall use the
following lemma, the proof of which is relegated below:

Lemma 4.B.5. On any compact interval of the form [0, 𝑇], any moment of 𝑌 is uniformly bounded and
lim𝑡→𝑠 E[(𝑌𝑡 − 𝑌𝑠)𝑛+2] = 0.

This claim implies immediately that E[𝑌𝑛+2
𝑡 ], E[𝑌𝑛+1

𝑡 ], E[𝑌𝑛𝑡 ], E[𝑌𝑛−𝛽𝑡 ] and E[𝑌𝑛−2𝛽
𝑡 ] are all

continuous on any compact interval. Now, Itô’s formula implies yields

𝑌𝑛𝑡 = 𝑦𝑛0 +
∫ 𝑡

0
𝑛𝑌𝑛−1

𝑠 d𝑌𝑠 + 1
2

∫ 𝑡

0
𝑛(𝑛 − 1)𝑌𝑛−2

𝑠 d〈𝑌〉2𝑠

= 𝑦𝑛0 +
𝑛
ℎ

∫ 𝑡

0

(
𝑌𝑛𝑠 − 𝑌𝑛+1

𝑠
)
d𝑠 +

∫ 𝑡

0

(
−𝛼𝑛

𝛽
𝑌𝑛𝑠 + 𝛾𝑛𝑌𝑛−𝛽𝑠

)
d𝑊𝑠

+ 𝑛(𝑛 − 1)
2

∫ 𝑡

0

(
𝛼2

𝛽2𝑌
𝑛
𝑠 + 𝛾2𝑌𝑛−2𝛽

𝑠 − 2𝛼𝛾
𝛽
𝑌𝑛−𝛽𝑠

)
d𝑠.

Taking expectations on both sides and exploiting the regularity of the processes involved (from
the aforementioned claim) we obtain

E[𝑌𝑛𝑡 ] = 𝑦𝑛0 +
(
𝑛
ℎ
+ 𝛼2𝑛(𝑛 − 1)

2𝛽2

) ∫ 𝑡

0
E[𝑌𝑛𝑠 ]d𝑠 − 𝑛ℎ

∫ 𝑡

0
E[𝑌𝑛+1

𝑠 ]d𝑠 + 0 + 𝛾2𝑛(𝑛 − 1)
2

∫ 𝑡

0
E[𝑌𝑛−2𝛽

𝑠 ]d𝑠

− 𝛼𝛾𝑛(𝑛 − 1)
𝛽

∫ 𝑡

0
E[𝑌𝑛−𝛽𝑠 ]d𝑠.

Define now the function 𝑡 ↦→ 𝜑(𝑡) := E[𝑌𝑛𝑡 ], which is differentiable since on any compact [0, 𝑇],
|𝜕𝑡 𝑓 (𝑡 , 𝑌)| is bounded in 𝐿1, for 𝑓 (𝑡 , 𝑌) :=

∫ 𝑡

0 𝑌
𝑛
𝑠 d𝑠. Since the process 𝑌 is positive almost surely,

differentiating the expression above and applying Hölder inequality yield

𝜑′(𝑡) =
(

2
ℎ
− 𝛼2

𝛽2

)
𝜑(𝑡) − 2

ℎ
E

[
𝑌3
𝑡

] + 𝛾2E
[
𝑌2−2𝛽
𝑡

]
− 2𝛼𝛾

𝛽
E

[
𝑌2−𝛽
𝑡

]
≤

(
𝑛
ℎ
+ 𝛼2𝑛(𝑛 − 1)

2𝛽2

)
𝜑(𝑡) − 𝑛

ℎ
E

[
𝑌𝑛+1
𝑡

] + 𝛾2𝑛(𝑛 − 1)
2 E

[
𝑌𝑛−2𝛽
𝑡

]
≤

(
𝑛
ℎ
+ 𝛼2𝑛(𝑛 − 1)

2𝛽2

)
𝜑(𝑡) − 𝑛

ℎ
𝜑(𝑡)1+ 1

𝑛 + 𝛾2𝑛(𝑛 − 1)
2 𝜑(𝑡)1− 2

𝑛 𝛽 = 𝜓(𝜑(𝑡)),

with 𝜓(𝑦) :=
(
𝑛
ℎ + 𝛼2𝑛(𝑛−1)

