
J
H
E
P
0
4
(
2
0
2
1
)
0
4
6

Published for SISSA by Springer

Received: November 21, 2020
Revised: February 23, 2021

Accepted: March 7, 2021
Published: April 7, 2021

Weak gravity versus de Sitter

N. Cribiori,a G. Dall’Agatab,c and F. Farakosb,c
aInstitute for Theoretical Physics, TU Wien,
Wiedner Hauptstrasse 8-10/136, A-1040 Vienna, Austria

bDipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova,
Via Marzolo 8, 35131 Padova, Italy

cINFN, Sezione di Padova
Via Marzolo 8, 35131 Padova, Italy
E-mail: niccolo.cribiori@tuwien.ac.at,
gianguido.dallagata@pd.infn.it, fotis.farakos@gmail.com

Abstract: We show that one can uncover a Dine-Seiberg problem for de Sitter critical
points in supergravity theories by utilizing the magnetic weak gravity conjecture. We
present a large variety of N=2 gauged supergravity models that include vector multiplets
and in all cases we find that the weak gravity conjecture threatens de Sitter. A common
feature in all such examples is a degenerate mass matrix for the gravitini, which we therefore
deem a swampland criterion for de Sitter critical points.

Keywords: Extended Supersymmetry, Supergravity Models

ArXiv ePrint: 2011.06597

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP04(2021)046

mailto:niccolo.cribiori@tuwien.ac.at
mailto:gianguido.dallagata@pd.infn.it
mailto:fotis.farakos@gmail.com
https://arxiv.org/abs/2011.06597
https://doi.org/10.1007/JHEP04(2021)046


J
H
E
P
0
4
(
2
0
2
1
)
0
4
6

Contents

1 Introduction 1

2 Constraints on de Sitter from WGC 3

3 Abelian gaugings 5
3.1 The vacuum energy with vanishing gravitino mass 6
3.2 De Sitter vacua and vanishing gravitino mass 8

3.2.1 Minimal coupling 8
3.3 Very special Kähler manifolds 9

4 Non-abelian gaugings 12
4.1 Minimal couplings 13
4.2 Non-compact gaugings 15
4.3 Stable vacua with SU(2)R gauging 17

5 Comments and outlook 18

A Gauged N=2 supergravity 19

B Construction of the potential 23

1 Introduction

One of the most difficult problems in both minimal and extended four-dimensional su-
pergravity is to identify models that can be lifted to full string theory and thus enjoy an
ultra-violet (UV) completion within a theory of quantum gravity. In situations where su-
persymmetry is preserved, this procedure may in principle be more controlled, thanks to
the properties of supersymmetric vacua per se. On the contrary, when supersymmetry is
broken the task of identifying the origin of a given four-dimensional supergravity model
from string theory becomes truly challenging. Of particular interest are de Sitter and anti-
de Sitter maximally symmetric backgrounds, due to their relevance in cosmology and in
holography respectively.

An intermediate step in understanding which gravitational effective field theories
(EFTs) may or may not arise from string theory is the so-called swampland program
(for a recent review see for example [1]). It comprises a set of conjectured constraints
that have to be satisfied by an EFT, if this has a chance to find a UV completion within
quantum gravity. However, the level of rigor of such constraints is varying. Some of these
conjectures have been tested on a large number of diverse examples and have been also de-
rived in simple setups from a top-down approach, whereas others remain more speculative.
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Historically, one of the earliest such conjectures is the so-called weak gravity conjecture
(WGC) proposed in [2], which restricts the gauge couplings and the charges of abelian
groups. Here, of particular interest to us is its magnetic version, that dictates the existence
of an upper bound on the UV cut-off of a certain EFT given by

ΛUV . gMP , (1.1)

where g is the gauge coupling of an abelian gauge vector (assuming integer particle charges)
and MP is the reduced Planck mass.

In this work, we consider four-dimensional N=2 supergravity models. Indeed, gauged
N=2 supergravity already provides a very rich playground in which to test various swamp-
land conjectures. In particular, the vacuum structure of an N=2 supergravity theory is
controlled by the type of gauging one performs. This makes it not only ideal for the study
of the WGC, but also provides an explicit arena where to explore possible connections to
other conjectures. N=2 supergravity is also known for its direct relation to string com-
pactifications on Calabi-Yau manifolds, thus further motivating its use to test conjectures
on properties of quantum gravity. On top of that, one way to get N=1 vacua from string
theory is as truncations (typically orientifolds) of N=2 constructions. In this sense, four-
dimensional N=2 supergravity is also a very useful tool for strengthening, or challenging,
the web of swampland conjectures. For all these reasons, here we focus explicitly on de
Sitter critical points that are obtained from N=2 supergravity coupled to vector multiplets.

A striking feature of N=2 gauged supergravity coupled to vector multiplets is that it
leads to de Sitter critical points with the property

H ∼ g q3/2MP ∼ q3/2 ΛUV , (1.2)

where H is the Hubble scale, g is the gauge coupling of an abelian gauge vector, q3/2 is
the abelian gravitino charge (which is quantized) and ΛUV is the cut-off dictated by the
magnetic WGC (1.1). As a result, we see that the Hubble scale is quantized in terms
of the UV cut-off, indicating a dangerous sensitivity to UV corrections (either quantum
or stringy) and thus making these vacua untrustworthy. Interestingly, one can interpret
such a behaviour of N=2 supergravity as a manifestation of an underlying Dine-Seiberg
problem [3], which tells us that de Sitter vacua live near regions that get strong quantum
corrections. In addition, we will see that (1.2) is closely related to the fact that all de Sitter
vacua we consider have the specific property

det
(
m3/2

)
AB

= 0 , (1.3)

where
(
m3/2

)
AB

is the Lagrangian mass matrix of the gravitini. This leads us to conjecture
that all de Sitter critical points of gauged supergravity satisfying (1.3) are in th swampland.

Recently, stringent constraints on EFTs in de Sitter were put forward in [4], where
the bound m2 & q g H MP is proposed for every particle in the spectrum, m being the
Lagrangian mass and q the charge (see also [5]). We will not investigate this bound, which
is stronger than the WGC, but one can see that it is compatible with our analysis. Indeed,
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in extended supergravity a scalar potential can exist only in the presence of a gauging,
which in turn means the gravitini are charged. The fact that de Sitter vacua in gauged
supergravity with vanishing gravitini masses are generically expected to violate the bound
of [4] can be taken as further support for our conjecture.

In the remainder of the article we will proceed by discussing in detail explicit examples,
in order to give the required evidence to support the above claims.

2 Constraints on de Sitter from WGC

Before delving into the examples that give support to our analysis and conjecture, we
review some aspects of the WGC, discussing its relevance in restricting de Sitter vacua in
general and more specifically in gauged supergravity.

We consider a four-dimensional gravitational theory that contains an abelian vector
Am with canonical kinetic term

e−1L = 1
2M

2
PR−

1
4g2FmnF

mn + . . . , (2.1)

where Fmn = ∂mAn − ∂nAm. Notice that the identification of g as gauge coupling can be
ambiguous, unless we postulate that in our EFT we deal with fields χ that are coupled to
Am via the usual minimal coupling

∂mχ+ iqAmχ , q ∈ Z , (2.2)

where χ refers to either fermions or bosons. Notice also that we are assuming that the
charge q is quantized. Strictly speaking, this is an external input to our description,
nevertheless we impose it since it is a property of the full quantum regime.

