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Abstract

Novel computational strategies are continuously being demanded by the pharma-

ceutical industry to assist, improve and speed up the drug discovery process. In

this scenario chemoinformatics provide reliable mathematical tools to derive quan-

titative structure-activity relationships (QSARs), able to describe the correlation

between molecular descriptors and various experimental pro�les of the compounds.

In the last years, nonlinear machine learning approaches have demonstrated a note-

worthy predictive capability in several QSAR applications, con�rming their supe-

riority over the traditional linear methodologies. Particularly the feasibility of the

classi�cation approach has been highlighted in solving complex tasks. Moreover,

the introduction of the autocorrelation concept in chemistry allows the structural

comparison of the molecules by using a vectorial �xed-length representation to serve

as e�ective molecular descriptor.

In the present thesis we have deeply investigated the wide applicability and the

potentialities of nonlinear QSAR strategies, especially in combination with auto-

correlation molecular electrostatic potential descriptors projected on the molecular

surface. Our intent is arranged in six di�erent case studies that focus on crucial

problems in pharmacodynamics, pharmacokinetics and toxicity �elds.

The �rst case study considers the estimation of a physicochemical property, the

aqueous solvation free energy, that strictly relates to the pharmacokinetic pro�le

and toxicity of chemicals.

Our discussion on pharmacodynamics deals with the prediction of potency and

selectivity of human adenosine receptor antagonists (hAR). The adenosine receptor

family belongs to GPCR (G protein-coupled receptors) family A, including four dif-

ferent subtypes, referred to as A1, A2A, A2B and A3, which are widely distributed

in the tissues. They di�erentiate for both pharmacological pro�le and e�ector cou-

pling. Intensive explorative synthesis and pharmacological evaluation are aimed

at discovering potent and selective ligands for each adenosine receptor subtype.

In the present thesis, we have considered several pyrazolo-triazolo-pyrimidine and

xanthine derivatives, studied as promising adenosine receptor antagonists. Then, a

second case study focuses on the comparison and the parallel applicability of linear

and nonlinear models to predict the binding a�nity of human adenosine receptor

A2A antagonists and �nd a consensus in the prediction results. The following stud-

ies evaluate the prediction of both selectivity and binding a�nity to A2AR and A3R

subtypes by combining classi�cation and regression strategies, to �nally investigate



the full adenosine receptor potency spectrum and human adenosine receptor sub-

types selectivity pro�le by applying a multilabel classi�cation approach.

In the �eld of pharmacokinetics, and more speci�cally in metabolism prediction,

the use of multi- and single-label classi�cation strategies is involved to analyze the

isoform speci�city of cytochrome P450 substrates. The results lead to the identi�ca-

tion of the appropriate methodology to interpret the real metabolism information,

characterized by xenobiotics potentially transformed by multiple cytochrome P450

isoforms.

As �nal case study, we present a computational toxicology investigation. The

recent regulatory initiatives due to REACH (Registration, Evaluation, Authoriza-

tion and Restriction of Chemicals) require the ecotoxicological and risk assessment

of chemicals for safety. Most of the current evaluation protocols are based on costly

animal experiments. So, chemoinformatic tools are heartily recommended to fa-

cilitate the toxicity characterization of chemical substances. We describe a novel

integrated strategy to predict the acute aquatic toxicity through the combination of

both toxicokinetic and toxicodynamic behaviors of chemicals, by using a machine

learning classi�cation method. The goal is to assign chemicals to di�erent levels

of acute aquatic toxicity, providing an appropriate answer to the new regulatory

requirements. As preliminary validation of our approach, two toxicokinetic and

toxicodynamic models have been applied in series to inspect both aquatic toxicity

hazard and mode of action of a set of chemical substances with unknown or un-

certain toxicodynamic information, assessing the potential ecological risk and the

toxic mechanism.



Riassunto

Nuove strategie computazionali vengono continuamente richieste dall'industria far-

maceutica per assistere, migliorare e velocizzare il processo di scoperta dei farmaci.

In questo scenario la chemoinformatica fornisce a�dabili strumenti matematici per

ottenere relazioni quantitative struttura-attività (QSAR), in grado di descrivere la

correlazione tra descrittori molecolari e vari pro�li sperimentali dei composti. Negli

ultimi anni approcci non lineari di machine learning hanno dimostrato una notevole

capacità predittiva in diverse applicazioni QSAR, confermando la loro superiorità

sulle tradizionali metodologie lineari. E' stata evidenziata particolarmente la prat-

icabilità dell'approccio di classi�cazione nel risolvere compiti complessi.

Inoltre, l'introduzione del concetto di autocorrelazione in chimica permette il con-

fronto strutturale delle molecole attraverso l'uso di una rappresentazione vettoriale

di lunghezza �ssa che serve da e�cace descrittore molecolare.

Nella presente tesi abbiamo studiato approfonditamente l'ampia applicabilità e

le potenzialità delle strategie QSAR non lineari, soprattutto in combinazione con

i descrittori autocorrelati potenziale elettrostatico molecolare proiettato sulla su-

per�cie molecolare. Il nostro intento si articola in sei di�erenti casi studio, che si

concentrano su problemi cruciali nei campi della farmacodinamica, farmacocinetica

e tossicologia.

Il primo caso studio considera la valutazione di una proprietà �sico-chimica,

l'energia libera di solvatazione acquosa, che è strettamente connessa con il pro�lo

farmacocinetico e la tossicità dei composti chimici.

La nostra discussione in farmacodinamica riguarda la predizione di potenza e

selettività di antagonisti del recettore adenosinico umano (hAR). La famiglia del

recettore adenosinico appartiene alla famiglia A di GPCR (recettori accoppiati a

proteine G), che include quattro diversi sottotipi, cui ci si riferisce come A1, A2A,

A2B e A3, ampiamente distribuiti nei tessuti. Si di�erenziano sia per pro�lo far-

macologico che per e�ettore cui sono accoppiati. Le intense sintesi esplorativa e

valutazione farmacologica hanno lo scopo di scoprire ligandi potenti e selettivi per

ogni sottotipo del recettore adenosinico. Nella presente tesi abbiamo considerato

diversi derivati pirazolo-triazolo-pirimidinici e xantinici, studiati come promettenti

antagonisti del recettore adenosinico. Quindi, un secondo caso studio si focalizza

sul confronto e l'applicabilità in parallelo di modelli lineari e non lineari per predire

l'a�nità di legame di antagonisti del recettore adenosinico A2A umano e trovare

un consenso nei risultati di predizione. Gli studi successivi valutano la predizione



sia della selettività che dell'a�nità di legame ai sottotipi A2AR e A3R combinando

strategie di classi�cazione e regressione, per studiare in�ne il completo spettro di

potenza del recettore adenosinico e il pro�lo di selettività per i sottotipi hAR me-

diante l'applicazione di un approccio di classi�cazione multilabel.

Nel campo della farmacocinetica, e più speci�camente nella predizione del

metabolismo, è coinvolto l'uso di strategie di classi�cazione multi- e single-label

per analizzare la speci�cità di isoforma di substrati del citocromo P450. I risul-

tati conducono all'identi�cazione della metodologia appropriata per interpretare la

reale informazione sul metabolismo, caratterizzata da xenobiotici potenzialmente

trasformati da multiple isoforme del citocromo P450.

Come caso studio �nale, presentiamo un'indagine in tossicologia computazionale.

Le recenti iniziative regolatorie dovute al REACH (Registration, Evaluation, Au-

thorization and Restriction of Chemicals) richiedono l'accertamento ecotossico-

logico e del rischio dei composti chimici per la sicurezza. La maggiorparte dei

correnti protocolli di valutazione è basata su costosi esperimenti animali. Così, gli

strumenti chemoinformatici sono caldamente raccomandati per facilitare la carat-

terizzazione della tossicità di sostanze chimiche. Noi descriviamo una nuova strate-

gia integrata per predire la tossicità acquatica acuta attraverso la combinazione di

entrambi i comportamenti tossicocinetico e tossicodinamico dei composti chimici,

utilizzando un metodo di classi�cazione machine learning. L'obbiettivo è assegnare i

composti chimici a diversi livelli di tossicità acquatica acuta, fornendo un'appropriata

risposta alle nuove esigenze regolatorie. Come validazione preliminare del nostro

approccio, due modelli tossicocinetico e tossicodinamico sono stati applicati in se-

rie per esaminare sia il rischio di tossicità acquatica che il modo d'azione di un

set di sostanze chimiche con informazione tossicodinamica sconosciuta o incerta,

valutandone il potenziale rischio ecologico ed il meccanismo tossico.
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Preface

Chemoinformatics can provide both description and understanding of vari-

ous pharmacodynamic, pharmacokinetic and toxicity properties of the com-

pounds by quantitative structure-activity relationships (QSARs). In such ap-

plications machine learning methods represent valuable mathematical tools

able to solve complex tasks, overcoming the potentialities o�ered by the clas-

sical linear QSAR strategies. The six case studies presented in this thesis

constitute interesting examples of the use of both regression and classi�-

cation models in combination with particular 3D autocorrelated molecular

descriptors, to predict di�erent experimental properties.

The �rst chapter comprises an introductory overview on the modern crit-

ical aspects of pharmaceutical research. In this context the recent driving

forces due to the international regulatory initiatives are also introduced.

The second chapter focuses on the basic concepts of QSAR analysis and

includes the techniques applied in the six case studies, that are described in

the following chapters. The details of the calculations are also reported.

The third chapter summarizes the results of the application of a nonlinear

QSAR strategy, by using Response Surface Analysis, to predict the aqueous

solvation free energy of organic compounds (Paper I ).

The fourth chapter represents an evaluation of the use of linear and non-

linear approaches in parallel, to obtain a consensus in the prediction of the

binding a�nity of human A2A adenosine receptor antagonists (Paper II ).

The �fth chapter analyzes the isoform speci�city of cytochrome P450

substrates by comparing the multi- with the single-label classi�cation meth-

ods, to �nd the best model able to interpret an important phase of the

metabolism (Paper III ).

The sixth chapter presents an introduction to the prediction of the re-

ceptor subtype selectivity task. In more detail, we consider A2A and A3

vii



Preface

adenosine receptor antagonists to derive an integrated strategy based on a

�rst classi�er and a second regression model by applying Support Vector

Machine. The goal is to simultaneously discriminate A2AR versus A3R an-

tagonists and to predict the binding a�nity to the corresponding receptor

subtype for unknown compounds used as test set (Paper IV ).