2𝛽2

)
𝑦 − 𝑛

ℎ 𝑦
1+ 1

𝑛 + 𝛾2𝑛(𝑛−1)
2 𝑦1− 2

𝑛 𝛽. Since lim𝑦↑∞ 𝜓(𝑦) = −∞, there exists 𝑦∗

such that 𝜓(𝑦) ≤ −1 for all 𝑦 ≥ 𝑦∗.
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This implies that 𝜑(·) is uniformly bounded. First, without loss of generality we can assume
𝑦∗ ≥ 𝑦2

0 . Now, either the level 𝑦∗ is never reached, so that that the function 𝜑 is uniformly
bounded by 𝑦∗, or that 𝑦∗ is actually attained at some time 𝑡∗, namely 𝜑(𝑡∗) = 𝑦∗. Let us
show that in this last case the level 𝑦∗ + 1 cannot be attained and consequently 𝜑 is uniformly
bounded by 𝑦∗ + 1. Assume by contradiction that there exists 𝑡 such that 𝜑(𝑡) = 𝑦∗ + 1. Since 𝜑

is continuous, then 𝑡 ≥ 𝑡∗. Set �̂� := max{0 ≤ 𝑡 ≤ 𝑡 : 𝜑(𝑡) = 𝑦∗}. Clearly then 𝜓(𝜑(𝑡)) ≤ −1 for all
𝑡 ∈ [̂𝑡 , 𝑡], and furthermore

𝑦∗+1 = 𝜑(𝑡) = 𝜑(̂𝑡)+
∫ 𝑡

�̂�
𝜑′(𝑡)d𝑡 = 𝑦∗+

∫ 𝑡

�̂�
𝜑′(𝑡)d𝑡 ≤ 𝑦∗+

∫ 𝑡

�̂�
𝜑′(𝑡)d𝑡 ≤ 𝑦∗+

∫ 𝑡

�̂�
𝜓(𝜑(𝑡))d𝑡 ≤ 𝑦∗ ,

which is obviously a contradiction and thus completes the proof.

We now prove Lemma 4.B.5.

Proof of Lemma 4.B.5. The finiteness of any moment of 𝑌 can be recovered proceeding as in [51].
Indeed, let 𝜏𝑀 := inf{𝑡 ≥ 0 : 𝑌𝑡 ≥ 𝑀} for any 𝑀 > 0, so that 𝑌𝑡∧𝜏𝑀 ≤ 𝑀 and hence is bounded
almost surely. Consider a function ℎ ∈ C2([0,∞))with the following properties:

ℎ(𝑦) = 1, 𝑦 ≤ 1
2 ,

ℎ(𝑦) ≥ 𝑦𝑘 , everywhere,
ℎ(𝑦) = 𝑦𝑘 , 𝑦 ≥ 2.

It is then easy to see that there exists a constant 𝐶 > 0 such that, for all 𝑦 ≥ 0,

�̃�2(𝑦)
2 ℎ′′(𝑦) + 𝑏ℎ′(𝑦) ≤ 𝐶ℎ(𝑦).

Then, set 𝑓 (𝑡) := E𝑦0[ℎ(𝑌𝑡∧𝜏)]. Itô’s formula implies

𝑓 (𝑡) = ℎ(𝑦0) + E𝑦0

[∫ 𝑡∧𝜏

0

�̃�2(𝑌𝑠)
2 ℎ′′(𝑌𝑠) + 𝑏(𝑌𝑠)ℎ′(𝑌𝑠)d𝑠

]
= ℎ(𝑦0) + 𝐶 E𝑦0

[∫ 𝑡∧𝜏

0
ℎ(𝑌𝑠)d𝑠

]
= ℎ(𝑦0) + 𝐶E𝑦0

[∫ 𝑡∧𝜏

0
ℎ(𝑌𝑠∧𝜏)d𝑠

]
≤ ℎ(𝑦0) + 𝐶 E𝑦0

[∫ 𝑡

0
ℎ(𝑌𝑠∧𝜏)d𝑠

]
= ℎ(𝑦0) + 𝐶

∫ 𝑡

0
𝑓 (𝑠)d𝑠.