Within this setup, two conjectures have been proposed in the seminal work [2]: one
is the so-called electric WGC that restricts the charges and the masses of the fields, while
the other is the so-called magnetic WGC that constrains the EFT cut-off. Here, we will
mostly focus on the latter.1 More specifically, the magnetic WGC dictates that the UV
cut-off of the EFT described by (2.1) is bounded by

ΛUV . gMP . (2.3)

Now, let us assume that a positive cosmological constant term is understood in the dots
in (2.1). As it will be convenient in our examples later on, we can parametrize this term
by the Hubble scale H as follows

e−1LCC = −3H2M2
P . (2.4)

Then, in general one should expect the following condition to hold

H � ΛUV , (2.5)
1See also [6] for an explicit discussion on the magnetic WGC for de Sitter and anti-de Sitter spaces.
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in order to be able to claim a good handle on the possible quantum and higher
order corrections.

Since the condition (2.5) is crucial for our work, we would like to support it with some
physical arguments. The first of these arguments is quite practical and can be illustrated
by simply considering a light scalar φ with canonical kinetic terms, in the presence of a
positive cosmological constant (2.4). It is known that quantum fluctuations of a scalar in
a de Sitter background are of order ∆φ ∼ H/(2π). They are essentially due to the thermal
fluctuations related to the Gibbons-Hawking temperature of de Sitter (see e.g. [7]). Then,
one clearly needs to have ΛUV � ∆φ otherwise the quantum fluctuations would be too
large and render the EFT unreliable, as all higher order operators that are suppressed by
ΛUV (and thus ignored in the EFT) would be in fact active and influence the observations.
Actually, for inflation one typically has H/ΛUV ∼ 10−5, as the self-consistency of the EFT
description would require.

A second argument in support of (2.5) comes from standard EFT considerations. Since
from the EFT perspective all higher order corrections are typically suppressed by the same
UV cut-off, we could have higher order corrections in the gravitational sector of the form

e−1Lgrav. = M2
P

(
1
2R+ α

Λ2
UV

R2 + · · ·
)
, (2.6)

where α is an order one parameter. On a spatially flat de Sitter background one has

R = 12H2 , (2.7)

therefore, if we want to safely ignore the R2 corrections in (2.6), we only need to ask
that (2.5) holds. Indeed, in such a case we have |R| � R2/Λ2

UV and so we can consistently
keep only the two-derivative gravity sector.

Our third argument in favour of (2.5) is more heuristic, but also more general. We recall
that an EFT is only suitable for distances that are at least greater than the corresponding
de Broglie wavelength of its momentum cut-off, λUV ∼ 1/ΛUV. If we are using such an EFT
to probe distances comparable to λUV, then we have to include also a series of irrelevant
operators in the action, as long as they are allowed by the symmetries. These operators
will generically be suppressed by the UV cut-off scale ΛUV. On the contrary, if we want
to safely ignore the effect of all such higher dimensional operators, then we can only study
distances λEFT much larger than λUV, namely

λEFT � λUV ∼
1

ΛUV
. (2.8)

In particular, with λEFT we refer here to any wavelength or distance we want to describe
or probe within our two-derivative supergravity EFT. Given this, we notice rightaway that
on a de Sitter background the only meaningful distances that we can probe are bounded
by the de Sitter horizon radius, which means we can only have

λEFT . H−1 . (2.9)
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Combining (2.8) and (2.9), we see that our EFT is only suitable for energy scales with
characteristic de Broglie wavelength within the range

1
ΛUV

� λEFT .
1
H
. (2.10)

In this sense, one could figuratively say that H serves as an IR cut-off for EFTs in de Sitter
space. Clearly, an EFT coupled to gravity with H & ΛUV would violate (2.10) and lead
to a situation where the longest distance, which are typically the ones we believe to be
protected from UV quantum corrections, would be in fact comparable to the wavelength
of the UV cut-off and thus would receive non-negligible quantum corrections.

In view of these arguments, we conclude that the condition (2.5) is a consistency
condition that protects the two-derivative gravity EFT from uncontrolled UV quantum
corrections. We stress nevertheless that there is nothing wrong with probing distances
that approach the wavelength corresponding to the UV cut-off, as long as one takes into
account the appropriate higher dimensional operators. However, if one wants to remain
safely within the regime of validity of the two-derivative gravity action, then (2.8) has to
hold, in order that ignoring higher order corrections is justified.

To close this section, let us turn to the de Sitter vacua of gauged supergravity and give
a schematic explanation of why they are constrained by the magnetic WGC. As we will
see in explicit examples, because of the gauging, de Sitter critical points generically have
the property that

H ∼ g q3/2MP . (2.11)

Even though we do not have a general proof of (2.11), we will see that it holds for all the
stable de Sitter critical points that can be constructed by the use of vector multiplets only
and also for all the unstable de Sitter critical points that we tested. Then, inserting (2.11)
and (2.3) into (2.5) the issue is manifest because it would imply

H � ΛUV → q3/2 � 1 , (2.12)

which is in contradiction with charge quantization (2.2). Therefore, we conclude that,
since q3/2 is quantized and cannot be arbitrary small, (2.5) is violated and de Sitter critical
points are very sensitive to higher order corrections.2 The rest of the article is devoted
to establish that (2.11) holds in our examples and that it is expected to hold generically,
when at least one gravitino has vanishing Lagrangian mass.

3 Abelian gaugings

The first class of models we consider are N=2 gauged supergravities where the gravity
multiplet is coupled to an arbitrary number of vector multiplets and U(1)R Fayet-Iliopoulos
(FI) coefficients are turned on. We especially focus on cases where the scalar manifold is
homogeneous, so that we can use its coset structure to derive general results.

2With the same argument, one can show that pure Fayet-Iliopoulos terms in N=1 supergravity are in
contrast with the WGC [8].
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We present our results in a series of steps: first we prove that de Sitter vacua with a
vanishing gravitino mass matrix clash with the WGC, then we give a simple expression for
the scalar potential and we identify the property that signals the vanishing of the gravitino
mass matrix and finally we show how this applies to two fairly general classes of models
with such properties. From now on we set MP = 1.

Details on the special Kähler structure of the scalar manifold, its definition in terms
of projective and normal coordinates, as well as other conventions we use in the following
can be found in the appendix A.

When considering U(1)R FI terms, the scalar potential can be expressed entirely in
terms of a superpotential W in a way that is reminiscent of N=1 models:

V = eK
(
gIJ̄DIWDJ̄W − 3WW

)
, (3.1)

with
DIW = WI +KIW (3.2)

and lower indices attached to W and K denote partial differentiation of the superpoten-
tial W and Kähler potential K. The superpotential is in turn defined in terms of the
holomorphic symplectic sections ZM and the FI terms QM =

(
mΛ, eΛ

)
as

W = 〈Z,Q〉 = XΛeΛ − FΛm
Λ. (3.3)

For the sake of generality we introduced both electric and magnetic charges, but we know
that for any consistent gauging field redefinitions allow one to reduce to the case where
only electric charges are turned on (i.e. mΛ = 0). However, this also implies a rotation of
the symplectic sections and the choice of a preferred basis, which may be incompatible with
the existence of a prepotential F (X), usually introduced as a way to define special Kähler
geometry. For this reason we prefer to maintain whenever possible duality covariance and
allow for generic FI terms.

3.1 The vacuum energy with vanishing gravitino mass

Our first statement applies to any U(1)R gauging, regardless of the details of the scalar
manifold: whenever the Lagrangian gravitino mass matrix is vanishing at a de Sitter critical
point the value of the cosmological constant is of the order of the maximum cutoff scale
required by the magnetic WGC.

Since we are studying the vacuum structure, it is always understood that we are eval-
uating all expressions at the critical point. Also, for this proof, we assume a symplectic
frame where the magnetic charges are vanishing. As mentioned above, this is not a restric-
tive assumption.