The seventh chapter deeply discusses the selectivity of human adenosine

receptor antagonists by extending the case study reported in the sixth chap-

ter to the whole adenosine receptor family (A1, A2A, A2B and A3 subtypes).

More speci�cally, we present a novel application of the multilabel classi-

�cation approach. After introducing three classi�ers, based on decreasing

thresholds of potency, both potency pro�le and selectivity are predicted by

applying the classi�cation models as in series quantitative sieves (Paper V ).

The eight chapter focuses on the estimation of ecotoxicological endpoints

and investigates the classi�cation approach as alternative tool to predict tox-

icokinetic and toxicodynamic properties of chemicals. In particular, a �rst

model is derived to assign chemicals to di�erent levels of acute aquatic toxi-

city; a second classi�er provides the prediction of the mode of action (MOA)

of toxic compounds (Paper VI ).

In light of these investigations, we have draft the �nal conclusions, that

emphasize the appreciable performances of nonlinear QSAR techniques to

predict several pharmacodynamic, pharmacokinetic and toxicity pro�les.
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Chapter 1

Introduction

1.1 Challenges in pharmaceutical research

Drug discovery process is aimed at bringing to market new therapeutic agents

with desirable pharmacodynamic pro�le and favourable ADMET (Absorp-

tion, Distribution, Metabolism, Elimination and Toxicity) properties. The

target selectivity is a further crucial requirement for drugs to avoid e�cacy

problems and limiting side-e�ects, incurring when the compounds do not dif-

ferentiate between di�erent receptors. The goal is to design drugs without,

or with minimum, side-e�ects while retaining the desired function.

Nowadays, the pharmaceutical research has to face many obstacles with

the result of a very low success rate, regardless the extremely growing em-

ployed resources. [1] According to recent Tufts Center for the Study of Drug

Development data, drug development, starting from the clinical trials to the

�nal approval, is about 8.5 years long with a cost exceeding $40 billion, and

only 21.5% of clinical success rate. In fact, the pharmaceutical research is

actually involved in the study of more complex diseases, while the increasing

size and costs of the clinical trials, the candidate high attrition rates and the

late occurrence of failures in the clinical studies are emphasized as the main

negative contributions to the economic pro�le of the research in the pharma-

ceutical companies. Various aspects have been identi�ed and reported as the

causes of the high level of attrition undergone by the compounds during the

developmental stages. [2] The reasons for attrition have changed over time

and in 2000 some problems of e�cacy, safety or toxicological e�ects were rec-

ognized as highly responsible for the failures, covering more than 50% of the

1



1.1 Challenges in pharmaceutical research Chapter 1

causes for abandoning, as shown in Figure 1.1.1. Clearly, most of the e�orts

are directed to unproductive clinical trials, since most drug candidates are

eliminated late in the clinical development without recovering the starting

investment. [2]

Figure 1.1.1: Reasons for attrition (2000). [2]

In the last decades the potentialities of the combinatorial chemistry have

provided new large databases with unknown compounds. Therefore, at the

early stage of drug discovery suitable computational approaches are needed

to shorten the time and increase the success rate by deriving in silico models

for the prediction of some corresponding desirable properties. Then, several

computational tools have been developed to eliminate lead compounds with

undesirable pro�les, before they enter the costly late phases of drug develop-

ment, and to let compounds to proceed in the optimization step. The result

would be the reduction of the attrition rate in drug discovery. [3, 4]

However, in the initial stage of drug development the optimization of

the properties related to absorption, distribution, metabolism and elimina-

tion is expected as well as the study of the pharmacodynamic pro�le of

novel chemical entities. [5, 6] Recent in silico methods have focused on the

metabolic endpoints and the prediction of drug metabolism directly from

structure represents an advanced approach integrated into expert systems.

[7, 8] Moreover, the computational tools are suggested to successfully assist

the in vitro methods for studying the human drug metabolism in order to

compensate the limitation of the use of each of these approaches alone. [9]

Quantitative Structure-Activity Relationships (QSARs) or Quantitative

Structure-Property Relationships (QSPRs) approaches represent probably

the most robust well-known tools to mathematically analyze the correlation

between the molecular properties and an experimental endpoint.

2



Chapter 1 1.2 Predictive toxicology

Among various algorithms available, novel nonlinear machine learning

methods have been applied for the prediction of pharmacodynamic and AD-

MET properties. [10-12] In more detail, many QSARs have been attempted

to correlate molecular descriptors with druglikeness, activity, selectivity, tox-

icity and several pharmacokinetic properties, such as aqueous solubility,

blood-brain barrier and human intestinal absorption, plasma protein bind-

ing, oral bioavailability or steady-state volume of distribution. [12-23]

1.2 Predictive toxicology

The regulatory frame is considered an additional obstacle in the drug dis-

covery process, since a very accurate risk evaluation is required to assess the

safety of the drug once on the marketplace. [1] Recently, the poorly e�cient

risk assessment process and the uncomplete information on hazard properties

of chemicals has driven the need for new regulatory dispositions, that have

been introduced in European Community on June 1 2007 with the chemical

management system REACH (Registration, Evaluation, Authorization and

Restriction of Chemicals). [24, 25] The immediate objective of REACH, in

a relatively short time period (11 years), is to characterize the toxicologi-

cal properties of a large group of substances, manufactured or imported in

quantities in excess of 1 ton per year. The attempt of this regulation is

the increase in the production of useful data for the decisions involving the

improvement of the protection of human health and environment, through a

better identi�cation and understanding of the chemical properties hazardous

to safety. Diverse expensive animal testing experiments are usually expected

for in vivo toxicological data requirements, as shown in Figure 1.2.1.

Figure 1.2.1: Classical toxicological testing procedures in the drug discovery
process.

3



1.2 Predictive toxicology Chapter 1

The experimental toxicity assessment is relevant for human health. Un-

fortunately, the huge resource demand deals with the large amount of chem-

icals needed in the experiments and the cost of animals. Thus, very recently,

a paradigm shift has been suggested in toxicology with a speci�c reference

to the computational methods as reliable support in the toxicity assessment.

[26] In particular, the predictive toxicology represents an attractive tool to

investigate the e�ects on human health and the potential ecotoxicological

risk of chemical substances in the drug discovery process as well as in the

environmental hazard assessment. In this context, pharmaceuticals, personal

health care products, nutritional ingredients and products of the chemical

industries are all potentially dangerous and need to be assessed. Then, the

aim of the computational toxicology is to assist their evaluation through in

silico models, by assigning a priority for the traditional toxicological tests

and providing information about the consequences to their exposition, as

graphically represented in Figure 1.2.21. [27]

Figure 1.2.2: Roles of computational toxicology, that yields data predictive
of results from animal toxicity studies. This discipline will allow prioritiza-
tion of chemicals for further testing and can assist in prediction of risks to
humans.

1Adapted from Collins, F. S.; Gray, G. M.; Bucher, J. R. Science 2009, 319, 906-907.
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Chapter 1 1.3 Motivation

The same introduction of REACH should speed up the risk assessment

process by prioritizing compounds for traditional toxicity testing and pro-

viding information on the Exposure Scenarios (ESs) concerning the chemical

safety pro�le. [27] In fact, REACH promotes alternative tools to collect ex-

tensive information on hazards of chemicals in order to reduce animal use

in toxicology. As a consequence, several Intelligent or Integrated Testing

Strategies (ITS) have been proposed as rapid, e�cient approaches to obtain

exposure and e�ects data and identify di�erent modes of toxic action. [28,

29] Moreover, in vitro or computational methods, optimized in vivo studies,

chemical categories, read-across analysis and thresholds of toxicological con-

cern (TTCs) are admitted non-testing strategies to replace missing data or

endpoints, and pro�tably reduce costly animal experiments. [27]

So far, powerful computational toxicology prediction systems have been

developed for the exposure and hazard assessment to satisfy the new regula-

tory requests. [30] In drug discovery the in silico approaches, and especially

machine learning methodologies, for the toxicity prediction of safety-relevant

endpoints are precious contributions to early discovery of adverse drug reac-

tions. [31, 32] A brief overview of both tools and models in computational

toxicology have been considered. [33] Furthermore, a recent review about

the toxicity databases available, in silico toxicology tools together with their

advantages and limitations has been published. [34]

In toxicology QSARs are widely used approaches to infer the toxicological

properties of compounds from their molecular structure. [35] Several studies

have focused on the prediction of the environmental toxicity properties of

drugs. [36] Aquatic toxicity of chemical substances is lately investigated as

basic information in the hazard and environmental risk assessment. [37-41]

1.3 Motivation

Nonlinear strategies o�er a useful tool by deriving quantitative structure-

activity relationships for the investigation of new molecular structures with

the goal to facilitate their evaluation at the early stage of drug discovery

process. The present thesis aims to demonstrate the satisfactory predictive

capability and the enormous potentialities of several nonlinear QSAR ap-

proaches for the prediction of properties ranging from the pharmacodynamics

to the ADMET pro�les. The chapters 3-8 separately explore six case stud-
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1.3 Motivation Chapter 1

ies to evaluate or compare the performances of linear and nonlinear QSAR

strategies. We discuss various models by combining di�erent descriptor sets

with several algorithms and we have validated our results by introducing

new compounds as test set. In more detail, we have predicted the aqueous

solvation free energy as physicochemical property (chapter 3). In three case

studies the pharmacodynamic property investigated is the binding a�nity

to the di�erent human adenosine receptor subtypes, by focusing on potency

to A2A (chapter 4) or A2A/A3 subtypes (chapter 6) and on selectivity (chap-

ters 6 and 7) predictions. The chapter 8 relates to the recent debates on

the limited toxicological information and propose a novel strategy to predict

toxicokinetic and toxicodynamic behaviors of chemicals.