Finally, an application of Gronwall’s inequality yields

E𝑦0

[
𝑌𝑘𝑡∧𝜏

] ≤ E𝑦0 [ℎ(𝑌𝑡∧𝜏)] ≤ ℎ(𝑦0)e𝐶𝑡 ≤ 𝐶
(
1 + 𝑦𝑘0

)
,

which does not depend on 𝑀, proving the uniform finiteness of moments of 𝑌 on [0, 𝑇].
Regarding the second item of the lemma, applying, in sequence, Hölder, BDG and Hölder

inequalities, Fubini’s Theorem and the previously boundedness of moments of 𝑌, we obtain

E[(𝑌𝑡 − 𝑌𝑠)𝑛] = E
[

𝑛∑
𝑘=0

(
𝑛
𝑘

) (∫ 𝑡

𝑠
𝑏(𝑌𝑢)d𝑢

)𝑛−𝑘 (∫ 𝑡

𝑠
�̃�(𝑌𝑢)d𝑊𝑢

) 𝑘 ]
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≤
𝑛∑
𝑘=0

(
𝑛
𝑘

)
E

[ (∫ 𝑡

𝑠
𝑏(𝑌𝑢)d𝑢

)𝑛 ] 𝑛−𝑘
𝑛

E

[ (∫ 𝑡

𝑠
�̃�(𝑌𝑢)d𝑊𝑢

)𝑛 ] 𝑘
𝑛

≤
𝑛∑
𝑘=0

(
𝑛
𝑘

)
E

[ ∫ 𝑡

𝑠
𝑏(𝑌𝑢)𝑛d𝑢

] 𝑛−𝑘
𝑛

E

[ (∫ 𝑡

𝑠
�̃�(𝑌𝑢)2d𝑢

) 𝑛
2
] 𝑘
𝑛

≤
𝑛∑
𝑘=0

(
𝑛
𝑘

)
E

[ ∫ 𝑡

𝑠
𝑏(𝑌𝑢)𝑛d𝑢

] 𝑛−𝑘
𝑛

E

[ ∫ 𝑡

𝑠
�̃�(𝑌𝑢)𝑛d𝑢

] 𝑘
𝑛

≤
𝑛∑
𝑘=0

(
𝑛
𝑘

) {
1
ℎ𝑛

∫ 𝑡

𝑠
E[𝑌𝑛𝑢 (1 − 𝑌𝑢)𝑛]d𝑢

} 𝑛−𝑘
𝑛

{∫ 𝑡

𝑠
E

[
𝑌𝑛𝑢

(
−𝛼
𝛽
+ 𝛾𝑌−𝛽𝑢

)𝑛]
d𝑢

} 𝑘
𝑛

≤
𝑛∑
𝑘=0

(
𝑛
𝑘

)
1

ℎ𝑛−𝑘

{∫ 𝑡

𝑠
E[𝑌𝑛𝑢 + 𝑌2𝑛

𝑢 ]d𝑢
} 𝑛−𝑘

𝑛

2
𝑘(𝑛−1)
𝑛

{∫ 𝑡

𝑠
E

[
𝛼𝑛

𝛽𝑛
𝑌𝑛𝑢 + 𝛾𝑛𝑌𝑛(1−𝛽)𝑢

]
d𝑢

} 𝑘
𝑛

.

Since all moments of 𝑌 are uniform bounded over [0, 𝑇], we obtain

lim
𝑡→𝑠
E[(𝑌𝑡 − 𝑌𝑠)𝑛] ≤ lim

𝑡→𝑠
𝐶(𝑇, 𝑦0 , 𝑛)(𝑡 − 𝑠) = 0,

completing the proof. □

4.C Large deviations proofs

4.C.1 Proof of Proposition 4.3.13

Since the process 𝑌𝜀 lies in R∗+ instead of R, we adapt the proof of [130, Theorem 2.9] to
prove a large deviations principle with speed 𝜀 and rate function I𝑌 . Since 𝑦𝜎 > 0, and in both
cases 𝑦0 ≥ 𝑦𝜎 and 𝑦0 < 𝑦𝜎, the function �̃� is locally Lipschitz continuous on R∗+. Furthermore,
for 𝑓 ∈ ℋ , the Picard-Lindelöf Theorem implies that the controlled ODE 𝑔¤ 𝑡 = �̃�(𝑔𝑡) 𝑓¤ 𝑡 , with
𝑔0 = 𝑦0 admits the solution

S𝑦0
2 ( 𝑓 )(𝑡) =

(
𝛽𝛾

𝛼

) 1
𝛽
[
e−𝛼

∫ 𝑡
0 𝑓¤ 𝑢d𝑢

(
𝑦𝛽0

𝛼
𝛽𝛾
− 1

)
+ 1

]1/𝛽
, for 𝑡 ∈ [0, 𝑇], 𝑦0 > 0.

