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1. Introduction

The notion of implicative algebra has been recently introduced by Miquel [19] as a simple algebraic
tool to encompass important model-theoretic constructions. These constructions include those underlying
forcing and realizability, both in intuitionistic and classical logic. In a subsequent work [20], Miquel further
reinforces the previously demonstrated outcome by showing that every “well-behaved Set-based semantics”
can be presented as a specific instance of a model within the context of an implicative algebra.

To reach this goal, implicative algebras were initially situated within the categorical setting of Set-based
triposes [13,22], demonstrating that every implicative algebra induces a Set-based tripos [19, Thm. 4.4].
This result can be seen as a particular case of a more general result presented in [26, Sec. 5.3] based on
the notion of implicative ordered combinatory algebra, since implicative algebras are a particular instance of
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such a notion. Subsequently, it was proven that every Set-based tripos is isomorphic to an implicative one
[20, Thm. 1.1].

It is important to note that Miquel’s results represent the culmination of a series of studies aimed at
showing, from an abstract perspective, the essential common features between various realizability-like
models and localic models, utilizing categorical tools.

In particular, Hofstra introduced in [11] the notion of basic combinatory objects (BCOs) to encompass
(ordered) PCAs and locales, and he provided a characterization of triposes arising as triposes for ordered
PCAs (with filters). The non-ordered version of BCOs, known as discrete combinatory objects, was then
introduced by Frey in [9] and employed to provide an “intrinsic” or “extensional” characterization of real-
izability toposes.

The main objective of this work is to further explore the abstract perspective that aims to unify
realizability-like interpretations and forcing-like (or localic) interpretations. This is achieved by focusing
on two aspects: generalizing several topological notions from locale theory to implicative algebras, and em-
ploying these new notions to formally define a notion of category of assemblies and category of partitioned
assemblies for implicative algebras. This generalization extends the existing cases of categories of partitioned
assemblies and assemblies for a PCA [12,9,5]. In the first part of this work, we concentrate on generalizing
standard notions such as supercompact, indecomposable and disjoint elements at the level of implicative al-
gebras. We study these notions in several examples. One significant challenge when generalizing localic-like
notions to implicative algebras is the need to consider a suitable form of uniformity. This is necessary be-
cause, unlike the localic case, the separator of an arbitrary implicative algebra may have multiple elements.
This is the case, for example, for the separators of several implicative algebras arising from various forms
of realizability. This fact makes, for example, the transition from a point-wise notion to its generalization
via indexed sets non-trivial.

This abstract framework lays the groundwork for the second part of this work, in which we extend various
notions derived from realizability to implicative algebras. This extension enables us to offer a topological-like
interpretation of these notions.

After completing this initial study, which draws inspiration from the perspective of implicative algebras
as generalizations of locales, we then proceed to examine implicative algebras in relation to the broader
context of partial combinatory algebras (PCAs). This leads us to explore the abstraction of concepts such
as assemblies, partitioned assemblies, and modest sets within this framework.

The problem of generalizing these notions from PCAs to arbitrary implicative algebras can be addressed
from different perspectives: for example, since assemblies are pairs (X, 1) where : X — P*(R) is a function
from X to the non-empty powerset of the PCA R, one could try to generalize this notion by defining an
assembly for an implicative algebra A = (A, <,—,%) as a pair (X,¢) where ¢: X — ¥ is a function
from the set X to the separator ¥ (since, for the implicative algebra associated with a PCA, we have that
¥ := P*(R)). This approach has been recently used in [7]. A second reasonable attempt, based on the
fact that every realizability topos can be presented as the ex/reg-completion of the category Asm(R) of
assemblies of its PCA, [24,4,29], could be that of defining the category of assemblies for an implicative algebra
as the regular completion (in the sense of [15]) of the implicative tripos associated with the PCA. Again,
this generalization would allow us to recognize the ordinary category of assemblies as a particular case, since
every tripos-to-topos can be presented as the ex/reg-completion of the regular completion of the tripos.

The first solution mainly depends on the “explicit” description of an assembly of a PCA, while the second
one is based on the abstract properties of such a category.

In this paper, we propose a different approach: instead of focusing on the explicit description of an
assembly or on the universal property of the category of assemblies, we aim to identify the logical properties
that uniquely identify assemblies in realizability, and then define an arbitrary assembly of an implicative
algebra as a pair (X, 1) where v is a predicate of the implication tripos satisfying the logical properties we
have identified.
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The inspiration for this kind of abstraction is the characterization of predicates determining partitioned
assemblies presented in [17] in terms of full existential free elements, and independently introduced in
[8,10] via the notion of 3-primes: in these works, it has been proved that the functions ¢: X — R where
R is a PCA, i.e. those used to define a partitioned assembly on X, correspond exactly to the predicates
¢: X — P(R) of the realizability tripos of R satisfying the following property:

Property 1.1. Whenever a sequent

dx) Iy eY (fly) =xAa(y))

is satisfied (in the internal language of realizability tripos), there exists a witness function g such that
o(x) F o(g(x)), and this property is preserved by substitutions.

Following this approach, we observe that the functions ¢: X — P*(R), i.e. those used to define an
assembly on X | correspond exactly to the predicates ¢: X — P(R) of the realizability tripos of R satisfying
the following property:

Property 1.2. Whenever a sequent
o)z e Zo(x,z)

where o is a functional predicate is satisfied (in the internal language of realizability tripos), there exists a
witness function g such that ¢(z) - o(x, g(x)), and this property is preserved by substitutions.

The fact that these characterizations do not depend on any explicit description of an assembly or a
partitioned assembly, but just on their logical properties, makes them easy to generalize to arbitrary triposes.

Therefore, we define an assembly for an implicative algebra A = (A, <,—,¥) as a pair (X, ) where X
is a set and ¢: X — A is a predicate of the implicative tripos associated with A satisfying the property
(1.2) (in the internal language of the implicative tripos), while we will say that ¢): X — A is a partitioned
assembly if ¢p: X — A is a predicate of the implicative tripos associated with A satisfying the property
(1.1). Based on our previous analysis, we show that these notions correspond exactly to the generalization
of the notion of indecomposable and supercompact elements, respectively, for implicative algebras.

A second crucial insight we propose here regards the concept of morphism of assemblies and its general-
izations. After introducing a notion of morphism of assemblies following the same idea used in realizability,
where morphisms are defined as Set-functions, we show that our notion of category of assemblies is equiv-
alent to the subcategory that we called of strongly trackable objects of the category of functional relations
associated with the implicative tripos (i.e. its regular completion in the sense of [15]), namely objects such
that every functional relation having one of these objects as domain is tracked by a unique Set-based func-
tion. Then, we prove that the category of partitioned assemblies is exactly the subcategory of strongly
trackable objects which are regular projectives of the category of functional relations associated with the
implicative tripos.

Finally, we conclude by studying some basic categorical properties of these categories. In particular, it
is worth recalling that in realizability the category of assemblies is regular, and it happens to be equivalent
to the regular completion (in the sense of [4]), of its full subcategory of partition assemblies. However, this
connection between assemblies and partition assemblies does not hold in general for the case of an arbitrary
implicative algebra. More generally, for an arbitrary implicative algebra, the category of assembly is not
regular, and the category of partition assemblies has no finite limits.
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Taking inspiration again from [17], we present necessary and sufficient conditions allowing us to under-
stand when a category of assemblies for an implicative algebra is regular and it is the regular completion of
the category of partition assemblies.

2. Implicative algebras
In this section we recall the definition of implicative algebra introduced in [19].
2.1. Definition

Definition 2.1 (implicative structure). An implicative structure (A,<,—) is a complete lattice (A, <)
equipped with a binary operation (a,b) — (a — b) called implication of A satisfying the following two
axioms:

e ifa/ <aand b<V thena—b<da —¥;
e a— N\yepb=N\pepla— b), for every a € A and every subset B C A.

Definition 2.2 (separator). Let (A, <,—) be an implicative structure. A separator is a subset ¥ C A satis-
fying the following conditions for every a,b € A:

e ifa€e X and a <bthen b e X;
o kA= Napeala— (b— a)) is an element of X;
= Napeealla— (b—c)) = ((a = b) = (a — ¢))) is an element of X;

o if (a—b)eX and a € X then b € X.

The intuition is that a separator ¥ C A determines a particular “criterion of truth” within the implicative
structure (A, <, —), generalizing the notion of filter for complete Heyting algebras.

Definition 2.3 (implicative algebra). We call an implicative algebra an implicative structure (A,<,—)
equipped with a separator ¥ C A. In such a case the implicative algebra will be denoted as (A, <, —, X).

2.2. Some examples of implicative algebras

Complete Heyting algebras
If H = (H, <) is a complete Heyting algebra with Heyting implication —, we can see it as an implicative
algebra (H,<,—,{T}) where T is the maximum of H.

Realizability

If R = (R,-)is a (total) combinatory algebra (CA) (see e.g. [29]), then we can define an implicative algebra
from it by considering the 4-tuple, (P(R),C, =, P(R)\{0}) where A= B :={r € R|r-a € B for all a € A}
for every A, B C R.

Nested realizability

Nested realizability triposes are considered in [2,18] in order to study some aspects of modified realizability
and relative realizability (see [28,29]). We consider here only the total case in order not to make the
notation heavy. The same we will do in the next examples. Let R = (R,:) be a combinatory algebra
and let Ry = (Ry, %) be one of its sub-combinatory algebras, that is Ry C R, a -4 b = a-b for every
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a,b € Ry and k, s in R can be chosen to be elements of Ry. We can define an implicative algebra
AR r, = (PRR,> Cn,=n, ER,R,) as follows:

1 Prry = {(Xa, Xp) € P(Ry) x P(R)| X, € Xp}
2. (X4, Xp) G (Ya,Y,) if and only if X, CY, and X, CY,;
(Xa,X) n (Ya, p)- ((Xq :>#Y) (XPZ>YP>7XPZ>YP)
4. (X, )EERR# if and only if X, # 0.

Modified realizability

Let R = (R,-) be a combinatory algebra and let Ry = (R4, %) be one of its sub-combinatory algebras
and assume there exists x € Ry such that x -z = x for every x € R and p - ¥ - x = x for p the pairing
combinator defined from fixed k,s € Ry for R. We can define an implicative algebra as

m R m m
RoRu = (PRRy > Cno =, RRy N PRR, &)

where
P%,R#,* = {(Xa, Xp) € PRyl * € Xp}

Relative realizability
Let R = (R, ) be a combinatory algebra and let Ry = (R4, -4) be one of its sub-combinatory algebras.
We define the relative realizability implicative algebra as follows:

Arr, = (P(R),C, =S r,)
where
%’R# ={X e P(R)| X NRy # 0}

Partial cases

Notice that one can also consider the previous cases in which the binary operations of the combinatory
algebras involved are partial. In this case we do not obtain implicative algebras, but quasi-implicative
algebras. However by considering a notion of completion which can be found in [19] one can obtain implicative
algebras from them. The choice of presenting just total PCAs instead of the more traditional and general
notion is motivated by the crucial result of Miquel, i.e. the fact that every quasi-implicative tripos associated
with a (partial) PCA is isomorphic to an implicative one. We refer to [19, Sec. 4] for all details.

Classical realizability

Let K = (A IL,Q, - k_, K, S, cc, PL, L) be an abstract Krivine structure (see [27,19]). One can define an
implicative algebra as follows (P(I), D, —, %) where X — Y := {t - 7|t € X1 7 € Y}, where X+ := {t €
Alt L forevery 7 € X} and ¥ = {X € P(II)| X+ NPL # 0}.