Moreover, we would like to evaluate the e�ciency of the molecular de-

scriptors selected in rationalizing the chemical structures to derive robust

regression or classi�cation models for the experimental properties in analy-

sis. The autocorrelation seems to represent an e�cient strategy to develop

QSAR models for structurally di�erent compounds. More speci�cally, we

consider the autocorrelated descriptors encoding for molecular electrostatic

potential computed on the molecular surface. Finally, while investigating

some of our case studies, we present the results of the further introduction

of descriptors (global, topological, quantum chemical, etc.) to interpret cy-

tochrome P450 isoform speci�city and toxicity mechanisms.
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Chapter 2

Methods

In the �eld of chemoinformatics, quantitative structure-activity relationships

(QSAR) have demonstrated to be powerful tools in the prediction of simple

chemical-physical properties as well as complex pharmacodynamic, pharma-

cokinetic and toxicological pro�les. Several key steps are involved in any

QSAR approach: data collection for the molecular structure building and

the calculation of suitable molecular descriptors, data pretreatment, model

generation and optimization, and �nally, the statistical validation and eval-

uation of the model. Machine learning represents a well-known family of

algorithms based on a solid statistical theory able to handle complex prob-

lems, and especially developed as modeling methods. Lately, among non-

linear strategies, the machine learning methodologies have been applied as

robust alternatives to the traditional linear QSAR techniques, such as the

Partial Least Squares (PLS) analysis. To date, they have shown promising

potentialities in many scienti�c studies. Very recently, the current mathe-

matical techniques applied in QSAR approaches have been reviewed. [42]

Arti�cial neural networks or support vector machines have gained inter-

esting progresses in both classi�cation and quantitative prediction of dif-

ferent endpoints. Based also on the increasing availability of experimental

data, these techniques have been further applied in the assessment of several

pharmacokinetic properties. [43] Some valid machine learning applications

in the prediction of the cytochrome P450 isoform speci�city, interactions and

inhibition were summarized. [44, 45] In the present thesis, the classi�cation

approach is demonstrated to be able to investigate the selectivity problem.

However, the model validity has to deal with the recent regulatory context

created by REACH law and some reference principles need to be satis�ed.
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2.1 QSAR Chapter 2

2.1 QSAR

Most drugs attain the therapeutic activity through a speci�c target recog-

nition process. In the optimization step of drug candidates, whether the

information on the target is not available, the ligand-based drug design ap-

proach might be applied for the evaluation of new compounds.

Chemoinformatics, combining knowledge from di�erent �elds, is char-

acterized by the interest on the chemical structures to extract information

on the corresponding activity or properties. Among the chemoinformatic

methods, the quantitative structure-activity relationships (QSAR) or quan-

titative structure-activity relationships (QSPR) relate molecular descriptors

to the quantitative measure of a property. [46] QSAR are based on the

general principle that the chemical structures can be mathematically codi-

�ed as distributions of molecular properties, or molecular descriptors. Then,

an appropriate statistical modeling method is used to achieve the correlation

between the molecular descriptors (X variables) and the de�ned property (Y

variable), such as biological activity, volume of distribution, toxicity, to pre-

dict the corresponding property of unknown compounds. [46-49] In QSAR

analysis, a training set and a test set are selected from a starting collection

of data (Figure 2.1.1).

Figure 2.1.1: Training and test set selection procedure. The X matrix con-
tains molecular descriptors, the property data are included in the Y matrix.

The training set is used to generate the model, that is then statistically

evaluated on its ability to predict the property values of a test set. Finally,

the QSAR model can be applied to the prediction of the property of new

chemical structures. The main processes involved in a QSAR analysis are

represented in Figure 2.1.2.

Moreover, based on the nature of the relationship between the molecular

descriptors and the property in analysis, linear and nonlinear strategies can

be distinguished. In particular, multiple regression, principal component
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Chapter 2 2.1 QSAR

Figure 2.1.2: Crucial steps in QSAR analysis involving the training and
the test sets: model generation, validation and prediction.

analysis, projection to latent structures by means of partial least square

will be discussed as linear strategies, while we will describe response surface

analysis, support vector machine and arti�cial neural networks as nonlinear

techniques.

Considering the input data, the regression and classi�cation approaches

can be de�ned. If the considered property is represented by continuous data,

the QSAR model is referred to as regression regardless whether the relation-

ship is linear or not; if binary data are introduced as qualitative measure

of the property for the model generation, discrete classi�cation models, or

SARs, are derived with the aim to separate the compounds into di�erent

classes (Figure 2.1.3). [50]

The classi�cation allows to assign a sample to one class (single-label) or

to more classes (multilabel) to derive a qualitative prediction. Moreover,

in the traditional single-label classi�cation the classes are considered mutu-

ally exclusive; when the samples belong to multiple classes, the multilabel

classi�cation analysis seems to be more appropriate.
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2.2 Molecular structure building Chapter 2

Figure 2.1.3: Classi�cation and regression approaches. In classi�cation
analysis the input data are structured into classes, while the regression ap-
proach is based on continuous data. Finally, qualitative and quantitative
predictions are carried out, respectively.

2.2 Molecular structure building

The database generation step is required to order the selected molecules and

visualize their three-dimensional structures. In the present thesis, 3D mod-

els of all molecules in the training sets, validation sets, internal and external

test sets were obtained using the 3D structure generator Corina, setting pa-

rameters to standard values. Corina is an integral part of ADRIANA.Code

suite. [51]

Conformer selection is a crucial step in the approaches considering 3D

molecular descriptors. If the information about the possible binding mode

of the compounds to the corresponding target is limited, we have decided

to select the energetically most stable conformers produced by the software

conformational analysis. We veri�ed that the conformations derived by Co-

rina are reasonably similar to the poses obtained by docking experiments.

Protonation states are selected in agreement with the corresponding pK a at

the physiological pH value (7.4 unit).

The �nal molecules are globally neutral, so, they can be used for the

calculation of the molecular descriptors.
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Chapter 2 2.3 Molecular descriptors

2.3 Molecular descriptors

In a QSAR study we need for each molecule some numerical properties,

through a mathematical description of their structure. [46, 49] The molecu-

lar descriptors are numerical representations of physicochemical or topolog-

ical properties. As anticipated, they can be used as independent variables

in QSARs and the descriptors selection should be accurate according to the

type of experimental data for achieving satisfactory modeling results.

The descriptors derive from experimental measurements, theoretical cal-

culations or mathematical operations, and they may refer to the whole

molecule or one molecular fragment. Moreover, they can be represented as

scalars or vectors and they are de�ned according to the number of dimensions

they require for the computation. Consequently, their complexity is related

to the dimensionality of the molecular representation (Figure 2.3.1)1.

Figure 2.3.1: Dimensional levels of structural information.

Simple 1D descriptors need knowledge of only the code of a molecule and

consider the presence of a particular element. More complex global molecu-

lar properties or functional-group counts require the connection table to be

computed (2D descriptors). The 3D descriptors re�ecting molecular shape

or the distribution of a property on the molecular surface need the previous

computation of the three-dimensional molecular structure.

We have selected di�erent molecular descriptors for our analysis, as de-

scribed in the following paragraphs.

1Adapted from Gasteiger, J.; Engel, T. Chemoinformatics , Wiley-VHC, 2003.
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2.3.1 Molecular Electrostatic Potential (MEP)

Autocorrelation molecular electrostatic potential (MEP) vectors have been

introduced by Gasteiger and collaborators as molecular descriptors com-

puted on the molecular surface (Figure 2.3.2a). [52] In our models MEPs

derive from a classical point charge model: the electrostatic potential for

each molecule is obtained by moving a unit positive point charge across the

molecular surface, and it is calculated at various points j on this surface by

applying the following equation:

Vi =
1

4πε0

atoms∑
i

qi
rji

(2.3.1)

where q i represents the partial charge of each atom i and r ji is the distance

between points j and atom i. Starting from the 3D model of a molecule and

its partial atomic charges, the electrostatic potential is calculated for points

on the molecular surface.

Figure 2.3.2: a) Representation of the molecular electrostatic potential; b)
references for the surface calculation.

Partial atomic charges were calculated by the PEOE (Partial Equalization

of Orbital E lectronegativity) method and its extension to conjugated sys-

tems implemented in ADRIANA.Code. [51, 53, 54] As reference for the

surface calculation, we have considered Connolly's solvent accessible surface,

obtained by moving a probe sphere on the van der Waals surface, as shown

in Figure 2.3.2b2. Connolly's solvent accessible surface with a solvent radius

of 2.0 Å and van der Waals radius reduction factor3 of 1.00 have been used

2Adapted from Gasteiger, J., Engel, T. Chemoinformatics , Wiley-VHC, 2003.
3Factor of reduction, which the van der Waals radius is multiplied for.
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Chapter 2 2.3 Molecular descriptors

to project the corresponding MEP. Once the autocorrelation function has

been applied, the autocorrelation vector is derived. [51, 53, 54]

2.3.2 Autocorrelation vectors

The autocorrelation function transforms the constitution of a molecule into

a �xed length representation. In fact, as originally computed, the MEP

properties depend on the spatial orientation of the molecule and a previous

alignment is needed to compare di�erent molecular structures. The mathe-

matical notion of autocorrelation is schematically reported in Figure 2.3.3.

Figure 2.3.3: a) E�ect of the translation of f(x) on x axis; b) geometrical
meaning of the autocorrelated function F(t).

Given the function f(x) measuring a property in AB domain, if the inner

variable t is introduced, the new autocorrelated function F(t) is de�ned as:

F (t) =
∫
AB

f(x)f(x+ t)dx (2.3.2)

where F(t) is an intrinsic descriptor, not relying on the external reference

systems and on the translation of the function f(x) on the x axis. Conversely,

the translation changes f(x) values for any x ∈ AB domain.

Firstly investigated by Moreau and Broto, this concept was introduced

in chemistry to analyze the properties of di�erent molecules without molec-

ular superimposition. [55, 56] By formulating a topological de�nition, they

considered that a certain property p of an atom i can be correlated with

the corresponding property p of atom j and the products of p values can be

summed over all atom pairs having a certain topological distance d.
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Each component of the autocorrelation vector is consequently calculated

as follows:

A(d) =
N∑
i,j

pipjδ(dij , d) δ =

{
1 ∀ dij = d

0 ∀ dij 6= d
(2.3.3)

where A(d) is the autocorrelation coe�cient referring to atom pairs i,j at

the topological distance d and pi is the atomic property. [55, 56]

The molecular recognition processes and the physicochemical phenomena

involve interactions between molecular surfaces and, therefore, representa-

tions of molecular surfaces should be appropriate to understand the diversity

in the binding a�nity and chemical behaviors. We are under the restriction

of having to represent molecular surfaces of di�erent size, thus the autocorre-

lation concept has been extended to 3D structures to achieve this goal. [52,

57, 58] Starting from the topological autocorrelation examples of Moreau

and Broto, a set of randomly distributed points on the molecular surface

has to be generated �rst. Then, all distances between the surface points

are calculated and sorted into the preset intervals d lower-dupper. Finally, the

autocorrelation coe�cients are computed:

A(dlower, dupper) =
1
L

N∑
j=i

N∑
i=1

pjpiδ(dij , dlower, dupper) (2.3.4)

δ =

{
1 ∀ dlower < dij ≤ dupper
0 ∀ dij ≤ d ∨ dij > dupper

According to equation 2.3.4, the component of the autocorrelation vector

A(d lower,dupper), referring to the i,j distance d in the interval d lower-dupper
is the sum of all products of the properties pi and pj for atoms i and j. We

consider N the number of atoms in the molecule and L a parameter repre-

senting the total number of distances in the interval d lower-dupper.