Our starting point are the kinetic terms for the vector fields

Lkin. = 1
4 e IΛΣ F

Λ
mnF

Σmn . (3.4)

The gauge kinetic functions IΛΣ form a matrix that depends on the values of the various
moduli, so we cannot have any special restriction on it except that it has to have negative-
definite eigenvalues such that the vacuum is ghost-free. Since we are performing a U(1)R
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gauging, the formal condition that the gravitino mass matrix is vanishing gives(
m3/2

)
AB

= 0 ⇔ |XΛ ~PΛ| = 0 . (3.5)

The vector ~PΛ is the triplet of the so-called moment maps, transforming in the adjoint
of SU(2)R, and A,B are the SU(2)R indices in the fundamental. Since we are dealing
with a U(1)R gauging, one can always rotate the non-vanishing moment maps in a specific
direction, say

eΛ = P 3
Λ , (3.6)

without loss of generality. As a result, we have that vanishing gravitino masses mean
vanishing superpotential W = 0 (because mΛ = 0).

As far as the vacuum energy is concerned, one can easily check that under the condi-
tion (3.5) the gauged N=2 scalar potential takes the form3

V = −1
2 I

ΛΣ eΛeΣ > 0 , (3.7)

where IΛΣ is the inverse of the gauge kinetic matrix in (3.4). Notice that, because of the
negative-definite eigenvalues of I, (3.7) is positive definite.

Since we want to identify the gravitino charge, we turn to the covariant derivatives of
the gravitini which include the following terms that are relevant for us

DmψnA = · · ·+ i

2 A
Λ
m eΛ

(
σ3
)
A

BψnB . (3.8)

Now we identify the gauge vector vm that gauges the U(1)R by setting

vm = ΘΛA
Λ
m , ΘΛ ≡

eΛ
2q , (3.9)

and thus the gravitini have charge ±q with respect to this vector vm:

DmψnA = · · ·+ i q vm
(
σ3
)
A

BψnB . (3.10)

The vectors ‘orthogonal’ to vm can also be easily identified by means of the projectors

P ‖ΛΣ = I
ΛΓΘΓΘΣ

Θ2 , P⊥Λ
Σ = δΛ

Σ − P ||ΛΣ , (3.11)

where Θ2 = ΘΛIΛΣΘΣ = V
2q2 . Using such projectors we can split vector fields as

AΛ
m = BΛ

m + I
ΛΓΘΓ
Θ2 vm , (3.12)

where
BΛ
m = P⊥Λ

ΣA
Σ
m (3.13)

3We are using the special Kähler geometry relation gIJ̄ UΛ
I U

Σ
J̄ = − 1

2I
ΛΣ − L

Λ
LΣ.
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satisfies ΘΛB
Λ
m = 0 = eΛB

Λ
m. Once we insert the expression (3.12) back into the kinetic

terms we find

e−1Lkin. = 1
4 IΛΣ F

Λ
mn(B)FΣmn(B) + 1

4
2q2

V
Fmn(v)Fmn(v) , (3.14)

which means we obtain a canonical kinetic term for vm by setting

V = 2 g2 q2 , (3.15)

where q is the norm of the gravitini charge, according to (3.10), and g is the gauge coupling
for the canonically normalized vm.

We conclude that when we have a U(1)R FI gauging and a vanishing Lagrangian mass
for the gravitini then the vacuum energy is of the form (3.15). This vacuum energy gives rise
to a Hubble scale of the form (2.11) and as we have shown in the end of section 2 it means
that such de Sitter critical points cannot be trusted as they receive huge quantum/stringy
corrections according to the WGC.

3.2 De Sitter vacua and vanishing gravitino mass

The general argument presented in the previous section is based on the knowledge that
at the de Sitter critical point the gravitino mass is vanishing, which is equivalent to the
vanishing of the superpotential W . We now show that this is indeed what happens when
one considers the conditions to have de Sitter critical points in ample classes of models.

Before entering into the details of the models, we recall the condition for a critical point
of the potential (3.1), obtained for a generic special Kähler manifold and an arbitrary U(1)R
gauging [9]:

∂IV = i ĈIJK D
J
W D

K
W − 2 eKW DIW = 0, (3.16)

where ĈIJK is a totally symmetric tensor specific to the manifold used.

3.2.1 Minimal coupling

The simplest special Kähler manifolds are the non-compact version of complex projective
spaces, namely CPnV ,1 = U(nV , 1)/[U(nV ) × U(1)]. These spaces are described by the
prepotential [10]

F = i

4ηΛΣX
ΛXΣ, (3.17)

where ηΛΣ =diag{−1, 1, . . . , 1}. Using normal coordinates this leads to the Kähler potential

K = − log
(
1− δIJzI z̄J

)
(3.18)

and, for the U(1)R gauging, to the superpotential

W = e0 + eIz
I + i

2
(
m0 −mIδIJz

J
)
. (3.19)

The structure of the prepotential implies that the gauge kinetic functions are constant and
hence the name “minimal coupling”. For this class of manifolds we have ĈIJK = 0 and
therefore the critical point condition becomes

∂IV = 0 ⇔ (DIW )W = 0. (3.20)
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This implies that either DIW = 0 and therefore we have supersymmetric anti-de Sitter
critical points, orW = 0 and we have de Sitter critical points (the case DIW = 0 = W leads
to supersymmetric Minkowski critical points). We therefore satisfy the general condition
that de Sitter critical points need W = 0 and then the proof of the previous subsection
applies, so that these critical points are excluded as consistent critical points of an effective
theory by the WGC.

3.3 Very special Kähler manifolds

The second class of theories we want to study are the symmetric very special manifolds.
These are characterized by a cubic prepotential

F = 1
6CIJK

XIXJXK

X0 , (3.21)

where CIJK are constants related to ĈIJK = eKCIJK . This class contains both homoge-
neous and non-homogeneous manifolds. In any case, all their isometries can be obtained by
algebraic means and a full classification follows from their analysis as presented in [11, 12],
which we will closely follow in our work.

We especially decided to focus on the largest class of homogeneous very special mani-
folds, namely

L(0, p) = SU(1, 1)
U(1) × SO(2 + p, 2)

SO(2 + p)× SO(2) , (3.22)

where clearly the number of vector multiplets satisfies nV = 3 + p ≥ 3. Their geometry is
then fixed by (3.21), where the only non-vanishing entries of the CIJK constants are

C122 = 1 , C133 = −1 , C2ij = −δij , C3ij = δij , (3.23)

where we split I = {1, 2, 3, i}, with i = 4, . . . , 3 + p, so that

F = 1
2
X1

X0

[(
X2
)2
−
(
X3
)2
]

+ 1
2
X3 −X2

X0

(
Xi
)2
. (3.24)

The Kähler potential is then given by

K = − log
(1

6CIJK
[
i
(
zI − zI

)] [
i
(
zJ − zJ

)] [
i
(
zK − zK

)])
, (3.25)

and the superpotential for the most general abelian FI-gauging in normal coordinates is

W = e0 + eIz
I +m0 1

6CIJKz
IzJzK − 1

2CIJKm
IzJzK . (3.26)

Since we are not constraining the charges in the superpotential, we can use the homogeneity
of the manifold to scan for the critical points at the “origin” of the scalar manifold

z1
∗ = − i2 , z2

∗ = − i√
2
, z3

∗ = zi∗ = 0 , (3.27)

where
K|∗ = 0 , K1|∗ = i , K2|∗ =

√
2i , K3|∗ = Ki|∗ = 0 , (3.28)
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and for the metric we have the non-vanishing entries

g11|∗ = g22|∗ = g33|∗ = 1 , gij |∗ =
√

2 δij . (3.29)

Any critical point that for given charges does not appear at this point can always be brought
back to the origin by a field redefinition which follows from the symplectic transformation
acting on both the charges and the sections [26]. In the rest of this section, since we are
only interested in quantities evaluated at this point we will not clutter our formulas with
the ‘∗’ any more, but it will be understood and we will write it only in some cases where
we want to stress it.

