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Implicative algebras have been recently introduced by Miquel in order to provide 
a unifying notion of model, encompassing the most relevant and used ones, such 
as realizability (both classical and intuitionistic), and forcing. In this work, we 
initially approach implicative algebras as a generalization of locales, and we extend 
several topological-like concepts to the realm of implicative algebras, accompanied 
by various concrete examples. Then, we shift our focus to viewing implicative 
algebras as a generalization of partial combinatory algebras. We abstract the notion 
of a category of assemblies, partition assemblies, and modest sets to arbitrary 
implicative algebras, and thoroughly investigate their categorical properties and 
interrelationships.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article 
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1. Introduction

The notion of implicative algebra has been recently introduced by Miquel [19] as a simple algebraic 
tool to encompass important model-theoretic constructions. These constructions include those underlying 
forcing and realizability, both in intuitionistic and classical logic. In a subsequent work [20], Miquel further 
reinforces the previously demonstrated outcome by showing that every “well-behaved Set-based semantics” 
can be presented as a specific instance of a model within the context of an implicative algebra.

To reach this goal, implicative algebras were initially situated within the categorical setting of Set-based 
triposes [13,22], demonstrating that every implicative algebra induces a Set-based tripos [19, Thm. 4.4]. 
This result can be seen as a particular case of a more general result presented in [26, Sec. 5.3] based on 
the notion of implicative ordered combinatory algebra, since implicative algebras are a particular instance of 
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such a notion. Subsequently, it was proven that every Set-based tripos is isomorphic to an implicative one 
[20, Thm. 1.1].

It is important to note that Miquel’s results represent the culmination of a series of studies aimed at 
showing, from an abstract perspective, the essential common features between various realizability-like 
models and localic models, utilizing categorical tools.

In particular, Hofstra introduced in [11] the notion of basic combinatory objects (BCOs) to encompass 
(ordered) PCAs and locales, and he provided a characterization of triposes arising as triposes for ordered 
PCAs (with filters). The non-ordered version of BCOs, known as discrete combinatory objects, was then 
introduced by Frey in [9] and employed to provide an “intrinsic” or “extensional” characterization of real-
izability toposes.

The main objective of this work is to further explore the abstract perspective that aims to unify 
realizability-like interpretations and forcing-like (or localic) interpretations. This is achieved by focusing 
on two aspects: generalizing several topological notions from locale theory to implicative algebras, and em-
ploying these new notions to formally define a notion of category of assemblies and category of partitioned 
assemblies for implicative algebras. This generalization extends the existing cases of categories of partitioned 
assemblies and assemblies for a PCA [12,9,5]. In the first part of this work, we concentrate on generalizing 
standard notions such as supercompact, indecomposable and disjoint elements at the level of implicative al-
gebras. We study these notions in several examples. One significant challenge when generalizing localic-like 
notions to implicative algebras is the need to consider a suitable form of uniformity. This is necessary be-
cause, unlike the localic case, the separator of an arbitrary implicative algebra may have multiple elements. 
This is the case, for example, for the separators of several implicative algebras arising from various forms 
of realizability. This fact makes, for example, the transition from a point-wise notion to its generalization 
via indexed sets non-trivial.

This abstract framework lays the groundwork for the second part of this work, in which we extend various 
notions derived from realizability to implicative algebras. This extension enables us to offer a topological-like 
interpretation of these notions.

After completing this initial study, which draws inspiration from the perspective of implicative algebras 
as generalizations of locales, we then proceed to examine implicative algebras in relation to the broader 
context of partial combinatory algebras (PCAs). This leads us to explore the abstraction of concepts such 
as assemblies, partitioned assemblies, and modest sets within this framework.

The problem of generalizing these notions from PCAs to arbitrary implicative algebras can be addressed 
from different perspectives: for example, since assemblies are pairs (X, ψ) where ϕ : X → P∗(R) is a function 
from X to the non-empty powerset of the PCA R, one could try to generalize this notion by defining an 
assembly for an implicative algebra A = (A, ≤, →, Σ) as a pair (X, ψ) where ψ : X → Σ is a function 
from the set X to the separator Σ (since, for the implicative algebra associated with a PCA, we have that 
Σ := P∗(R)). This approach has been recently used in [7]. A second reasonable attempt, based on the 
fact that every realizability topos can be presented as the ex/reg-completion of the category Asm(R) of 
assemblies of its PCA, [24,4,29], could be that of defining the category of assemblies for an implicative algebra 
as the regular completion (in the sense of [15]) of the implicative tripos associated with the PCA. Again, 
this generalization would allow us to recognize the ordinary category of assemblies as a particular case, since 
every tripos-to-topos can be presented as the ex/reg-completion of the regular completion of the tripos.

The first solution mainly depends on the “explicit” description of an assembly of a PCA, while the second 
one is based on the abstract properties of such a category.

In this paper, we propose a different approach: instead of focusing on the explicit description of an 
assembly or on the universal property of the category of assemblies, we aim to identify the logical properties
that uniquely identify assemblies in realizability, and then define an arbitrary assembly of an implicative 
algebra as a pair (X, ψ) where ψ is a predicate of the implication tripos satisfying the logical properties we 
have identified.
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The inspiration for this kind of abstraction is the characterization of predicates determining partitioned 
assemblies presented in [17] in terms of full existential free elements, and independently introduced in 
[8,10] via the notion of ∃-primes: in these works, it has been proved that the functions ϕ : X → R where 
R is a PCA, i.e. those used to define a partitioned assembly on X, correspond exactly to the predicates 
φ : X → P(R) of the realizability tripos of R satisfying the following property:

Property 1.1. Whenever a sequent

φ(x) � ∃y ∈ Y (f(y) = x ∧ σ(y))

is satisfied (in the internal language of realizability tripos), there exists a witness function g such that 
φ(x) � σ(g(x)), and this property is preserved by substitutions.

Following this approach, we observe that the functions ϕ : X → P∗(R), i.e. those used to define an 
assembly on X, correspond exactly to the predicates φ : X → P(R) of the realizability tripos of R satisfying 
the following property:

Property 1.2. Whenever a sequent

φ(x) � ∃!z ∈ Z σ(x, z)

where σ is a functional predicate is satisfied (in the internal language of realizability tripos), there exists a
witness function g such that φ(x) � σ(x, g(x)), and this property is preserved by substitutions.

The fact that these characterizations do not depend on any explicit description of an assembly or a 
partitioned assembly, but just on their logical properties, makes them easy to generalize to arbitrary triposes.

Therefore, we define an assembly for an implicative algebra A = (A, ≤, →, Σ) as a pair (X, ψ) where X
is a set and ψ : X → A is a predicate of the implicative tripos associated with A satisfying the property 
(1.2) (in the internal language of the implicative tripos), while we will say that ψ : X → A is a partitioned 
assembly if ψ : X → A is a predicate of the implicative tripos associated with A satisfying the property 
(1.1). Based on our previous analysis, we show that these notions correspond exactly to the generalization 
of the notion of indecomposable and supercompact elements, respectively, for implicative algebras.

A second crucial insight we propose here regards the concept of morphism of assemblies and its general-
izations. After introducing a notion of morphism of assemblies following the same idea used in realizability, 
where morphisms are defined as Set-functions, we show that our notion of category of assemblies is equiv-
alent to the subcategory that we called of strongly trackable objects of the category of functional relations
associated with the implicative tripos (i.e. its regular completion in the sense of [15]), namely objects such 
that every functional relation having one of these objects as domain is tracked by a unique Set-based func-
tion. Then, we prove that the category of partitioned assemblies is exactly the subcategory of strongly 
trackable objects which are regular projectives of the category of functional relations associated with the 
implicative tripos.

Finally, we conclude by studying some basic categorical properties of these categories. In particular, it 
is worth recalling that in realizability the category of assemblies is regular, and it happens to be equivalent 
to the regular completion (in the sense of [4]), of its full subcategory of partition assemblies. However, this 
connection between assemblies and partition assemblies does not hold in general for the case of an arbitrary 
implicative algebra. More generally, for an arbitrary implicative algebra, the category of assembly is not 
regular, and the category of partition assemblies has no finite limits.
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Taking inspiration again from [17], we present necessary and sufficient conditions allowing us to under-
stand when a category of assemblies for an implicative algebra is regular and it is the regular completion of 
the category of partition assemblies.

2. Implicative algebras

In this section we recall the definition of implicative algebra introduced in [19].

2.1. Definition

Definition 2.1 (implicative structure). An implicative structure (A, ≤, →) is a complete lattice (A, ≤)
equipped with a binary operation (a, b) �→ (a → b) called implication of A satisfying the following two 
axioms:

• if a′ ≤ a and b ≤ b′ then a → b ≤ a′ → b′;
• a →

∧
b∈B b =

∧
b∈B(a → b), for every a ∈ A and every subset B ⊆ A.

Definition 2.2 (separator). Let (A, ≤, →) be an implicative structure. A separator is a subset Σ ⊆ A satis-
fying the following conditions for every a, b ∈ A:

• if a ∈ Σ and a ≤ b then b ∈ Σ;
• kA :=

∧
a,b∈A(a → (b → a)) is an element of Σ;

• sA :=
∧

a,b,c∈A((a → (b → c)) → ((a → b) → (a → c))) is an element of Σ;
• if (a → b) ∈ Σ and a ∈ Σ then b ∈ Σ.

The intuition is that a separator Σ ⊆ A determines a particular “criterion of truth” within the implicative 
structure (A, ≤, →), generalizing the notion of filter for complete Heyting algebras.

Definition 2.3 (implicative algebra). We call an implicative algebra an implicative structure (A, ≤, →)
equipped with a separator Σ ⊆ A. In such a case the implicative algebra will be denoted as (A, ≤, →, Σ).

2.2. Some examples of implicative algebras

Complete Heyting algebras
If H = (H, ≤) is a complete Heyting algebra with Heyting implication →, we can see it as an implicative 

algebra (H, ≤, →, {
}) where 
 is the maximum of H.

Realizability
If R = (R, ·) is a (total) combinatory algebra (CA) (see e.g. [29]), then we can define an implicative algebra 

from it by considering the 4-tuple, (P(R), ⊆, ⇒, P(R) \{∅}) where A ⇒ B := {r ∈ R| r ·a ∈ B for all a ∈ A}
for every A, B ⊆ R.

Nested realizability
Nested realizability triposes are considered in [2,18] in order to study some aspects of modified realizability 

and relative realizability (see [28,29]). We consider here only the total case in order not to make the 
notation heavy. The same we will do in the next examples. Let R = (R, ·) be a combinatory algebra 
and let R# = (R#, ·#) be one of its sub-combinatory algebras, that is R# ⊆ R, a ·# b = a · b for every 



S. Maschio, D. Trotta / Annals of Pure and Applied Logic 175 (2024) 103390 5
a, b ∈ R# and k, s in R can be chosen to be elements of R#. We can define an implicative algebra 
An

R,R#
:= (PR,R# , ⊆n, ⇒n, ΣR,R#) as follows:

1. PR,R# := {(Xa, Xp) ∈ P(R#) × P(R)| Xa ⊆ Xp}
2. (Xa, Xp) ⊆n (Ya, Yp) if and only if Xa ⊆ Ya and Xp ⊆ Yp;
3. (Xa, Xp) ⇒n (Ya, Yp) := ((Xa ⇒# Ya) ∩ (Xp ⇒ Yp), Xp ⇒ Yp)
4. (Xa, Xp) ∈ ΣR,R# if and only if Xa �= ∅.

Modified realizability
Let R = (R, ·) be a combinatory algebra and let R# = (R#, ·#) be one of its sub-combinatory algebras 

and assume there exists � ∈ R# such that � · x = � for every x ∈ R and p · � · � = � for p the pairing 
combinator defined from fixed k, s ∈ R# for R. We can define an implicative algebra as

Am
R,R#,� := (Pm

R,R#,�,⊆n,⇒n,ΣR,R# ∩ Pm
R,R#,�)

where

Pm
R,R#,� := {(Xa, Xp) ∈ PR,R# | � ∈ Xp}

Relative realizability
Let R = (R, ·) be a combinatory algebra and let R# = (R#, ·#) be one of its sub-combinatory algebras. 

We define the relative realizability implicative algebra as follows:

Ar
R,R#

:= (P(R),⊆,⇒,Σr
R,R#

)

where

Σr
R,R#

:= {X ∈ P(R)|X ∩R# �= ∅}

Partial cases
Notice that one can also consider the previous cases in which the binary operations of the combinatory 

algebras involved are partial. In this case we do not obtain implicative algebras, but quasi-implicative 
algebras. However by considering a notion of completion which can be found in [19] one can obtain implicative 
algebras from them. The choice of presenting just total PCAs instead of the more traditional and general 
notion is motivated by the crucial result of Miquel, i.e. the fact that every quasi-implicative tripos associated 
with a (partial) PCA is isomorphic to an implicative one. We refer to [19, Sec. 4] for all details.