The application of this concept made possible the comparison of di�erent

molecular properties, as this 3D descriptor represents a compressed expres-

sion of the distribution of the property p on the molecular surface, as shown

in Figure 2.3.4.

For the calculation of the autocorrelation coe�cients we have applied

the default values for parameter computation, since no improving in statisti-

cal model capability was observed by changing them in various way. Default
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Figure 2.3.4: Calculation of autoMEP vectors, from the 3D molecular
structure to a �xed length representation.

parameters values are the following: d lower = 1 Å; dupper = 13 Å; L = 12;

point density = 10 points/Å2; vdW radius reduction factor = 1.000. Conse-

quently, we have derived 12 autocorrelation vectors per molecule, computed

at the 12 (L value) distances in the interval from 1 to 13 Å with a step width

of 1 Å. By considering the size of the molecules in our datasets, we decided

that the step width of 1 Å was su�cient to describe in an accurate way the

distribution of the MEP property on the molecular surface. This transfor-

mation produces a molecular descriptor which is a unique �ngerprint of each

molecule under consideration.

2.3.3 Sterimol parameters

3D topological Sterimol descriptors (B1, B2, B3, B4 and L) have been in-

troduced by Verloop to consider the volumes of the molecular substituents

with di�erent geometries (Figure 2.3.5). [59]

Figure 2.3.5: Geometrical meaning of Sterimol parameters.

The transposition of this concept to the whole molecule produces global
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descriptors, that, being intrinsically independent on rotation and translation

of the molecule, can be used together with autoMEP vectors. [60] In more

detail, L is the length of the molecule and refers to the principal axis, B1

is perpendicular to x axis and it is the smallest distance from L axis to a

side of the parallelepiped containing the molecule, B2 -B4 have a similar

geometrical meaning and they are perpendicular to B1.

2.3.4 Other molecular descriptors

Further descriptors calculated in our studies are listed in Table 2.1. These

descriptors are, to a large extent, 2D and 3D molecular descriptors and re-

�ect shape and reactivity properties.

The capability for participating in hydrogen bonding is described di-

rectly by the number of hydrogen-bonding acceptors/donors or the hydrogen-

bond acceptor/donor potential, or indirectly by the number of basic nitrogen

atoms and the number of acidic groups.

The highest hydrogen-bonding acceptor potential is de�ned as the max-

imum lone-pair electronegativity on an atom considering all N, O, and F

atoms in a compound. The highest hydrogen-bonding donor potential is de-

�ned as the most positive charge on the hydrogen atom in the functional

groups -OH, -NH, and -SH in a compound.

LogP(o/w), or log of the n-octanol/water partition coe�cient, describes

the partitioning equilibria. This 2D molecular descriptor was initially used in

drug design to quantify lipophilicity. Various methods for the estimation of

the experimental logP values have been developed and one of the well-known

techniques, published by Nys and Rekker, is based on additive fragment con-

tributions to the total molecular lipophilicity. [46] In our studies, logP(o/w)

is calculated from a linear atom type model by considering a pH value of the

aqueous phase such that the predominant form of the chemical is un-ionized.

As anticipated, two-dimensional topological autocorrelations derive atom

properties from the structure diagram, whereas spatial autocorrelation de-

scriptors are based on the information encoded by the 3D molecular struc-

ture. We have to consider atom identities or a property (σ-electronegativity,

π-electronegativity, σ-charge or π-charge) for their computation. In both

cases, the function of autocorrelation was applied to derive the autocorrela-

tion vectors.

16



Chapter 2 2.3 Molecular descriptors

Table 2.1: List of descriptors used in our analysis, arranged by class.

No. Name Details Ref(s).

Global

1 MW molecular weight [61]

2 HAccPot highest hydrogen-bond acceptor potential [61]

3 HDonPot highest hydrogen-bond donor potential [61]

4 HAcc
number of hydrogen-bonding acceptors derived from
the sum of nitrogen and oxygen atoms in the molecule

[61]

5 HDon
number of hydrogen-bonding donors derived from the
sum of NH and OH groups in the molecule

[61]

6 TPSA topological polar surface area [62]

7 ASA approximate surface area [63]

8 α mean polar polarizability [64-67]

9 µ molecular dipole moment [68]

10 logP(o/w) log of n-octanol/water partition coe�cient

Topological

11-12 χ0, χ1 connectivity χ indeces [69]

13-14 κ1, κ2 κ shape indeces [69]

15 W Wiener path number [70]

16 χR Randic index [68]

Size/Shape

17 D3 diameter [71]

18 R3 radius [70]

19 I 3 geometric shape coe�cient [71, 72]

20 r2 radius perpendicular to D3

21 r3 radius perpendicular to D3 and r2

22-24 λ1, λ2, λ3 principal moment of inertia [68]

25 rgyr radius of gyration [73, 74]

26 rspan

radius of the smallest sphere, centered at the center of
the mass which completely encloses all atoms in the
molecule

[74]

27 ε molecular eccentricity [68]

28 Ω molecular asphericity [68]

Quantum Chemical

29 HOMO energy (eV) of Highest Occupied Molecular Orbital [75]

30 LUMO energy (eV) of Lowest Unoccupied Molecular Orbital [75]

31 LUMO-HOMO di�erence between LUMO and HOMO [75]

Functional-Group Counts

32 naliph_amino number of aliphatic amino groups

33 naro_amino number of aromatic amino groups

(continued on next page )
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No. Name Details Ref(s).

34 nprim_amino number of primary aliphatic amino groups

35 nsec_amino number of secondary aliphatic amino groups

36 ntert_amino number of tertiary aliphatic amino groups

37 nprim_sec_amino nprim_amino+nsec_amino

38 naro_hydroxy number of aromatic hydroxy groups

39 naliph_hydroxy number of aliphatic hydroxy groups

40 nguanidine number of guanidine groups

41 nbasic_nitrogen number of basic, N-containing functional groups

42 nacidic_groups number of acidic functional groups

43 nacylsulfonamides number of sulfonamide-C=O groups

44 nenolate_groups number of enolate groups

Vectorial (topological and spatial)

45-55 2D-ACχLP property: lone-pair electronegativity χLP

56-66 2D-ACχσ property: σ-electronegativity χσ

67-77 2D-ACχπ property: π-electronegativity χπ

78-88 2D-ACqσ property: σ-charge qσ

89-99 2D-ACqπ property: π-charge qπ

100-110 2D-ACqtot property: total charge qtot

111-121 2D-ACα property: polarizability α

122-249 3D-ACidentity property: identity

250 χσ_1 =
∑
χ2
σ property: σ-electronegativity χσ

251 χπ_1 =
∑
χ2
π property: π-electronegativity χπ

252 qσ_1 =
∑
q2
σ property: σ-charge qσ

253 qπ_1 =
∑
q2
π property: π-charge qπ

254-265 SurfACorr_HBP property: hydrogen-bonding potential

The hydrogen atoms were included before the computation of the vecto-

rial descriptors. In more detail, each component A(d) of the autocorrelation

vector for the topological distance d is calculated as:

A(d) =
1
L

N∑
j=i

N∑
i=1

pjpiδ(dt,ij , d) δ =

{
1 ∀ dt,ij = d

0 ∀ dt,ij 6= d
(2.3.5)

where A(d) represents the autocorrelation coe�cient referring to atom pairs

i,j ; N is the number of atoms in the molecule; pi and pj are the properties

of atoms i and j, respectively; dt,ij is the i,j topological distance (i.e. the

number of bonds corresponding to the shortest path in the structure dia-

gram). A maximum distance d = 10 was selected, and 11 2D topological

autocorrelation components per molecule were obtained.

The calculation of 3D autocorrelation vectors was performed as described
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in the 2.3.2 section, by using pi = pj = 1 in eq. 2.3.3 for property identity

vectors (descriptors 122-249 in Table 2.1). Default parameter values were

d lower = 1 Å and dupper = 13.8 Å, with a resolution of 0.1 Å. Then, 128

components for this descriptor were obtained. The sums of the squares

of the σ-electronegativity (descriptor 250 in Table 2.1), π-electronegativity

(descriptor 251 in Table 2.1), σ-charge (descriptor 252 in Table 2.1), and π-

charge (descriptor 253 in Table 2.1) were calculated to re�ect the electroneg-

ativities and charge distributions in the aliphatic and conjugated systems.

They can be obtained by calculating the �rst component of the autocorrela-

tion vector while setting the distance to zero (d lower = 0 Å, dupper = 0 Å,

and number of intervals = 1). For these descriptors, only one component (d

= 0) of the autocorrelation coe�cients has been considered. The parameters

for the calculation of the hydrogen-bonding potential (descriptors 254-265 in

Table 2.1) autocorrelation coe�cients were as follows: d lower = 1 Å, dupper
= 13 Å, point density = 10 points/Å2, and 12 autocorrelation coe�cients

were obtained.

An extensive presentation of the remaining descriptors in Table 2.1 was

reported in a previous work. [76]

2.4 Data autoscaling

Once the molecular descriptors have been computed, the data is ordered in

a matrix form suitable to proceed with the statistical analysis. The indepen-

dent x variables (molecular descriptors) should be distinguished from the de-

pendent y variable (experimental property). However, the descriptor values

might cover di�erent intervals and show diverse distribution. Consequently,

a variable with high variance might have a stronger in�uence than the other

variables in the model development, but this e�ect should be avoided. Then,

each variable needs to be subjected to both scaling and mean-centering pro-

cedures, in the autoscaling process, in order to return the data in an unique

scale and make them homogeneous. (Figure 2.4.1). [47] The scaling of data

is achieved by multiplying the elements of each variable by the corresponding

standard deviation (unit variance scaling), while in the mean-centering the

mean value of the corresponding variable data is detracted from each data.

Finally, the information is contained in the same interval for all variables.
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Figure 2.4.1: Scheme of the autoscaling process.