This formulation requires the term
[
e−𝛼

∫ 𝑡
0 𝑓¤ 𝑢d𝑢

(
𝑦𝛽0

𝛼
𝛽𝛾 − 1

)
+ 1

]
to be positive for all 𝑦0 > 0:

- If 𝑦0 ≥ 𝑦𝜎, then 𝑦𝛽0
𝛼
𝛽𝛾 − 1 ≥ 0 and S𝑦0

2 ( 𝑓 ) is positive on [0, 𝑇];

- If 𝑦0 < 𝑦𝜎, then 𝑦𝛽0
𝛼
𝛽𝛾 − 1 < 0 and S𝑦0

2 ( 𝑓 ) is positive on [0, 𝑇] if and only if (4.3.9) holds.

The crucial step in [130, Theorem 2.9] is [130, Theorem 2.7], which states that if
√
𝜀𝑊 is

close to 𝑓 ∈ ℋ , then 𝑌𝜀 should be close to S𝑦0
2 ( 𝑓 ), the solution of the controlled ODE. The

case of bounded and locally Lipschitz coefficients on the whole real line was done in [130,
Theorem 2.7], but with such conditions on a domain, a new localisation argument is required.
Given suitable 𝜂 > 𝛿 > 0, with 𝛿 sufficiently small, there exists 𝑟 ∈ (0, 𝜂) such that the 𝛿-tube
around S𝑦0

2 ( 𝑓 ) is contained in 𝐵𝑟(𝜂). For this radius 𝑟 to exist, one simply needs to make sure
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that the solution S𝑦0
2 ( 𝑓 ) of the controlled ODE never reaches zero (explosion is impossible as

infinity is recurrent), which is obvious when 𝑦0 ≥ 𝑦𝜎, and guaranteed by Condition (4.3.9) when
𝑦0 < 𝑦𝜎. Then both functions

𝔟(𝑥) :=


𝑏(𝑥), 𝑥 ∈ [𝜂 − 𝑟, 𝜂 + 𝑟],
𝑏

( (𝜂 − 𝑟)𝑥
|𝑥 |

)
= 𝑏(𝜂 − 𝑟), 𝑥 < 𝜂 − 𝑟,

𝑏

( (𝜂 + 𝑟)𝑥
|𝑥 |

)
= 𝑏(𝜂 + 𝑟), 𝑥 > 𝜂 + 𝑟,

and

𝔰(𝑥) :=


�̃�(𝑥), 𝑥 ∈ [𝜂 − 𝑟, 𝜂 + 𝑟],
�̃�

( (𝜂 − 𝑟)𝑥
|𝑥 |

)
= �̃�(𝜂 − 𝑟), 𝑥 < 𝜂 − 𝑟,

�̃�

( (𝜂 + 𝑟)𝑥
|𝑥 |

)
= �̃�(𝜂 + 𝑟), 𝑥 > 𝜂 + 𝑟,

are bounded and globally Lipschitz continuous on R∗+, and clearly 𝜀𝔟(·) converges uniformly to
zero on R∗+ as 𝜀 goes to zero.

Denote 𝑌
𝜀

the solution to d𝑌
𝜀
𝑡 = 𝜀𝔟(𝑌𝜀

𝑡 )d𝑡 +
√
𝜀𝔰(𝑌𝜀

𝑡 )d𝑊𝑡 with 𝑌
𝜀
0 = 𝑦0 > 0. Then the two

sequences (𝑌𝜀)𝜀>0 and (𝑌𝜀)𝜀>0 are identical in 𝐵𝑟(𝜂). Thus, for each 0 < 𝛿 < 𝑦0 (small enough)
there exist 𝜉 > 0 such that, for all 𝑥 ∈ 𝐵𝜉(𝑦0),