Classical realizability
Let K = (Λ, Π, @, ·, k−, K, S, cc, PL, ⊥) be an abstract Krivine structure (see [27,19]). One can define an 

implicative algebra as follows (P(Π), ⊇, →, Σ) where X → Y := {t · π| t ∈ X⊥, π ∈ Y }, where X⊥ := {t ∈
Λ| t ⊥ π for every π ∈ X} and Σ = {X ∈ P(Π)| X⊥ ∩ PL �= ∅}.

2.3. The encoding of λ-terms in an implicative algebra

In any implicative algebra A = (A, ≤, →, Σ) one can define a binary application as follows for every a, b
in A

a · b :=
∧

{x ∈ A| a ≤ b → x}.

Using this, one can encode closed λ-terms with parameters in A as follows:
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1. aA := a for every a ∈ A;
2. (ts)A := tA · sA;
3. (λx.t)A :=

∧
a∈A(a → t[a/x]A)

A nice result is that if t β-reduces to s, then tA ≤ sA. Moreover, if t is a pure λ-term with free variables 
x1, ..., xn and a1, ..., an ∈ Σ, then (t[a1/x1, ..., an/xn])A ∈ Σ.

Finally, we can notice that kA and sA are exactly the interpretations of the λ-terms k := λx.λy.x and 
s := λx.λy.λz.xz(yz) as shown in [19, Prop. 2.24].

2.4. The calculus of an implicative algebra

In every implicative algebra A = (A, ≤, →, Σ) we can define first-order logical operators in such a way 
that we obtain a very useful calculus.

In particular if a, b are in A and (ci)i∈I is a family of elements of A we can define

a× b :=
∧
x∈A

((a → (b → x)) → x) a + b :=
∧
x∈A

((a → x) → ((b → x) → x))

∃
i∈I

ci :=
∧
x∈A

(∧
i∈I

(ci → x) → x

)

As shown in [19], the following rules hold1:

(x : A) ∈ Γ
Γ � x : A Γ � a : a

Γ � t : a a ≤ b

Γ � t : b
Γ′ ≤ Γ Γ � t : a

Γ′ � t : a
Free(t) ⊆ V ar(Γ)

Γ � t : 


Γ � t : ⊥
Γ � t : a

Γ, x : a � t : b
Γ � λx.t : a → b

Γ � t : a → b Γ � s : a
Γ � ts : b

Γ � t : a Γ � u : b
Γ � λz.ztu : a× b

Γ � t : a× b

Γ � t(λx.λy.x) : a
Γ � t : a× b

Γ � t(λx.λy.y) : b
Γ � t : a

Γ � λz.λw.zt : a + b

Γ � u : b
Γ � λz.λw.wt : a + b

Γ � t : a + b Γ, x : a � u : c Γ, y : b � v : c
Γ � t(λx.u)(λy.v) : c

Γ � t : ai (for all i ∈ I)
Γ � t :

∧
i∈I ai

Γ � t :
∧

i∈I ai i ∈ I

Γ � t : ai

Γ � t : ai i ∈ I

Γ � λz.zt : ∃
i∈I

ai

Γ � t : ∃
i∈I

ai Γ, x : ai � u : c ( for all i ∈ I)

Γ � t(λx.u) : c

where every sequent Γ � t : a contains a list of variable declarations Γ := x1 : a1, ..., xn : an where x1, ..., xn

are distinct variables and a1, ..., an ∈ A, a lambda term t containing as free variables at most those in Γ
and an element a ∈ A.

The meaning of such a sequent is that (t[Γ])A ≤ a where t[Γ] denotes the term obtained from t by 
performing the substitution indicated by Γ.

The calculus above is very useful, since using the remarks from the previous subsection, if we deduce 
that x1 : a1, ..., xn : an � t : b, t is a pure λ-term and a1, ..., an ∈ Σ, then b is in Σ too.

We now state two propositions which can be easily proved by using the calculus above.

1 By Γ′ ≤ Γ we mean that for every variable assignment x : a in Γ there is b ≤ a such that x : b is in Γ′.
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Proposition 2.4. If F is the class of set-indexed families of elements of an implicative algebra A, then

∧
(bi)i∈I∈F

(
∃
i∈I

bi →
∨
i∈I

bi

)
∈ Σ.

Before enunciating the next proposition we need to introduce two notions of equality evaluated in an 
implicative algebra. The first, which is the right one, is equivalent to that presented in [19] under the name 
id. It is defined as follows for every set J and every j, j′ ∈ J

δJ(j, j′) := ∃
i=j=j′


 =
{

 → ⊥ if j �= j′∧

x∈A((
 → x) → x) if j = j′.

The second one, despite seeming more natural, is not even an equivalence relation in general with respect 
to the logical calculus of A

dJ (j, j′) :=
{
⊥ if j �= j′


 if j = j′.

Proposition 2.5. For every implicative algebra A we have that∧
J∈Set

∧
j,j′∈J

(δJ(j, j′) → dJ(j, j′)) ∈ Σ.

We conclude this section by introducing the notation a �Σ b which is used as a shorthand for a → b ∈ Σ
(a, b ∈ A). The pair (A, �Σ) is a preorder whose posetal reflection is a Heyting algebra. We write a ≡Σ b

when a �Σ b and b �Σ a.

3. Triposes from implicative algebras

In [19] Miquel introduced the notion of tripos associated with an implicative algebra, and he proved in 
[20] that every Set-based tripos, i.e. every tripos as originally introduced in [13], is equivalent to a tripos 
arising from an implicative algebra. In this section, we recall the definition of Set-based tripos (from [13]), 
implicative tripos and the main result of Miquel.

Notation: we denote by Hey the category of Heyting algebras and their morphisms, and we denote by 
Pos the category of posets and their morphisms.

Definition 3.1 (tripos). A (Set-based) tripos is a functor P : Setop −→ Hey such that

• for every function f : X → Y the re-indexing functor Pf : P(Y ) → P(X) has a left adjoint ∃f : P(X) →
P(Y ) and a right adjoint ∀f : P(X) → P(Y ) in the category Pos, satisfying the Beck-Chevalley condition 
(BCC), i.e. for every pullback

W Z

X Y

f ′

gg′

f

�

we have that Pg∃f = ∃f ′Pg′ and Pg∀f = ∀f ′Pg′ .
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• there exists a generic predicate, namely there exists a set Σ and an element σ of P(Σ) such that for 
every element α of P(X) there exists a function f : X → Σ such that α = Pf (σ);

Remark 3.2 (Frobenius reciprocity). Employing the preservation of the Heyting implication → by Pf , it is 
straightforward to check that every tripos P satisfies the so-called Frobenius reciprocity (FR), namely:

∃f (Pf (α) ∧ β) = α ∧ ∃f (β) and ∀f (Pf (α) → β) = α → ∀f (β)

for every function f : X → Y , α in P(Y ) and β in P(X). See [13, Rem. 1.3].

Given a Set-based tripos P : Setop −→ Hey, we will denote by δX := ∃ΔX
(
) the so-called equality 

predicate on X of the tripos.
Now let us consider an implicative algebra A = (A, ≤, →, Σ). For each set I we can define a new 

implicative algebra (AI , ≤I , →I , Σ[I]) where AI denotes the set of functions from I to A (which we call 
predicates over I), ≤I is the point-wise order (f ≤I g if and only if f(i) ≤ g(i) for every i ∈ I), for every 
f, g ∈ AI and i ∈ I, the function f →I g is defined by (f →I g)(i) := f(i) → g(i), and Σ[I] ⊆ AI is the 
so-called uniform power separator defined as:

Σ[I] := {f ∈ AI |∃s ∈ Σ ∀i ∈ I (s ≤ f(i))} = {f ∈ AI |
∧
i∈I

f(i) ∈ Σ}.

As we have already seen, given an implicative algebra (A, ≤, →, Σ), we have an induced binary relation 
of entailment on A, written a �Σ b and defined by

a �Σ b ⇐⇒ (a → b) ∈ Σ.

It is direct to check that this binary relation gives a preorder (A, �Σ) on A.
In [19, Sec. 4] it is shown that each implicative algebra (A, ≤, →, Σ) induces a tripos P : Setop −→ Hey

defined as follows:

Definition 3.3 (implicative tripos). Let (A, ≤, →, Σ) be an implicative algebra. For each set I the Heyting 
algebra P(I) is given by the posetal reflection of the preorder (AI , �Σ[I]). For each function f : I → J , the 
functor Pf : P(J) → P(I) acts by precomposition, that is Pf ([g]) := [g ◦ f ] for every g : J → A.2

The functor defined in Definition 3.3 can be proved to be a Set-based tripos, see [19, Sec. 4], and it is 
called implicative tripos.

In [20, Thm. 1.1] Miquel proved that the notion of implicative tripos is general enough to encompass all 
Set-based triposes. In particular we have the following result:

Theorem 3.4. Every Set-based tripos is isomorphic to an implicative tripos.

Example 3.5 (realizability tripos). The realizability tripos introduced in [13] corresponds to the implicative 
tripos arising from the implicative algebra given by a partial combinatory algebra Section 2.2.

Example 3.6 (localic tripos). The localic tripos introduced in [13] corresponds to the implicative tripos 
arising from the implicative algebra given by a complete Heyting algebra Section 2.2.

2 For sake of readability we will often omit the square brackets denoting the equivalence classes for elements of the fibres of an 
implication tripos.
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3.1. Supercompact predicates of implicative triposes

In [17] M.E. Maietti and the second author introduced the notions of full existential splitting and full 
existential free elements in the language of Lawvere doctrines, aiming to provide a categorification of the 
syntactic notion of existential free formula. The latter coincides also with those predicates called ∃-prime 
predicates in [8] by J. Frey.

From a topological perspective, a relevant example presented in [17] is the case of existential free elements 
of localic triposes: in this specific setting, these elements are precisely functions taking values in the subset 
of the locale whose elements are supercompact in the sense of [1,21]. Recall that an element a of a locale is 
said to be supercompact if

a ≤
∨
i∈I

bi

implies the existence of an i ∈ I such that a ≤ bi, for every set-indexed family (bi)i∈I of elements.
In the following definitions, we present some generalizations of the notions of full existential splitting and 

full existential free elements. To maintain a topology-oriented perspective, we will refer to full existential 
splitting elements as supercompact predicates, and to full existential free elements as uniformly supercompact 
predicates. This notation will be useful in the next section where we will consider some generalization of 
topological concepts for implicative algebras.

We start by fixing the following notation:

Definition 3.7. Let P : Setop −→ Hey be an implicative tripos. A predicate φ of P(I × J) is said to be a
functional predicate if

P〈π1,π2〉(φ) ∧ P〈π1,π3〉(φ) ≤ P〈π2,π3〉(δJ )

where the domain of the projections is I × J × J .

Definition 3.8. Let P : Setop −→ Hey be an implicative tripos. A predicate ϕ of P(I) is:

• a supercompact predicate (SKp) if whenever ϕ ≤ ∃f (ψ) with f : J → I and ψ element of P(J), there 
exists a function g : I → J such that ϕ ≤ Pg(ψ) and f ◦ g = idI ;

• a functionally supercompact predicate (fSKp) if for every functional predicate φ of P(I × J), if ϕ ≤
∃πI

(φ), then there exists a unique function f : I → J such that ϕ ≤ P〈idI ,f〉(φ);
• a weakly functionally supercompact predicate (wfSKp) if for every functional predicate φ of P(I × J), 

if ϕ ≤ ∃πI
(φ), then there exists a function f : I → J such that ϕ ≤ P〈idI ,f〉(φ).

In analogy to the case of full existential splitting and full existential free elements, notice that all the 
notions introduced in the previous definition are not stable under re-indexing in general. We will see in the 
next section that this fact is related to a form of “uniformity” property of implicative algebras.

Therefore, we introduce the following definitions:

Definition 3.9. Let P : Setop −→ Hey be an implicative tripos. A predicate ϕ of P(I) is:

• a uniformly supercompact predicate (U-SKp) if Pf (ϕ) is a supercompact predicate for every function 
f : J → I;

• a uniformly functionally supercompact predicate (U-fSKp) if Pf (ϕ) is a functionally supercompact 
predicate for every function f : J → I;
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• a uniformly weakly functionally supercompact predicate (U-wfSKp) if Pf (ϕ) is a weakly functionally 
supercompact predicate for every function f : J → I.

4. Topological notions in implicative algebras

The main purpose of this section is to generalize various topological notions at the level of implicative 
algebras. We will see that one of the fundamental problems that arise when trying to generalize topological 
notions at the level of implicative algebra is that of “uniformity”, i.e. the stability of a given property under 
reindexing.

In this section we fix an arbitrary implicative algebra A = (A, ≤, →, Σ).