2.5 Linear strategies

2.5.1 Single and multiple regression

The linear regression represents the simplest mathematical technique to de-

rive QSAR models, when the independent variables (molecular descriptors)

are correlated with the dependent ones (experimental properties) in a linear

way, as reported for example in the following relationship:

y = ax+ c (2.5.1)

with a single dependent y variable described as function of one independent

x variable. The best straight line achieved is able to approximate data distri-

bution with the minimum root mean squared error (RMSE) by considering

the predicted and experimental y values4.

If further independent x variables are introduced, the calculation be-

comes more complex and in this case we refer to as multiple linear regression

(MLR). The data is structured into a two-matrix organization and the vari-

ables are di�erently weighted, according to the angular coe�cient of each

contribute to the new regression straight line [48]:

y = a1x1 + a2x2 + a3x3 + · · ·+ aixi + c

y =
∑

anxn + c (2.5.2)

4The root mean square of error is de�ned as: RMSE =

√∑n
i=1(yp−ye)2

n
where yp =

ypredicted, ye = yexperimental and n is the total number of observations.
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The problems related to this approach are due to the same variables,

that should be independent from each other as more as possible, without

errors, since they in�uence the model performance. Finally, they should be

selected according to the relevance for the considered y variable. Moreover,

�ve samples at least are needed for each selected descriptor in the analysis.

Therefore, novel tools have been introduced to overcome these requirements

in the regression-based linear QSAR strategies.

2.5.2 Principal Component Analysis

A widely used approach to reduce the dataset dimensionality, i.e. the number

of independent variables, is the Principal Component Analysis (PCA). This

technique allows to optimize the information contained in the data matrix,

by �nding out the most contributing independent variables and eliminating

intercorrelations between molecular descriptors. [46-49] In fact, if two vari-

ables x 1 and x 2 are highly correlated, it would be redundant to consider both

of them in the model generation. So, a new single variable is introduced to

synthesize the information: the principal component (PC ) is a linear combi-

nation of x 1 and x 2.

If we consider a multivariate analysis with multiple descriptors, the de-

pendent variable can be described by new variables, the principal compo-

nents, linear combinations of the input independent variables:

PC1 = a11x1 + a12x2 + a13x3 + · · ·+ a1nxn + b

PC2 = a21x1 + a22x2 + a23x3 + · · ·+ a2nxn + b

PCi = ai1x1 + ai2x2 + ai3x3 + · · ·+ ainxn + b =
∑

ainxn + b (2.5.3)

Each PC in the X space is represented by the straight line that crosses the

origin and best approximates the data distribution, in order to minimize the

sum of the squared distances from the straight line, i.e. when
∑
e2 tends to

assume a value close to zero. (Figure 2.5.1). The �rst principal component

PC 1 is the straight line that maximizes the variance in the data, then, the

data shows the best distribution along PC 1. The variance that has to be

further explained, is progressively justi�ed by the remaining principal com-

ponents. Then, the second component is derived orthogonally to the �rst

one and the following PC s are carried out in a similar way, as far as to equal
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Figure 2.5.1: Data distribution and computation of PCs.

the number of the independent variables themselves. After the analysis, the

data will present a large distribution of the descriptor values, with a low

degree of correlation between the newly calculated variables.

Several statistical measures with the corresponding graphical represen-

tations can be considered in PCA: variances, loadings, scores, residuals and

leverage. In Figure 2.5.2 a typical trend of the explained variance by in-

creasing the number of PC s is reported. Each PC enriches the information

carried by the previous one in terms of percentage (%) of variance, conse-

quently, the last PC s are less signi�cant than the �rst ones. Moreover, the

decreasing slope highlighted by the graphical representation in Figure 2.5.2,

allows the detection of the number of signi�cant principal components, which

de�nes also the model complexity.

Figure 2.5.2: Graphical representation of the percentage (%) of variance
progressively explained by the PCs.

In the loading plot the coe�cients of the descriptors for each PC are

shown. In particular, each descriptor is weighted according to cosine of the
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angle that each variable x forms with the considered PC straight line, giving

the loading value p. Furthermore, the correlation between the descriptors

and PC s might be positive or negative and have a di�erent importance: for

a PC, the loading value of x variables can change both its sign and intensity

with respect to the zero reference.

After the calculation of the principal components, new coordinates are

identi�ed for each sample by the orthogonal projection of each point on

the considered PC. The intercepted value represents the score, according to

the di�erent principal components, which the projection refers to. The new

coordinates, indicated as tn, with n corresponding to the considered PC,

re�ect the information of the original space in the new PC i space. The score

values can be graphically reported in a 2D plane, with the axis represented

by two diverse PC s (Figure 2.5.3).

Figure 2.5.3: Score plot PC1/PC2, with the outlier indicated by the arrow.

In this plot, the samples in the same quadrant present similar properties,

moreover, according to the sample position in the projected space, we can

evaluate which PC s are more descriptive for a particular data. The anoma-

lous position of data in the score plot (external to the ellipse, delimiting the

con�dence interval, as indicated in Figure 2.5.3) might correspond to out-

liers5.

The leverage represents the data in�uence on the model: a sample with

high leverage value tends to carry the analysis in a particular direction. This

e�ect is proportional to the distance of the data from the global center. By

evaluating the leverage, we are able to distinguish the presence of strong

outliers.

5Discordant data if compared with the remaining data. Their chemical structure and
molecular descriptors should be investigated before their exclusion from the model.
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The detection of moderate outliers is achieved by the analysis of the vari-

ance not explained by the PC s, with the meaning of Distance to the Model

in the X space or DModX : it indicates the residual (i.e. data variation non

captured by the considered PC s) for each data in the X space. The data

can be represented in the plane DModX/number of observations, as shown

in the Figure 2.5.4.

Figure 2.5.4: Geometrical interpretation of DModX.

Finally, the principal components are further correlated to the y depen-

dent variable by deriving a new linear regression model, called Principal

Component Regression (PCR), represented by the following equation:

y = aPC1 + bPC2 + · · ·+ kPCn + d (2.5.4)

2.5.3 Projection to Latent Structures by means of Partial

Least Square

In chemometrics Projection to Latent Structure by means of Partial Least

Square (PLS) analysis is able to detect liner correlations between x indepen-

dent variables and y dependent variables by introducing new variables, the

principal components, de�ned as latent variables, since they hide the distri-

bution of data in the input XY space. [77] PLS technique is an extension

of the PCA methodology, by considering the computation of the principal

components both in X and Y spaces.

In Figure 2.5.5 a dataset constituted of X matrix, with K corresponding

to the number of descriptors (K = 3), and Y matrix, with M referring to the

number of experimental data (M = 3), is reported as example. The aim is

to build a model for the experimental data, to �nd the relationship between

two groups of variables. As previously described for the PCA technique,

several principal components can be de�ned as combinations of the input
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Figure 2.5.5: Meaning of the PLS analysis with respect to PCR and PCA.

variables. PC s are straight lines passing by the origin and orthogonal one

to each other, able to approximate the data distribution in both X and Y

spaces (Figure 2.5.6).

Figure 2.5.6: Calculation of PCs in PLS; t1 and u1 scores referred to PC1.

Then, for each point one can identify new coordinates, obtained by the

projection of each point on the principal components: t i1 and ui1 scores. The

following inner relationship between the projections is de�ned to correlate

the data distribution in the X and Y spaces:

ui1 = mti1 + hi (2.5.5)
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where u and t are the score values of each data in the X and Y matrices,

respectively, and h the residuals 6. In this way, the information is condensed

in a smaller space than the input space, by achieving the desired dimension-

ality reduction. The relationship between the descriptors and the y property

requires the obtainment of a straight line in the plot u1/t1 (Figure 2.5.6);

moreover, the ideal function correlating t with u is the bisector of the �rst

and third quadrants (m = 1). To achieve this objective, a further step is

represented by the oscillation of the straight line PC i in the X space in a

way that t values result as more as equal to u values, tending to the ideal

linear correlation in the plot t/u.

If one dependent variable is analyzed, the data can be represented by

using a single dimension in the Y space with u corresponding to y (Figure

2.5.7).

Figure 2.5.7: y and t1 scores referred to the �rst PC with three independent
and one dependent variables.

By introducing further PC s the percentage (%) of variance explained in-

creases, but the contribute of each one progressively decreases, as previously

described for the Principal Component Analysis.

6Data variation not explained by the PC s.
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The considerations related to the PLS analysis are similar to the statis-

tical de�nitions in the last section. In more detail, the plots corresponding

to the relationship between X and Y spaces, and the data representation in

the Y space can be also considered, as for example the X and Y score plots,

the X and Y loadings. The score plot u/t (for the di�erent components)

reports the observations in the X (T ) and Y (U ) projected spaces and gives

information on the correlation between Y and X spaces.

In the yexperimental vs ypredicted plot the prediction results are compared

with the experimental data (Figure 2.5.8).

Figure 2.5.8: yexperimental vs ypredicted plot.

Ideally, the data should lay on a straight line with an angular coe�cient

equal to one and crossing the origin. We can refer to the score plots, the u/t

score plot, the leverage, which is reported for both X and Y spaces, and to

X - or Y -variance residuals/leverage plots to determine the presence of out-

liers7. Moreover, we can detect the outliers by observing the yexperimental vs

ypredicted plot, if there is data distant from the ideal distribution. In the scat-

ter plot the loading weights are reported, i.e. the weights of each descriptor

in both X and Y spaces for the PC s, to quantify the in�uence of each input

x and y variables in the analysis. The VIP plot (Variable Importance in the

Projection) shows the coe�cients of each original variable in the model for

all the PC s.

The �nal mathematical model is able to summarize the variance in the

data by introducing a number of latent variables (the new principal compo-

nents) lower than the input variables (the molecular descriptors), but main-

taining the input information.

7The outliers are data with high leverage and residual values.
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2.6 Nonlinear strategies

2.6.1 Response Surface Analysis

Response Surface Analysis (RSA) is widely applied in the Design of Exper-

iments (DOE) approach, useful to solve optimization problems in research

and development. [78] A Design of Experiment is a structured methodology

consisting of a sequence of experimental determinations to describe the rela-

tionship between parameters xn involved in a process and the corresponding

response variables yn, as illustrated in Figure 2.6.1.

Figure 2.6.1: Simpli�ed graphical representation of Design of Experiments
(DOE) approach. x parameters (experimental factors) are related to y vari-
ables (observed responses).