2.8. The encoding of A-terms in an implicative algebra

In any implicative algebra A = (A, <, —,Y) one can define a binary application as follows for every a, b

in A
a~b::/\{x€A|a§b—>x}.

Using this, one can encode closed A-terms with parameters in A as follows:
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2. (ts A = tA sh

3. (

A nice result is that if ¢t S-reduces to s, then t* < sA. Moreover, if ¢ is a pure A-term with free variables
T1, ..., &y and ay, ..., a, € X, then (t{a1 /1, ..., an/x,))2 € .

Finally, we can notice that k® and s® are exactly the interpretations of the A-terms k := \z.\y.z and
s := Az.\y.Az.zz(yz) as shown in [19, Prop. 2.24].

2.4. The calculus of an implicative algebra
In every implicative algebra A = (A, <, —,3) we can define first-order logical operators in such a way

that we obtain a very useful calculus.
In particular if a,b are in A and (¢;);¢s is a family of elements of A we can define

a><b:=/\((a—>(b—>x))—>x) a+b::/\((a—>m)—>((b—>x)—>:c))

€A €A
Hci::/\ (/\(ci—>x)—>x>
i€l z€A \iel

As shown in [19], the following rules hold':

(x:A) el Fkt:a a<b I'<T"'Tkt:a Free(t) C Var(I')

I'tz: A I'kta:a T'H¢:0b IVFt:a I'Ht: T
I'Ht: L Tx:abkt:b 'Ft:a—bTks:a I'Ht:a I'wu:b
T'tt:a 'FXxt:a—b T'kts:b I'Xzztu:axb
I'Ft:axb T'Ft:axb I'kt:a TT'Fu:b

I'Ft(Az\y.x) : a Itz yy) : b Xz wzt:a+b 'k Az A wawt:a+b

I'tt:a+bT,x:abu:cT,y:bkFuv:c F'kt:a; (foralliel) Pht:Njejaiiel
I'Ft(Azu)(Ayv) s c Lt Njerai TkHt:a;

- r t: iF, lF : f Niel
Thtoa fel z%]ja, z:a;Fu:c(foralliel)

LkAzzt: da; F'Ft(Azu):c
iel

where every sequent ' - ¢ : a contains a list of variable declarations I' := z1 : a4, ..., z, : a, Where z1, ..., 2,
are distinct variables and a4, ...,a, € A, a lambda term ¢ containing as free variables at most those in I"
and an element a € A.

The meaning of such a sequent is that (¢[I'])* < a where ¢[I'] denotes the term obtained from ¢ by
performing the substitution indicated by T'.

The calculus above is very useful, since using the remarks from the previous subsection, if we deduce
that x1 : a1,...,2, : ay, Ft: b, tis a pure A-term and a,...,a, € %, then b is in ¥ too.

We now state two propositions which can be easily proved by using the calculus above.

! By I < T we mean that for every variable assignment x : a in T' there is b < a such that z : b is in I".
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Proposition 2.4. If F is the class of set-indexed families of elements of an implicative algebra A, then

A <3br+VQ>ex

(bi)icreF \PEl i€l

Before enunciating the next proposition we need to introduce two notions of equality evaluated in an
implicative algebra. The first, which is the right one, is equivalent to that presented in [19] under the name
id. It is defined as follows for every set J and every 7,5’ € J

0,G.0) = 3

1=1=J

T_{T%Lﬁj#i
: ANwen (T = 2) = z) if j = j'.

The second one, despite seeming more natural, is not even an equivalence relation in general with respect
to the logical calculus of A

. Lifj#j
%UJ%:{Tﬁj—f

Proposition 2.5. For every implicative algebra A we have that

N N 6:6.5) = dsG.5) €.

JESet j,5'€J

We conclude this section by introducing the notation a -y b which is used as a shorthand fora — b € %
(a,b € A). The pair (A,lx) is a preorder whose posetal reflection is a Heyting algebra. We write a =5 b
when a s b and by a.

3. Triposes from implicative algebras

In [19] Miquel introduced the notion of tripos associated with an implicative algebra, and he proved in
[20] that every Set-based tripos, i.e. every tripos as originally introduced in [13], is equivalent to a tripos
arising from an implicative algebra. In this section, we recall the definition of Set-based tripos (from [13]),
implicative tripos and the main result of Miquel.

Notation: we denote by Hey the category of Heyting algebras and their morphisms, and we denote by
Pos the category of posets and their morphisms.

Definition 3.1 (tripos). A (Set-based) tripos is a functor P: Set®® — Hey such that
o for every function f: X — Y the re-indexing functor P;: P(Y) — P(X) has a left adjoint 37: P(X) —

P(Y") and a right adjoint V;: P(X) — P(Y") in the category Pos, satisfying the Beck-Chevalley condition
(BCCQC), i.e. for every pullback

:Q\
=
'"<:<TN

N

|

—
f

we have that P,3y = 3;/Py and P,V; =V Py
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o there exists a generic predicate, namely there exists a set ¥ and an element ¢ of P(X) such that for
every element a of P(X) there exists a function f: X — X such that a = P¢(0);

Remark 3.2 (Frobenius reciprocity). Employing the preservation of the Heyting implication — by Py, it is
straightforward to check that every tripos P satisfies the so-called Frobenius reciprocity (FR), namely:

Hf(Pf(Oz) AB)=aA Hf(ﬁ) and Vf(Pf(Oé) — ﬁ) =qa — Vf(ﬂ)
for every function f: X =Y, ain P(Y) and § in P(X). See [13, Rem. 1.3].

Given a Set-based tripos P: Set®” — Hey, we will denote by dx := Ja,(T) the so-called equality
predicate on X of the tripos.

Now let us consider an implicative algebra A = (A, <,—,X). For each set I we can define a new
implicative algebra (A!, <!, —1 3[I]) where A’ denotes the set of functions from I to A (which we call
predicates over I), <! is the point-wise order (f <! g if and only if f(i) < g(i) for every i € I), for every
f,g € Al and i € I, the function f —! g is defined by (f = g)(i) := f(i) — g(i), and X[I] C Al is the
so-called uniform power separator defined as:

S ={feABseTVieI(s< f(i)} = {f € A'| )\ f(i) e =}.

iel

As we have already seen, given an implicative algebra (A, <, —,Y), we have an induced binary relation
of entailment on A, written a Fx b and defined by

abgb < (a—b)eX.

It is direct to check that this binary relation gives a preorder (A,Fx) on A.
In [19, Sec. 4] it is shown that each implicative algebra (A, <,—,Y) induces a tripos P: Set®® — Hey
defined as follows:

Definition 3.3 (implicative tripos). Let (A, <,—,X) be an implicative algebra. For each set I the Heyting
algebra P(I) is given by the posetal reflection of the preorder (AZ, Fxin). For each function f: I — J, the
functor Ps: P(J) — P(I) acts by precomposition, that is P¢([g]) := [g o f] for every g : J — A.

The functor defined in Definition 3.3 can be proved to be a Set-based tripos, see [19, Sec. 4], and it is
called implicative tripos.

In [20, Thm. 1.1] Miquel proved that the notion of implicative tripos is general enough to encompass all
Set-based triposes. In particular we have the following result:

Theorem 3.4. Every Set-based tripos is isomorphic to an implicative tripos.

Example 3.5 (realizability tripos). The realizability tripos introduced in [13] corresponds to the implicative
tripos arising from the implicative algebra given by a partial combinatory algebra Section 2.2.

Example 3.6 (localic tripos). The localic tripos introduced in [13] corresponds to the implicative tripos
arising from the implicative algebra given by a complete Heyting algebra Section 2.2.

2 For sake of readability we will often omit the square brackets denoting the equivalence classes for elements of the fibres of an
implication tripos.



S. Maschio, D. Trotta / Annals of Pure and Applied Logic 175 (2024) 103390 9

8.1. Supercompact predicates of implicative triposes

In [17) M.E. Maietti and the second author introduced the notions of full existential splitting and full
existential free elements in the language of Lawvere doctrines, aiming to provide a categorification of the
syntactic notion of existential free formula. The latter coincides also with those predicates called 3-prime
predicates in [8] by J. Frey.

From a topological perspective, a relevant example presented in [17] is the case of existential free elements
of localic triposes: in this specific setting, these elements are precisely functions taking values in the subset
of the locale whose elements are supercompact in the sense of [1,21]. Recall that an element a of a locale is
said to be supercompact if

ag\/bi

i€l

implies the existence of an i € I such that a < b;, for every set-indexed family (b;);e; of elements.

In the following definitions, we present some generalizations of the notions of full existential splitting and
full existential free elements. To maintain a topology-oriented perspective, we will refer to full existential
splitting elements as supercompact predicates, and to full existential free elements as uniformly supercompact
predicates. This notation will be useful in the next section where we will consider some generalization of
topological concepts for implicative algebras.

We start by fixing the following notation:

Definition 3.7. Let P: Set®® — Hey be an implicative tripos. A predicate ¢ of P(I x J) is said to be a
functional predicate if

P(Tr1,772>(¢) A P(m,frg)((b) < P(ﬂz,ﬂs)(éJ)
where the domain of the projections is I x J x J.

Definition 3.8. Let P: Set®® — Hey be an implicative tripos. A predicate ¢ of P(I) is:

 a supercompact predicate (SK) if whenever ¢ < 34(¢) with f: J — I and ¢ element of P(J), there
exists a function g: I — J such that ¢ < Py(¢) and f o g =idy;

o a functionally supercompact predicate (fSKp) if for every functional predicate ¢ of P(I x J), if ¢ <
3r,(#), then there exists a unique function f: I — J such that ¢ < Pq, £)(9);

 a weakly functionally supercompact predicate (WfSK,,) if for every functional predicate ¢ of P(I x J),
if o < 3r,(¢), then there exists a function f: I — J such that ¢ < Pq, £ ().

In analogy to the case of full existential splitting and full existential free elements, notice that all the
notions introduced in the previous definition are not stable under re-indexing in general. We will see in the
next section that this fact is related to a form of “uniformity” property of implicative algebras.

Therefore, we introduce the following definitions:

Definition 3.9. Let P: Set°® — Hey be an implicative tripos. A predicate ¢ of P(I) is:

o a uniformly supercompact predicate (U-SK,,) if P;(y) is a supercompact predicate for every function
frJ =1

 a uniformly functionally supercompact predicate (U-fSK) if P;(¢) is a functionally supercompact
predicate for every function f: J — I;
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« a uniformly weakly functionally supercompact predicate (U-wfSK) if P;(y) is a weakly functionally
supercompact predicate for every function f: J — I.

4. Topological notions in implicative algebras

The main purpose of this section is to generalize various topological notions at the level of implicative
algebras. We will see that one of the fundamental problems that arise when trying to generalize topological
notions at the level of implicative algebra is that of “uniformity”, i.e. the stability of a given property under
reindexing.

In this section we fix an arbitrary implicative algebra A = (A, <, — ).

4.1. Disjoint families

The first basic, yet fundamental, notion that we want to introduce and establish in the language of
implicative algebras is that of disjointness. From an algebraic perspective, the property of being disjoint for
two elements a, b of a complete Heyting algebra (H, <) can be simply stated as a Ab = L. This is equivalent
to the statement that a Ab — L = T. Since aAa — T = T for every a, one can say that a family (a;);er of
elements of H is pairwise disjoint if A a;Naj —0(i,5)) =T where §(,5) =T if i =7 and 6(4,5) = L
if i # 3.