We now prove that unless W |∗ = 0 we cannot have a de Sitter critical point. Let us
start by assuming that

DIW 6= 0 , W 6= 0 . (3.30)

The critical point conditions (3.16) imply

iCIJKD
J
W D

K
W = 2WDIW . (3.31)

These conditions can now be used to derive some stronger results, by using the symmetry
properties of the scalar manifold. As shown in [11, 12], for cubic prepotentials one always
find a matrix B̃ such that ∑

I

B̃I
(LCJK)I = 0 . (3.32)

For the homogeneous very special Kähler manifolds defined by (3.23) this condition is
satisfied by

B̃ = diag
{

1,−1
2 ,−

1
2 ,

1
4 , . . . ,

1
4

}
, (3.33)

We can therefore use such matrix, by multiplying the critical point condition with DL
WB̃I

L

such that
iD

L
W B̃I

LCIJK D
J
W D

K
W = 2WD

L
WB̃I

LDIW , (3.34)

which implies
D
L
W B̃I

LDIW = 0 . (3.35)

Using the specific expression for the B̃ matrix given in (3.33) we then get

|DiW |2 = −4|D1W |2 + 2|D2W |2 + 2|D3W |2 , (3.36)

which we can use to simplify the conditions coming from (3.16). This can be seen by
extracting from (3.31) the components with I = i

i√
2
DıW

(
D3W −D2W

)
= WDiW , (3.37)

and its complex conjugate

− i√
2
DjW (D3W −D2W ) = WDW . (3.38)
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Summing the two relations we get

|DiW |2|D3W −D2W |2 = 2|DiW |2|W |2 . (3.39)

If we assume DiW |∗ 6= 0 then

|D3W −D2W |2 = 2|W |2 . (3.40)

In a similar way, from the I = 1 component of (3.31)

i
(
D2W

)2
− i

(
D3W

)2
= 2WD1W (3.41)

and its conjugate, we obtain

|D2W −D3W |2|D2W +D3W |2 = 4|D1W |2|W |2 , (3.42)

which, using that |D3W −D2W |2 = 2|W |2 6= 0, gives

|D2W +D3W |2 = 2|D1W |2 . (3.43)

We therefore see that at the critical point, the potential can be simplified by using the
condition we just derived together with (3.36), so that

V|∗ = 3|D2W |2 + 3|D3W |2 −
3
2 |D2W +D3W |2 −

3
2 |D2W −D3W |2 ≡ 0 . (3.44)

We conclude that if we ask that W |∗ 6= 0 and that DiW |∗ 6= 0 then we can only get
Minkowski critical points V|∗ ≡ 0.

Relaxing the condition DiW |∗ 6= 0 does not change the conclusion. In fact, imposing
DiW |∗ = 0, implies that from (3.36) we now find

2|D1W |2 = |D2W |2 + |D3W |2 , (3.45)

which brings the vacuum energy to the form

V|∗ = 3|D1W |2 − 3|W |2 (3.46)

and using the square of the relations following from I = 2 in (3.31)

|D2W |2|D1W |2 = |D2W |2|W |2 (3.47)

and from I = 3
|D3W |2|D1W |2 = |D3W |2|W |2 , (3.48)

we see that either D2W 6= 0 or D3W 6= 0, but then from (3.47) or (3.48) we have

|D1W |2 = |W |2 (3.49)

and finally once more V|∗ = 0, orD3W = 0 andD2W = 0, which further implies |D1W | = 0
and finally

V|∗ = −3|W |2 . (3.50)
So, we see that if we ask that W |∗ 6= 0 and that DiW |∗ = 0 then we get V|∗ ≡ 0 or
V|∗ = −3|W |2.

We therefore conclude that we can only find a positive vacuum energy when the grav-
itino masses and the superpotential vanish at the critical point W |∗ = 0. As we have
shown in the previous subsections such de Sitter vacua of N=2 supergravity will receive
huge quantum/stringy corrections.
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4 Non-abelian gaugings

It is by now a well established fact that finding (meta)stable de Sitter critical points
in extended supergravity theories is extremely difficult and that even unstable critical
points with small tachyon masses relative to the cosmological constant value are extremely
scarce [9, 13–17]. While this could be a sign that the de Sitter conjecture [18] may be
somehow incorporated automatically in (extended) supergravities, it is definitely interesting
to better understand the necessary and/or sufficient conditions to obtain (meta)stable
vacua. At the same time, as we want to show in this work, these same vacua may be
challenged by the WGC and in turn this would leave the landscape of de Sitter vacua in
extended supergravity completely empty.

After the first example of stable de Sitter vacuum was found in N=2 supergravity [9],
three elements were deemed necessary: non-compact gaugings, de Roo-Wagemans sym-
plectic angles, Fayet-Iliopoulos terms. As we will show in the following, only the third
ingredient is strictly necessary, when considering arbitrary gaugings. In fact, the de Roo-
Wagemans angles are an artefact of insisting on having a purely electric gauging in the
chosen symplectic frame and we can find stable vacua also without non-compact gaugings,
though this type of gaugings clearly help in lifting the value of the cosmological constant
due to the necessary spontaneous breaking of the gauge group to a compact subgroup on
the vacuum.

If we look at the examples provided so far, a physical intuition on the construction of
these vacua can be gained in analogy with the way many meta-stable de Sitter vacua have
been constructed in minimal supergravity. First one generates a runaway positive potential
VF by means of some N=2 Fayet-Iliopoulos terms and then one lifts the runaway directions
with a genuine gauging term VD. Clearly if VD is the result of a non-compact gauging,
the gauge group breaking at the vacuum generically gives a further positive contribution
to the vacuum energy. However, we will explicitly show with a new example that one can
also obtain metastable critical points with a pure compact gauging resulting entirely from
N=2 Fayet-Iliopoulos terms.

Once again, in this work we concentrate ourselves on N=2 supergravity coupled to
vector multiplets, leaving a discussion on more general couplings and/or more supersym-
metries for the final section. We will see that in all the examples we present the WGC
signals their incompatibility with quantum gravity.

Before entering into the details of the examples, let us recall a few important facts
about non-abelian gaugings (more details can be found in the appendix A). The scalar
potential is constructed by the sum of two terms, one coming from the triplet of Fayet-
Iliopoulos charges QMx =

(
PΛx, P xΛ

)
, with x = 1, 2, 3,

VF = gIJ̄〈UI , Qx〉〈U J̄ , Q
x〉 − 3〈V,Qx〉〈V ,Qx〉, (4.1)

and one from the proper gauging of the isometries of the scalar manifold, generated by the
holomorphic Killing vectors kIM :

VD = |VM
kM |2 = V

M
kIMV

N k̄J̄N gIJ̄ . (4.2)
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When the FI charges are turned on in a single U(1) direction within the SU(2)R (namely
when QMx can be rotated such that they are non-zero only for a single value of x), then
VF coincides with the potential (3.1). We remind that the isometries have a linear action
on the holomorphic sections and therefore one can also rewrite the D-term potential (4.2)
in terms of prepotentials

P 0
M = eK TMN

QΩQPZ
NZ

P
, (4.3)

satisfying kIM = i gIJ̄∂J̄PM , where TM are the matrix representations of the isometry action.