The objective of DOE is to design or improve a process/product of in-

terest. During the experiments all relevant parameters are changed system-

atically, in order to �nd the ideal conditions. For example, we can consider

the study of a formulation, in which di�erent ingredients are mixed together.

After the analysis of the results (formulation parameters), the optimal condi-

tions and the role of the input parameters (ingredients factors) to determine

the experimental outcome can be identi�ed.

Several steps are involved in the DOE approach: a) de�ne the objective

to the study; b) select the design parameters to be varied during the ex-

periment and their intervals; c) identify the response variables that will be

measured; d) perform the experiments and collect the data. Only a small

set of experiments is needed to be performed for studying a process under

various conditions, if the computational methods are introduced.
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In particular, Response Surface Analysis (RSA) refers to a collection of

mathematical and statistical techniques, applied for analyzing the in�uence

of the independent variables (input parameters) on the response(s). [78] Fig-

ure 2.6.2 graphically represents how one can derive the generic relationships

between the response variables y1,y2, and the input variables x1, x2. The

response values, corresponding to di�erent (x1, x2) pairs, yield as a surface

lying above the X plane. Moreover, we can derive the best x1, x2 pairs cor-

responding to the maximum y values to achieve the optimal compromise

solution for both y1 and y2 responses.

Figure 2.6.2: Flowchart of an optimum design experiment by applying Re-
sponse Surface Analysis (RSA). Starting from experimental samples, each
response surface is then generated for x1,x2 pairs. The ideal conditions are
separately identi�ed for the responses, to �nally search for the best compro-
mise solutions.

In most problems the relationship f() between the response variable and

the independent variables is unknown. Thus, RSA technique is aimed at
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approximating the function y = f(x1, x2, x3, . . . , xn), where f(x) is a �rst-

order or a second-order equation. The approximation usually employs a

low-order polynomial in some region of the X space. If the response is well-

modeled by a linear function of the Y variables, then the approximating

function is a �rst-order model, as the following:

y = α0 + α1x1 + α2x2. (2.6.1)

If a curvature is present in the system or in the region of the optimum, a

polynomial of higher degree, corresponding to a nonlinear model, should be

used to approximate the response, which is analyzed to locate the optimum,

i.e. the set of independent variables such that the partial derivatives of

the model response with respect to the individual independent variables is

equal to zero. For the second-order equation the addition of a parameter of

interaction between the independent variables x1x2 is required to introduce

a curvature in the response function:

y = α0 + α1x1 + α2x2 + α11x
2
11 + α22x

2
22α12x1x2. (2.6.2)

Then, a more general formulation of the second-order response function is:

y = α0 +
∑

αixi +
∑

αiix
2
1 +

∑ ∑
αjixjxi. (2.6.3)

The eventual objective of RSA is to determine the optimum operating condi-

tions for the system, or a region which satis�es the operating speci�cations.

Almost all RSA problems utilize one or both of these approximating polyno-

mials. In the present thesis RSA is based on a multivariate thin plate spline

algorithm derived by the Green's theorem [79]:

y =
n∑
i=1

αig(di) +
p∑
j=1

cjxj (2.6.4)

where αi and cj are the weight coe�cients, p the number of independent

variables x, n the number of data points and g(di) the Green's function

applied to the Euclidean distances between the data i and any coordinate

in x axis. According to this algorithm, the response surface function is the

result of an elastic beam displacement in the xn space, where the elastic

beam has to bent to reach the data points in the y space. [79]
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The wor�ow for the model development is reported in Figure 2.6.3. Input

values are regarded as points of force actions, while output values as displaced

values. The surface response is the result of a smoothing procedure, that

reduces the in�uence of the background noise carried by the input data.

Figure 2.6.3: Schematic procedure of the thin plate spline algorithm applied
in Response Surface Analysis.

In RSA technique, the selection of the most informative independent

variables is performed to reduce the dimensionality of the �nal model and

improve the model predictivity. Linear stepwise regression and nonlinear

cluster analysis have been applied, and we combined the results to select

the most statistically relevant independent variables. [79] The stepwise

regression combines both forward selection and backward elimination pro-

cesses, that progressively adds/eliminates the independent variables that are

best/worst correlated to the response, respectively. The cluster analysis is

a nonlinear analysis able to divide the dataset into groups, according to a

similarity criterion applied to the samples. Then, similar samples belong to

the same cluster, while di�erent clusters contain diverse samples.

2.6.2 Support Vector Machine

Support Vector Machines (SVMs) are supervised learning systems originated

from Statistical Learning Theory, recently developed by Vapnik, and charac-

terized by novel attractive features and optimal generalization performance.

[80, 81] The theory of SVM has been described in several books, and here

we brie�y introduce some principles. [82-87]

A supervised learning problem requires the resolution of a function ap-

proximation problem (approximation of an unknown response function),

where the available data set (training set) is represented as a set of pairs

(examples), T = {(x1, y1), (x2, y2), . . . , (xi, yi)}, where x i is an input data

and y i is the corresponding observed response value. Usually, xi ∈ Rn,
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while if yi ∈ {−1,+1} the learning problem is a binary classi�cation, if

yi ∈ Rn the learning problem is a regression. In both cases, the aim of the

learning system is to select a hypothesis f(x) that approximates the desired

response y i in an optimal fashion, i.e. by minimizing some risk functional

R. In particular, we would like the function f(x) to be a reasonable estimate

of the functional relation between input-output pairs (prediction or general-

ization property). R weights the cost of the approximation, while the error

of a hypothesis is given by a loss function L() that measures the distance

between y i and f(x). A common example of loss is given by the quadratic

error function:

L(f(xi), yi) = (yi − f(xi))2. (2.6.5)

The average error over the training set is the expected risk R. If we assume

that a probability distribution P (xi, yi) exists and it is known to govern the

data and the underlying function dependences, R can be expressed as

R =
∫
L(f(xi), yi)dP (xi, yi). (2.6.6)

The learning process aim at selecting the hypothesis fopt(x) to minimize R.

The only available information to the learning system is the training set;

how the learning system uses the training set in order to minimize R is

called the inductive principle, that is a general prescription for obtaining the

estimate of fopt(x) from the training set. Given an inductive principle, the

learning algorithm tells how to use the data to obtain the estimate. One of

the most popular inductive principles is Empirical Risk Minimization, which

search for fopt(x) by minimizing the empirical error:

Remp =
1
n

n∑
i=1

L(f(xi), yi). (2.6.7)

The linear SVM is based on: a) linear hypotheses corresponding to sep-

arating hyperplanes in the Rn space, i.e. f(x) = w · x + b =
∑n

i=1wixi + b

where · is the dot product between vectors; b) the solution of a quadratic op-
timization problem that represents a trade-o� between the minimization of

the empirical error, i.e. the error over the training set, and the maximization

of the smoothness of f(x). [80] Nonlinear versions of SVM can be obtained

by the introduction of a kernel. [88]

We will discuss these issues both for classi�cation and regression.
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Support Vector Classi�cation

In the last years, several classi�cation problems have been solved by using

SVM approach, such as the discrimination between active and non active

compounds. [89-99] Binary classi�cation is widely performed to discriminate

a set of examples in two classes. Di�erent formulations for SVM are possible

according to the loss function L(f(xi), yj) used. We adopt the standard

formulation derived by using the Hinge loss function and slack variables ξi:

min
w,b

=
1
2
‖w‖2 + C

n∑
i=1

ξi (2.6.8)

subject to: ∀ i ∈ {1, . . . , n} yi(w · x+ b) ≥ 1− ξi and ξi ≥ 0,

where we recall that yi ∈ {−1,+1}, w and b are the parameters that control

the function f(x), and the constraints are satis�ed with zero error when it is

possible to �nd a function able to classify any positive example (yi = +1)

by returning a positive value that has some margin from zero, i.e. f(x) ≥ 1,
and any negative example ((yi = -1) returning a negative value that has

some margin from zero, i.e. f(x) ≤ −1. If such function does not exist,

then errors need to be compensated by choosing non zero values for the

corresponding slack variables ξi. The geometrical interpretation of Support

Vector Classi�cation is shown in Figure 2.6.4.

Figure 2.6.4: A binary classi�cation problem. The optimal separating hy-
perplane is orthogonal to the shortest line connecting the convex hulls of the
two classes, and intersects it half-way between the two classes.
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The trade-o� between the minimization of the norm of the weight vector

and the empirical error is given by the constant C. The above quadratic

constrained minimization problem (eq. 2.6.8) can be more easily solved by

resorting to the corresponding dual problem:

max
α

=
n∑
i=1

αi −
1
2

n∑
j=1

αiαjyiyj(xi · xj) (2.6.9)

subject to:
n∑
i=1

yiαi = 0, and ∀ i ∈ {1, . . . , n} 0 ≤ αi ≤ C.

The optimal weight vector wo of the �rst formulation is linked to the

optimal solution vector αo of the dual problem (αi are called dual variables)

by the following relation:

wo =
n∑
i=1

αoi yixi. (2.6.10)

The input vectors x i for which the corresponding dual variables satisfy αoi > 0
are referred to as support vectors. Finally, the decision rule is given by

sgn(f(x)). The characteristic nonlinearity of the boundary separating pos-

itive from negative samples is achieved by projecting the input vectors into

a higher dimensional feature space, i.e. x 7→ Φ(x) (Figure 2.6.5).

Figure 2.6.5: Transformation operated by the kernel.

In this way the dot product xi·xj is replaced by a kernel function k(xi, xj)
representing the dot product in the transformed space, i.e. k(xi, xj) =
Φ(xi)Φ(xj). The decision function takes the �nal form:

f(x) = sgn(
n∑
i=1

αiyik(xi, x) + b). (2.6.11)
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An example of kernel function is the gaussian RBF (radial basis func-

tion), k(xi, xj) = e−γ(xi−xj)2
, which has demonstrated its good performances

by producing a closed decision boundary. Regarding this kernel, the γ pa-

rameter should be appropriately selected: very small values of γ correspond

to complex models with a high number of support vectors and risk of over�t-

ting, while large values of γ might lead to a separating hyperplane described

with few support vectors and too smooth for an accurate classi�cation.