P
[‖𝑌𝜀 − S𝑦0

2 ( 𝑓 )‖∞ > 𝛿, ‖√𝜀𝑊 − 𝑓 ‖∞ ≤ 𝜁
]
= P

[
‖𝑌𝜀 − S𝑦0

2 ( 𝑓 )‖∞ > 𝛿, ‖√𝜀𝑊 − 𝑓 ‖∞ ≤ 𝜁
]
,

for all 𝑓 ∈ ℋ s.t. Λ( 𝑓 ) ≤ 𝜆, with 𝜁,𝜆 > 0 fixed. Hence, for each 𝑅,𝜆 > 0 and 𝛿 > 0 small
enough, there exist 𝜁, 𝜉, 𝜀0 > 0 such that, for all 𝑓 ∈ ℋ with Λ( 𝑓 ) ≤ 𝜆, 𝑥 ∈ 𝐵𝜉(𝑦0), 𝜀 ≤ 𝜀0,

P
[‖𝑌𝜀 − S𝑦0

2 ( 𝑓 )‖∞ > 𝛿, ‖√𝜀𝑊 − 𝑓 ‖∞ ≤ 𝜁
] ≤ exp

{
−𝑅
𝜀

}
holds from [130, Proposition 2.15] and so [130, Theorem 2.7] is satisfied here as well. Finally,
large deviations follow from the same reasoning as in the proof of [130, Theorem 2.9].

4.C.2 Proof of Theorem 4.3.12

To obtain a large deviations principle for 𝑋𝜀, a large deviations principle for the rescaled
process X𝜀 := (𝑋𝜀 , 𝑌𝜀) needs to be proved. This is

dX𝜀
𝑡 = 𝜀b(X𝜀

𝑡 )d𝑡 +
√
𝜀a(X𝜀

𝑡 )d𝑊𝑡 ,

with initial condition X𝜀
0 := x0 =

(
log 𝑠0
𝑦0

)
and the maps b, a : R∗+ → R2 defined as

b(X𝜀
𝑡 ) =

(
−1

2𝜎
2(𝑌𝜀

𝑡 )
𝑏(𝑌𝜀

𝑡 )

)
and a(X𝜀

𝑡 ) =
(
𝜎(𝑌𝜀

𝑡 )
�̃�(𝑌𝜀

𝑡 )

)
.
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These two maps are both locally Lipschitz continuous on R × R∗+. Solving the controlled
ODE for 𝑌𝜀 is sufficient to solve the controlled ODE for the process X𝜀. Using the proof of
Proposition 4.3.13, for f := ( 𝑓 , 𝑓 ) with 𝑓 ∈ ℋ , the controlled ODE g¤ 𝑡 = 𝑓¤ 𝑡a(g𝑡), with g0 = x0

has a solution g = Sx0( 𝑓 ) on [0, 𝑇]. For 𝑦0 > 𝑦𝜎, the solution S𝑦0
2 is strictly positive and Sx0( 𝑓 )

exists on [0, 𝑇] for all 𝑓 ∈ ℋ and x0 ∈ R×R∗+. In this case,ℋ boils down to the Cameron-Martin
space. For 𝑦0 < 𝑦𝜎, Condition (4.3.9) ensures that S𝑦0

2 is positive. Applying [130, Theorem 2.9],
the sequence X𝜀 then satisfies a large deviations principle on C([0, 𝑇],R×R∗+) as 𝜀 tends to zero,
with speed 𝜀 and rate function

I𝑌,𝑋(g) := inf
{
Λ( 𝑓 ), 𝑓 ∈ ℋ ,Sx0( 𝑓 ) = g

}
.

To obtain a large deviations principle for the log-stock price 𝑋𝜀, we apply the Contraction
Principle [46, Theorem 4.2.1], since the projection on the first component is continuous.

4.C.3 Proof of Corollary 4.3.14

We prove the lower and upper bounds separately, which turn out to be equal. For simplicity,
we introduce the following notation, for all 𝑘 ≠ 0:

Ĩ𝑋(𝑘) =


inf
𝑦≥𝑘

I𝑋(𝑔)|𝑔(1)=𝑦 , if 𝑘 > 0,

inf
𝑦≤𝑘

I𝑋(𝑔)|𝑔(1)=𝑦 , if 𝑘 < 0.

Assuming that the rate function is continuous3, lim𝑡↓0 𝑡 logP
[
𝑆𝑡 > e𝑘

]
= −̃I𝑋(𝑘). We only

consider 𝑘 > 0, the other case being symmetric. The proof of this identity is similar to that of
[61, Corollary 4.13, Appendix C].