4.1 Minimal couplings

The first example we present is again in the theory with minimal couplings, where the
prepotential is defined as in (3.17), and the (unstable) de Sitter vacua had been first
uncovered in [10]. The model in [10] uses the CP3,1 scalar manifold and gauges a SU(2)
group diagonal between SU(2)R (gauged by the FI terms) and the SU(2) ' SO(3) isometry
group that rotates the normal coordinates zI , I = 1, 2, 3.

In this case we have a purely electric gauging. In normal coordinates the covariantly
holomorphic sections are L0 = eK/2, LI = eK/2zI , where K = − log

(
1− δIJzI z̄J̄

)
as

in (3.18). It is however simpler to express all relevant quantities in terms of the covari-
antly holomorphic sections (where we raise and lower indices using the Kronecker delta).
Moreover, since only the LI sections enter in the following expressions, we will often use
the vector notation ~L = {L1, L2, L3}. In details, we note the useful relation

eK = 1 + |~L|2, (4.4)

which allows us to write the metric and inverse as

gIJ̄ = eK
(
δIJ + L̄ILJ

)
, gIJ̄ = e−K

(
δIJ − e−KLI L̄J

)
. (4.5)

We also notice that
UI

J = DIL
J = eK/2

(
δJI + L̄IL

J
)
, (4.6)

which is going to be useful to simplify the expression of the scalar potential. The FI-term
contribution is directly computed from (4.1) by setting P xI = q δxI , with any other charge
set to zero and from (4.2), by gauging the isometries

δzI = q εIJKΛJzK ., (4.7)

for real parameters ΛI , so that the Killing vectors are

kJI = q εIJKzK , (4.8)

with corresponding prepotentials

P 0
I = −i q εIJKL̄JLK . (4.9)

Combining the resulting terms and using the relations above, the scalar potential reduces to

V = q2
(

3− 2|~L|2 + 2|~L|4 − ~L2~L
2)
. (4.10)
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The critical point condition is easily computed and gives

∂IV = q2 eK/2
[
LI

(
2|~L|4 − 2− ~L2~L

2)
− LI~L

2]
= 0, (4.11)

which shows two critical points, one where the SU(2) is preserved at

LI = 0, unbroken SU(2), V = 3 q2, (4.12)

and one where the SU(2) group is broken at
~L2 = 0, |~L|2 = 1, broken SU(2), V = 2 q2. (4.13)

Both critical points are unstable as they show some negative eigenvalue in the scalar mass
matrix [10].

It is also interesting to notice that the gravitino mass matrix in both critical points
has at least one vanishing eigenvalue. In details, the gravitino mass matrix is(

m3/2
)
A

B = i

2 〈V,Q
x〉
(
σx
)
A

B (4.14)

and in our example it reduces to(
m3/2

)
A

B = i

2 q L
I
(
σI
)
A

B, (4.15)

giving

det
(
m3/2

)
= q2

4
~L2. (4.16)

This implies that in the most symmetric vacuum it vanishes because of the vanishing of
the sections and in the other vacuum it vanishes because of the vacuum condition ~L2 = 0,
though one of the masses may be non-vanishing.

In order to check that our conjecture works, we need to compare the charge q appear-
ing in the potential with the effective charge appearing in the covariant derivative of the
gravitinos. The general coupling of the gravitino to the gauge vectors is

DmψnA = . . .+ i

2
[
AImPI

x(σx)AB +AIm P
0
I δ

B
A

]
ψnB, (4.17)

where the first contribution in the bracket comes from the FI-terms and the second from
the SU(2) gauging. For our example this becomes

DmψnA = . . .+ i

2 q
[
AIm(σI)AB − i AImεIJKL̄JLK δBA

]
ψnB. (4.18)

On the SU(2) symmetric vacuum this is trivially reduced to the standard SU(2) coupling
for the vectors AI , with charge q. For the vacuum with broken symmetry we see that once
we split ~L = ~R + i ~I, the vacuum condition implies |~R| = |~I| = 1√

2 and ~R · ~I = 0. We can
then rewrite the gravitino coupling as

DmψnA = . . .+ i

2 q
[
~Am ·~σAB−i ~Am ·(2i ~R∧~I)δBA

]
ψnB = . . .+ i

2 q
[
~Am ·(~σ)AB+A⊥mδBA

]
ψnB,

(4.19)
where A⊥m is the vector field orthogonal to the plane defined by ~L.

We therefore conclude once more that the quantized charge should be q and the vacuum
is proportional to q with a coefficient of order 1.
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4.2 Non-compact gaugings

As we mentioned in the introduction to this section, the first example of a stable de Sitter
vacuum in extended supergravity had been obtained in [9], then generalized in [13]. We
will now show that also these examples have a cosmological constant that is comparable to
the WGC cutoff for a consistent effective theory that could be coupled to quantum gravity.

To be specific, we focus once more on the L(0, p) manifolds described in section 3.3. As
explained in the introduction, a suitable choice of FI-terms gives a runaway or a no-scale,
semi-positive defined scalar potential. We then introduce a D-term to lift the (runaway)
flat directions and to create a vacuum. This requires a gauging under which all, or most
of the scalar fields are charged, which, as we will see, is intimately related to the existence
of non-perturbative symmetries for our examples.

In the case of special Kähler manifolds, and especially for the very special case, all
isometries can be fully analyzed and related to the form of the prepotential, as shown by
de Wit and Van Proeyen in [11, 12]. This immediately explains why it is useful to introduce
a full symplectic-invariant formulation of N=2 supergravity and why one cannot simply
reach our goal with a purely electric gauging in the standard frame. Ordinary perturbative
symmetries rotate only the XΛ sections and hence they act linearly on the scalar fields.
This implies that it is very difficult to stabilize all scalars unless one is allowed to introduce
a very large gauge group. However, there are also non-perturbative symmetries mixing
XΛ and FΛ so that their gauging introduces a dependence on all scalar fields in the D-
term potential. Clearly one can once again reach the wanted result by a purely electric
gauging, provided one performs a duality rotation on the symplectic base as to redefine
X̂Λ = X̂Λ

(
XΣ, FΣ

)
and go to a frame where a prepotential does not exist. We present all

the details of the procedure in appendix B, while here we discuss the aspects relevant for
our argument.

The full gauging generates a U(1)R× SO(2,1) group. We go to a convenient symplectic
frame where the U(1)R factor is gauged by the graviphoton and the SO(2,1) group by
the first three vector fields in the vector multiplets. To do so we introduce a symplectic
rotation S with respect to the basis where the cubic prepotential is defined, so that the
F-term potential follows from the superpotential4

W = 〈SZ,Q〉 = e0(cos δ X4 + sin δ F4). (4.20)

The D-term potential on the other hand, is more complicated and all the details about the
isometries and associated prepotentials are presented in the appendix B. If we truncate to
the imaginary part yI of the scalar fields zI we can produce the compact expression

VD|<zI=0 = e2K

4 e2
1 (y2−y3)

[
(y1+y2+y3)2−(−y1+y2+y3)2(2+4y1(y2+y3)−δijyiyj)

]2
.