Since any implicative algebra has two different notions of “infimum”, one with respect to < (subtyping),

el

the other with respect to Fx (logical entailment), it seems natural to consider two different notions to
abstract such a notion of disjoint family:

Definition 4.1. A family (a;);ecs of elements of A is

1. A-disjoint if A\, ;1o (a; Aay — 07(i,7") € B
2. x-disjoint if A, ;o (ai x air — 61(i,i')) € ¥

Proposition 4.2. If a family is X -disjoint, then it is A-disjoint.

Proof. This follows from the fact that A, ,c s(aNb—axb)€X. O

Example 4.3. In any complete Heyting algebra the two notions presented in Definition 4.1 clearly coincide,
because a Ab = a x b, and they coincide with the notion of pairwise disjoint family of elements of a Heyting
algebra above.

Example 4.4. In the case of the implicative algebra associated with a combinatory algebra (R, -), then one
can easily check that A-disjoint families are families (A;);er such that A; N A; = 0 for every ¢,j € I with
i # j, while x-disjoint families are families (A;);e; such that at most one of the A;’s is non-empty. The
same holds for relative realizability implicative algebras.

Example 4.5. In the nested realizability implicative algebras a family (A;, B;)ier is A-disjoint if and only
if B; N B; = 0 for every i,j € I with ¢ # j, while it is x-disjoint if and only if at most one of the B;’s is
non-empty.

Example 4.6. In modified realizability implicative algebras, x-disjoint families are families (A;, B;);cs in
which at most one of the A;’s is non-empty, while A-disjoint families are families (A;, B;);cs in which
A;NA;j=0forallijin I
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We also introduce the following notion of x-functional family which will be useful later.

Definition 4.7. A two-indexed family (b;)le 1,jes of elements of A is x-functional if

A\ 0 x bl —6,(,4") €2

iel j,5'ed

Remark 4.8. Notice that if (b;)iemej is x-functional, then for every ¢ € I the family (b;)jej is x-disjoint.
4.2. Supercompactness

The second notion we aim to abstract in the setting of implicative algebras is that of a supercompact
element [1,21]. In particular, we introduce the following generalization:

Definition 4.9 (supercompact element). An element a € A is supercompact in A if for every set-indexed
family (b;);cr of elements of A with

CL—)H(%EZ
i€l

there exists 7 € I such that a — b; € 3.

Remark 4.10. Notice that the minimum | can never be supercompact in A. Indeed, if we consider an empty
family we always have k® < 1 — (T — L) = 1L — —J0 from which it follows that L — =0 € ¥.

Remark 4.11. Notice that the maximum T is supercompact if and only if from 3 b; € X, one can deduce

i€l
the existence of an index i € I such that b; € 3. We can consider such a property as a sort of existence
property. Complete Heyting algebras satisfying this property are called supercompact (locales) (see [21]),
while the only complete Boolean algebras satisfying this property are the trivial ones (those in which every
element is either L or T), since for every a we have a V —a = T. The implicative algebra of realizability in
the total case satisfies this property thanks to Proposition 2.4 and the fact that the union of a family of
sets is non-empty if and only if at least one of them is non-empty. The same holds for relative realizability,
nested realizability and modified realizability.

Remark 4.12. One can easily notice that if a =x, b and a is supercompact, then b is supercompact too.

If we want to generalize the notion of supercompact element to a notion of supercompact family of
elements of A we have three natural ways:

Definition 4.13. A family (a;);es of elements of A is

1. componentwise supercompact (cSK) if a; is supercompact for every i € I;
2. supercompact (SK) if for every family of families ((b;) jeJ.)ier of elements of A whenever

/\(ai—> 3 b;)eZ

i€l Jjedi

there exists f € (IIi € I).J; such that

i€l
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3. uniformly supercompact (U-SK) if (as))rex is SK for every function f: K — I.
Remark 4.14. One can observe that a family (a;);ef.y is SK if and only if a, is a supercompact element.
Proposition 4.15. The following are equivalent for a family (a;);cr of elements of A:

1. (ai)iel 18 U-SK,'
2. for every family of families of families (((b;‘?)jejk)kexi)ig of elements of A with (K;);cr a family of
pairwise disjoint sets, such that

A= [\

iel kek; J€Jk

there exists a function g € (Ilk € U, K;i)Jx such that

/\(ai% /\ bhy) €3

iel keEK;

Proof. Let (a;);cr satisfy 2. and f: K — I be a function. Assume that

/\ (af(k) — EI bf) cy

keEK J€Ik

This implies that

/\(ai—> /\ 3 bf)eZ

iel kef-1(i)J€k

Using the fact that the family (a;);c; satisfies 2. and the fact that the sets f~1(i) are pairwise disjoint and
their union is K, we get the existence of a function g € (Ilk € K)J, such that

A (“f(k) - b'gc(k)) =N~ N\ W)

keK iel kef—1(i)
Conversely, assume that (a;);cs is a family such that (ay(;));jes is SK for every function f : J — I and that
/\(ai—> A\ 3 b§> €X
iel keK; €Tk

where (K;)icr is a family of pairwise disjoint sets. Let f : K := J,c; Ki — I be the function sending each
k € K; to i. Thus,

A (af(k) - 3 )

keK J€Jk

Since (af(k))rer is SK, then there exists g € (IIk € K).Jy such that
keK

that is



S. Maschio, D. Trotta / Annals of Pure and Applied Logic 175 (2024) 103390 13
Afla= A ) es o
i g(k)
el keK;

The following proposition is almost an immediate consequence of the definitions.
Proposition 4.16. If (a;);cr is U-SK, then it is cSK and SK.

Proof. Let (a;);cr be U-SK. If we consider the identity function id;, we immediately obtain that (a;);cs is
SK. If we consider the functions from a singleton {*} to I we obtain that (a;);cs is cSK by Remark 4.14. O

4.3. Indecomposability

Now we introduce a weaker variant of the notion of supercompact element, that is that of an indecom-
posable element. Again, the intuition is that an indecomposable element a of a complete Heyting algebra
(locale) is an object such that whenever

then there exists an i € I such that a < b, for every set-indexed family (b;);c; of pairwise disjoint elements.

Definition 4.17. An element a of A is indecomposable if for every x-disjoint family (b;);cr of elements of A,

whenever a — — b; € ¥, there exists i € I such that a — b; € %.
i€l

From the definition, it easily follows that

Proposition 4.18. Fvery supercompact element of A is also indecomposable.

Remark 4.19. Similarly to what happens with supercompactness, if a =5, b and «a is indecomposable, then
b is indecomposable. Moreover, 1. can never be indecomposable.

Remark 4.20. Notice that if (b;);cs is a x-disjoint family, a is indecomposable, a — b;;, € ¥ and a — b;, € X,
then a — b;, X b;, € ¥ from which it follows that a — 0;(i1,i2) € X. If i3 # io, then this means that
a— (T — 1) € X, from which it follows that a =s; L. But we know that this cannot happen. So i1 = is.
This means that the element 7 in the definition of indecomposable element is in fact unique.

In order to generalize the notion of indecomposability to families we consider the following five notions:
Definition 4.21. Let I be a set. A family (a;);er of elements of A is:

1. componentwise indecomposable (cInd) if a; is indecomposable for every i € I;
2. functionally supercompact (fSK) if for every x-functional family (b;)ie 1je of elements of A such that

N@i— Jb)ex
iel jed

there exists a unique function f : I — J such that A, ;(a; — b’]}(i)) S
3. uniformly functionally supercompact (U-fSK) if (ay))rex is functionally supercompact for every
function f : K — I;
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4. weakly functionally supercompact (wfSK) if for every x-functional family (b;)ze 1,jes of elements of A
such that

iel jeJ

there exists a function f: I — J such that A;_;(a; — béc(i)) ey;
5. uniformly weakly functionally supercompact (U-wfSK) if (a ) )rex is weakly functionally supercom-
pact for every function f: K — I.

By definition and using arguments similar to that in the proof of Proposition 4.16 we have that:
Proposition 4.22. For a family (a;);cr of elements of A we have that:

fSK = wifSK;
U-fSK = U-wfSK;
U-fSK = fSK;
U-wfSK = wiSK;
U-wfSK = cInd.

ANl .

Moreover with a proof analogous to that of Proposition 4.15 one can easily prove that:

Proposition 4.23. Let (a;);cr be a family of elements of A. Then the following are equivalent:

1. the family (a;);cr is U-wfSK (U-fSK, respectively);
2. for every family of families of families (((bf)jeJ)keKi)iel of elements of A with (K;);er a family of
pairwise disjoint sets and (b?)keuiel K,;.jeg X-functional, such that

/\(ai—> /\ Jvhex

iel keK,; I€J

there exists a (unique, respectively) function g : (Ilk € J,c; K;) — J such that

il keK;
Proposition 4.24. If (a;);er is SK, then it is fSK.

Proof. By definition if a family is SK then it is wfSK. In order to conclude we need to show that if (a;);er
is SK, (b;)iel’jej is a x-functional family and f,g : I — J are such that

(@i = b)) € Sand A (a; — b)) €2
i€l el

then f = g. But from the assumption above we get

N(ai = by x V) €3
el

from which it follows by x-functionality that
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N lai = 65(£(0), 9(0))) € =.

icl

This means that

/\(ai — 3 T) €
iel J=f(4)=g(4)

By the hypothesis of supercompactness we get that f(i) = g(i) for every i € I. Thus f =g¢g. O
From Proposition 4.24 it immediately that:
Corollary 4.25. For a family (a;)icr of elements of A we have that U-SK = U-fSK.
Moreover, trivially one has ¢cSK =- cInd.
Remark 4.26. Notice that, by Remark 4.19, we have that if (a;);cr is cInd, then a; #Zs, L for every i € I.
Proposition 4.27. If (a;);er is wfSK and a; Zx, L for every i € I, then (a;);ecs is £SK.

Proof. If (a;);er is wESK but not fSK, then there exists (b;)ze 1,jes x-functional and two distinct functions
fy9: I — J satisfying

el i€l

Then

el

and using the x-functionality we get

N(ai = 65, (f(i), (@) € ©

iel
If i € I is such that f(i) # g(i), then a; — (T — L) € . From this it follows that a; =5, L. O
Corollary 4.28. A family (a;);c; is U-wESK if and only if it is U-fSK.

Proof. We already know that by definition U-fSK implies U-wfSK (see Proposition 4.22). Assume now
a family (a;);er to be U-wfSK. Then, combining the last item of Proposition 4.22 with Remark 4.26, we
get that a; #s L for every i € I. By definition every family (af;)jes with f : J — I is wfSK. Using
Proposition 4.27 one gets that each one of these families is fSK. Thus (a;);er is U-fSK. O
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We can summarize the relation between the different properties of families in the general case as follows:

U-SK

|

cSK U-fSK = U-wfSK

/\

cInd

1

wiSK

4.4. Supercompactness and indecomposability in particular classes of implicative algebras

In this section we analyze the notions of supercompact and indecomposable family in some particular
cases. We start by considering the case of an implicative algebra compatible with joins.