- For any 𝛿 > 0, the inequality E[(𝑆𝑡 − e𝑘)+] ≥ 𝑘e𝑘𝛿P[𝑆𝑡 > e𝑘(1+𝛿)] and Theorem 4.3.12,
together with the continuity of the rate function, then imply

lim inf
𝑡↓0

𝑡 logE
[(
𝑆𝑡 − e𝑘

)
+

]
≥ lim inf

𝑡↓0
{
𝑡(𝑘 + log 𝑘 + log 𝛿) + 𝑡 logP

[
𝑆𝑡 > e𝑘(1+𝛿)

]}
= −̃I𝑋(𝑘(1 + 𝛿)).

Take 𝛿 ↓ 0, by continuity of Ĩ𝑋(𝑘), we obtain the desired lower bound.

- To establish the desired upper bound, we note that for any 𝑞 > 1, we have

E
[(
𝑆𝑡 − e𝑘

)
+

]
≤ E

[(
𝑆𝑡 − e𝑘

) 𝑞
+

]1/𝑞
P

[
𝑆𝑡 ≥ e𝑘

]1−1/𝑞
.

and therefore 𝑡 logE[(𝑆𝑡−e𝑘)+] ≤ 𝑡
𝑞 logE[𝑆𝑞𝑡 ]+𝑡(1− 1

𝑞 ) logP[𝑆𝑡 ≥ e𝑘]. From Theorem 4.3.3,
for 𝑦𝜎 ≤ min{𝑦0 , 1}, the process (𝑌𝑡)𝑡∈[0,𝑇] remains in (𝑦𝜎 ,∞). The map 𝜎 is bounded on
(𝑦𝜎 ,∞), in particular 0 ≤ 𝜎(𝑦) ≤ 𝛼/𝛽, and thus adapting the arguments in [59, proof of
Corollary 1.2], we have lim sup𝑡↓0

𝑡
𝑞 logE[𝑆𝑞𝑡 ] ≤ 0. Indeed, exploiting Hölder inequality

and the closed-form formula for the exponential moments of a Gaussian random variable,

3Unless the rate function is available in closed form, it is hard to check for continuity. This was done directly
for the Heston model in [60] and in [61, Corollary 4.10] for a simplified rough volatility model. The most general
related statement is available in [68] based on non-degeneracy assumptions.
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we have
E[𝑆𝑞𝑡 ] = 𝑠𝑞0E

[
e𝑞(𝑋𝑡−𝑥0)]

= 𝑠𝑞0E

[
exp

{
𝑞

(
−1

2

∫ 𝑡

0
𝜎(𝑌𝑠)2d𝑠 +

∫ 𝑡

0
𝜎(𝑌𝑠)d𝑊𝑠

)}]
≤ 𝑠𝑞0E

[
exp

{
−𝑞

∫ 𝑡

0
𝜎(𝑌𝑠)2d𝑠

}] 1
2

E

[
exp

{
2𝑞

∫ 𝑡

0
𝜎(𝑌𝑠)d𝑊𝑠

}] 1
2

≤ 𝑠𝑞0 exp
{

4𝑞2

4 V
[∫ 𝑡

0
𝜎(𝑌𝑠)d𝑊𝑠

]}
≤ 𝑠𝑞0 exp

{
𝑞2

∫ 𝑡

0
E

[
𝜎(𝑌𝑠)2

]
d𝑠

}
≤ 𝑠𝑞0 exp

{
𝛼2𝑞2

𝛽2 𝑡

}
,

which yields

lim sup
𝑡↓0

𝑡
𝑞

logE[𝑆𝑞𝑡 ] ≤ lim sup
𝑡↓0

𝑡 log
(
𝑠𝑞0 exp

(
𝛼2𝑞2

𝛽2 𝑡

))
≤ lim sup

𝑡↓0
𝑡

{
𝑞𝑥0 + 𝛼2𝑞2

𝛽2 𝑡

}
= 0.

Therefore, for fixed 𝑞 > 1, we have lim sup𝑡↓0 𝑡 logE[(𝑆𝑡 − e𝑘)+] ≤ −(1 − 1
𝑞 )̃I𝑋(𝑘). Taking 𝑞

to infinity yields the desired upper bound.
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