4.1. Disjoint families

The first basic, yet fundamental, notion that we want to introduce and establish in the language of 
implicative algebras is that of disjointness. From an algebraic perspective, the property of being disjoint for 
two elements a, b of a complete Heyting algebra (H, ≤) can be simply stated as a ∧ b = ⊥. This is equivalent 
to the statement that a ∧ b → ⊥ = 
. Since a ∧ a → 
 = 
 for every a, one can say that a family (ai)i∈I of 
elements of H is pairwise disjoint if 

∧
i,j∈I(ai ∧ aj → δ(i, j)) = 
 where δ(i, j) = 
 if i = j and δ(i, j) = ⊥

if i �= j.
Since any implicative algebra has two different notions of “infimum”, one with respect to ≤ (subtyping), 

the other with respect to �Σ (logical entailment), it seems natural to consider two different notions to 
abstract such a notion of disjoint family:

Definition 4.1. A family (ai)i∈I of elements of A is

1. ∧-disjoint if 
∧

i,i′∈I(ai ∧ ai′ → δI(i, i′)) ∈ Σ
2. ×-disjoint if 

∧
i,i′∈I(ai × ai′ → δI(i, i′)) ∈ Σ

Proposition 4.2. If a family is ×-disjoint, then it is ∧-disjoint.

Proof. This follows from the fact that 
∧

a,b∈A(a ∧ b → a × b) ∈ Σ. �
Example 4.3. In any complete Heyting algebra the two notions presented in Definition 4.1 clearly coincide, 
because a ∧ b = a × b, and they coincide with the notion of pairwise disjoint family of elements of a Heyting 
algebra above.

Example 4.4. In the case of the implicative algebra associated with a combinatory algebra (R, ·), then one 
can easily check that ∧-disjoint families are families (Ai)i∈I such that Ai ∩ Aj = ∅ for every i, j ∈ I with 
i �= j, while ×-disjoint families are families (Ai)i∈I such that at most one of the Ai’s is non-empty. The 
same holds for relative realizability implicative algebras.

Example 4.5. In the nested realizability implicative algebras a family (Ai, Bi)i∈I is ∧-disjoint if and only 
if Bi ∩ Bj = ∅ for every i, j ∈ I with i �= j, while it is ×-disjoint if and only if at most one of the Bi’s is 
non-empty.

Example 4.6. In modified realizability implicative algebras, ×-disjoint families are families (Ai, Bi)i∈I in 
which at most one of the Ai’s is non-empty, while ∧-disjoint families are families (Ai, Bi)i∈I in which 
Ai ∩Aj = ∅ for all i �= j in I.
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We also introduce the following notion of ×-functional family which will be useful later.

Definition 4.7. A two-indexed family (bij)i∈I,j∈J of elements of A is ×-functional if∧
i∈I

∧
j,j′∈J

(bij × bij′ → δJ (j, j′)) ∈ Σ

Remark 4.8. Notice that if (bij)i∈I,j∈J is ×-functional, then for every i ∈ I the family (bij)j∈J is ×-disjoint.

4.2. Supercompactness

The second notion we aim to abstract in the setting of implicative algebras is that of a supercompact 
element [1,21]. In particular, we introduce the following generalization:

Definition 4.9 (supercompact element). An element a ∈ A is supercompact in A if for every set-indexed 
family (bi)i∈I of elements of A with

a → ∃
i∈I

bi ∈ Σ

there exists i ∈ I such that a → bi ∈ Σ.

Remark 4.10. Notice that the minimum ⊥ can never be supercompact in A. Indeed, if we consider an empty 
family we always have kA ≤ ⊥ → (
 → ⊥) = ⊥ →∃∅ from which it follows that ⊥ →∃∅ ∈ Σ.

Remark 4.11. Notice that the maximum 
 is supercompact if and only if from ∃
i∈I

bi ∈ Σ, one can deduce 

the existence of an index i ∈ I such that bi ∈ Σ. We can consider such a property as a sort of existence 
property. Complete Heyting algebras satisfying this property are called supercompact (locales) (see [21]), 
while the only complete Boolean algebras satisfying this property are the trivial ones (those in which every 
element is either ⊥ or 
), since for every a we have a ∨ ¬a = 
. The implicative algebra of realizability in 
the total case satisfies this property thanks to Proposition 2.4 and the fact that the union of a family of 
sets is non-empty if and only if at least one of them is non-empty. The same holds for relative realizability, 
nested realizability and modified realizability.

Remark 4.12. One can easily notice that if a ≡Σ b and a is supercompact, then b is supercompact too.

If we want to generalize the notion of supercompact element to a notion of supercompact family of 
elements of A we have three natural ways:

Definition 4.13. A family (ai)i∈I of elements of A is

1. componentwise supercompact (cSK) if ai is supercompact for every i ∈ I;
2. supercompact (SK) if for every family of families ((bij)j∈Ji

)i∈I of elements of A whenever∧
i∈I

(ai → ∃
j∈Ji

bij) ∈ Σ

there exists f ∈ (Πi ∈ I)Ji such that ∧
(ai → bif(i)) ∈ Σ
i∈I
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3. uniformly supercompact (U-SK) if (af(k))k∈K is SK for every function f : K → I.

Remark 4.14. One can observe that a family (ai)i∈{�} is SK if and only if a� is a supercompact element.

Proposition 4.15. The following are equivalent for a family (ai)i∈I of elements of A:

1. (ai)i∈I is U-SK;
2. for every family of families of families (((bkj )j∈Jk

)k∈Ki
)i∈I of elements of A with (Ki)i∈I a family of 

pairwise disjoint sets, such that ∧
i∈I

(ai →
∧

k∈Ki

∃
j∈Jk

bkj ) ∈ Σ

there exists a function g ∈ (Πk ∈
⋃

i∈I Ki)Jk such that∧
i∈I

(ai →
∧

k∈Ki

bkg(k)) ∈ Σ

Proof. Let (ai)i∈I satisfy 2. and f : K → I be a function. Assume that∧
k∈K

(af(k) → ∃
j∈Jk

bkj ) ∈ Σ

This implies that ∧
i∈I

(ai →
∧

k∈f−1(i)
∃

j∈Jk

bkj ) ∈ Σ.

Using the fact that the family (ai)i∈I satisfies 2. and the fact that the sets f−1(i) are pairwise disjoint and 
their union is K, we get the existence of a function g ∈ (Πk ∈ K)Jk such that∧

k∈K

(
af(k) → bkg(k)

)
=

∧
i∈I

(ai →
∧

k∈f−1(i)

bkg(k)) ∈ Σ.

Conversely, assume that (ai)i∈I is a family such that (af(j))j∈J is SK for every function f : J → I and that

∧
i∈I

(
ai →

∧
k∈Ki

∃
j∈Jk

bkj

)
∈ Σ

where (Ki)i∈I is a family of pairwise disjoint sets. Let f : K :=
⋃

i∈I Ki → I be the function sending each 
k ∈ Ki to i. Thus,

∧
k∈K

(
af(k) → ∃

j∈Jk

bkj

)
∈ Σ.

Since (af(k))k∈K is SK, then there exists g ∈ (Πk ∈ K)Jk such that

∧
k∈K

(
af(k) → bkg(k)

)
∈ Σ

that is
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∧
i∈I

(
ai →

∧
k∈Ki

bkg(k)

)
∈ Σ �

The following proposition is almost an immediate consequence of the definitions.

Proposition 4.16. If (ai)i∈I is U-SK, then it is cSK and SK.

Proof. Let (ai)i∈I be U-SK. If we consider the identity function idI , we immediately obtain that (ai)i∈I is 
SK. If we consider the functions from a singleton {�} to I we obtain that (ai)i∈I is cSK by Remark 4.14. �
4.3. Indecomposability

Now we introduce a weaker variant of the notion of supercompact element, that is that of an indecom-
posable element. Again, the intuition is that an indecomposable element a of a complete Heyting algebra 
(locale) is an object such that whenever

a ≤
∨
i∈I

bi

then there exists an i ∈ I such that a ≤ bi, for every set-indexed family (bi)i∈I of pairwise disjoint elements.

Definition 4.17. An element a of A is indecomposable if for every ×-disjoint family (bi)i∈I of elements of A, 
whenever a → ∃

i∈I

bi ∈ Σ, there exists i ∈ I such that a → bi ∈ Σ.

From the definition, it easily follows that

Proposition 4.18. Every supercompact element of A is also indecomposable.

Remark 4.19. Similarly to what happens with supercompactness, if a ≡Σ b and a is indecomposable, then 
b is indecomposable. Moreover, ⊥ can never be indecomposable.

Remark 4.20. Notice that if (bi)i∈I is a ×-disjoint family, a is indecomposable, a → bi1 ∈ Σ and a → bi2 ∈ Σ, 
then a → bi1 × bi2 ∈ Σ from which it follows that a → δI(i1, i2) ∈ Σ. If i1 �= i2, then this means that 
a → (
 → ⊥) ∈ Σ, from which it follows that a ≡Σ ⊥. But we know that this cannot happen. So i1 = i2. 
This means that the element i in the definition of indecomposable element is in fact unique.

In order to generalize the notion of indecomposability to families we consider the following five notions:

Definition 4.21. Let I be a set. A family (ai)i∈I of elements of A is:

1. componentwise indecomposable (cInd) if ai is indecomposable for every i ∈ I;
2. functionally supercompact (fSK) if for every ×-functional family (bij)i∈I,j∈J of elements of A such that

∧
i∈I

(ai → ∃
j∈J

bij) ∈ Σ

there exists a unique function f : I → J such that 
∧

i∈I(ai → bif(i)) ∈ Σ;
3. uniformly functionally supercompact (U-fSK) if (af(k))k∈K is functionally supercompact for every 

function f : K → I;
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4. weakly functionally supercompact (wfSK) if for every ×-functional family (bij)i∈I,j∈J of elements of A
such that ∧

i∈I

(ai → ∃
j∈J

bij) ∈ Σ

there exists a function f : I → J such that 
∧

i∈I(ai → bif(i)) ∈ Σ;
5. uniformly weakly functionally supercompact (U-wfSK) if (af(k))k∈K is weakly functionally supercom-

pact for every function f : K → I.

By definition and using arguments similar to that in the proof of Proposition 4.16 we have that:

Proposition 4.22. For a family (ai)i∈I of elements of A we have that:

1. fSK ⇒ wfSK;
2. U-fSK ⇒ U-wfSK;
3. U-fSK ⇒ fSK;
4. U-wfSK ⇒ wfSK;
5. U-wfSK ⇒ cInd.

Moreover with a proof analogous to that of Proposition 4.15 one can easily prove that:

Proposition 4.23. Let (ai)i∈I be a family of elements of A. Then the following are equivalent:

1. the family (ai)i∈I is U-wfSK (U-fSK, respectively);
2. for every family of families of families (((bkj )j∈J )k∈Ki

)i∈I of elements of A with (Ki)i∈I a family of 
pairwise disjoint sets and (bkj )k∈⋃

i∈I Ki,j∈J ×-functional, such that

∧
i∈I

(ai →
∧

k∈Ki

∃
j∈J

bkj ) ∈ Σ

there exists a (unique, respectively) function g : (Πk ∈
⋃

i∈I Ki) → J such that

∧
i∈I

(ai →
∧

k∈Ki

bkg(k)) ∈ Σ

Proposition 4.24. If (ai)i∈I is SK, then it is fSK.

Proof. By definition if a family is SK then it is wfSK. In order to conclude we need to show that if (ai)i∈I

is SK, (bij)i∈I,j∈J is a ×-functional family and f, g : I → J are such that

∧
i∈I

(ai → bif(i)) ∈ Σ and
∧
i∈I

(ai → big(i)) ∈ Σ

then f = g. But from the assumption above we get∧
i∈I

(ai → bif(i) × big(i)) ∈ Σ

from which it follows by ×-functionality that
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∧
i∈I

(ai → δJ(f(i), g(i))) ∈ Σ.

This means that

∧
i∈I

(ai → ∃
j=f(i)=g(i)


) ∈ Σ

By the hypothesis of supercompactness we get that f(i) = g(i) for every i ∈ I. Thus f = g. �
From Proposition 4.24 it immediately that:

Corollary 4.25. For a family (ai)i∈I of elements of A we have that U-SK ⇒ U-fSK.

Moreover, trivially one has cSK ⇒ cInd.

Remark 4.26. Notice that, by Remark 4.19, we have that if (ai)i∈I is cInd, then ai �≡Σ ⊥ for every i ∈ I.

Proposition 4.27. If (ai)i∈I is wfSK and ai �≡Σ ⊥ for every i ∈ I, then (ai)i∈I is fSK.

Proof. If (ai)i∈I is wfSK but not fSK, then there exists (bij)i∈I,j∈J ×-functional and two distinct functions 
f, g : I → J satisfying

∧
i∈I

(ai → bif(i)) ∈ Σ and
∧
i∈I

(ai → big(i)) ∈ Σ.

Then

∧
i∈I

(ai → bif(i) × big(i)) ∈ Σ

and using the ×-functionality we get

∧
i∈I

(ai → δJi
(f(i), g(i))) ∈ Σ

If i ∈ I is such that f(i) �= g(i), then ai → (
 → ⊥) ∈ Σ. From this it follows that ai ≡Σ ⊥. �
Corollary 4.28. A family (ai)i∈I is U-wfSK if and only if it is U-fSK.