Compatibility with joins

Definition 4.29. An implicative algebra A = (A, <, —, ) is compatible with joins if for every family (a;);cs
of its elements and every b € A we have that

/\a2—>b \/al—>b

el i€l

For implicative algebras compatible with joins we have the following useful properties, [19, Prop. 3.32]:

1. L >a=T,;
2.ax1l=1xa=T— L.

Moreover, using the calculus in [19] one can easily prove that

Lemma 4.30. If F is the class of set-indexed families of elements of an implicative algebra A which is
compatible with joins, then

/\ (\/biaalh)EE

(bi)ier€F \i€l el

Remark 4.31. If we consider this property in combination with Proposition 2.4 we get that we can substitute
E| with \/ in logical calculations when we are dealing with an implicative algebra compatible with joins, as
shown in [19, p.490].

Lemma 4.32. If A is compatible with joins, then

A N @sG.5) = 6,G.5) €D

J set 3,5’ €J

Proof. /\ /\ (ds(j,5) = 650, 5)) = (T — /\ (T=e)= )N (L= (T—=1)=

J set j,j'ed ceA
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(T — /\((T—)c)—)c))
ceA

and this can be easily shown to be in ¥ using the calculus. O

If we consider this property in combination with Proposition 2.5 we get that we can substitute J; with
dy in logical calculations when we are dealing with an implicative algebra compatible with joins.

Proposition 4.33. Let A be compatible with joins. If (a;)ier is SK, then it is cSK.
Proof. Assume (a;);c; to be SK and

a; — 3 bjEE
jeJ

for some 7 € I and some family (b;) ;e of elements of A. Let us now consider a family of families ((c}) e, )ier
of elements of A defined as follows:

1. J;

; = J and J; = {x} for i # i;
2. c; :=bj, while ¢ =T for i # i.

Since A is compatible with joins we have that

/\(ai—> Elcé—)éZ{z} /\(ai—>\/c;-)62.
iel Jjedi i€l Jj€J;
But

/\(ai—> \/ cé):a;—> \/bj

i€l JET; jeJ
and this is an element of ¥, because A is compatible with joins and a; — E| b; € X. Since (a;)ier is

jeJ
supercompact by hypothesis, we can conclude that there exists a function f € (Ili € I).J; such that

/\(ai — CZf(’L)) ex
iel
From this it follows that f(i) € J and a; — by ;) € X. Thus every a; is supercompact, i.e. (a;)icr is cSK. D

Proposition 4.34. Let A be compatible with joins and (a;);cr be a family of its elements. If (a;)icr is fSK,
then a; £y, L for everyi € I.

Proof. By Proposition 4.22 we already know that fSK = wfSK. Therefore, to prove the result it is enough
to prove that if (a;);e; is wfSK and there exists ¢ € I such that a; =s, L, then (a;);es is not fSK.
Consider the two-indexed family (b;)iel,je{o,l} where b)) = | and b% = T for every i € I. Then

N@i— \/ ¥)=N\@—>T)=Tex

iel jef{o,1} iel

and since A is compatible with joins A, ;(a; — E| b;) ex.
j€{0,1}
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Moreover

A N @ixb—=dGa) =N N\ @xbtiodGaa N\ O xb = di(Gg) | =

i€l j,5€{0,1} i€l \je{0,1} j#j'€{0,1}
(LXxLo>TIA(TXTo2TIAUXT > A (TxLo>1)=(T—=1L)—=1LeX

since in any implicative algebra compatible with joinsax L. =1 xa=T — L.
Thus, by Lemma 4.32, we get that

N N\ 0 xb =605 €x

i€l j,j'e{0,1}

Consider now two functions f,g: I — {0,1} where f is the constant with value 1 while g(i) = 1 for every
i € I, but 4, for which we have g(i) = 0.
We have

el el

and

/\(al—>b;(l)) = /\ (ai —>T)/\(a;—>L) :a;—>L ex
i#iel

Thus (a;)icr is not fSK. O

Combining Proposition 4.34 with Proposition 4.27 we obtain the following corollary:

Corollary 4.35. Let A be compatible with joins and (a;);cr be a family of its elements. Then (a;);cr is fSK
if and only if (a;)ier is wiSK and a; Zs; L for everyi € I.

Proposition 4.36. Let A be compatible with joins. If (a;);er is £SK then it is cInd.

Proof. Assume (a;)ics is fSK, i € I, a; — El b; € ¥ (which, since we are assuming compatibility with
jeJ
joins, is equivalent to a; — \/,c;b; € X) and \; ;i ;(b; X bjr = 6,(4,5')) € E.
As a consequence of Proposition 4.34, J # (). Thus, if for every ¢ € I and j € J we define

bjifi=1
= Lifi#Ti#]
Tifi#4,j=7

where 7 is a fixed element of .J, we get that

/\(ai—>\/c§):az—-—>\/bj62

iel jeJ jeJ

from which it follows, by compatibility with joins, that

/\(aiﬁ - 03)62

i€l jed
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Moreover using Lemma 4.32 we get that

A N\ (@ xci=6,G.0) == N\ N\ b xby = ds(G,5)) =

el j,j'ed iel j,5'ed
/\ (bj X bj/ — J_) =y /\ (b] X bj/ — 5](],]’)) ex
J#i'ed J.y'ed

since dj(j,j) =T,z =T =Tandzxy>T — L for every z,y in A.
Thus, since (a;)icr is fSK, we get the existence of a function f : I — J such that

/\(ai — cj}(i)) ex.
iel

In particular a; — by;) € X and we can conclude. O

Thus if we add the assumption that A is compatible with joins the situation can be summarized as

follows:
U-SK
l
U-fSK = U-wfSK SK
fSK cSK
LN
wiSK cInd

Y closed under \

We start by recalling that, in general, the separator of an implicative algebra is not required to be closed
under arbitrary infima, even if there are several situations in which this is the case, e.g. for an implicative
algebra associated with a complete Heyting algebra. One can also notice that a separator 3 is closed under
arbitrary infima if and only if it is a principal filter. In [19, Prop.4.13] implicative algebras of which the
separator is a principal ultrafilter are characterized as those giving rise to a tripos which is isomorphic to a
forcing tripos.

Proposition 4.37. If & is closed under arbitrary infima )\, then all cSK families are U-SK.

Proof. Let (a;)icr be a ¢SK family. We have to prove that for every f: J — I, the family (as;));jes is SK.
Let us assume hence that

A (af(j) - bi) €x

= keK;

Using the supercompactness of every component a; and the axiom of choice, we get the existence of a
function g : (Ilj € J)K; such that ay;) — b;(j) € % for every j € J. Using the hypothesis of closure of &
under A\ we get

é\J (af(j) . bg(j)) ey
J
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which concludes the proof. 0O
Similarly, but without using the axiom of choice, one proves that
Proposition 4.38. If ¥ is closed under arbitrary infima \\, then all cInd families are U-fSK.

Summarizing, in the case the separator of an implicative algebra is closed under arbitrary infima we have
the following situation:

U-SK = cSK
l
U-fSK = U-wfSK = cInd SK
\ l
fSK
l
wfSK

H-distributivity
Definition 4.39. An implicative algebra A is H-distributive if

A\ </\ - 4 /\b’;(k)>ez

(B8)jen)nereF \kEK Ik JEURER) Ty e K
where F is the class of all families of families ((bf)jGJK)keK of elements of A.

Example 4.40. A complete Heyting algebra is a—distributive if and only if it is completely distributive.
For complete Boolean algebras this amounts to the requirement of being complete atomic (that is of being
isomorphic to a powerset algebra).

Proposition 4.41. If A is H—distm'butive, then every SK family is U-SK. Moreover, every fSK family is
U-fSK.

Proof. We use Proposition 4.15. Thus let (a;);er be a supercompact family and consider a family of families
of families (((bf)jejk)kem)ie[ of elements of A, with (K;);cr a family of pairwise disjoint sets, such that

iel keK; I€Jk

By —J-distributivity we get that

A= 3 Aty es

iel g€(kEK:)Jyk ke K,

Using supercompactness of (a;);e; we then get that there exists f € (Ili € I)(Ilk € K;)Jx such that

Nai = A o) €2

el keK;
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Since the K;’s are pairwise disjoint, the function f sending every k € K; to f(@) (k) is well defined and
f(k) € Ji; hence we get

INCEA b’}%(k)) ey

el keEK;

Thus we get uniform supercompactness of (a;)c;.
The proof of the second part of the statement is similar, although one has to carefully deal with x-
functionality conditions. O

Thus if we add the assumption that A is E'—distributive, the situation can be summarized as follows:

U-SK = SK
U-fSK = U-wfSK = fSK cSK
wiSK cInd

4.5. Supercompactness and indecomposability in complete Heyting algebras

In the case of a complete Heyting algebra, the notion of supercompact element introduced in Definition 4.9
coincides with the ordinary notion, i.e. an element a is supercompact if a <\/,_; b; implies the existence of
an i € I such that a < b;, for every set-indexed family (b;);cs of elements of A, that is if a is a supercompact
element in the localic sense (see [21]). In particular, in the boolean case supercompact elements are exactly
atoms. Indecomposable elements in complete Heyting algebras express just a notion of connectedness which
is called in fact indecomposability and it can be shown to be equivalent to usual connectedness® plus the
fact of being different from L (see e.g. [3]). For complete Boolean algebras, supercompactness coincides
with indecomposability. Indeed, for every family of elements (b;);c; of a complete Boolean algebra one can

construct a new family (b;);es satisfying the following properties:

1. b; < b; for every i € I
2. by Nbj = L for every i # j in I;
3. Vielbi:\/iefbi'

Notice that in general the indecomposable elements of a complete Heyting algebra are not supercompact.
For example, we can consider the complete Heyting algebra of open subsets of reals: it is immediate to check
that there are no supercompact open subsets of reals, while every open interval is indecomposable.

Every complete Heyting algebra can be easily seen to be compatible with joins. Moreover ¥, being {T},
is closed under A. Thus we get that in there for families we have U-SK = SK = ¢SK. Families satisfying
these properties are exactly componentwise supercompact (in localic sense) families. Moreover, U-fSK =
U-wfSK = fSK = cInd. Families satisfying these properties are exactly componentwise indecomposable
families.

Finally, one can easily see that a family (a;);es is wfSK if and only if one of the following happens:

1. I=0or

3 An element a of a Heyting algebra is connected if and only if a < bV ¢ implies a < b or a < c.
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2. I # 10, a; is connected for every i € I, but at least one of the a;’s is indecomposable.

U-SK = SK = ¢SK

l

U-fSK = U-wfSK = fSK = cInd

|

wiSK

For complete Boolean algebras indecomposable elements are exactly supercompact elements. Thus, in
this case we have that U-SK = SK = c¢SK = U-fSK = U-wfSK = fSK = cInd and these are exactly
componentwise atomic families; wfSK families are families whose components are atoms or minima, but
not all minima if the family is non-empty.

4.6. Supercompactness and indecomposability in different kinds of realizability

Realizability

In the case of an implicative algebra (P(R), C,=,P(R)\{0}) coming from a combinatory algebra (R, ),
supercompact elements are non-empty subsets of R, since they are all equivalent to T = R, and since 1. = ()
(we are using Remarks 4.10 and 4.11). Every non-empty subset of R is also indecomposable (since it is super-
compact) and every indecomposable subset is non-empty. Thus, supercompactness and indecomposability
coincide for elements.