Support Vector Regression

In the last decade Support Vector Regression (SVR) has been used as a non-

linear methodology to derive quantitative structure-activity relationships for

the prediction of di�erent chemical and biological properties. [100-106]

As anticipated, in a regression problem yi ∈ Rn, then the mathemat-

ical formulation has to consider the approximation errors. A "reasonable"

approximation is de�ned by introducing the constraint that for each input

x i we should have |yi − f(xi)| ≤ ε, where ε is a small positive constant

representing the tolerance we allow on approximation errors. This require-

ment can be described by two linear constraints, i.e. (yi−w ·xi− b) ≤ ε and
(w·xi+b−yi) ≤ ε. Errors above the tolerance are typically linearly penalized
by resorting to the linear ε-insensitive loss function, in the following:

Lε(x, y, f) = |y − f(x)|ε = max(0, |y − f(x)| − ε) (2.6.12)

Based on the above considerations, the standard SVR model is de�ned as:

min
w,b,ξi,ξ

∗
i

1
2
‖w‖2 + C

n∑
i=1

(ξi + ξ∗i ), (2.6.13)

subject to: ∀i ∈ {1, . . . , n}

(〈w · xi〉+ b)− yi ≤ ε+ ξi,

yi − (〈w · xi〉+ b) ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0,

where a set of slack variables ξi, ξ∗i is added to quantify the violation of the

imposed constrains: ξi accounts for the underestimation of the target values,

while ξ∗i accounts for the overestimation of the target values.
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The solution of a linear regression problem results to be a tube with

radius ε which approximates the data distribution (Figure 2.6.6). [80, 81,

88, 107] Even for SVR a kernel can be used to introduce nonlinearity. Then,

the kernel expansion of the decision function f is:

f(x, α∗i , αi) =
n∑
i=1

(α∗i − αi)k(xi, x) + b. (2.6.14)

The �nal hypothesis regression function is a weighted sum of the kernel

function evaluated at the support vectors, de�ned as the training points

located on the border of the regression tube (Figure 2.6.6).

Figure 2.6.6: In Support Vector Regression a tube with radius ε is �tted
to the data. The trade-o� between model complexity and points lying outside
of the tube (with positive slack variables ξ) is determined by minimizing eq.
2.6.13.

2.6.3 Cross-training with Support Vector Machine

The concept of cross-training has been introduced by Boutell and collab-

orators. [108] They turned from the previously less performing attempted

strategies for multilabel data to present a new classi�cation method suit-

able for multiple and overlapping classes tasks, with samples simultaneously

associated to more than one class (Figure 2.6.7).

In the cross-training approach the multilabel data are used more than

once when training the classi�cation model. Moreover, each sample is as-

signed a positive label for each actual class to which it belongs. [108] Cross-

training with Support Vector Machine (ct-SVM) represents a novel applica-
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Figure 2.6.7: a) Single-label classi�cation: the samples that belong to two
di�erent classes are often di�cult to separate; b) multilabel classi�cation:
the data marked with both symbols belongs simultaneously to both classes.

tion of SVM analysis, when classes overlap in the feature space. In ct-SVM

technique the output real-valued scores of the trained binary classi�ers for

each class are transformed into the �nal labels according to di�erent testing

criteria, as previously reported. [109] In more detail, n binary classi�ers, n

corresponding to the number of the considered target responses, were built

using a radial basis function (RBF) kernel. The parameters for each SVM

classi�er (C and γ) were automatically optimized on the training set dur-

ing the learning process by using a 10-fold cross-validation and predicting a

small validation set. [108] After applying the cross-training approach, the

real-valued scores were obtained.

Recently, three di�erent testing criteria (P, T and C) have been pro-

posed. [108] The P-criterion assigns to the samples all labels corresponding

to a positive SVM score. If none of the scores is positive, the sample is

classi�ed as "unknown". The T-criterion uses the Closed World Assumption

(CWA), according to which all samples belong to at least one class: if all

SVM scores for a particular sample are negative, the pattern is assigned to

the class corresponding to the less negative score. The C-criterion consid-

ers SVM scores without any sign and the decision depends on the closeness

between the top SVM scores. In our studies a validation set has been used

to select the closeness between two scores. Once each binary classi�er was

optimized by predicting a validation set, the training and the validation sets

were merged and the new model was computed by using the previously op-

timized parameters. The �nal model was applied in the prediction of a test

set in order to evaluate its statistical robustness.
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2.6.4 Arti�cial Neural Networks

Arti�cial Neural Networks (ANN) have been introduced as a more �exible

class of modeling techniques naturally able to deal with complex nonlinear

systems both in classi�cation and regression problems. Their architecture is

particularly suitable in the studies with a large number of observations. The

innovative potentialities and applicability of the neural network methodology

in drug discovery have been recently described. [110]

The neural networks algorithm is able to model the functionality of the

brain. In the biological neuron, the dendrites are �bers connecting each

neuron to the neighboring neurons (Figure 2.6.8a). [46] A neuron receives

the new information from the neighboring neurons and converts it to the

�nal single signal in the soma. The signal, if strong enough (higher than

a particular threshold value), is transmitted to the axon. Then, the axon

carries the information further to the other dendrites and the transmission

takes place at the level of the synapse. The aim of the learning process is to

build the synapse strength.

Figure 2.6.8: a) Schematic structure of a biological neuron; b) unit i of an
arti�cial neuron.

Arti�cial neural network is an interconnected feed-forward network mod-

eling consisting of interrelated neurons, which interchange signals. The feed-

forward neural network depends on the input layer, where the units receive

the input data from the previous layer, so the information is processed uni-

directionally. It is formed by neurons (units) that process the information

and cooperate, simulating the connections of biological neurons. [46, 111]

In fact, an arti�cial neuron (unit) behaves similarly to the biological
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neuron (Figure 2.6.8b): the neuron j receives the input signals x i, that are

multiplied by w ji (weights) and summed, obtaining the global signal Net j ,

as in the following equation:

Netj =
∑
i

wjixi (2.6.15)

where w ji are the weights codi�ed by a vector, and establish the connection

strength. The �nal signal Net j is �ltered and modi�ed by a transfer function,

deciding whether the signal can be transmitted as out j to other neurons. The

most common activation functions are linear, such as the sigmoidal transfer

function: it can assume zero or one values as indicated by the relation:

outj =
1

1 + e−(αNetj+ϑ)
. (2.6.16)

In ANN the units form a network and the network is structured in dif-

ferent interconnected layers: input layer, one or more hidden layers, with

not accessible output, and output layer. [46] The neurons in the same layer

receive the signal from the layer above and simultaneously produce a unique

set of outputs. A typical network is shown in Figure 2.6.9.

Figure 2.6.9: Arti�cial neural network architecture, comprising input, hid-
den and output layers.

Two di�erent learning approaches are available: unsupervised and super-

vised. In the unsupervised learning the network classi�es the input vectors,

according to their similarity and the property to be analyzed is not used

in the training process. Consequently, the data in the same neuron or in

topologically adjacent neurons are similar, since similar data tends to form

clusters. An example of unsupervised neural network is the Kohonen net-
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work. [46, 111] The supervised learning is aimed at assigning the response

signal to the input data. In the learning process the input data are sent to

the input layer, then to the nodes of the hidden layer, and �nally a response

is elaborated in the output layer. In more detail, the input vectors are in-

troduced to characterize the objects, and the output vectors correspond to

the property of the object to investigate.

During the learning process (training) the neural networks learn from

examples, so the connection between neurons are adapted, i.e the weights

are adjusted. The input data x i enters the network system to generate the

output out i, as previously described, and out i is compared with the target

value, yielding the error δ. Then, the weights are corrected to reduce δ dur-

ing more learning cycles (epochs), in which input data are processed in the

network, as summarized in Figure 2.6.10. The supervised learning is ap-

plied, for example, in counter-propagation neural networks, where the error

is back-propagated from the output layer to the previous hidden layers.

Figure 2.6.10: Schematic representation of the supervised learning.

The Kohonen Network or self organizing map (SOM) is an example of

recurrent associative neural network, where each layer feeds the input units

back into its own units and the information is transmitted dynamically. It

is able to project the samples from a multidimensional space into a two-

dimensional plane, retaining the input information (Figure 2.6.11)8. [46] In

the network architecture each column in this two-dimensional system rep-

resents a neuron; each cuboide in a column corresponds to a dimension of

the input data (molecular descriptor) and it is also associated to a weight.

At the beginning of the training process the weights are random numbers;

8Adapted from Gasteiger, J.; Engel, T. Chemoinformatics , Wiley-VHC, 2003.
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Figure 2.6.11: Structure of the Kohonen network.

when an input vector enters the network, the weights more similar to that

neuron are determined according to the Euclidean distance
∑m

i=1(xs−wji)2

calculated between the input vector x s and the weights w j . The winning

neuron is associated to the minimum Euclidean distance, according to:

min ||X(t)−Wj || = min{
m∑
i=1

[xi(t)− wji]2} (2.6.17)

where the index j refers to a particular neuron, n is the total number of

neurons, W j are the weight vectors and X (t) are the input vectors. Based

on their distance from the winning neuron, the weights of the other neurons

are adapted. The process is repeated for all remaining input data, until a

training epoch is completed.

We have applied the supervised learning in a classi�cation task by using

the counter-propagation neural network methodology. A counter-propagation

neural network (CPG NN) is a well-known extension of Kohonen self organiz-

ing maps analysis, where some output layers (output block), corresponding

to the classes (Y variables), are added to the Kohonen input layers, that

represent the molecular descriptors (X variables) (Figure 2.6.12)9. Figure

2.6.12 refers to a classi�cation problem with four classes; in the output lay-

ers, each vector component is one for positive examples or zero for negative

examples, according to the assigned classes. During the learning process only

the input layers are considered to determine the winning neuron. Then all

the weights, including the output layers, are adapted and the trained net-

work can be used to predict unknown property vectors. Di�erent topologies

(rectangular and toroidal) and map sizes were used in the CPG NN analysis.

9Adapted from Gasteiger, J.; Engel, T. Chemoinformatics , Wiley-VHC, 2003.

41



2.7 Validation and statistical evaluation Chapter 2

Figure 2.6.12: Counter-propagation neural network; the input and the out-
put layers with the corresponding weights are indicated.

2.7 Validation and statistical evaluation

For regulatory purposes some reference principles, introduced by Organiza-

tion of Economic Cooperation and Development (OECD), have been recom-

mended in the QSAR model development. [112] The guideline document

has underlined the following requirements: a) a de�ned endpoint, b) an un-

ambiguous algorithm, c) a de�ned domain of applicability, d) appropriate

measures of goodness-of-�t, robustness and predictivity and e) a mechanis-

tic interpretation, if possible. Some of these principles and their role in the

regulatory context have been clari�ed. [113]

We have used several methods to evaluate the statistical reliability of

our models. Their predictive power was veri�ed by performing a validation

procedure: the internal validation was applied by excluding the samples

composing the training set (cross-validation), the external validation has

considered the prediction of the samples not used in the model generation

(test set prediction). In particular, LOO (leave-one-out), 10-, 5-, 3- and 2-

fold cross-validation procedures were performed.