Proof. We already know that by definition U-fSK implies U-wfSK (see Proposition 4.22). Assume now 
a family (ai)i∈I to be U-wfSK. Then, combining the last item of Proposition 4.22 with Remark 4.26, we 
get that ai �≡Σ ⊥ for every i ∈ I. By definition every family (af(j))j∈J with f : J → I is wfSK. Using 
Proposition 4.27 one gets that each one of these families is fSK. Thus (ai)i∈I is U-fSK. �
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We can summarize the relation between the different properties of families in the general case as follows:

U-SK

cSK U-fSK ≡ U-wfSK SK

cInd fSK

wfSK

4.4. Supercompactness and indecomposability in particular classes of implicative algebras

In this section we analyze the notions of supercompact and indecomposable family in some particular 
cases. We start by considering the case of an implicative algebra compatible with joins.

Compatibility with joins

Definition 4.29. An implicative algebra A = (A, ≤, →, Σ) is compatible with joins if for every family (ai)i∈I

of its elements and every b ∈ A we have that∧
i∈I

(ai → b) =
∨
i∈I

ai → b.

For implicative algebras compatible with joins we have the following useful properties, [19, Prop. 3.32]:

1. ⊥ → a = 
;
2. a ×⊥ = ⊥ × a = 
 → ⊥.

Moreover, using the calculus in [19] one can easily prove that

Lemma 4.30. If F is the class of set-indexed families of elements of an implicative algebra A which is 
compatible with joins, then

∧
(bi)i∈I∈F

(∨
i∈I

bi → ∃
i∈I

bi

)
∈ Σ

Remark 4.31. If we consider this property in combination with Proposition 2.4 we get that we can substitute 

∃ with 
∨

in logical calculations when we are dealing with an implicative algebra compatible with joins, as 
shown in [19, p.490].

Lemma 4.32. If A is compatible with joins, then∧
J set

∧
j,j′∈J

(dJ(j, j′) → δJ(j, j′)) ∈ Σ

Proof. ∧ ∧
′

(dJ(j, j′) → δJ(j, j′)) = (
 →
∧

((
 → c) → c)) ∧ (⊥ → (
 → ⊥)) =

J set j,j ∈J c∈A
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(
 →
∧
c∈A

((
 → c) → c))

and this can be easily shown to be in Σ using the calculus. �
If we consider this property in combination with Proposition 2.5 we get that we can substitute δJ with 

dJ in logical calculations when we are dealing with an implicative algebra compatible with joins.

Proposition 4.33. Let A be compatible with joins. If (ai)i∈I is SK, then it is cSK.

Proof. Assume (ai)i∈I to be SK and

ai → ∃
j∈J

bj ∈ Σ

for some i ∈ I and some family (bj)j∈J of elements of A. Let us now consider a family of families ((cij)j∈Ji
)i∈I

of elements of A defined as follows:

1. Ji = J and Ji = {�} for i �= i;
2. cij := bj , while ci� = 
 for i �= i.

Since A is compatible with joins we have that∧
i∈I

(ai → ∃
j∈Ji

cij) ∈ Σ ⇐⇒
∧
i∈I

(ai →
∨
j∈Ji

cij) ∈ Σ.

But ∧
i∈I

(ai →
∨
j∈Ji

cij) = ai →
∨
j∈J

bj

and this is an element of Σ, because A is compatible with joins and ai → ∃
j∈J

bj ∈ Σ. Since (ai)i∈I is 

supercompact by hypothesis, we can conclude that there exists a function f ∈ (Πi ∈ I)Ji such that∧
i∈I

(ai → cif(i)) ∈ Σ

From this it follows that f(i) ∈ J and ai → bf(i) ∈ Σ. Thus every ai is supercompact, i.e. (ai)i∈I is cSK. �
Proposition 4.34. Let A be compatible with joins and (ai)i∈I be a family of its elements. If (ai)i∈I is fSK, 
then ai �≡Σ ⊥ for every i ∈ I.

Proof. By Proposition 4.22 we already know that fSK ⇒ wfSK. Therefore, to prove the result it is enough 
to prove that if (ai)i∈I is wfSK and there exists i ∈ I such that ai ≡Σ ⊥, then (ai)i∈I is not fSK.

Consider the two-indexed family (bij)i∈I,j∈{0,1} where bi0 = ⊥ and bi1 = 
 for every i ∈ I. Then

∧
i∈I

(ai →
∨

j∈{0,1}
bij) =

∧
i∈I

(ai → 
) = 
 ∈ Σ

and since A is compatible with joins 
∧

i∈I(ai → ∃ bij) ∈ Σ.

j∈{0,1}
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Moreover

∧
i∈I

∧
j,j′∈{0,1}

(bij × bij′ → dJ (j, j′)) =
∧
i∈I

⎛⎝ ∧
j∈{0,1}

(bij × bij → dJ(j, j)) ∧
∧

j 	=j′∈{0,1}
(bij × bij′ → dJ (j, j′))

⎞⎠ =

(⊥×⊥ → 
) ∧ (
×
 → 
) ∧ (⊥×
 → ⊥) ∧ (
×⊥ → ⊥) = (
 → ⊥) → ⊥ ∈ Σ

since in any implicative algebra compatible with joins a ×⊥ = ⊥ × a = 
 → ⊥.
Thus, by Lemma 4.32, we get that∧

i∈I

∧
j,j′∈{0,1}

(bij × bij′ → δJ(j, j′)) ∈ Σ

Consider now two functions f, g : I → {0, 1} where f is the constant with value 1 while g(i) = 1 for every 
i ∈ I, but i, for which we have g(i) = 0.

We have ∧
i∈I

(ai → bif(i)) =
∧
i∈I

(ai → 
) = 
 ∈ Σ

and ∧
(ai → big(i)) =

∧
i	=i∈I

(ai → 
) ∧ (ai → ⊥) = ai → ⊥ ∈ Σ

Thus (ai)i∈I is not fSK. �
Combining Proposition 4.34 with Proposition 4.27 we obtain the following corollary:

Corollary 4.35. Let A be compatible with joins and (ai)i∈I be a family of its elements. Then (ai)i∈I is fSK
if and only if (ai)i∈I is wfSK and ai �≡Σ ⊥ for every i ∈ I.

Proposition 4.36. Let A be compatible with joins. If (ai)i∈I is fSK then it is cInd.

Proof. Assume (ai)i∈I is fSK, i ∈ I, ai → ∃
j∈J

bj ∈ Σ (which, since we are assuming compatibility with 

joins, is equivalent to ai →
∨

j∈J bj ∈ Σ) and 
∧

j,j′∈J (bj × bj′ → δJ(j, j′)) ∈ Σ.
As a consequence of Proposition 4.34, J �= ∅. Thus, if for every i ∈ I and j ∈ J we define

cij =

⎧⎪⎪⎨⎪⎪⎩
bj if i = i

⊥ if i �= i, j �= j


 if i �= i, j = j

where j is a fixed element of J , we get that∧
i∈I

(ai →
∨
j∈J

cij) = ai →
∨
j∈J

bj ∈ Σ

from which it follows, by compatibility with joins, that∧
(ai → ∃

j∈J

cij) ∈ Σ

i∈I
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Moreover using Lemma 4.32 we get that∧
i∈I

∧
j,j′∈J

(cij × cij′ → δJ(j, j′)) ≡Σ
∧
i∈I

∧
j,j′∈J

(bj × bj′ → dJ(j, j′)) =

∧
j 	=j′∈J

(bj × bj′ → ⊥) ≡Σ
∧

j,j′∈J

(bj × bj′ → δJ(j, j′)) ∈ Σ

since dJ(j, j) = 
, x → 
 = 
 and x × y ≥ 
 → ⊥ for every x, y in A.
Thus, since (ai)i∈I is fSK, we get the existence of a function f : I → J such that∧

i∈I

(ai → cif(i)) ∈ Σ.

In particular ai → bf(i) ∈ Σ and we can conclude. �
Thus if we add the assumption that A is compatible with joins the situation can be summarized as 

follows:

U-SK

U-fSK ≡ U-wfSK SK

fSK cSK

wfSK cInd

Σ closed under 
∧

We start by recalling that, in general, the separator of an implicative algebra is not required to be closed 
under arbitrary infima, even if there are several situations in which this is the case, e.g. for an implicative 
algebra associated with a complete Heyting algebra. One can also notice that a separator Σ is closed under 
arbitrary infima if and only if it is a principal filter. In [19, Prop.4.13] implicative algebras of which the 
separator is a principal ultrafilter are characterized as those giving rise to a tripos which is isomorphic to a 
forcing tripos.

Proposition 4.37. If Σ is closed under arbitrary infima 
∧

, then all cSK families are U-SK.

Proof. Let (ai)i∈I be a cSK family. We have to prove that for every f : J → I, the family (af(j))j∈J is SK.
Let us assume hence that

∧
j∈J

(
af(j) → ∃

k∈Kj

bjk

)
∈ Σ

Using the supercompactness of every component ai and the axiom of choice, we get the existence of a 
function g : (Πj ∈ J)Kj such that af(j) → bjg(j) ∈ Σ for every j ∈ J . Using the hypothesis of closure of Σ
under 

∧
we get ∧ (

af(j) → bjg(j)

)
∈ Σ
j∈J
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which concludes the proof. �
Similarly, but without using the axiom of choice, one proves that

Proposition 4.38. If Σ is closed under arbitrary infima 
∧

, then all cInd families are U-fSK.

Summarizing, in the case the separator of an implicative algebra is closed under arbitrary infima we have 
the following situation:

U-SK ≡ cSK

U-fSK ≡ U-wfSK ≡ cInd SK

fSK

wfSK

∃-distributivity

Definition 4.39. An implicative algebra A is ∃-distributive if

∧
((bkj )j∈Jk

)k∈K∈F

( ∧
k∈K

∃
j∈Jk

bkj → ∃
f∈(Πk∈K)Jk

∧
k∈K

bkf(k)

)
∈ Σ

where F is the class of all families of families ((bkj )j∈JK
)k∈K of elements of A.

Example 4.40. A complete Heyting algebra is ∃-distributive if and only if it is completely distributive. 
For complete Boolean algebras this amounts to the requirement of being complete atomic (that is of being 
isomorphic to a powerset algebra).

Proposition 4.41. If A is ∃-distributive, then every SK family is U-SK. Moreover, every fSK family is 
U-fSK.

Proof. We use Proposition 4.15. Thus let (ai)i∈I be a supercompact family and consider a family of families 
of families (((bkj )j∈Jk

)k∈Ki
)i∈I of elements of A, with (Ki)i∈I a family of pairwise disjoint sets, such that∧

i∈I

(ai →
∧

k∈Ki

∃
j∈Jk

bkj ) ∈ Σ

By ∃-distributivity we get that ∧
i∈I

(ai → ∃
g∈(Πk∈Ki)Jk

∧
k∈Ki

bkg(k)) ∈ Σ

Using supercompactness of (ai)i∈I we then get that there exists f ∈ (Πi ∈ I)(Πk ∈ Ki)Jk such that∧
(ai →

∧
bkf(i)(k)) ∈ Σ
i∈I k∈Ki
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Since the Ki’s are pairwise disjoint, the function f̃ sending every k ∈ Ki to f(i)(k) is well defined and 
f̃(k) ∈ Jk; hence we get ∧

i∈I

(ai →
∧

k∈Ki

bk
f̃(k)) ∈ Σ

Thus we get uniform supercompactness of (ai)i∈I .
The proof of the second part of the statement is similar, although one has to carefully deal with ×-

functionality conditions. �
Thus if we add the assumption that A is ∃-distributive, the situation can be summarized as follows:

U-SK ≡ SK

U-fSK ≡ U-wfSK ≡ fSK cSK

wfSK cInd

4.5. Supercompactness and indecomposability in complete Heyting algebras

In the case of a complete Heyting algebra, the notion of supercompact element introduced in Definition 4.9
coincides with the ordinary notion, i.e. an element a is supercompact if a ≤

∨
i∈I bi implies the existence of 

an i ∈ I such that a ≤ bi, for every set-indexed family (bi)i∈I of elements of A, that is if a is a supercompact 
element in the localic sense (see [21]). In particular, in the boolean case supercompact elements are exactly 
atoms. Indecomposable elements in complete Heyting algebras express just a notion of connectedness which 
is called in fact indecomposability and it can be shown to be equivalent to usual connectedness3 plus the 
fact of being different from ⊥ (see e.g. [3]). For complete Boolean algebras, supercompactness coincides 
with indecomposability. Indeed, for every family of elements (bi)i∈I of a complete Boolean algebra one can 
construct a new family (̃bi)i∈I satisfying the following properties:

1. b̃i ≤ bi for every i ∈ I;
2. b̃i ∧ b̃j = ⊥ for every i �= j in I;
3.

∨
i∈I b̃i =

∨
i∈I bi.

Notice that in general the indecomposable elements of a complete Heyting algebra are not supercompact. 
For example, we can consider the complete Heyting algebra of open subsets of reals: it is immediate to check 
that there are no supercompact open subsets of reals, while every open interval is indecomposable.