(4.21)

4In our presentation we reabsorb the overall coupling constant g associated to the gauging procedure
in [25] in the definition of the charges, prepotentials and Killing vectors.
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Let us now turn to the analysis of the de Sitter critical point. The full scalar potential
indeed has a critical point at

z1 =
(
z2 + z3

)
= i√

2
,
(
z2 − z3

)
= cot δ − 2i e1

e0
csc δ, zi = 0. (4.22)

At this critical point the cosmological constant value is

V = 2 sin δ e0e1 (4.23)

and all scalar masses are positive, but for the two goldstone bosons associated to the
breaking of the gauge group

U(1)R × SO(2, 1)→ U(1)R ×U(1). (4.24)

We therefore have a stable de Sitter vacuum with two residual U(1) gauge groups, which
can be used to test its compatibility with the magnetic WGC.

In order to test our conjecture, we need first to redefine the vector fields and the
charges to reproduce standard couplings. The non-minimal couplings of the vector fields
generate a non-trivial kinetic matrix, which however is diagonal at the critical point:

I = − 1
2 sin δ diag

{
e0
e1
,
e1
e0
, . . . ,

e1
e0

}
. (4.25)

This implies that the two gauge fields for the residual U(1) factors have kinetic terms

− 1
8 sin δ

e0
e1
F 0
µνF

0µν − 1
8 sin δ

e1
e0
F 3
µνF

3µν . (4.26)

Also, the triplet of prepotentials from the gauged isometries in this new basis and on the
vacuum reduces to

P 0
1 = P 0

2 = 0, P 0
3 = e1, (4.27)

which means that the gravitino is charged under the U(1)2 gauge group as follows:

DmψnA = . . .+ i

2
[
AImPI

x(σx)AB+AImP 0
I δ

B
A

]
ψnB = . . .+ i

2
[
e0A

0
m(σ3)AB+e1A

3
m δ

B
A

]
ψnB.

(4.28)
We can now reproduce canonical couplings by rescaling the vector fields A0 and A3 and
introducing the charges q0 and q1 as follows

e0A
0 = q0A0, e1A

3 = q1A3, (4.29)

1
8 sin δ

e0
e1

(
q0
e0

)2
= 1

8 sin δ
e1
e0

(
q1
e1

)2
= 1

4 , (4.30)

whose solution forces q0 = q1 = q. After these rescalings we obtain canonical kinetic terms
for the vectors AΛ and canonical couplings to the gravitino. We can finally look at the
scalar potential expressed in terms of the “quantized” charge q and we see that it is simply
given by a product of charges (once MP has been normalized to 1)

V = q2. (4.31)
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We therefore conclude once again that this vacuum energy is at the threshold of the effective
theory as dictated by the magnetic WGC.

For what concerns the gravitino masses, we have to check the superpotential at the
critical point and we see that W = 0, which means that both gravitinos are massless, as
expected from our general discussion presented in the introduction.

4.3 Stable vacua with SU(2)R gauging

We now display an example of a stable de Sitter vacuum resulting from the scalar potential
obtained by means of a full set of SU(2)R FI terms. The model used in this section is also a
homogeneous manifold with cubic prepotential, but it does not belong to a one-parameter
family, instead it is a special case. The scalar manifold we choose is

Sp(6,R)
U(3) (4.32)

and its prepotential is [11, 12]

F (X) = 1
2X0

[
X1

(
(X2)2 − (X3)2 − (X4)2

)
−X2

(
(X5)2 + (X6)2

)
+X3

(
(X5)2 − (X6)2

)
+ 2X4X5X6

]
. (4.33)

A quick analysis of the SU(2)R gauging of this manifold shows various families of stable
de Sitter vacua. We will not enter into the details of these calculations, but briefly outline
the strategy and show the relevant details of a significant example (we checked that the
other vacua we found do not give different results concerning the WGC bounds). First of
all, we employed once again the strategy of [26] to search for critical points of the potential
on homogeneous manifolds. We therefore assumed that the fixed point was at the “origin”
of the manifold, namely at

z1
∗ = − i2 , z2

∗ = − i√
2
, z3

∗ = zi∗ = 0 , (4.34)

while leaving the FI-terms QMx arbitrary. We then chose an electric charge along x = 1
and a magnetic charge along x = 2, such that the scalar potential resulting from these
terms is the sum of the squares of these charges, while we left all charges available in the
direction x = 3. As mentioned above, the critical point condition gives various families
of solutions. We focused on a specific instance where it was easy to show that there is a
symplectic rotation that brings the prepotentials to the appropriate form for the SU(2)R
gauging, namely

P xΛP
y
Σε
xyz = q εΛΣΓP

z
Γ , (4.35)

while leaving the kinetic matrix diagonal (at the same base point).
To be specific, (in the original basis) we chose the charges

Q1
3 = q√

2
, Q42 =

√
2 q, Q23 = q√

2
, Q33 = −q , Q3

0 = q

4
√

2
(4.36)
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and the symplectic rotation

S =



0 1
2
√

2
1
2 0 0 0

√
2 0 0 0 0 0

0 0 0 0 0 0 0 0 0
√

2 0 0
0 0 0 0 1√

2 0 0 0 0 0 0 0
0 1

2
√

2 −
1
2 0 0 0

√
2 0 0 0 0 0

0 1 0 0 0 0 −4 0 0 0 0 0
0 0 0 0 0 12 0 0 0 0 0 0
− 1

4
√

2 0 0 0 0 0 1√
2 1 0 0 0 0

0 0 0 − 1√
2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
√

2 0
− 1

4
√

2 0 0 0 0 0 0 1√
2 −1 0 0 0

1
8 0 0 0 0 0 0 1

2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 12



. (4.37)

This results in a new symplectic frame where the charges are all electric and such that

P xΛ = q δxΛ, (4.38)

therefore satisfying (4.35). The potential at the critical point has a positive cosmological
constant

V = 3
2 q

2 (4.39)

and the scalar masses are all positive: m2 = 2q2 > 0. The chosen symplectic frame has also
the bonus of having canonically normalized kinetic terms, so that the charge q corresponds
precisely to the coupling of the gauge vectors to the gravitinos. So, once more we have a
scalar potential that at the de Sitter vacuum has a cosmological constant value that is at
the threshold dictated by the magnetic WGC.

It is easy to check that also in this case the gravitino mass matrix vanishes at this
critical point and hence once more we seem to find a relation between the vanishing of the
gravitino masses and the possible violation of the magnetic WGC.

5 Comments and outlook

In this work we analyzed de Sitter critical points appearing in N=2 gauged supergravity
theories coupled to vector multiplets. We have shown that in large classes of models and
especially for all known stable de Sitter vacua, the value of the cosmological constant at the
critical point is proportional to the square of the charge of the gauging and that therefore
its scale is comparable to the cutoff scale dictated by the magnetic WGC. We also proved
that in all these examples there is at least one gravitino that is massless and therefore we
argue that all de Sitter critical points with this property are in the swampland.

When incorporated in the broader swampland picture, our results indicate that the
WGC is stronger than the de Sitter conjecture [18]. Indeed, we showed how the WGC can
be used to exclude de Sitter critical points independently from their stability. It is worth
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mentioning that the de Sitter conjecture [18] has been found to be in tension with the
Higgs potential [19] and thus refined in order to allow for local maxima, provided they are
sufficiently steep [20–24]. However, our conclusion is that in supergravity de Sitter extrema
are always in the swampland as a consequence of the WGC and charge quantization alone,
irrespectively of the preferred formulation of the de Sitter conjecture.

We should also stress, though, that while the supergravity models we analyzed might
be in the swampland, they could still be valid consistent truncations of higher-dimensional
theories. It is a well-known fact, since [27], that one can have consistent truncations of flux
compactifications that are not good effective theories and this may still well be the case
for models having de Sitter critical points.