We can also notice that the implicative algebra arising from a combinatory algebra (R,-) is compatible
with joins and El—distributive. The former property can be trivially verified, while to prove the latter, it is
enough to observe that since the implicative algebra coming from a combinatory algebra (R, -) is compatible
with joins, it is sufficient to prove that there is a realizer r independent from the specific family such that

reNUB= U N5
i€l jed; fe(liel)J; i€l

Since (by the axiom of choice) the antecedent and the consequent of the implication above are equal sets,
r can be taken to be i.

Therefore, by Proposition 4.41, we have that U-SK families coincide with SK families, and U-fSK
families coincide with fSK families. We now show that for every SK family (A;);cr there exists a function
f I — R such that

(A = {£(@)}) # 0 and ({f(0)} = Ai) #0

icl i€l

In order to do this we consider the family of families (({j})jec4,)icr. One easily can show that

Az \y.yz € ﬂ(Az = 3 {7

iel JEA;

Using supercompactness we get the existence of a function f € (Ili € I)A; C R’ and a realizer s such that

se (A= {0}

iel

Since i € (,c;({f(i)} = A;) we can conclude.
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Conversely, we show that if (A;);ecr is a family satisfying the property above, then it is SK. So let us
assume

re(\(4i= 3 B)

iel jedi

Using compatibility with joins and the hypothesis on (A;);c; we get that there exists a realizer r’ such that

v e @y = U B))

i€l Jj€Ji

Now, for every i € I there exists j € J; such that »'- f(i) € B; Using the axiom of choice we hence produce
a function g € (Ili € I)J; such that

e ﬂ({f(i)} = B;(i))

i€l

Using the hypothesis on the family again we get the existence of a realizer s such that

iel

Assume now (R, -) to be a non-trivial combinatory algebra and consider three distinct realizers rg, 1,72 €
R (this is always possible in a non-trivial combinatory algebra) and the family (A;);cf0,1,2) where A¢ =
{ro,m}, A1 = {r1,r2} and ro = {rg,r2}. Let us assume there is a function f : {0,1,2} — R such that

() (A= {fi)}) #0

i=0,1,2

Then, since A; N A; # 0 for every i,j € {0,1,2} we get f(0) = f(1) = f(2) = @. If we now assume also that
there exists € R such that

re () (@ =4)

i=0,1,2

then we get that r-a@ € Ay N A; N Ay which is in contradiction with our assumption. We have hence
produced an example of a ¢SK family which is not SK. Thus for the implicative algebra arising from
a non-trivial combinatory algebra ¢SK does not imply SK. Since supercompact elements coincide with
functionally supercompact elements, we have that ¢SK = cInd. Moreover, it is easy to show that in the
case of realizability ¢SK implies wfSK, from which it follows that ¢SK implies fSK. Conversely, fSK
implies ¢SK by Proposition 4.34. Thus, also fSK = cSK.

Finally, one can easily prove that a family (A;);cr is wfSK if and only if I = () or there exists i € I such
that A; # 0.

U-SK = SK

|

cSK = U-fSK = U-wfSK = fSK = cInd

|

wiSK
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Relative realizability

It is easy to check that the implicative algebras of relative realizability are compatible with joins and
J-distributive.

Supercompact elements are exactly those A C R which are equivalent to a singleton. Indeed, since the
combinator i can be assumed to be in Ry, the implicative algebra is compatible with joins and i € A =
Usecatla}, we get that if A is supercompact, then there exists a € A and r € Ry, such that r € A = {a}.
Since i € {a} = A, we can conclude that A =Sh.r,, {a}. Conversely, each such an element is supercompact
since singletons are easily shown to be so. In particular, all subsets A such that ANRy # () are supercompact.
Another example of supercompact is a set of the form P, := {pab|b € R} where a € R is fixed and where p
is the usual pairing combinator which we can assume to be in R4. Indeed, this subset is equivalent to the
singleton {a} since p1 € P, = {a} and the first-projection combinator can be assumed to be in Ry, while
Ax.pxz € {a} = P, and this combinator too can be assumed to be in Ry.

From the characterization of x-disjoint families in relative realizability implicative algebras, it follows
that indecomposable elements in this case are just non-empty subsets of R. Thus in general cInd is not
equivalent to ¢cSK for families.

Moreover, SK is not equivalent to ¢SK (realizability is a special case of relative realizability).

Since the implicative algebra is El—distributive, then U-SK = SK and U-fSK = U-wfSK = fSK and
one can easily show, as for realizability, that SK families are those families equivalent to singleton families,
i.e. families of the form ({f(¢)}):cs for some function f : I — R.

One can also show easily that cInd is equivalent to fSK. Finally, as in the realizability case, one can
easily prove that a family (A;);er is wfSK if and only if I = () or there exists i € I such that Az # (.

U-SK = SK
cSK

U-fSK = U-wfSK = fSK = cInd

wiSK

Nested realizability
In nested realizability implicative algebras supercompact elements are pairs (A, B) which are equivalent
to a pair of the form (X, {b}) with X C {b}. Indeed, one can notice that

ic(A=y J{p}nAa) nB= ]

beB beB

Thus, since the implicative algebra of nested realizability is compatible with joins, if (A, B) is supercompact,
then there exists b € B such that ({b} N A, {b}) =52z, (A, B). The converse can be easily checked.

Functionally supercompact elements are those (A, B) with B # ().

Nested realizability implicative algebras are also El—distributive. Thus, also in this case we get the equiv-
alence between SK and U-SK and in the non-trivial case we get that ¢SK does not imply SK using an
argument similar to that used for the realizability case.

In particular a family (A;, B;):cr is SK if and only if there exists a family (C;, D;);c; with D; singleton
for every i € I such that
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LJ(Az = H# CiﬁBi:Di)#(Z)and U(CZ = # AiﬂDi:>Bi)7é®
i€l el

In order to prove this one just has to work with the family of families (({j} N A;},{j}) e, )icr-
We can characterize fSK families as those families (A;, B;);c;r where B; # () for every ¢ € I, that is
fSK = cInd. This is also equivalent to U-fSK by El—distributivity.

Modified realizability
Supercompact elements in modified realizability implicative algebras are pairs (A, B) with A # §); indeed

one can exploit the fact that in general o b; — \/,.; b; € X (see Proposition 2.4), to prove that every (A4, B)

i€l
with A # ) is supercompact, while one can easily show that (0, B) =, 50 € ¥ from which it follows that
(B, B) can never be supercompact. From this characterization of supercompact elements it follows also that

iel

supercompact elements coincide with indecomposable elements.

By considering the empty family, one can easily check that a modified realizability implicative algebra is
not compatible with joins, provided R is not trivial. This fact also makes difficult to prove whether these
implicative algebras are -distributive or not. We leave as an open problem for further investigations to
characterize the different kinds of families in this case.

4.7. Supercoherent implicative algebras

Definition 4.42. An implicative algebra A satisfies the choice rule if for every family ((bf) jedw )kek of families

of elements of A, if A, . o bY € X, then there exists f € (Ilk € K)J;, such that A\, b';(k) €.
J€Jk

It is an easy exercise to prove that the following holds.

Proposition 4.43. A satisfies the choice rule if and only if (T )ier is U-SK for every set I.

Example 4.44. The implicative algebras of realizability, nested realizability and relative realizability satisfy
the choice rule. A complete Heyting algebra satisfies choice rule if and only if it is supercompact (see [21]).

Motivated by the characterization presented in [17] and by the realizability and localic examples, we
introduce the following definition.

Definition 4.45. An implicative algebra A is said to be uniformly supercoherent if:

o it satisfies the choice rule;
o if (a;)ier and (b;);er are U-SK families, then (a; X b;);er is a U-SK family;
o for every family (a;),es there exists a set I, a function f: I — J and a U-SK family (;);e; such that

N@— J b)ex and AW F b)—a)ex

jeJ f(@)=j jeg f)=j

Remark 4.46. We anticipate here that, by definition, an implicative algebra is uniformly supercoherent if
and only if its implicative tripos is an instance of the full existential completion, see [17, Thm. 4.16 and
Thm. 7.32]. We will see more details about this in the next section.

Example 4.47. An implicative algebra coming from a complete Heyting algebra is uniformly supercoherent
if and only if the corresponding locale is supercoherent. The implicative algebras of realizability w.r.t. a
combinatory algebra are uniformly supercoherent. We refer to [17] for all the details.
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Definition 4.48. An implicative algebra A is said to be uniformly functionally supercoherent if:

¢ it satisfies the choice rule;

o if (a;);er and (b;);er are U-SK families, then (a; X b;);er is a U-SK family;

o for every U-fSK family (a;);cs there exists a set I, a function f: I — J and a U-SK family (b;)ier
such that

/\(aj—> 3 bl)EZ and /\(( 3 bi)—>aj)eE

jeJ fl)=j jeg fl)=j
4.8. Modest and core families
We introduce here some notions which we will use later.
Definition 4.49. A family (a;);ecr of elements of A is
A-modest if it is U-fSK and A-disjoint;
x-modest if it is U-fSK and x-disjoint;

a A-core family if it is U-SK and A-disjoint.
a x-core family if it is U-SK and x-disjoint.

- W

Using results and definitions in the previous section one has that:

X-core ————> A-core

H U

x-modest ——> A-modest

Example 4.50. In a complete Heyting algebra, since x = A, A-modest families coincide with x-modest
families: they are families whose elements are pairwise disjoint and indecomposable. Also A-core families
coincide with x-core families: they are families of pairwise disjoint supercompact elements.

Example 4.51. In the (total) realizability case A-modest families are families of pairwise disjoint non-empty
sets of realizers, that is modest sets or PERs (see [25]). A family (A;);er is a A-core family if and only if it is
equivalent to a family of the form ({f(7)});er with f : I — A injective. Lastly, a family (A;);er is x-modest
if and only if it is a X-core family if and only if I = @) or I is a singleton {x} and A, is non-empty.

4.9. Correspondence of supercompactness-like notions

We conclude this section by showing the correspondence between the various notions we introduced in
the language of implicative algebras and implicative triposes:

Proposition 4.52. Let P: Set®® — Hey be an implicative tripos and let ¢ be a predicate of P(I). We have
that:

1. ¢ is SKy, if and only if (¢(i))ier is SK;
2. ¢ is fSKy, if and only if (¢(i))icr is fSK;
3. ¢ is wiSKy, if and only if ((i))ser is wSK.
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Proof. The proofs are straightforward. We provide just the proof of the first point, since the other two
follow by similar arguments.
Suppose that ¢ is SKp, and let us consider a family ((b;)jeJi)iGI, with

Np@) = F b)) ex. (1)

il Jeds

Now let us define by g : [[;o; Ji — I the function sending an element (4, j) to i, and by ¢ € P([[;.; Ji) the
predicate sending (i, j) to b; By definition of the left adjoints 37 in an implicative tripos, we have that (1)
is equivalent to

2 "2[1] 349 (2)

Hence, by definition of SKy, there exists a function f: I — [],.; J; such that go f =id;, and

4 ’_2[1] Pf(¢)~ (3)

By definition, we have that (3) means

N (e(i) = o(f(i)) € =, (4)

i€l

By definition of ¢, and since the second component fo(i) of f(¢) is in J;, we can conclude from (4) that

/\(Sﬁ(i) - bi2(i)) €Xx
i€l

i.e. that the family (p(4));er is SK.
Employing a similar argument one can check that the converse holds too. O

Using the previous result and the fact that P acts on arrows by reindexing we get the following proposition.