Every complete Heyting algebra can be easily seen to be compatible with joins. Moreover Σ, being {
}, 
is closed under 

∧
. Thus we get that in there for families we have U-SK ≡ SK ≡ cSK. Families satisfying 

these properties are exactly componentwise supercompact (in localic sense) families. Moreover, U-fSK ≡
U-wfSK ≡ fSK ≡ cInd. Families satisfying these properties are exactly componentwise indecomposable 
families.

Finally, one can easily see that a family (ai)i∈I is wfSK if and only if one of the following happens:

1. I = ∅ or

3 An element a of a Heyting algebra is connected if and only if a ≤ b ∨ c implies a ≤ b or a ≤ c.
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2. I �= ∅, ai is connected for every i ∈ I, but at least one of the ai’s is indecomposable.

U-SK ≡ SK ≡ cSK

U-fSK ≡ U-wfSK ≡ fSK ≡ cInd

wfSK

For complete Boolean algebras indecomposable elements are exactly supercompact elements. Thus, in 
this case we have that U-SK ≡ SK ≡ cSK ≡ U-fSK ≡ U-wfSK ≡ fSK ≡ cInd and these are exactly 
componentwise atomic families; wfSK families are families whose components are atoms or minima, but 
not all minima if the family is non-empty.

4.6. Supercompactness and indecomposability in different kinds of realizability

Realizability
In the case of an implicative algebra (P(R), ⊆, ⇒, P(R) \ {∅}) coming from a combinatory algebra (R, ·), 

supercompact elements are non-empty subsets of R, since they are all equivalent to 
 = R, and since ⊥ = ∅
(we are using Remarks 4.10 and 4.11). Every non-empty subset of R is also indecomposable (since it is super-
compact) and every indecomposable subset is non-empty. Thus, supercompactness and indecomposability 
coincide for elements.

We can also notice that the implicative algebra arising from a combinatory algebra (R, ·) is compatible 
with joins and ∃-distributive. The former property can be trivially verified, while to prove the latter, it is 
enough to observe that since the implicative algebra coming from a combinatory algebra (R, ·) is compatible 
with joins, it is sufficient to prove that there is a realizer r independent from the specific family such that

r ∈
⋂
i∈I

⋃
j∈Ji

Bi
j ⇒

⋃
f∈(Πi∈I)Ji

⋂
i∈I

Bi
f(i)

Since (by the axiom of choice) the antecedent and the consequent of the implication above are equal sets, 
r can be taken to be i.

Therefore, by Proposition 4.41, we have that U-SK families coincide with SK families, and U-fSK
families coincide with fSK families. We now show that for every SK family (Ai)i∈I there exists a function 
f : I → R such that ⋂

i∈I

(Ai ⇒ {f(i)}) �= ∅ and
⋂
i∈I

({f(i)} ⇒ Ai) �= ∅

In order to do this we consider the family of families (({j})j∈Ai
)i∈I . One easily can show that

λx.λy.yx ∈
⋂
i∈I

(Ai ⇒ ∃
j∈Ai

{j})

Using supercompactness we get the existence of a function f ∈ (Πi ∈ I)Ai ⊆ RI and a realizer s such that

s ∈
⋂
i∈I

(Ai ⇒ {f(i)})

Since i ∈
⋂

({f(i)} ⇒ Ai) we can conclude.
i∈I
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Conversely, we show that if (Ai)i∈I is a family satisfying the property above, then it is SK. So let us 
assume

r ∈
⋂
i∈I

(Ai ⇒ ∃
j∈Ji

Bi
j)

Using compatibility with joins and the hypothesis on (Ai)i∈I we get that there exists a realizer r′ such that

r′ ∈
⋂
i∈I

({f(i)} ⇒
⋃
j∈Ji

Bi
j)

Now, for every i ∈ I there exists j ∈ Ji such that r′ · f(i) ∈ Bi
j . Using the axiom of choice we hence produce 

a function g ∈ (Πi ∈ I)Ji such that

r′ ∈
⋂
i∈I

({f(i)} ⇒ Bi
g(i))

Using the hypothesis on the family again we get the existence of a realizer s such that

s ∈
⋂
i∈I

(Ai ⇒ Bi
g(i))

Assume now (R, ·) to be a non-trivial combinatory algebra and consider three distinct realizers r0, r1, r2 ∈
R (this is always possible in a non-trivial combinatory algebra) and the family (Ai)i∈{0,1,2} where A0 =
{r0, r1}, A1 = {r1, r2} and r2 = {r0, r2}. Let us assume there is a function f : {0, 1, 2} → R such that⋂

i=0,1,2
(Ai ⇒ {f(i)}) �= ∅

Then, since Ai ∩Aj �= ∅ for every i, j ∈ {0, 1, 2} we get f(0) = f(1) = f(2) = a. If we now assume also that 
there exists r ∈ R such that

r ∈
⋂

i=0,1,2
({a} ⇒ Ai)

then we get that r · a ∈ A0 ∩ A1 ∩ A2 which is in contradiction with our assumption. We have hence 
produced an example of a cSK family which is not SK. Thus for the implicative algebra arising from 
a non-trivial combinatory algebra cSK does not imply SK. Since supercompact elements coincide with 
functionally supercompact elements, we have that cSK ≡ cInd. Moreover, it is easy to show that in the 
case of realizability cSK implies wfSK, from which it follows that cSK implies fSK. Conversely, fSK
implies cSK by Proposition 4.34. Thus, also fSK ≡ cSK.

Finally, one can easily prove that a family (Ai)i∈I is wfSK if and only if I = ∅ or there exists i ∈ I such 
that Ai �= ∅.

U-SK ≡ SK

cSK ≡ U-fSK ≡ U-wfSK ≡ fSK ≡ cInd

wfSK
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Relative realizability
It is easy to check that the implicative algebras of relative realizability are compatible with joins and 

∃-distributive.
Supercompact elements are exactly those A ⊆ R which are equivalent to a singleton. Indeed, since the 

combinator i can be assumed to be in R#, the implicative algebra is compatible with joins and i ∈ A ⇒⋃
a∈A{a}, we get that if A is supercompact, then there exists a ∈ A and r ∈ R#, such that r ∈ A ⇒ {a}. 

Since i ∈ {a} ⇒ A, we can conclude that A ≡Σr
R,R#

{a}. Conversely, each such an element is supercompact 
since singletons are easily shown to be so. In particular, all subsets A such that A ∩R# �= ∅ are supercompact. 
Another example of supercompact is a set of the form Pa := {pab| b ∈ R} where a ∈ R is fixed and where p
is the usual pairing combinator which we can assume to be in R#. Indeed, this subset is equivalent to the 
singleton {a} since p1 ∈ Pa ⇒ {a} and the first-projection combinator can be assumed to be in R#, while 
λx.pxx ∈ {a} ⇒ Pa and this combinator too can be assumed to be in R#.

From the characterization of ×-disjoint families in relative realizability implicative algebras, it follows 
that indecomposable elements in this case are just non-empty subsets of R. Thus in general cInd is not 
equivalent to cSK for families.

Moreover, SK is not equivalent to cSK (realizability is a special case of relative realizability).
Since the implicative algebra is ∃-distributive, then U-SK ≡ SK and U-fSK ≡ U-wfSK ≡ fSK and 

one can easily show, as for realizability, that SK families are those families equivalent to singleton families, 
i.e. families of the form ({f(i)})i∈I for some function f : I → R.

One can also show easily that cInd is equivalent to fSK. Finally, as in the realizability case, one can 
easily prove that a family (Ai)i∈I is wfSK if and only if I = ∅ or there exists i ∈ I such that Ai �= ∅.

U-SK ≡ SK

cSK

U-fSK ≡ U-wfSK ≡ fSK ≡ cInd

wfSK

Nested realizability
In nested realizability implicative algebras supercompact elements are pairs (A, B) which are equivalent 

to a pair of the form (X, {b}) with X ⊆ {b}. Indeed, one can notice that

i ∈ (A ⇒#
⋃
b∈B

({b} ∩A)) ∩ (B ⇒
⋃
b∈B

{b})

Thus, since the implicative algebra of nested realizability is compatible with joins, if (A, B) is supercompact, 
then there exists b ∈ B such that ({b} ∩A, {b}) ≡ΣR,R#

(A, B). The converse can be easily checked.
Functionally supercompact elements are those (A, B) with B �= ∅.
Nested realizability implicative algebras are also ∃-distributive. Thus, also in this case we get the equiv-

alence between SK and U-SK and in the non-trivial case we get that cSK does not imply SK using an 
argument similar to that used for the realizability case.

In particular a family (Ai, Bi)i∈I is SK if and only if there exists a family (Ci, Di)i∈I with Di singleton 
for every i ∈ I such that
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⋃
i∈I

(Ai ⇒# Ci ∩Bi ⇒ Di) �= ∅ and
⋃
i∈I

(Ci ⇒# Ai ∩Di ⇒ Bi) �= ∅

In order to prove this one just has to work with the family of families (({j} ∩Ai}, {j})j∈Bi
)i∈I .

We can characterize fSK families as those families (Ai, Bi)i∈I where Bi �= ∅ for every i ∈ I, that is 
fSK ≡ cInd. This is also equivalent to U-fSK by ∃-distributivity.

Modified realizability
Supercompact elements in modified realizability implicative algebras are pairs (A, B) with A �= ∅; indeed 

one can exploit the fact that in general ∃
i∈I

bi →
∨

i∈I bi ∈ Σ (see Proposition 2.4), to prove that every (A, B)

with A �= ∅ is supercompact, while one can easily show that (∅, B) ⇒n ∃∅ ∈ Σ from which it follows that 
(∅, B) can never be supercompact. From this characterization of supercompact elements it follows also that 
supercompact elements coincide with indecomposable elements.

By considering the empty family, one can easily check that a modified realizability implicative algebra is 
not compatible with joins, provided R is not trivial. This fact also makes difficult to prove whether these 
implicative algebras are ∃-distributive or not. We leave as an open problem for further investigations to 
characterize the different kinds of families in this case.

4.7. Supercoherent implicative algebras

Definition 4.42. An implicative algebra A satisfies the choice rule if for every family ((bkj )j∈JK
)k∈K of families 

of elements of A, if 
∧

k∈K ∃
j∈Jk

bkj ∈ Σ, then there exists f ∈ (Πk ∈ K)Jk such that 
∧

k∈K bkf(k) ∈ Σ.

It is an easy exercise to prove that the following holds.

Proposition 4.43. A satisfies the choice rule if and only if (
)i∈I is U-SK for every set I.

Example 4.44. The implicative algebras of realizability, nested realizability and relative realizability satisfy 
the choice rule. A complete Heyting algebra satisfies choice rule if and only if it is supercompact (see [21]).

Motivated by the characterization presented in [17] and by the realizability and localic examples, we 
introduce the following definition.

Definition 4.45. An implicative algebra A is said to be uniformly supercoherent if:

• it satisfies the choice rule;
• if (ai)i∈I and (bi)i∈I are U-SK families, then (ai × bi)i∈I is a U-SK family;
• for every family (aj)j∈J there exists a set I, a function f : I → J and a U-SK family (bi)i∈I such that∧

j∈J

(aj → ∃
f(i)=j

bi) ∈ Σ and
∧
j∈J

(( ∃
f(i)=j

bi) → aj) ∈ Σ

Remark 4.46. We anticipate here that, by definition, an implicative algebra is uniformly supercoherent if 
and only if its implicative tripos is an instance of the full existential completion, see [17, Thm. 4.16 and 
Thm. 7.32]. We will see more details about this in the next section.

Example 4.47. An implicative algebra coming from a complete Heyting algebra is uniformly supercoherent 
if and only if the corresponding locale is supercoherent. The implicative algebras of realizability w.r.t. a 
combinatory algebra are uniformly supercoherent. We refer to [17] for all the details.
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Definition 4.48. An implicative algebra A is said to be uniformly functionally supercoherent if:

• it satisfies the choice rule;
• if (ai)i∈I and (bi)i∈I are U-SK families, then (ai × bi)i∈I is a U-SK family;
• for every U-fSK family (aj)j∈J there exists a set I, a function f : I → J and a U-SK family (bi)i∈I

such that

∧
j∈J

(aj → ∃
f(i)=j

bi) ∈ Σ and
∧
j∈J

(( ∃
f(i)=j

bi) → aj) ∈ Σ

4.8. Modest and core families

We introduce here some notions which we will use later.

Definition 4.49. A family (ai)i∈I of elements of A is

1. ∧-modest if it is U-fSK and ∧-disjoint;
2. ×-modest if it is U-fSK and ×-disjoint;
3. a ∧-core family if it is U-SK and ∧-disjoint.
4. a ×-core family if it is U-SK and ×-disjoint.

Using results and definitions in the previous section one has that:

×-core ∧-core

×-modest ∧-modest

Example 4.50. In a complete Heyting algebra, since × = ∧, ∧-modest families coincide with ×-modest 
families: they are families whose elements are pairwise disjoint and indecomposable. Also ∧-core families 
coincide with ×-core families: they are families of pairwise disjoint supercompact elements.