Natural extensions of this work move the analysis to the general couplings of N=2
supergravity also in the presence of hypermultiplets and to higher supersymmetric models.
For what concerns the hypermultiplet couplings, one should look carefully into the examples
of [9, 13] and especially [17]. While we leave this for future work, we see that in the case
of [9, 13] we do not expect qualitative differences with respect to the case without hypers
and indeed we can also see directly from their results that at the de Sitter vacuum the
gravitino mass is vanishing.

In theories with a higher number of supersymmetries the de Sitter critical points are
even scarcer than in the N=2 case. One particularly interesting example has been proposed
in [16], where a one-parameter family of theories with SO(4,4) gauge group has been ana-
lyzed and the appearance of a de Sitter critical point with parametrically small tachyonic
masses has been found. We notice that also in this case the (in)stability of the vacuum
is crucially dependent on the choice of symplectic frame and it is therefore essential that
there is a one-parameter family of theories with such gauge group, as follows by applying
the same technique as in [28] for their consistent symplectic embedding. Interestingly, the
vacuum with unbroken SO(4) × SO(4) gauge group, which exists for any value of the pa-
rameter, has vanishing gravitino masses, while the vacuum with residual SO(3) × SO(3)
gauge symmetry, has non-vanishing gravitino masses. This makes it a suitable candidate
to check if the condition we described on the gravitino masses is necessary and/or sufficient
to obtain vacua with cosmological constant within the magnetic WGC bounds.
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A Gauged N=2 supergravity

In this appendix we collect some formulae about special Kähler geometry, which is the
geometry of the vector multiplet scalar manifold in N=2 supergravities, and about the
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gauging procedure. It is by no means a comprehensive summary of gauged N=2 super-
gravity theories, but it contains everything that is required to reproduce the calculations
in this work. For the derivation of what follows we refer the reader to the original work we
used to prepare this work, namely [25, 29–31].

We should start by stressing that although a full N=2 duality covariant supergravity
action has not been built so far, decisive steps have been taken in this direction, especially
in the case of supergravity coupled to vector multiplets. As shown in [32], whenever
one introduces magnetic gaugings, tensor multiplets have to be introduced. In the case of
supergravity coupled to vector multiplets, one has therefore to improve couplings to vector-
tensor multiplets. In [33, 34] the authors worked out the supersymmetry transformations
and scalar potential for supergravity coupled to vector-tensor multiplets and for a generic
gauging, although in the case of vanishing FI terms. The extension to non-trivial FI terms
is, however, straightforward and, following [35], we will provide in the following the relevant
quantities for our analysis. We should also stress that an outline of the general procedure by
using the embedding tensor formalism can be found in [36] and that general lagrangians for
N=2 conformal supergravity theories with arbitrary gaugings have been presented in [37].

A special Kähler manifold is parameterized by complex coordinates zI , I = 1, . . . , nV .
Since this is the geometry of the vector-multiplet sector, electric-magnetic duality plays a
role in constraining the manifold and this is made manifest by describing the geometry by
means of holomorphic sections

ZM =
(
XΛ(z)
FΛ(z)

)
, Λ = 0, I , (A.1)

where the additional sections with index 0 have been added to take into account the
graviphoton and its dual, which do not have corresponding scalars in their multiplet. When
a prepotential F (X) exists, these sections can also be thought of as projective coordinates
and FΛ = ∂ΛF (X). However, special geometry can be defined in the absence of such
prepotential and, unless specified otherwise, we will not assume the sections are chosen in
such specific frame. Note that two different patches of the manifold are related by

Z ′(z) = e−f(z)SZ(z), (A.2)

where S is a constant symplectic matrix and f is a holomorphic function of the coordi-
nates, generating the Kähler transformations of the Kähler potential. Defining the sym-
plectic product

〈A,B〉 = ATΩB = AΛBΛ −BΛAΛ, (A.3)

the Kähler potential is then
K = − log

[
−i〈Z, Z̄〉

]
(A.4)

and changing patches, from (A.2), we get the usual Kähler transformation

K ′(z, z̄)→ K(z, z̄) + f(z) + f̄(z̄). (A.5)

On the Hodge bundle over the manifold one can also define covariantly-holomorphic sections

VM = e
K
2 ZM (A.6)
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such that the whole geometric structure gets encoded in the following algebraic and differ-
ential constraints:

〈V, V̄ 〉 = i, (A.7)
UI = DIV = (fΛ

I , hIΛ), (A.8)

DIUJ = i ĈIJK g
KK̄ŪK̄ , (A.9)

DI ŪJ̄ = gIJ̄ V̄ , (A.10)
DI V̄ = 0, (A.11)

where now DI is the covariant derivative with respect to the usual Levi-Civita connection
and the Kähler connection ∂IK. This means that under a Kähler transformation (A.5),
a generic field χI , with charge p, namely transforming as χI → e−

p
2 f+ p̄

2 f̄χI , has covari-
ant derivative

DIχ
J = ∂Iχ

J + ΓIJKχK + p

2 ∂JK χI , (A.12)

and analogously for DJ̄ , with p → p̄. We followed standard conventions and chose
p = −p̄ = 1 for the weight of V . Note also that

gIJ̄ = i 〈UI , U J̄〉. (A.13)

Two more ingredients needed are the matrix defining the non-minimal couplings of the
vector multiplets

NΛΣ = RΛΣ + i IΛΣ =
(
MΛ, hĪ

) (
LΣ, f

Σ
Ī

)−1
, (A.14)

and the matrix

MMN =

 IΛΣ +RΛ∆I∆ΓRΓ RΛ∆I
∆Σ

IΛΓRΓΣ IΛΣ

 , (A.15)

which is used in the definition of the scalar potential. In fact, the kinetic lagrangian for
the vector multiplets is

Lkin = 1
4 e IΛΣ F

Λ
µνF

Σµν + 1
8 RΛΣ ε

µνρσ FΛ
µνF

Σ
ρσ, (A.16)

which means that I is negative definite.
The scalar potential following from the gauging procedure has two main contributions.

The first one VF is coming from the N = 2 Fayet-Iliopoulos terms, which are the relics of the
possible coupling to hypermultiplets. If we consider full symplectic invariance, the FI terms
are given in terms of the triplet of FI charges vectors QMx =

(
PΛx, P xΛ

)
, with x = 1, 2, 3:

VF = gIJ̄〈UI , Qx〉〈U J̄ , Q
x〉 − 3〈V,Qx〉〈V ,Qx〉. (A.17)

The second contribution is the D-term VD generated by the proper gauging of the
isometries of the scalar manifold. Again, trying to be general and maintaining symplectic
invariance, for special Kähler manifolds, the isometries can be derived by looking at their
linear action on the sections. In fact all isometries must preserve (A.2) and therefore

δPZ
M = (TP )NMZN − fP (z)ZM , (A.18)
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where TP is a symplectic matrix (the generator of S)

T TΛ Ω + ΩTΛ = 0, (A.19)

and fN (z) are compensating holomorphic functions, which are going to be related to how
the Kähler potential transforms under such isometries. Using full Sp(2nV + 2,R) indices:

TM [N
QΩP ]Q = 0. (A.20)

Consistency of the gauging also requires

T(MN
QΩP )Q = 0. (A.21)

Note that now the position of the index transforming with S is fixed, so that indices
M,N, . . . are lowered and raised with the symplectic matrix. Upper indices transform with
S and lower indices transform with S−1 = −ΩSTΩ, so that VMWM = VMΩMNW

N is
symplectic invariant

VM ′W ′M = VM ′ΩMNW
N ′ = V PSMPΩMNS

N
QW

Q = VMΩMNW
N = VMWM . (A.22)