Proposition 4.53. Let P: Set®® — Hey be an implicative tripos, and let ¢ be a predicate of P(I). We have
that:

1. ¢ is U-SKy if and only if (¢(i))ier is U-SK;
2. ¢ is UASK,, if and only if (¢(@))icr is U-fSK;
3. ¢ is U-wiSKy, if and only if (¢(i))ier is U-wiSK.
Combining the previous proposition with Corollary 4.28 we obtain the following corollary:

Corollary 4.54. A predicate of an implicative tripos is U-wfSK, if and only if it is U-fSK.

Remark 4.55. As a consequence of the previous propositions, we have that in every uniformly supercoherent
implicative algebra SK = U-SK. This can be considered as a particular case of [17, Lem. 4.11].

Example 4.56. In the case of triposes for complete Heyting algebras with ¥ = {T}, we obtain that SK
and U-SK, predicates coincide and are exactly predicates ¢ such that (¢(7))ier is ¢SK since X is clearly
closed under arbitrary infima; hence we re-obtain [17, Lem. 7.31].
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Example 4.57. Combining Proposition 4.52 and Proposition 4.53 with examples in 4.6, we have that in the
triposes arising from implicative algebras coming from realizability, relative realizability and nested realiz-
ability, SK, predicates coincide with U-SK, predicates. In the case of realizability they are exactly those
predicates (equivalent to) singleton predicates (that is predicates « for which «a(z) is always a singleton).
This characterization was already provided in [17].

5. Partitioned assemblies and assemblies for implicative triposes

In this section we introduce the notions of partitioned assemblies and assemblies for implicative triposes.
Before starting our analysis, we recap here some useful notions and results regarding the Grothendieck
category of an implicative tripos.

5.1. Some properties of the Grothendieck category of an implicative tripos

Definition 5.1 (Grothendieck category). Let P: Set®® — Hey be an implicative tripos. The Grothendieck
category I'[P] of P is the category whose objects are pairs (A, a) with @ € P(A) and whose arrows from
(A, ) to (B, 3) are arrows f : A — B in C such that a < P;(3).

It is direct to check that for every implicative tripos P: Set®® — Hey, we have an adjunction

where U(A,a) := A, U(f) :== f, A(X) := (X, Tx) and A(f) := f.

Proposition 5.2. Let P: Set® — Hey be an implicative tripos. Then, the regular epis in T'[P] are arrows
[ (A, a) = (B, B) such that f is a regular epi in Set and B = 3¢ ().

Proof. Since the forgetful functor U : I'[P] — Set is left adjoint to the functor A : Set — I'[P], U preserves
colimits. In particular, if f : (A,«) — (B, ) is a regular epi, that is the coequalizer of two arrows g, h :
(C,v) = (4, @), then f: A — B is a coequalizer of g,h : C — A in Set. Let us show now that 5 = 3¢(a).
Since o < Py (), then 3;(cr) < 8. Moreover, we know that o« < Py(3f(a)). Thus f: (4, @) = (B,3s(a)) is
a well-defined arrow which coequalizes g,h : (C,7v) — (A, @). This implies that id4 : (B, 8) — (B, 3s(a))
must be a well-defined arrow in I'[P]. Thus, 8 < 3;(«). Hence we get 8 = 3¢(a).

Conversely, let f : A — B be a regular epi in Set. Then it is the coequalizer in Set of two arrows
g,h : C — A. Since a < P;3s(a), the arrow f : (4,a) — (B,3f()) is well-defined. It is immediate to
verify that this arrow is a coequalizer for the arrows g, h : (C,P4(a) APp(a)) = (A,a). O

Proposition 5.3. Let P: Set®® — Hey be an implicative tripos. Then T'[P] is regular.

Proof. We start by showing that I'[P] has all finite limits. First, it is direct to check that (1, T1) is a terminal
object in T'[P]. A product of (A4, «) and (B, ) in I'[P] is given by (A x B, P, (&) A Px,(5)) together with
the projections 71 and 7o, while an equalizer of two parallel arrows f,g: (A, &) — (B, ) in T'[P] is given
by (E,P.(a)) where e : E — A is an equalizer of f,g in Set.

Now we show that I'[P] is regular. Let f : (4, @) — (B, ) be an arrow in I'[P]. We can factorize f : A — B
in Set as a regular epi r : A — R followed by a mono m : R — B. The arrow r : (A, o) — (R,3,(a)) is a
regular epi in I'[P] by Proposition 5.2 and m : (R, 3,(«)) — (B, f) is a mono. Such factorizations are unique
up-to-isomorphism and pullback-stable in T'[P]. Thus I'[P] is a regular category. O
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Example 5.4. Let us consider an implicative tripos P: Set®® — Hey for a complete Heyting algebra H.
Then the Grothendieck category I'[P] is the coproduct completion Hy of the category H. This fact was
observed in [16].

5.2. Partitioned assemblies

The main purpose of this section is to generalize the notion of category of partitioned assemblies associated
with a PCA to implicative algebras and implicative triposes.

Let us recall that given a (partial) combinatory algebra (R, -) the category of partitioned assemblies is
defined as follows:

« an object is a pair (X, ) where X is a set and ¢: X — R is a function from X to the PCA;
e a morphism f: (X, ¢) — (Y,%) is a function f: X — Y such that there exists an element a € R with
a-@(x) =19(f(z)) for every x € X, i.e. there exists an element a of the PCA such that the diagram

x 1oy
sol lw
R —(;_—(;—f R

comimutes.

It is proved in [17,16] that the category of partitioned assemblies can be completely defined in terms of
realizability triposes and full existential free elements, namely it is the full subcategory of the Grothendieck
category T'[P] whose second components is given by a full existential free element. Therefore, since in this
work we use the notation of U-SKj, to refer to full existential free elements, we have that the following
definition provides a natural generalization of the ordinary notion of category of partitioned assemblies to
an arbitrary implicative tripos:

Definition 5.5 (partitioned assemblies). Let P: Set®® — Hey be an implicative tripos. We define the category
of partitioned assemblies PAsmp of P as the full sub-category of I'[P] given by the objects of I'[P] whose
second component is a U-SK, predicate of P.

Notice that in general the category of partitioned assemblies of an implicative tripos does not have all
finite limits. This is due to the fact that, in general, U-SK, predicates are not closed under finite meets.
In fact, combining the stability under reindexing of U-SK, predicates with the definition of finite limits in
I'[P] (see Proposition 5.3), it is straightforward to check that:

Lemma 5.6. The category PAsmp is a lex subcategory of T'[P] if and only if U-SK, predicates are closed
under finite meets.

Example 5.7. In the case of realizability triposes the category defined in Definition 5.5 coincides with the
ordinary category of partitioned assemblies.

Example 5.8. Let P: Set®® — Hey be an implicative tripos associated with a complete Heyting algebra.
Then, we have that an object of PAsmp is a pair (4, ) such that every element a(z) is supercompact in
the sense of [1].

Remark 5.9. A nice intrinsic characterization of categories which are equivalent to a category of partitioned
assemblies for a PCA is presented in [9, Thm. 3.8], where the author proves that a category is equivalent



30 S. Maschio, D. Trotta / Annals of Pure and Applied Logic 175 (2024) 103390

to partitioned assemblies over a PCA if and only if it is w.l.c.c. and well-pointed local, and has a discrete
generic object. This intrinsic description, combined with the notion of category of partitioned assemblies
for an implicative algebra, offers a useful tool to identify implicative algebras whose category of partitioned
assemblies happens to be equivalent to the category of partitioned assemblies for a PCA. Again, these
considerations can be extended to the case of categories of assemblies for implicative algebras, which we
will define in the next section, taking advantage of the intrinsic description of the regular completion of a
lex category [4].

5.3. Assemblies

The main purpose of this section is to generalize the notion of category of assemblies associated with a
PCA to implicative algebras and implicative triposes.

Let us recall (see for example [29]) that given a partial combinatory algebra (R, -) the category of assem-
blies is defined as follows:

e an object is a pair (A, «) where A is a set and a: A — P*(R) is a function from A to the non-empty
powerset of the PCA;

e a morphism f: (4,a) — (B,p) is a function f: A — B such that there exists an element r € R for
which r-a | and r - a € B(f(z)) for every z € A and a € a(x).

Notice that, by the result presented in Section 4.6, we have that the category of assemblies can be described
as the full subcategory of I'[P] associated with the realizability tripos, whose objects are given by (A, «)
where a enjoys the property of being U-fSKy,, or equivalently (by Corollary 4.54), of being U-wfSK,.

This correspondence between assemblies and U-fSK predicates of realizability triposes suggests the
following abstraction of the notion of assemblies:

Definition 5.10 (Assemblies). Let P: Set®® — Hey be an implicative tripos. We define the category of
assemblies Asmp of P as the full sub-category of I'[P] given by the objects of I'[P] whose second component
is a U-fSK,, predicate of P.

Hence we have the following inclusions of categories:
PAsmp —— Asmp —— T'[P]

As in the case of partitioned assemblies, the category of assemblies of an implicative tripos is not lex or
regular in general, since U-fSK, predicates are not closed under finite meets in general.

Proposition 5.11. The category Asmp is a reqular subcategory of T[P] if and only if:

o U-fSK,, predicates are closed under finite meets;
o U-fSK,, predicates are stable under existential quantifiers along regular epis, i.e. for every U-fSK,
predicate ¢ and r regular epi of Set we have 3,.(p) is U-fSKy.

Proof. As in the case of partitioned assemblies, we have that Asmp is a lex sub-category of I'[P] if and
only if U-fSK,, predicates are closed under finite meets. To conclude the proof, it is enough to observe that
the factorization system of I'[P] induces a factorization system on Asmep if and only if U-fSK, predicates
are stable under existential quantifiers along regular epis. But this follows by the explicit description of the
factorization system of I'[P], i.e. we have that an arrow f: (4,«a) — (B, ) can be written as
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(4,a) ! (B, B)

with r regular epi and m mono. O

Example 5.12. When P: Set®® — Hey is a realizability tripos, the category Asmp coincides with the
ordinary category of assemblies for a CA, as described in [29].

Example 5.13. When P: Set®® — Hey is an implicative tripos for nested realizability the category Asmp
coincides with the category of assemblies for nested realizability, as described in [18, Sec. 1.3].

Example 5.14. When P: Set®® — Hey is an implicative tripos for a complete Heyting algebra we have
that the category Asmp is given by objects (A, a) where, for every x € A, p(z) is indecomposable, see
Section 4.6.

Example 5.15. When P: Set®® — Hey is an implicative tripos for a complete Boolean algebra we have that
Asmp = PAsmp, since in every complete Boolean algebra we have that U-fSK, = U-SK,,, see Section 4.5.