Example 4.51. In the (total) realizability case ∧-modest families are families of pairwise disjoint non-empty 
sets of realizers, that is modest sets or PERs (see [25]). A family (Ai)i∈I is a ∧-core family if and only if it is 
equivalent to a family of the form ({f(i)})i∈I with f : I → A injective. Lastly, a family (Ai)i∈I is ×-modest 
if and only if it is a ×-core family if and only if I = ∅ or I is a singleton {�} and A� is non-empty.

4.9. Correspondence of supercompactness-like notions

We conclude this section by showing the correspondence between the various notions we introduced in 
the language of implicative algebras and implicative triposes:

Proposition 4.52. Let P : Setop −→ Hey be an implicative tripos and let ϕ be a predicate of P(I). We have 
that:

1. ϕ is SKp if and only if (ϕ(i))i∈I is SK;
2. ϕ is fSKp if and only if (ϕ(i))i∈I is fSK;
3. ϕ is wfSKp if and only if (ϕ(i))i∈I is wfSK.
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Proof. The proofs are straightforward. We provide just the proof of the first point, since the other two 
follow by similar arguments.

Suppose that ϕ is SKp, and let us consider a family ((bij)j∈Ji
)i∈I , with

∧
i∈I

(ϕ(i) → ∃
j∈Ji

bij) ∈ Σ. (1)

Now let us define by g :
∐

i∈I Ji → I the function sending an element (i, j) to i, and by φ ∈ P(
∐

i∈I Ji) the 
predicate sending (i, j) to bij . By definition of the left adjoints ∃f in an implicative tripos, we have that (1)
is equivalent to

ϕ �Σ[I] ∃gφ. (2)

Hence, by definition of SKp, there exists a function f : I →
∐

i∈I Ji such that g ◦ f = idI , and

ϕ �Σ[I] Pf (φ). (3)

By definition, we have that (3) means ∧
i∈I

(ϕ(i) → φ(f(i))) ∈ Σ. (4)

By definition of φ, and since the second component f2(i) of f(i) is in Ji, we can conclude from (4) that∧
i∈I

(ϕ(i) → bif2(i)) ∈ Σ

i.e. that the family (ϕ(i))i∈I is SK.
Employing a similar argument one can check that the converse holds too. �
Using the previous result and the fact that P acts on arrows by reindexing we get the following proposition.

Proposition 4.53. Let P : Setop −→ Hey be an implicative tripos, and let ϕ be a predicate of P(I). We have 
that:

1. ϕ is U-SKp if and only if (ϕ(i))i∈I is U-SK;
2. ϕ is U-fSKp if and only if (ϕ(i))i∈I is U-fSK;
3. ϕ is U-wfSKp if and only if (ϕ(i))i∈I is U-wfSK.

Combining the previous proposition with Corollary 4.28 we obtain the following corollary:

Corollary 4.54. A predicate of an implicative tripos is U-wfSKp if and only if it is U-fSKp.

Remark 4.55. As a consequence of the previous propositions, we have that in every uniformly supercoherent 
implicative algebra SK ≡ U-SK. This can be considered as a particular case of [17, Lem. 4.11].

Example 4.56. In the case of triposes for complete Heyting algebras with Σ = {
}, we obtain that SKp

and U-SKp predicates coincide and are exactly predicates ϕ such that (ϕ(i))i∈I is cSK since Σ is clearly 
closed under arbitrary infima; hence we re-obtain [17, Lem. 7.31].
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Example 4.57. Combining Proposition 4.52 and Proposition 4.53 with examples in 4.6, we have that in the 
triposes arising from implicative algebras coming from realizability, relative realizability and nested realiz-
ability, SKp predicates coincide with U-SKp predicates. In the case of realizability they are exactly those 
predicates (equivalent to) singleton predicates (that is predicates α for which α(x) is always a singleton). 
This characterization was already provided in [17].

5. Partitioned assemblies and assemblies for implicative triposes

In this section we introduce the notions of partitioned assemblies and assemblies for implicative triposes.
Before starting our analysis, we recap here some useful notions and results regarding the Grothendieck 

category of an implicative tripos.

5.1. Some properties of the Grothendieck category of an implicative tripos

Definition 5.1 (Grothendieck category). Let P : Setop −→ Hey be an implicative tripos. The Grothendieck 
category Γ[P] of P is the category whose objects are pairs (A, α) with α ∈ P(A) and whose arrows from 
(A, α) to (B, β) are arrows f : A → B in C such that α ≤ Pf (β).

It is direct to check that for every implicative tripos P : Setop −→ Hey, we have an adjunction

Γ[P] Set
U

Δ

�

where U(A, α) := A, U(f) := f , Δ(X) := (X, 
X) and Δ(f) := f .

Proposition 5.2. Let P : Setop −→ Hey be an implicative tripos. Then, the regular epis in Γ[P] are arrows 
f : (A, α) → (B, β) such that f is a regular epi in Set and β = ∃f (α).

Proof. Since the forgetful functor U : Γ[P] → Set is left adjoint to the functor Δ : Set → Γ[P], U preserves 
colimits. In particular, if f : (A, α) → (B, β) is a regular epi, that is the coequalizer of two arrows g, h :
(C, γ) → (A, α), then f : A → B is a coequalizer of g, h : C → A in Set. Let us show now that β = ∃f (α). 
Since α ≤ Pf (β), then ∃f (α) ≤ β. Moreover, we know that α ≤ Pf (∃f (α)). Thus f : (A, α) → (B, ∃f (α)) is 
a well-defined arrow which coequalizes g, h : (C, γ) → (A, α). This implies that idA : (B, β) → (B, ∃f (α))
must be a well-defined arrow in Γ[P]. Thus, β ≤ ∃f (α). Hence we get β = ∃f (α).

Conversely, let f : A → B be a regular epi in Set. Then it is the coequalizer in Set of two arrows 
g, h : C → A. Since α ≤ Pf∃f (α), the arrow f : (A, α) → (B, ∃f (α)) is well-defined. It is immediate to 
verify that this arrow is a coequalizer for the arrows g, h : (C, Pg(α) ∧ Ph(α)) → (A, α). �
Proposition 5.3. Let P : Setop −→ Hey be an implicative tripos. Then Γ[P] is regular.

Proof. We start by showing that Γ[P] has all finite limits. First, it is direct to check that (1, 
1) is a terminal 
object in Γ[P]. A product of (A, α) and (B, β) in Γ[P] is given by (A × B, Pπ1(α) ∧ Pπ2(β)) together with 
the projections π1 and π2, while an equalizer of two parallel arrows f, g : (A, α) → (B, β) in Γ[P] is given 
by (E, Pe(α)) where e : E → A is an equalizer of f, g in Set.

Now we show that Γ[P] is regular. Let f : (A, α) → (B, β) be an arrow in Γ[P]. We can factorize f : A → B

in Set as a regular epi r : A → R followed by a mono m : R → B. The arrow r : (A, α) → (R, ∃r(α)) is a 
regular epi in Γ[P] by Proposition 5.2 and m : (R, ∃r(α)) → (B, β) is a mono. Such factorizations are unique 
up-to-isomorphism and pullback-stable in Γ[P]. Thus Γ[P] is a regular category. �
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Example 5.4. Let us consider an implicative tripos P : Setop −→ Hey for a complete Heyting algebra H. 
Then the Grothendieck category Γ[P] is the coproduct completion H+ of the category H. This fact was 
observed in [16].

5.2. Partitioned assemblies

The main purpose of this section is to generalize the notion of category of partitioned assemblies associated 
with a PCA to implicative algebras and implicative triposes.

Let us recall that given a (partial) combinatory algebra (R, ·) the category of partitioned assemblies is 
defined as follows:

• an object is a pair (X, ϕ) where X is a set and ϕ : X → R is a function from X to the PCA;
• a morphism f : (X, ϕ) → (Y, ψ) is a function f : X → Y such that there exists an element a ∈ R with 

a · ϕ(x) = ψ(f(x)) for every x ∈ X, i.e. there exists an element a of the PCA such that the diagram

X Y

R R

f

ϕ ψ

a·(−)

commutes.

It is proved in [17,16] that the category of partitioned assemblies can be completely defined in terms of 
realizability triposes and full existential free elements, namely it is the full subcategory of the Grothendieck 
category Γ[P] whose second components is given by a full existential free element. Therefore, since in this 
work we use the notation of U-SKp to refer to full existential free elements, we have that the following 
definition provides a natural generalization of the ordinary notion of category of partitioned assemblies to 
an arbitrary implicative tripos:

Definition 5.5 (partitioned assemblies). Let P : Setop −→ Hey be an implicative tripos. We define the category 
of partitioned assemblies PAsmP of P as the full sub-category of Γ[P] given by the objects of Γ[P] whose 
second component is a U-SKp predicate of P.

Notice that in general the category of partitioned assemblies of an implicative tripos does not have all 
finite limits. This is due to the fact that, in general, U-SKp predicates are not closed under finite meets. 
In fact, combining the stability under reindexing of U-SKp predicates with the definition of finite limits in 
Γ[P] (see Proposition 5.3), it is straightforward to check that:

Lemma 5.6. The category PAsmP is a lex subcategory of Γ[P] if and only if U-SKp predicates are closed 
under finite meets.

Example 5.7. In the case of realizability triposes the category defined in Definition 5.5 coincides with the 
ordinary category of partitioned assemblies.

Example 5.8. Let P : Setop −→ Hey be an implicative tripos associated with a complete Heyting algebra. 
Then, we have that an object of PAsmP is a pair (A, α) such that every element α(x) is supercompact in 
the sense of [1].

Remark 5.9. A nice intrinsic characterization of categories which are equivalent to a category of partitioned 
assemblies for a PCA is presented in [9, Thm. 3.8], where the author proves that a category is equivalent 
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to partitioned assemblies over a PCA if and only if it is w.l.c.c. and well-pointed local, and has a discrete 
generic object. This intrinsic description, combined with the notion of category of partitioned assemblies 
for an implicative algebra, offers a useful tool to identify implicative algebras whose category of partitioned 
assemblies happens to be equivalent to the category of partitioned assemblies for a PCA. Again, these 
considerations can be extended to the case of categories of assemblies for implicative algebras, which we 
will define in the next section, taking advantage of the intrinsic description of the regular completion of a 
lex category [4].

5.3. Assemblies

The main purpose of this section is to generalize the notion of category of assemblies associated with a 
PCA to implicative algebras and implicative triposes.

Let us recall (see for example [29]) that given a partial combinatory algebra (R, ·) the category of assem-
blies is defined as follows:

• an object is a pair (A, α) where A is a set and α : A → P∗(R) is a function from A to the non-empty 
powerset of the PCA;

• a morphism f : (A, α) → (B, β) is a function f : A → B such that there exists an element r ∈ R for 
which r · a ↓ and r · a ∈ β(f(x)) for every x ∈ A and a ∈ α(x).

Notice that, by the result presented in Section 4.6, we have that the category of assemblies can be described 
as the full subcategory of Γ[P] associated with the realizability tripos, whose objects are given by (A, α)
where α enjoys the property of being U-fSKp, or equivalently (by Corollary 4.54), of being U-wfSKp.

This correspondence between assemblies and U-fSKp predicates of realizability triposes suggests the 
following abstraction of the notion of assemblies:

Definition 5.10 (Assemblies). Let P : Setop −→ Hey be an implicative tripos. We define the category of
assemblies AsmP of P as the full sub-category of Γ[P] given by the objects of Γ[P] whose second component 
is a U-fSKp predicate of P.

Hence we have the following inclusions of categories:

PAsmP AsmP Γ[P]

As in the case of partitioned assemblies, the category of assemblies of an implicative tripos is not lex or 
regular in general, since U-fSKp predicates are not closed under finite meets in general.

Proposition 5.11. The category AsmP is a regular subcategory of Γ[P] if and only if:

• U-fSKp predicates are closed under finite meets;
• U-fSKp predicates are stable under existential quantifiers along regular epis, i.e. for every U-fSKp

predicate ϕ and r regular epi of Set we have ∃r(ϕ) is U-fSKp.

Proof. As in the case of partitioned assemblies, we have that AsmP is a lex sub-category of Γ[P] if and 
only if U-fSKp predicates are closed under finite meets. To conclude the proof, it is enough to observe that 
the factorization system of Γ[P] induces a factorization system on AsmP if and only if U-fSKp predicates 
are stable under existential quantifiers along regular epis. But this follows by the explicit description of the 
factorization system of Γ[P], i.e. we have that an arrow f : (A, α) → (B, β) can be written as
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(A,α) (B, β)

(R, ∃r(α))
r m

f

with r regular epi and m mono. �
Example 5.12. When P : Setop −→ Hey is a realizability tripos, the category AsmP coincides with the 
ordinary category of assemblies for a CA, as described in [29].

Example 5.13. When P : Setop −→ Hey is an implicative tripos for nested realizability the category AsmP
coincides with the category of assemblies for nested realizability, as described in [18, Sec. 1.3].