The non-linear action on the coordinates can be obtained by means of holomorphic Killing
vectors, which can be related to the linear action above in frames where the prepoten-
tial exists. In this case the Killing vectors follow by introducing normal coordinates
zI ≡ XI/X0:

δMz
I = δΛX

I

X0 −
XI

X0
δMX

0

X0 =

= (TMZ)I

X0 − fM
XI

X0 −
XI

X0
(TMZ)0

X0 + fM
XI

X0

= (TMZ)I

X0 − XI

X0
(TMZ)0

X0 ≡ kIM (z). (A.23)

At the infinitesimal level

δMV
N = −TMP

MV P , (A.24)

δMWN = TMN
PWP . (A.25)

Under an isometry the Kähler potential transforms as

δMK = −eK i (δMZTΩZ + ZTΩδMZ) = fM + fM . (A.26)

As it is customary in supergravity, the gauging procedure is enforced by the introduc-
tion of prepotentials (or moment maps) for the gauged isometries. In this context, the
prepotential definition is

P 0
M = −ikiM∂iK + i fM , (A.27)

which, in the frame where a prepotential exists, becomes

P 0
M = eK Z

TΩTMZ = eK TMN
QΩQPZ

NZ
P
. (A.28)
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Prepotentials satisfy the constraint

ZM (z)P 0
M (z, z̄) = 0 (A.29)

which also implies
ZM (z)kIM (z) = 0. (A.30)

After the gauging, the resulting scalar potential is

VD = |VM
kM |2 = V

M
kIMV

N k̄J̄NgIJ̄ . (A.31)

B Construction of the potential

The potential in [9] and its generalization in [13] have both an F-term and a D-term
contribution. For the F-term one constructs a U(1)R gauging by turning on a non-trivial
charge e0 in the direction 4 and rotating the sections with the symplectic matrix

S1 =



14 0 0

cos δ 0 sin δ

0 1p−1 0

0 14 0
− sin δ 0 cos δ

0 0 1p−1


(B.1)

so that
W = 〈S1Z,Q〉 = e0(cos δ X4 + sin δ F4). (B.2)

For the D-term one needs to identify the appropriate non-abelian group. To do so, first
let us recall a few facts about the isometries of very special Kähler manifolds, i.e. those
with a cubic prepotential like in (3.21). From [11, 12], the action of the isometries can be
specified by a few parameters β, aI , bI and a matrix B̃I

J :

δX0 = βX0 + aIX
I , (B.3)

δXI = bIX0 + 1
3βX

I + B̃I
JX

J +AIJFJ , (B.4)

δF0 = −βF0 − bIFI , (B.5)

δFI = −aIF0 −
1
3βFI − FJ B̃

J
I + CIJKX

JbK . (B.6)

In order to generate an isometry, the matrix B̃ has to satisfy

B̃I
(JCKL)I = 0. (B.7)

The parameters β, bI and those in B̃ are associated to perturbative symmetries, which do
not mix XΛ and FΛ nor vectors with dual vectors, and are present for any such manifold.
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Non-perturbative symmetries, mixing XΛ and FΛ (and hence vectors with dual vectors)
are parameterized by aK and exist only when

AIJ = e2KCIJKaK (B.8)

is constant, for aK constants and CIJK obtained from CIJK by raising indices with the
metric. This happens for all symmetric spaces and therefore we focus once again on the
L(0, p) manifolds.

The isometries of the L(0, p) manifolds are specified by (B.3)–(B.6), where

AIJ =


0 a2 −a3 0

a2 a1 0 −aj

−a3 0 −a1 aj

0 −ai ai (a3 − a2)δij

 (B.9)

and

B̃ =


−2λ 0 0 αj

0 λ χ γj

0 χ λ γj

γi
γi
2

γi
2

χ−λ
2 δij + θij

 , (B.10)

where θji = −θij .
This means we can describe them by the (2nV + 2)× (2nV + 2) matrices

T
[
β, bI , aI , λ, χ, αi, γi, θij

]
=



β ~a 0 0
~b β

3 1 + B̃ 0 A

0 0 −β −~b

0 B −~a −β
3 1− B̃T


, (B.11)

where BIJ = CIJKb
k.

Given the factorized structure of the scalar manifold we can identify 3 isometries as
the SU(1,1) factor that commutes with all the rest. These are generated by the parameter
choices a2 = −a3 = b2 = −b3 = 1

2
√

2 , b2 = −b3 = −a2 = a3 = 1
2
√

2 and β = 1
2 , λ = −1

6 ,
χ = 1

2 , respectively, while setting everything else to zero. We notice that such isometries
act only on the scalar combination s = z3 − z2 and therefore we can find the other factor
by looking at all isometries that leave s invariant, namely all those where a2 = a3, b2 = b3
and β = 3

2(λ−χ). This leaves (p+ 4)(p+ 3)/2 generators among which we can select those

– 24 –



J
H
E
P
0
4
(
2
0
2
1
)
0
4
6

generating an SO(2,1) that exists for any p by considering

T1 = T

[
χ = 1

2 , λ = 1
2

]
, (B.12)

T2 = T

[
a1 = −a2 = −a3 = 1√

2
, b1 = −2b2 = −2b3 = − 1

2
√

2

]
, (B.13)

T3 = T

[
a1 = a2 = a3 = − 1√

2
, b1 = 2b2 = 2b3 = 1

2
√

2

]
, (B.14)

which satisfy [T1, T2] = −T3, [T3, T1] = T2 and [T2, T3] = T1. The action on the scalar fields
is then 

δ1z
1 = −z1,

δ1(z2 + z3) = 1
2
(
z2 + z3

)
,

δ1z
i = 0,

(B.15)



δ2z
1 = 1

2
√

2

(
−1 + 2(z1)2 − 2zizjδij

)
,

δ2(z2 + z3) = 1
4
√

2

(
1− 2(z2 + z3)2 + 2δijzizj

)
,

δ2z
i = 1√

2
(z1 − z2 − z3)zi,

(B.16)



δ3z
1 = 1

2
√

2

(
−1 + 2(z1)2 − 2zizjδij

)
,

δ3(z2 + z3) = 1
4
√

2

(
1 + 2(z2 + z3)2 + 2δijzizj

)
,

δ3z
i = 1√

2
(z1 + z2 + z3)zi.

(B.17)

As expected these isometries include the non-perturbative parameters aI .
As we mentioned several times we can perform a symplectic rotation to a frame where

such gauging becomes electric. We can deduce the form of the symplectic matrix S such
that V ′ = SV and ST1,2,3S

−1 becomes block-diagonal, by looking at the action of the
generators mixing XΛ with FΛ. This does not completely fix S, but one consistent choice is

S =



0 0 0 0 1 0 0 0 0 0 0
− 1√

2 0 0 0 0 0 0 0
√

2 −
√

2 0 0
0 1 1 1 0 0 0 0 0 0 0 0
0 −1 1 1 0 0 0 0 0 0 0 0
1√
2 0 0 0 0 0 0 0

√
2 −
√

2 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 − 1

4
√

2
1

4
√

2 0 0 − 1√
2 0 0 0 0 0

0 0 0 0 0 0 0 1
2

1
4

1
4 0 0

0 0 0 0 0 0 0 −1
2

1
4

1
4 0 0

0 − 1
4
√

2
1

4
√

2
1√
2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1



. (B.18)
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In the new basis the generators act as simple rotations

δ1X̃
3 = X̃2, δ1X̃

2 = X̃3, (B.19)

δ2X̃
3 = −X̃1, δ2X̃

1 = −X̃3, (B.20)

δ3X̃
3 = X̃1, δ3X̃

1 = −X̃3. (B.21)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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