5.4. Regular completion of implicative triposes

It is a well-known result (see [23,15,14,29]) that every topos C[P] obtained as the result of the tripos-to-
topos construction from a given tripos P can be presented as the ex/reg-completion (according to [6])
C[P] ~ (Regp)ex/reg
of a certain regular category, that we denote by Regp, constructed from the tripos P. By the universal
property of the ex/reg-completion the canonical embedding

yv: Regp — C[P]

is a full and faithful regular functor.
The universal properties of the category Regp (which is called Ass¢(P) in [29]) are analyzed in detail in
[15,14], where it is proved that such a category enjoys the property of being the regular completion of P.
In the following definition, we recall an explicit description of such a category (in the case of Set-based
triposes):

Definition 5.16. Let P: Set®® — Hey be an implicative tripos. We define the category Regp as follows:

« the objects of Regp are pairs (A, ), where A is a set and « is an element of P(A);

o an arrow of Regp from (A, «) to (B, ) is given by an element ¢ of P(A x B) such that:
1. ¢ < Pr () AP~ (B);
2. a<dp, ((b),
3. P(m,ﬂz)(¢) A P(ﬂl,ﬂ3>(¢) < P(w2,7r3>(6B)-

The composition of morphisms of Regp is given by the usual relational composition: the composition of
¢: (4,0) = (B, B) and : (B, B) = (C.7) is given by

El(fn,ﬂ'g,) (P<7r1,7r2) (¢) A P(7r2,7r3> W))
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where 7; for i = 1,2, 3 are projections from A x B x C.

Remark 5.17. Notice that, from 1. and 2. in the definition, every arrow ¢ : (4, «) — (B, ) of Regp satisfies
o =35, (¢).

Remark 5.18. Notice that one can always define a finite-limit preserving functor as follows

F :T[P] — Regp
(A, a) = (A, )
f — 3(idmf)(O‘)

for every arrow f: (4,«a) — (B, ). It is straightforward to check that this functor is well-defined. Indeed,
for every arrow f : (A,a) — (B, ) in I'[P], 3a,,s) () satisfies condition 1. since a < P(3) and satisfies
2. by its very definition; moreover it satisfies also condition 3. as one can easily see by using adequately
adjunctions and Heyting implications, and exploiting BCC and FR. Identities id(4 o) are sent to 3a , (c),
that is to identities in Regp. Finally, composition can be easily shown to be preserved.

The functor F is not faithful. Indeed, for every pair of sets A, B, we have that Hompp((A, L), (B, T)) =
Homset(A, B), while Homgeg, ((4, L), (B, T)) ~ {*}. If A is non-empty and B has at least two elements,
we have that

HomF[P] ((Av J—)a (Bv T)) ¢ HomRegp((Aa J—)v (B’ T))

In general, F is neither provable to be full. E.g. consider the case of the tripos induced by a complete
Boolean algebra with four elements {1, a, —a, T} and the arrow ¢ : ({0}, T) — ({0,1}, T) defined by

aifx=0
¢(0,z) = .
—aifr=1
This is a well-defined arrow in Regp which however has not the form F(f) for any f: {0} — {0,1}.
Notice that in general the category Regp is not (equivalent to) a full subcategory of the Grothenieck
category I'[P], since morphisms of Regp may not arise from morphisms of the base category.

Lemma 5.19. A morphism ¢: (A, a) — (B, 3) in Regp is a reqular epi if and only if § = I, (¢).

Proof. We know that the embedding of Regp into Set[P] ~ (Regp)ex/reg Preserves regular epis, since it is
a regular functor. Moreover, since the embedding preserves finite limits and every regular epi in Set[P] is a
coequalizer of its kernel pair, we can conclude that the embedding also reflects regular epis. Thus an arrow
in Regp is a regular epi if and only if it is a regular epi in Set[P].

We know that in Set[P] every epi is regular since it is a topos. Thus using the characterization of epis of
Set[P] in [23], we can conclude. O

Remark 5.20. Notice that the functor F : I'[P] — Regp preserves regular epis. In particular, the functor F
is regular. This follows immediately from Proposition 5.2, Lemma 5.19 and Proposition 5.3.

Remark 5.21. Notice that the category Regp of a tripos P can also be described by means of the constant
object functor as the full subcategory of Set[P] of subobjects of constant objects A(A) for some object A of
Set (for the definition of the constant object functor A : Set — Set[P] see e.g. [29]).
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Remark 5.22. Notice that in Regp, as observed in [23], for parallel arrows ¢, : (4, a) — (B, 3), we have
that ¢ < ¢ if and only if ¢ = . Here we sketch a proof that if ¢ < @ then ¢ < ¢. By Remark 5.17
we have that 3., (¢) = @ = 3, (¢) and then, in particular, we have that 3,,(¢)) < 3., (¢), and then that
Y < Pr,3r, (¢). By BCC we have that 1) < 3(7, 7,yPx, x,)(¢), where 7; are the projections in the following
pullback

AxBxBMQAxB

(ﬁms)J{ J{m

AxB —" 5 A

In particular, we have that ¥ = 3¢, 7,)P(x, xs) (@) A ¥ and, by FR, we have that

Y= EI<7F1,TF2)(P<7T177r3>(¢) A P(wl,m)(lb))-

But since ¢ < ), we have that

3<7r1,772>(P(7r1,773)(¢) A P(7‘r1,7\'2>(1/))) = EI(7r1,71'2)(P<7r1,7r3)((rzs) A P<7r1,7r3>(1/}) A P<7l'1,7'r2>(w))'

Since ¢ is functional, i.e. Pz, .y (¥) A P(r, 2,y (¥0) < Piry 2y (0B), we have that

77[} < 3(#17772)(P<7r17ﬂ3>(¢) A P<77277"3>(6B))’

Employing the fact that 5 = Ia, (T ), BCC and FR, it is straightforward to check that

¢ = 3(”1,#2)(P<7T1,7F3>(¢) A P(Trz,ﬂ'3>(63))'

Therefore we can conclude that 1) < ¢, and hence that 1) = ¢ (since ¢ < ¥ by hypothesis).

5.4.1. The subcategory of trackable objects
Let P : Set®® — Hey be a fixed implicative tripos for the rest of this section.

Definition 5.23 (trackable morphism). Let ¢: (A,a) — (B, ) be a morphism of Regp. We say that ¢ is
trackable if there exists a morphism fs: A — B of the base category such that o < P;q,, ,) ().

Definition 5.24 (trackable object). An object (A, ) of Regp is said to be a trackable object if every morphism
¢: (A, a) = (B, B) of Regp is trackable. We denote by Trackp the full subcategory of Regp whose objects
are trackable.

Remark 5.25. Notice that for ¢: (A,a) — (B, ) in Regp, if a < Pq, 1,y (#), then a = Pq,, 1, (4), since
the opposite inequality follows from ¢ < P, («). Notice moreover that when a morphism ¢: (A, a) — (B, 3)
of Regp is trackable, then we have that the arrow fs: A — B induces a well-defined arrow fy: (4, o) —
(B,p) in T'[P]. In fact, by definition of arrows in Regp we have that ¢ < P, (a) A P, (8), and then, by
applying Pq, r,), we have that

a < Play,p,) (@) S a AP (B)

and then we can conclude that a < Py, (). We can also notice that F(fy) = Ja,,5,) (@) < ¢, by adjunction.
Since both F(fy) and ¢ are arrows in Regp from (A4, a) to (B, ), we conclude by Remark 5.22 that they
are in fact equal.
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Now we can employ the notions introduced in Definition 3.8 to easily characterize the category of trackable
objects of an implicative tripos:

Proposition 5.26. Let P: Set®® — Hey be an implicative tripos. Then an object (A, a) of Regp is trackable
if and only if o is a wfSK,, predicate of P.

5.4.2. The subcategory of strongly trackable objects

Definition 5.27 (strongly trackable morphism). Let ¢: (A,a) — (B, ) be a morphism of Regp. We say
that ¢ is strongly trackable if there exists a unique morphism fs: A — B of the base category such that

@ < Piay 1,y (0)-

Definition 5.28. An object (A, «) of Regp is said to be a strongly trackable object if every morphism
¢: (A a) = (B, ) of Regp is strongly trackable. We denote by STrackp the full subcategory of Regp of
strongly trackable objects.

Employing the notions introduced in Definition 3.8 we can easily characterize the category of strongly
trackable objects of an implicative tripos:

Proposition 5.29. Let P: Set®” — Hey be an implicative tripos. Then an object (A, ) of Regp is strongly
trackable if and only if o is a fSKy predicate of P.

Hence we have the following diagram for every implicative tripos:

PAsmp —— Asmp — I'[P]

~, [ 7

STrackp —— Trackp —— Regp
5.5. Category of (regular) projective strongly trackable objects

In the previous sections we have seen that the notions of fSK, and wfSK, predicates have a clear
interpretation in terms of trackable objects of the regular completion of an implicative tripos. The main
purpose of this section is to show that the notion of SK,, predicates corresponds exactly to those strongly
trackable objects of Regp that are regular projective.

Definition 5.30. We denote by Pr-STrackp the full subcategory of Regp whose objects are strongly track-
able and regular projective.

Proposition 5.31. Every object (A, o) where a is SKy is regular projective in Regp.

Proof. Let us consider the following diagram
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with ¢ regular epi in Regp, i.e. § < 3r,(¢2), and where « is SK,. We have to show that there exists a
morphism ¢3 such that the previous diagram commutes. By Proposition 5.29, we know that ¢; is trackable,
i.e. there exists an arrow f4,: A — B such that o = P<idA7f¢1>(¢1). By Remark 5.25, we have that o <
Py, (8). Thus, we have that

a< Pf¢1 (ﬂ) < Pf¢>1 37?2((152)' (5)
By Beck-Chevalley condition, we have that (5) implies that
o < Jr, (Pide x £y, (02))- (6)
Since a is SK, we have that there exists an arrow h: A — C' such that
@ < Pida) (Pide x£s, (92)) = P g, ) (2) (7)
Now we claim that ¢3 := Jjq, 5 (@) is a morphism of Regp. Notice that it is enough to prove that
a < Pp(y) because if h: (A, ) — (C,~) is a morphism in the Grothendieck category I'[P] then 3q, ny ()
is a morphism of Regp from (A4, a) to (C,7).

Recall that since ¢y is a morphism of Regp we have, in particular, that ¢2 < P, (), and then we can
combine this with (7) to conclude that

a < Ps, ) (02) <Py, y(Pr (7)) = Pa(v).

Finally, let us check that the starting diagram commutes with ¢s.
Recall that the composition ¢2 o ¢3 in Regp is given by

EI<7F1,TF3>(P<7T1,TF2)(¢3) A P(7T2,71'3>(¢2)) (8)
By definition ¢3 = (iq, 1) (), so we have that
Pirymo) (#3) APy )y (02) = Py o) Fida k) () APy sy (P2)
and by BCC, this is equal to
El(71'17h07r1,71’2) P7r1 (O[) A P(7r2,7r3> (QSQ)
Now we can apply FR, obtaining

3(-n'l,howl,-rrg) (Pﬂ'l (OZ) A P<h071'1,71’2) (¢2))

Therefore we have that (8) is equal to
P () A P<ho7r1,7r2>(¢2)
By Remark 5.22, to show that ¢3 o ¢o = ¢ it is enough to show that ¢1 < ¢3 0 ¢9, i.e. that

(bl < Pﬂ'l (a) A P(ho‘ﬂ'hﬂz)((bQ)' (9)

First, ¢1 < Pg, () since ¢ is an arrow with domain (4, @) in Regp.
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Now we show that ¢1 < Ppon, x,)(#2): using the fact that ¢, = El(idA,fq‘;l)(a) we have that

1 < Plhomy ma) (92) = F(hom m) (91) < G2 = Fn g,y () < b2

and then we can conclude that

¢1 S P<h07r1,ﬂ'2>(¢2) — «a S P<h7f¢1>(¢2)'

Since we have that o < Py, 1, }(¢2) holds by (7), we can conclude that ¢1 < P(nor 4 x5 (#2). This concludes
the proof that (9) holds and then, by Remark 5.22, that ¢1 = ¢30¢2. O

Proposition 5.32. Let (A, «) be a strongly trackable object of Regp. If (A, «) is regqular projective, then « is
SKp.