Example 5.14. When P : Setop −→ Hey is an implicative tripos for a complete Heyting algebra we have 
that the category AsmP is given by objects (A, α) where, for every x ∈ A, ϕ(x) is indecomposable, see 
Section 4.6.

Example 5.15. When P : Setop −→ Hey is an implicative tripos for a complete Boolean algebra we have that 
AsmP ∼= PAsmP, since in every complete Boolean algebra we have that U-fSKp ≡ U-SKp, see Section 4.5.

5.4. Regular completion of implicative triposes

It is a well-known result (see [23,15,14,29]) that every topos C[P] obtained as the result of the tripos-to-
topos construction from a given tripos P can be presented as the ex/reg-completion (according to [6])

C[P] � (RegP)ex/reg

of a certain regular category, that we denote by RegP, constructed from the tripos P. By the universal 
property of the ex/reg-completion the canonical embedding

y : RegP → C[P]

is a full and faithful regular functor.
The universal properties of the category RegP (which is called AssC(P) in [29]) are analyzed in detail in 

[15,14], where it is proved that such a category enjoys the property of being the regular completion of P.
In the following definition, we recall an explicit description of such a category (in the case of Set-based 

triposes):

Definition 5.16. Let P : Setop −→ Hey be an implicative tripos. We define the category RegP as follows:

• the objects of RegP are pairs (A, α), where A is a set and α is an element of P(A);
• an arrow of RegP from (A, α) to (B, β) is given by an element φ of P(A ×B) such that:

1. φ ≤ Pπ1(α) ∧ Pπ2(β);
2. α ≤ ∃π1(φ);
3. P〈π1,π2〉(φ) ∧ P〈π1,π3〉(φ) ≤ P〈π2,π3〉(δB).

The composition of morphisms of RegP is given by the usual relational composition: the composition of 
φ : (A, α) → (B, β) and ψ : (B, β) → (C, γ) is given by

∃〈π1,π3〉(P〈π1,π2〉(φ) ∧ P〈π2,π3〉(ψ))
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where πi for i = 1, 2, 3 are projections from A ×B × C.

Remark 5.17. Notice that, from 1. and 2. in the definition, every arrow φ : (A, α) → (B, β) of RegP satisfies 
α = ∃π1(φ).

Remark 5.18. Notice that one can always define a finite-limit preserving functor as follows

F : Γ[P] → RegP

(A,α) �→ (A,α)

f �→ ∃〈idA,f〉(α)

for every arrow f : (A, α) → (B, β). It is straightforward to check that this functor is well-defined. Indeed, 
for every arrow f : (A, α) → (B, β) in Γ[P], ∃〈idA,f〉(α) satisfies condition 1. since α ≤ Pf (β) and satisfies 
2. by its very definition; moreover it satisfies also condition 3. as one can easily see by using adequately 
adjunctions and Heyting implications, and exploiting BCC and FR. Identities id(A,α) are sent to ∃ΔA

(α), 
that is to identities in RegP. Finally, composition can be easily shown to be preserved.

The functor F is not faithful. Indeed, for every pair of sets A, B, we have that HomΓ[P]((A, ⊥), (B, 
)) =
HomSet(A, B), while HomRegP((A, ⊥), (B, 
)) � {�}. If A is non-empty and B has at least two elements, 
we have that

HomΓ[P]((A,⊥), (B,
)) �� HomRegP((A,⊥), (B,
))

In general, F is neither provable to be full. E.g. consider the case of the tripos induced by a complete 
Boolean algebra with four elements {⊥, a, ¬a, 
} and the arrow φ : ({0}, 
) → ({0, 1}, 
) defined by

φ(0, x) =
{
a if x = 0
¬a if x = 1

This is a well-defined arrow in RegP which however has not the form F(f) for any f : {0} → {0, 1}.
Notice that in general the category RegP is not (equivalent to) a full subcategory of the Grothenieck 

category Γ[P], since morphisms of RegP may not arise from morphisms of the base category.

Lemma 5.19. A morphism φ : (A, α) → (B, β) in RegP is a regular epi if and only if β = ∃π2(φ).

Proof. We know that the embedding of RegP into Set[P] � (RegP)ex/reg preserves regular epis, since it is 
a regular functor. Moreover, since the embedding preserves finite limits and every regular epi in Set[P] is a 
coequalizer of its kernel pair, we can conclude that the embedding also reflects regular epis. Thus an arrow 
in RegP is a regular epi if and only if it is a regular epi in Set[P].

We know that in Set[P] every epi is regular since it is a topos. Thus using the characterization of epis of 
Set[P] in [23], we can conclude. �
Remark 5.20. Notice that the functor F : Γ[P] → RegP preserves regular epis. In particular, the functor F
is regular. This follows immediately from Proposition 5.2, Lemma 5.19 and Proposition 5.3.

Remark 5.21. Notice that the category RegP of a tripos P can also be described by means of the constant 
object functor as the full subcategory of Set[P] of subobjects of constant objects Δ(A) for some object A of 
Set (for the definition of the constant object functor Δ : Set → Set[P] see e.g. [29]).
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Remark 5.22. Notice that in RegP, as observed in [23], for parallel arrows φ, ψ : (A, α) → (B, β), we have 
that φ ≤ ψ if and only if φ = ψ. Here we sketch a proof that if φ ≤ ψ then ψ ≤ φ. By Remark 5.17
we have that ∃π1(φ) = α = ∃π1(ψ) and then, in particular, we have that ∃π1(ψ) ≤ ∃π1(φ), and then that 
ψ ≤ Pπ1∃π1(φ). By BCC we have that ψ ≤ ∃〈π1,π2〉P〈π1,π3〉(φ), where πi are the projections in the following 
pullback

A×B ×B A×B

A×B A
π1

π1〈π1,π3〉

〈π1,π2〉

In particular, we have that ψ = ∃〈π1,π2〉P〈π1,π3〉(φ) ∧ ψ and, by FR, we have that

ψ = ∃〈π1,π2〉(P〈π1,π3〉(φ) ∧ P〈π1,π2〉(ψ)).

But since φ ≤ ψ, we have that

∃〈π1,π2〉(P〈π1,π3〉(φ) ∧ P〈π1,π2〉(ψ)) = ∃〈π1,π2〉(P〈π1,π3〉(φ) ∧ P〈π1,π3〉(ψ) ∧ P〈π1,π2〉(ψ)).

Since ψ is functional, i.e. P〈π1,π3〉(ψ) ∧ P〈π1,π2〉(ψ) ≤ P〈π2,π3〉(δB), we have that

ψ ≤ ∃〈π1,π2〉(P〈π1,π3〉(φ) ∧ P〈π2,π3〉(δB)).

Employing the fact that δB = ∃ΔB
(
B), BCC and FR, it is straightforward to check that

φ = ∃〈π1,π2〉(P〈π1,π3〉(φ) ∧ P〈π2,π3〉(δB)).

Therefore we can conclude that ψ ≤ φ, and hence that ψ = φ (since φ ≤ ψ by hypothesis).

5.4.1. The subcategory of trackable objects
Let P : Setop → Hey be a fixed implicative tripos for the rest of this section.

Definition 5.23 (trackable morphism). Let φ : (A, α) → (B, β) be a morphism of RegP. We say that φ is
trackable if there exists a morphism fφ : A → B of the base category such that α ≤ P〈idA,fφ〉(φ).

Definition 5.24 (trackable object). An object (A, α) of RegP is said to be a trackable object if every morphism 
φ : (A, α) → (B, β) of RegP is trackable. We denote by TrackP the full subcategory of RegP whose objects 
are trackable.

Remark 5.25. Notice that for φ : (A, α) → (B, β) in RegP, if α ≤ P〈idA,fφ〉(φ), then α = P〈idA,fφ〉(φ), since 
the opposite inequality follows from φ ≤ Pπ1(α). Notice moreover that when a morphism φ : (A, α) → (B, β)
of RegP is trackable, then we have that the arrow fφ : A → B induces a well-defined arrow fφ : (A, α) →
(B, β) in Γ[P]. In fact, by definition of arrows in RegP we have that φ ≤ Pπ1(α) ∧ Pπ2(β), and then, by 
applying P〈idA,fφ〉, we have that

α ≤ P〈idA,fφ〉(φ) ≤ α ∧ Pfφ(β)

and then we can conclude that α ≤ Pfφ(β). We can also notice that F(fφ) = ∃〈idA,fφ〉(α) ≤ φ, by adjunction. 
Since both F(fφ) and φ are arrows in RegP from (A, α) to (B, β), we conclude by Remark 5.22 that they 
are in fact equal.
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Now we can employ the notions introduced in Definition 3.8 to easily characterize the category of trackable 
objects of an implicative tripos:

Proposition 5.26. Let P : Setop −→ Hey be an implicative tripos. Then an object (A, α) of RegP is trackable 
if and only if α is a wfSKp predicate of P.

5.4.2. The subcategory of strongly trackable objects

Definition 5.27 (strongly trackable morphism). Let φ : (A, α) → (B, β) be a morphism of RegP. We say 
that φ is strongly trackable if there exists a unique morphism fφ : A → B of the base category such that 
α ≤ P〈idA,fφ〉(φ).

Definition 5.28. An object (A, α) of RegP is said to be a strongly trackable object if every morphism 
φ : (A, α) → (B, β) of RegP is strongly trackable. We denote by STrackP the full subcategory of RegP of 
strongly trackable objects.

Employing the notions introduced in Definition 3.8 we can easily characterize the category of strongly 
trackable objects of an implicative tripos:

Proposition 5.29. Let P : Setop −→ Hey be an implicative tripos. Then an object (A, α) of RegP is strongly 
trackable if and only if α is a fSKp predicate of P.

Hence we have the following diagram for every implicative tripos:

PAsmP AsmP Γ[P]

STrackP TrackP RegP

F

5.5. Category of (regular) projective strongly trackable objects

In the previous sections we have seen that the notions of fSKp and wfSKp predicates have a clear 
interpretation in terms of trackable objects of the regular completion of an implicative tripos. The main 
purpose of this section is to show that the notion of SKp predicates corresponds exactly to those strongly 
trackable objects of RegP that are regular projective.

Definition 5.30. We denote by Pr-STrackP the full subcategory of RegP whose objects are strongly track-
able and regular projective.

Proposition 5.31. Every object (A, α) where α is SKp is regular projective in RegP.

Proof. Let us consider the following diagram

(C, γ)

(A,α) (B, β)

φ2
φ3
φ1
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with φ2 regular epi in RegP, i.e. β ≤ ∃π2(φ2), and where α is SKp. We have to show that there exists a 
morphism φ3 such that the previous diagram commutes. By Proposition 5.29, we know that φ1 is trackable, 
i.e. there exists an arrow fφ1 : A → B such that α = P〈idA,fφ1 〉(φ1). By Remark 5.25, we have that α ≤
Pfφ1

(β). Thus, we have that

α ≤ Pfφ1
(β) ≤ Pfφ1

∃π2(φ2). (5)

By Beck-Chevalley condition, we have that (5) implies that

α ≤ ∃π2(PidC ×fφ1
(φ2)). (6)

Since α is SKp we have that there exists an arrow h : A → C such that

α ≤ P〈h,idA〉(PidC ×fφ1
(φ2)) = P〈h,fφ1 〉(φ2) (7)

Now we claim that φ3 := ∃〈idA,h〉(α) is a morphism of RegP. Notice that it is enough to prove that 
α ≤ Ph(γ) because if h : (A, α) → (C, γ) is a morphism in the Grothendieck category Γ[P] then ∃〈idA,h〉(α)
is a morphism of RegP from (A, α) to (C, γ).

Recall that since φ2 is a morphism of RegP we have, in particular, that φ2 ≤ Pπ1(γ), and then we can 
combine this with (7) to conclude that

α ≤ P〈h,fφ1〉(φ2) ≤ P〈h,fφ1〉(Pπ1(γ)) = Ph(γ).

Finally, let us check that the starting diagram commutes with φ3.
Recall that the composition φ2 ◦ φ3 in RegP is given by

∃〈π1,π3〉(P〈π1,π2〉(φ3) ∧ P〈π2,π3〉(φ2)) (8)

By definition φ3 = ∃〈idA,h〉(α), so we have that

P〈π1,π2〉(φ3) ∧ P〈π2,π3〉(φ2) = P〈π1,π2〉∃〈idA,h〉(α) ∧ P〈π2,π3〉(φ2)

and by BCC, this is equal to

∃〈π1,h◦π1,π2〉Pπ1(α) ∧ P〈π2,π3〉(φ2)

Now we can apply FR, obtaining

∃〈π1,h◦π1,π2〉(Pπ1(α) ∧ P〈h◦π1,π2〉(φ2))

Therefore we have that (8) is equal to

Pπ1(α) ∧ P〈h◦π1,π2〉(φ2)

By Remark 5.22, to show that φ3 ◦ φ2 = φ1 it is enough to show that φ1 ≤ φ3 ◦ φ2, i.e. that

φ1 ≤ Pπ1(α) ∧ P〈h◦π1,π2〉(φ2). (9)

First, φ1 ≤ Pπ1(α) since φ1 is an arrow with domain (A, α) in RegP.
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Now we show that φ1 ≤ P〈h◦π1,π2〉(φ2): using the fact that φ1 = ∃〈idA,fφ1〉(α) we have that

φ1 ≤ P〈h◦π1,π2〉(φ2) ⇐⇒ ∃〈h◦π1,π2〉(φ1) ≤ φ2 ⇐⇒ ∃〈h,fφ1〉(α) ≤ φ2

and then we can conclude that

φ1 ≤ P〈h◦π1,π2〉(φ2) ⇐⇒ α ≤ P〈h,fφ1 〉(φ2).