Proof. Let us suppose that o < 37(8) where f: B — A is an arrow of the base category and 8 € P(B).
Then, since (A, «) is regular projective, there exists an arrow ¢ such that the diagram

- Jag. 5y (B)

(4, 0) —5—7— (4,37(9))

Ja, (@)

commutes in Regp (indeed notice that 34, f)(5) is a regular epi because 3r,3a,,5)(8) = I5(8)). Since
(A, ) is a strongly trackable object there exists a unique fy : A — B such that ¢ = Jq, 5,) (), and we
have that o < Py, (3).

Finally, notice that the composition f o fs : A — A has to be equal to the identity id4 on A because
Jtidp, £y (B) © i, 1, (@) = Ja, (@) since the previous diagram commutes. In fact, first notice that

tias, 1) (B) © 3da, 100 (@) = Fida,poss) (@)
because by the definition of the functor F : T'[P] — Regp we have that:
Fidp. ) (B) © 3tida 1) (@) = F(f) o F(f3) = F(f 0 f3) = Ftiaa.fors) (@)
Now, since we have proved that 3(ia,, for,) (@) = Jidg, 1) (B) © J(ida, f,) (@) = Ja, (@) we can use the unique-
ness in the definition of strongly trackable morphism to conclude that f o fs = id4. This allows us to
conclude that o is SK,. O
As a corollary of the previous two propositions, we have that:

Corollary 5.33. An object (A, ) of Regp is strongly trackable and regular projective if and only if o is SKp.

Summarizing, we have the following diagram:

PAsmp — Asmp — T'[P

| l/\

Pr-STrackp —— STrackp —— Trackp —— Regp
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5.6. A characterization of the categories of assemblies and regular completion

Tt is well-known that in realizability the category of assemblies happens to be equivalent to the reg/lex-
completion of its full subcategory of partition assemblies [4]. In this section, we investigate for which
implicative algebras we can extend this equivalence.

Remark 5.34. Notice that, when we consider a tripos associated with a uniformly supercoherent implicative
algebra, we have that, by Remark 4.55,

PAsmp = Pr-STrackp

Theorem 5.35. Let P: Set®® — Hey be an implicative tripos, for a given implicative algebra A. Then A
is uniformly supercoherent if and only if PAsmp is a lex (full) sub-category of Regp and it provides a
projective cover of Regp.

Proof. Let us suppose that A is uniformly supercoherent (see Definition 4.45). Then, since U-SK are closed
under finite infs, we have that PAsmp is a lex subcategory of Regp; this is a consequence of Lemma 5.6
and its proof, of the proof of Proposition 5.3 and of the fact that partitioned assemblies are strongly
trackable. Now we show that PAsmp is a projective cover. We already know that the objects of PAsmp
are projective (by Corollary 5.33), so we only have to show that every object (B, 3) of Regp is covered by
a regular projective of PAsmp. To show this we use the fact that in a uniformly supercoherent algebra,
every element can be written as 3(p), with ¢ U-SKy. In detail, given an object (B, ) of Regp, there
exists an element ¢ € P(A) and a morphism f: A — B of Set such that 8 = 3;(¢). From this, we have
that ¢ < P;(8), i.e. that f: (A,¢) — (B, ) is a morphism in I'[P]. Therefore, we can define a morphism
of Regp, ¢: (A, ) — (B, ) by ¢ := J(ia,,f) (¢). By Lemma 5.19, we have that ¢ is a regular epi in Regp
since 3., (¢) = 37(¢) = B. This concludes the proof that PAsmp is a lex (full) sub-category of Regp and
it provides a projective cover of Regp.

Now we show the other direction. The fact that U-SK families (or equivalently U-SK, predicates) are
closed under finite meets follows by Lemma 5.6. Finally, to show that every element of the implicative
algebra can be written as 3¢(y) with ¢ U-SK,,, we use the fact that PAsmp provides a protective cover
of Asmp. In particular, we have that for every element 8 of P(B), the object (B, ) of Regp is covered
by a regular epi ¢: (A,¢) — (B, ) where (A, ) is an object of PAsmp. Since every object of PAsmp
is strongly trackable, we have that ¢ = E(idA,f¢>(4P)a and since ¢ is a regular epi, i.e. 3;,(¢) = 3, we can
conclude that 3y, (p) = . This concludes the proof that A is uniformly supercompact. O

Given the intrinsic characterization of the regular completion of a lex category presented in [4], we have
the following corollary:

Corollary 5.36. Let P: Set®® — Hey be an implicative tripos, for a given implicative algebra A. Then A is
uniformly supercoherent if and only if PAsmp is a lex subcategory of Regp and (PASMP) eq/1ex = Regp.

Example 5.37. Relevant examples satisfying the hypotheses of Corollary 5.36 are implicative algebras asso-
ciated with a CA, and implicative algebras associated with a supercoherent locale, see Example 4.47.

As a second corollary of Theorem 5.35, we obtain a different proof of the characterization of the regular
completion of a tripos presented in [16, Thm. 4.14]:

Corollary 5.38. Let P: Set®® — Hey be an implicative tripos, for a given uniformly supercoherent implicative
algebra A. Then, if Asmp is regular, we have that
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(PASMP) eg/iex = Asmp = Regp.
Notice that the proof Theorem 5.35 can be reproduced to obtain the following result:

Theorem 5.39. Let P: Set®® — Hey be an implicative tripos, for a given implicative algebra A. If Asmp
is regular, then we have that A is uniformly functionally supercoherent if and only if PAsmp is a lex
subcategory of Asmp and (PASMP)eg/jex = Asmp.

Example 5.40. Let B be a complete atomic boolean algebra which we can think of as the powerset algebra
of some set B. In B, supercompact elements are atoms which are not closed under infima. This in particular
implies that uniformly supercompact predicates are not closed under finite meets.

One can easily see that PAsmp is equivalent to the slice category Set/B.* Although Set/B is clearly a
finitely complete category, the inclusion functor into I'[Pg] does not preserve finite limits. E.g. the terminal
object in Set/B is the identity function from B to B which is sent to the assembly (B,z + {z}) which is
not terminal in I'[Pg].

Example 5.41. Let H be a complete Heyting algebra without supercompact elements. Then PAsmyy is a
trivial category with just one object and the identity arrow.

Example 5.42. Consider the Sierpinski space 3 which is a supercoherent locale.

It turns out that PAsmg is equivalent to the Grothendieck category I'[Pow] of the powerset doctrine
Pow over Set, since 1 and 2 are supercompact in 3 and 1 < 2. Using Corollary 5.38, we get that Regg ~
(F[POW])reg/lew

This result can be easily generalized, by considering the locales n (ordered in the usual way) which are
always supercoherent. Since PAsm,, 11 ~ I'[Py], we get that Reg, . ; ~ (I'[Pn])reg/iex for every n € N.

5.7. Relation with another notion of assemblies

The authors of a recent work [7] propose a different notion of implicative assemblies, by generalizing
the notion of realizability assemblies in a different direction. Since for realizability implicative algebras
P(R) \ {0} is the separator, they define the category of assemblies as the category having as objects pairs
(A, ) with A a set and o : A — 3 and of which an arrow from (4, @) to (B, ) is a function f: A — B
such that A . ,(a(x) — B(f(z))) € X. The authors prove that this category is always a quasi-topos.

In the localic case this category is equivalent to the category of sets, and localic triposes are characterized
in [7] exactly as those for which such a category is an elementary topos.

One disadvantage of this approach is that the category of assemblies is not in general a full subcategory
of the implicative topos. Moreover, it does not contain in general the category of partitioned assemblies as
we defined it, since U-SK predicates are not in general evaluated in ¥ (consider e.g. the localic case).

The relation with this category of assemblies and our proposal for a category of assemblies is also in
general non well-behaved.

5.8. Categories of implicative modest sets

Let us end this section by considering the other four full subcategories Mods, Rx, Modx and Ry of
Regp of which the objects are assemblies (A, a) of which families corresponding to a can be chosen® to

4 Here and in the following examples we will use subscript H instead of P if P is the implicative tripos arising from the complete
Heyting algebra H.
5 While x-disjointness is a property which is stable under equivalence of families, A-disjointness is not in general.
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be A-modest families, A-core families, x-modest families and x-core families, respectively. Their inclusions
in Regp factorize through Asmp, thus their arrows are always uniquely tracked by functions between the
underlying sets of their domains and codomains.

Obviously one has the following square of embeddings:

Rx —— Mody

[ l

R/\ —— Mod A
Moreover one can easily prove that:

Proposition 5.43. Mody and Ry are preorders.

Proof. Let (A, «) and (B, ) be two objects of Mody and let f,g: A — B be two functions such that

N (a(z) = B(f(2))) € ©

z€A

N (al@) = B(g(x))) € &

r€A

From this, it follows that

N (@) = J Bly) €S

T€EA yeB

and since

N\ B) xBW) = d5(y.y)) €D

y,y'€B

we can conclude that f = g.
Thus Mod is a preorder. Since Ry is one of its full subcategories, it is a preorder too. O

Example 5.44. If (2, 7) is a topological space and we consider the locale (7, C), then the category Mod, =
Mody is equivalent to the preorder (7, C) itself. Indeed, every open set in 7 is a disjoint union of non-empty
connected open sets. Moreover, Ry = Ry is equivalent to the full sub-poset of (7, C) of which the objects
are the open sets which are disjoint unions of supercompact opens.

Example 5.45. In the realizability case, Mod, is a category equivalent to that of modest sets or PERs (see
[25]), R is equivalent to the category of which the objects are subsets of realizers and of which arrows are
functions between them that are restrictions of partial functions which are computable with respect to the
combinatory algebra (this category is called R in [24]). Mody and Ry coincide and are equivalent to the
partial order 2.

Example 5.46. If B is a complete boolean algebra, then Mod, = Modyx = Ry = Ry is equivalent to the full
sub-preorder of B of which the objects are those elements which can be written as suprema of atoms.
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6. Conclusions and future work

In this work, we took advantage of the language of triposes and of a series of recent works on the theory
of Lawvere doctrines to generalize the notions of partitioned assemblies and assemblies from realizability
triposes to arbitrary Set-based triposes in terms of predicates satisfying suitable variants of the rule of choice.
Recent results by Miquel show that all these triposes arise from implicative algebras. We exploited this in
order to give a topological interpretation of the general notions of assemblies we introduced. Finally, we
analyzed when the categories of assemblies and of partitioned assemblies (for arbitrary Set-based triposes)
satisfy some of the good properties which hold in the realizability case.

One of the advantages of our approach is that the properties we used to define our general notions of
assemblies and partitioned assemblies do not depend on the particular choice of Set as base. Therefore,
these notions can be further generalized to the case of arbitrary triposes.

In future work, we also aim to study the universal properties of the subdoctrine of a given implicative
tripos whose predicates represent assemblies. In particular, we believe that in suitable cases (as in intuitionist
realizability) such a subdoctrine can be obtained as the existential completion along the class of regular epis
of the subdoctrine of the starting tripos given by partitioned assemblies.

Finally, it is well known that, in the case of realizability, intuitionistic type theory can be interpreted
both in assemblies and in modest sets. Now that we have extended both these notions to the wider context
of implicative algebras, it is natural to ask for conditions which guarantee the same result.
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