Since we have that α ≤ P〈h,fφ1 〉(φ2) holds by (7), we can conclude that φ1 ≤ P〈h◦πA,πB〉(φ2). This concludes 
the proof that (9) holds and then, by Remark 5.22, that φ1 = φ3 ◦ φ2. �
Proposition 5.32. Let (A, α) be a strongly trackable object of RegP. If (A, α) is regular projective, then α is 
SKp.

Proof. Let us suppose that α ≤ ∃f (β) where f : B → A is an arrow of the base category and β ∈ P(B). 
Then, since (A, α) is regular projective, there exists an arrow φ such that the diagram

(B, β)

(A,α) (A,∃f (β))∃ΔA
(α)

∃〈idB,f〉(β)
φ

commutes in RegP (indeed notice that ∃〈idB ,f〉(β) is a regular epi because ∃π2∃〈idB ,f〉(β) = ∃f (β)). Since 
(A, α) is a strongly trackable object there exists a unique fφ : A → B such that φ = ∃〈idA,fφ〉(α), and we 
have that α ≤ Pfφ(β).

Finally, notice that the composition f ◦ fφ : A → A has to be equal to the identity idA on A because 
∃〈idB ,f〉(β) ◦ ∃〈idA,fφ〉(α) = ∃ΔA

(α) since the previous diagram commutes. In fact, first notice that

∃〈idB ,f〉(β) ◦ ∃〈idA,fφ〉(α) = ∃〈idA,f◦fφ〉(α)

because by the definition of the functor F : Γ[P] → RegP we have that:

∃〈idB ,f〉(β) ◦ ∃〈idA,fφ〉(α) = F(f) ◦ F(fφ) = F(f ◦ fφ) = ∃〈idA,f◦fφ〉(α)

Now, since we have proved that ∃〈idA,f◦fφ〉(α) = ∃〈idB ,f〉(β) ◦ ∃〈idA,fφ〉(α) = ∃ΔA
(α) we can use the unique-

ness in the definition of strongly trackable morphism to conclude that f ◦ fφ = idA. This allows us to 
conclude that α is SKp. �

As a corollary of the previous two propositions, we have that:

Corollary 5.33. An object (A, α) of RegP is strongly trackable and regular projective if and only if α is SKp.

Summarizing, we have the following diagram:

PAsmP AsmP Γ[P]

Pr-STrackP STrackP TrackP Reg

F

P
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5.6. A characterization of the categories of assemblies and regular completion

It is well-known that in realizability the category of assemblies happens to be equivalent to the reg/lex-
completion of its full subcategory of partition assemblies [4]. In this section, we investigate for which 
implicative algebras we can extend this equivalence.

Remark 5.34. Notice that, when we consider a tripos associated with a uniformly supercoherent implicative 
algebra, we have that, by Remark 4.55,

PAsmP ≡ Pr-STrackP

Theorem 5.35. Let P : Setop −→ Hey be an implicative tripos, for a given implicative algebra A. Then A
is uniformly supercoherent if and only if PAsmP is a lex (full) sub-category of RegP and it provides a 
projective cover of RegP.

Proof. Let us suppose that A is uniformly supercoherent (see Definition 4.45). Then, since U-SK are closed 
under finite infs, we have that PAsmP is a lex subcategory of RegP; this is a consequence of Lemma 5.6
and its proof, of the proof of Proposition 5.3 and of the fact that partitioned assemblies are strongly 
trackable. Now we show that PAsmP is a projective cover. We already know that the objects of PAsmP
are projective (by Corollary 5.33), so we only have to show that every object (B, β) of RegP is covered by 
a regular projective of PAsmP. To show this we use the fact that in a uniformly supercoherent algebra, 
every element can be written as ∃f (ϕ), with ϕ U-SKp. In detail, given an object (B, β) of RegP, there 
exists an element ϕ ∈ P(A) and a morphism f : A → B of Set such that β = ∃f (ϕ). From this, we have 
that ϕ ≤ Pf (β), i.e. that f : (A, ϕ) → (B, β) is a morphism in Γ[P]. Therefore, we can define a morphism 
of RegP, φ : (A, ϕ) → (B, β) by φ := ∃〈idA,f〉(ϕ). By Lemma 5.19, we have that φ is a regular epi in RegP
since ∃πB

(φ) = ∃f (ϕ) = β. This concludes the proof that PAsmP is a lex (full) sub-category of RegP and 
it provides a projective cover of RegP.

Now we show the other direction. The fact that U-SK families (or equivalently U-SKp predicates) are 
closed under finite meets follows by Lemma 5.6. Finally, to show that every element of the implicative 
algebra can be written as ∃f (ϕ) with ϕ U-SKp, we use the fact that PAsmP provides a protective cover 
of AsmP. In particular, we have that for every element β of P(B), the object (B, β) of RegP is covered 
by a regular epi φ : (A, ϕ) → (B, β) where (A, ϕ) is an object of PAsmP. Since every object of PAsmP
is strongly trackable, we have that φ = ∃〈idA,fφ〉(ϕ), and since φ is a regular epi, i.e. ∃πB

(φ) = β, we can 
conclude that ∃fφ(ϕ) = β. This concludes the proof that A is uniformly supercompact. �

Given the intrinsic characterization of the regular completion of a lex category presented in [4], we have 
the following corollary:

Corollary 5.36. Let P : Setop −→ Hey be an implicative tripos, for a given implicative algebra A. Then A is 
uniformly supercoherent if and only if PAsmP is a lex subcategory of RegP and (PAsmP)reg/lex ∼= RegP.

Example 5.37. Relevant examples satisfying the hypotheses of Corollary 5.36 are implicative algebras asso-
ciated with a CA, and implicative algebras associated with a supercoherent locale, see Example 4.47.

As a second corollary of Theorem 5.35, we obtain a different proof of the characterization of the regular 
completion of a tripos presented in [16, Thm. 4.14]:

Corollary 5.38. Let P : Setop −→ Hey be an implicative tripos, for a given uniformly supercoherent implicative 
algebra A. Then, if AsmP is regular, we have that
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(PAsmP)reg/lex ∼= AsmP ∼= RegP.

Notice that the proof Theorem 5.35 can be reproduced to obtain the following result:

Theorem 5.39. Let P : Setop −→ Hey be an implicative tripos, for a given implicative algebra A. If AsmP
is regular, then we have that A is uniformly functionally supercoherent if and only if PAsmP is a lex 
subcategory of AsmP and (PAsmP)reg/lex ∼= AsmP.

Example 5.40. Let B be a complete atomic boolean algebra which we can think of as the powerset algebra 
of some set B. In B, supercompact elements are atoms which are not closed under infima. This in particular 
implies that uniformly supercompact predicates are not closed under finite meets.

One can easily see that PAsmB is equivalent to the slice category Set/B.4 Although Set/B is clearly a 
finitely complete category, the inclusion functor into Γ[PB] does not preserve finite limits. E.g. the terminal 
object in Set/B is the identity function from B to B which is sent to the assembly (B, x �→ {x}) which is 
not terminal in Γ[PB].

Example 5.41. Let H be a complete Heyting algebra without supercompact elements. Then PAsmH is a 
trivial category with just one object and the identity arrow.

Example 5.42. Consider the Sierpinski space 3 which is a supercoherent locale.
It turns out that PAsm3 is equivalent to the Grothendieck category Γ[Pow] of the powerset doctrine 

Pow over Set, since 1 and 2 are supercompact in 3 and 1 ≤ 2. Using Corollary 5.38, we get that Reg3 �
(Γ[Pow])reg/lex.

This result can be easily generalized, by considering the locales n (ordered in the usual way) which are 
always supercoherent. Since PAsmn+1 � Γ[Pn], we get that Regn+1 � (Γ[Pn])reg/lex for every n ∈ N.

5.7. Relation with another notion of assemblies

The authors of a recent work [7] propose a different notion of implicative assemblies, by generalizing 
the notion of realizability assemblies in a different direction. Since for realizability implicative algebras 
P(R) \ {∅} is the separator, they define the category of assemblies as the category having as objects pairs 
(A, α) with A a set and α : A → Σ and of which an arrow from (A, α) to (B, β) is a function f : A → B

such that 
∧

x∈A(α(x) → β(f(x))) ∈ Σ. The authors prove that this category is always a quasi-topos.
In the localic case this category is equivalent to the category of sets, and localic triposes are characterized 

in [7] exactly as those for which such a category is an elementary topos.
One disadvantage of this approach is that the category of assemblies is not in general a full subcategory 

of the implicative topos. Moreover, it does not contain in general the category of partitioned assemblies as 
we defined it, since U-SK predicates are not in general evaluated in Σ (consider e.g. the localic case).

The relation with this category of assemblies and our proposal for a category of assemblies is also in 
general non well-behaved.

5.8. Categories of implicative modest sets

Let us end this section by considering the other four full subcategories Mod∧, R∧, Mod× and R× of 
RegP of which the objects are assemblies (A, α) of which families corresponding to α can be chosen5 to 

4 Here and in the following examples we will use subscript H instead of P if P is the implicative tripos arising from the complete 
Heyting algebra H.
5 While ×-disjointness is a property which is stable under equivalence of families, ∧-disjointness is not in general.
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be ∧-modest families, ∧-core families, ×-modest families and ×-core families, respectively. Their inclusions 
in RegP factorize through AsmP, thus their arrows are always uniquely tracked by functions between the 
underlying sets of their domains and codomains.

Obviously one has the following square of embeddings:

R× Mod×

R∧ Mod∧

Moreover one can easily prove that:

Proposition 5.43. Mod× and R× are preorders.

Proof. Let (A, α) and (B, β) be two objects of Mod× and let f, g : A → B be two functions such that

∧
x∈A

(α(x) → β(f(x))) ∈ Σ

∧
x∈A

(α(x) → β(g(x))) ∈ Σ

From this, it follows that

∧
x∈A

(α(x) → ∃
y∈B

β(y)) ∈ Σ

and since

∧
y,y′∈B

(β(y) × β(y′) → δB(y, y′)) ∈ Σ

we can conclude that f = g.
Thus Mod× is a preorder. Since R× is one of its full subcategories, it is a preorder too. �

Example 5.44. If (Ω, τ) is a topological space and we consider the locale (τ, ⊆), then the category Mod∧ =
Mod× is equivalent to the preorder (τ, ⊆) itself. Indeed, every open set in τ is a disjoint union of non-empty 
connected open sets. Moreover, R∧ = R× is equivalent to the full sub-poset of (τ, ⊆) of which the objects 
are the open sets which are disjoint unions of supercompact opens.

Example 5.45. In the realizability case, Mod∧ is a category equivalent to that of modest sets or PERs (see 
[25]), R∧ is equivalent to the category of which the objects are subsets of realizers and of which arrows are 
functions between them that are restrictions of partial functions which are computable with respect to the 
combinatory algebra (this category is called R in [24]). Mod× and R× coincide and are equivalent to the 
partial order 2.

Example 5.46. If B is a complete boolean algebra, then Mod∧ = Mod× = R∧ = R× is equivalent to the full 
sub-preorder of B of which the objects are those elements which can be written as suprema of atoms.
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6. Conclusions and future work

In this work, we took advantage of the language of triposes and of a series of recent works on the theory 
of Lawvere doctrines to generalize the notions of partitioned assemblies and assemblies from realizability 
triposes to arbitrary Set-based triposes in terms of predicates satisfying suitable variants of the rule of choice. 
Recent results by Miquel show that all these triposes arise from implicative algebras. We exploited this in 
order to give a topological interpretation of the general notions of assemblies we introduced. Finally, we 
analyzed when the categories of assemblies and of partitioned assemblies (for arbitrary Set-based triposes) 
satisfy some of the good properties which hold in the realizability case.

One of the advantages of our approach is that the properties we used to define our general notions of 
assemblies and partitioned assemblies do not depend on the particular choice of Set as base. Therefore, 
these notions can be further generalized to the case of arbitrary triposes.

In future work, we also aim to study the universal properties of the subdoctrine of a given implicative 
tripos whose predicates represent assemblies. In particular, we believe that in suitable cases (as in intuitionist 
realizability) such a subdoctrine can be obtained as the existential completion along the class of regular epis 
of the subdoctrine of the starting tripos given by partitioned assemblies.

Finally, it is well known that, in the case of realizability, intuitionistic type theory can be interpreted 
both in assemblies and in modest sets. Now that we have extended both these notions to the wider context 
of implicative algebras, it is natural to ask for conditions which guarantee the same result.
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