In n-fold cross-validation procedure, the data set is divided randomly

into n subsets with a similar number of samples and class distribution (in

the classi�cation approach), according to a strati�ed methodology. In the

�rst step, one partition n is considered as test set, while the others (n-1)

partitions are used to �t the model, used then to predict the test set. The

process is repeated n times, until all the partitions are considered as test set.
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Concerning the regression models, the correlation coe�cient r is calcu-

lated to evaluate the quality of the �tting process (model calibration), as

follows:

r =
∑n

i=1(xExp − x̄)(yPred − ȳ)√∑n
i=1(xExp − x̄)2

√∑n
i=1(yPred − ȳ)2

(2.7.1)

where xExp represents the experimental data, yPred the predicted values and

x̄, ȳ the corresponding averages. The values of the correlation coe�cient are

included in the interval between zero and one; r indicates the ideal correlation

when it is equal to one. The same parameter has been calculated after

LOO cross-validation procedure (r cv). The following statistical requirements

should be satis�ed to achieve a good modeling performance:

r2
cv > 0.3 and r2/r2

cv ∼ 1

A further validation procedure in the regression analysis is the y variable

randomization, which should give bad performing models.

In the single-label classi�cation approach, following the OECD principles,

we have applied an extensive n-fold cross-validation to evaluate the predictiv-

ity of our models. The average, standard deviation, minimum and maximum

rates were collected for each n-fold cross-validation method. Moreover, the

confusion matrix is required for the model evaluation (Figure 2.7.1).

Figure 2.7.1: Confusion matrix. The samples classi�ed by the model (rows)
and the experimental classes (columns) are reported. TP (true positives)
are correct positive predictions, FP (false positives) are incorrect positive
predictions, FN (false negatives) are uncorrect negative predictions and TN
(true negatives) are correct negative predictions.

Then, the true positive (TP) rate, the false positive (FP) rate, the true

negative (TN) rate, the false negative (FN) rate, accuracy, recall, or sensi-

tivity, and precision, or speci�city, were calculated for each binary classi�er

from the confusion matrix, as summarized in Table 2.2.
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Table 2.2: Statistical parameters to evaluate the classi�cation models.

Name Calculation details

True positive rate TP/(FN+TP)

False positive rate FP/(TN+FP)

True negative rate TN/(TN+FP)

False negative rate FN/(FN+TP)

Recall TP rate

Precision TP/(FP+TP)

% correct predictions
(accuracy)

(TP+TN)/Total number of compounds · 100

Matthews correlation
coe�cient

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

TP = number of true positives; FP = number of false positives;

TN = number of true negatives; FN = number of false negatives

The values of the rates are included in the interval between zero and

one. Low values of FP and FN rates, high values of TP and TN rates, high

percentage (%) values of correct predictions, recall and precision correspond

to good modeling performances.

Moreover, we calculated the Matthews correlation coe�cient (MCC),

that falls in the range −1 ≤MCC ≤ 1. A value of MCC = 1 indicates per-

fect agreement between predicted and experimental classes for each binary

classi�er, whereas a value MCC = -1 indicates the worst possible prediction.

The evaluation of a multilabel classi�cation model performance is more

complicated in comparison with the statistical quality of a single-label clas-

si�cation model. The confusion matrix was extracted from the predictions

of the validation set and the internal test set to assess the robustness of our

models. In this case, the accuracy is referred to the overall performance on

the tested data set, while the TPs, FPs, TNs, FNs, the recall and precision

are base-class measures, calculated for each class after the comparison be-

tween actual and predicted labels by our multilabel models. [108, 109] In

ct-SVM analysis, the ranking process provides a function to order the labels

for each sample and to assign scores to the samples. Several ranking-based

performance measures have been mathematically de�ned. [108, 109] One-

error represents the ratio of the number of not top-ranked labels to the total

number of actual labels. It can take on values between zero and one and

values close to zero indicate a good performance. Coverage measures how

far one needs, on average, to go down the list of labels to cover all actual
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labels. The coverage interval is between one and the number of the classes;

then, the best performance corresponds to a value of zero. Average precision,

that refers to the whole system, re�ects the e�ectiveness of the label ranking

and indicates the frequency of the top-ranking for the actual labels. The

extreme values are zero and one and the best performance is achieved when

the average precision is equal to one. [108]

2.8 Software

Most modeling studies were carried out on a 16 CPU (Intel CoreTM2 Quad

CPU 2.40 GHz) linux cluster running under openMosix architecture (Paper

I, II, IV -VI ). [114]

Molecular structure building and autocorrelation molecular electrostatic

potential (autoMEP) descriptors, based on Connolly's solvent accessible sur-

faces, have been carried out using ADRIANA (version 2.0) [115] and ADRI-

ANA.Code suite (version 2.2) (Papers I -VI ). [51] The number of hydrogen

bonding donors and acceptors, Topological Polar Surface Area (TPSA) de-

scriptors have been carried out using ADRIANA.Code software (version 2.2)

(Papers III, VI ). [51] Sterimol descriptors, logP(o/w), Approximate Surface

Area (ASA), HOMO and LUMO energy descriptors have been calculated

using Molecular Operating Environment (MOE, ver. 2008.10) (Paper VI ).

[116] The remaining molecular descriptors in Table 2.1 have been calculated

by using ADRIANA.Code software (Paper III ). [51]

Partial Least Square (PLS) analysis has been performed using "The Un-

scrambler" statistical software (Paper I ). [117]

Response Surface Analysis (RSA) has been performed using DataFOR-

EST and DataNESIA softwares (Paper I, II ). [118, 119]

Some SVM classi�cation analysis and Support Vector Regression models

have been performed by using SVMlight software (Paper IV ). [120]

Most single-label classi�cation models were built using Weka data mining

software (Papers III, VI ). [121]

Cross-training with SVM (ct-SVM) multilabel classi�cation models were

generated with the R software and package e1071 (Papers III, V ). [122, 123]

The counter-propagation neural network (CPG NN) analysis was per-

formed using SONNIA software (Paper III ). [124]
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Chapter 3

Estimation of the aqueous solvation

free energy

Several quantitative structure-property relationship (QSPR) approaches have

been explored for the prediction of aqueous solubility or aqueous solvation

free energy, ∆Ghyd, as crucial parameter a�ecting the pharmacokinetic pro-
�le and toxicity of chemical compounds. It is mostly accepted that aqueous

solvation free energies can be expressed quantitatively in terms of proper-

ties of the molecular surface electrostatic potentials of the solutes. In the

present study we have introduced autocorrelation molecular electrostatic po-

tential (autoMEP) vectors in combination with nonlinear Response Surface

Analysis (RSA) as alternative 3D-QSPR strategy to evaluate the aqueous

solvation free energy of organic compounds. A robust QSPR model (r cv =

0.93) has been obtained by using a collection of 248 organic chemicals. An

external test set based on 23 molecules con�rmed the good predictivity of

the autoMEP/RSA model suggesting its further applicability in the in silico

prediction of water solubility of large organic compounds libraries.
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3.1 Introduction

In the last decades a wide interest has been focused on the prediction of

aqueous solubility as relevant property a�ecting the pharmacokinetic pro-

�le and toxicity of chemical compounds. [125] Especially in the early phase

of drug discovery, molecular solubility represents an important determinant

of drug-likeness, since it relates, for example, to drug bioavailability. [61]

In fact, solvation e�ects play one of the major contributes in�uencing the

quantity of free drug for biological processes, and increased solubility might

correspond to improved therapeutic e�ectiveness of potential new drugs.

From a thermodynamic point of view, the solvation free energy describes

the e�ects of the solvent on the solute, when the solute is transferred in

solution phase at constant temperature and it is surrounded by the solvent

molecules. The solvation process is energetically favoured if the new interac-

tions between the molecules in solution lead to a more stable termodynamic

system with respect to not interacting solvent and solute. Then, an e�cient

solvation process is due to favourable interactions between the solute and the

water (aqueous solvation free energies, ∆Ghyd). Moreover, the formation of

a receptor-ligand complex requires a trade-o� between an unfavourable elec-

trostatic desolvation penalty, occuring when the ligand binds the receptor

in aqueous solution, and the generally favourable intermolecular interactions

involved in the complex. [126] So, the solvation e�ects are responsible for

the most probable binding mode of a receptor-ligand complex as well as for

the binding a�nity of organic compounds.

Well performing computer simulations of the solute-solvent system are

commonly applied to calculate the free energy of solvation, but their high

computational and time demands are not consistent with the study of a

large number of compounds. However, a classical quantitative structure-

property relationship (QSPR) approach is suitable for the evaluation of any

solute-solvent system, as previously reported in several papers. [127-131]

Unfortunately, the datasets that were used for the generation of these mod-

els are restricted to organic compounds.

Recently, it was reported that autocorrelation Molecular Electrostatic

Potential (autoMEP) vectors in combination to Partial Least Square (PLS)

and/or Response Surface Analysis (RSA) techniques can represent a powerful

three-dimensional quantitative structure-activity relationship (3D-QSAR)

approach. [60, 132-135] In fact, topological and electrostatic complemen-
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tarities are considered two key concepts in molecular recognition processes.

Gasteiger and collaborators investigated the MEP on the molecular sur-

face as particularly useful method for rationalizing the interactions between

molecules and molecular recognition processes. [52, 57, 58] The electrostatic

forces are a fundamental component of the interactions between the solute

and the solvent. Moreover, the major contribution to the solvation free en-

ergy of the solute is represented by the surface of the solute that is accessible

to the solvent, and by the screening e�ect of the solvent. Therefore, MEP

distribution on the molecular surface can be used as parameter to describe

aqueous solvation/desolvation processes. To this aim, we have introduced

autoMEP vectors in combination with Response Surface Analysis (RSA) as

alternative 3D-QSPR strategy for the estimation of the aqueous solvation

free energy of organic compounds, as shown in Figure 3.1.1.

Figure 3.1.1: Flowchart illustrating 3D-QSPR strategy combining au-
toMEP descriptors computation with Response Surface Analysis (RSA) to
predict the aqueous solvation free energy of small organic molecules.

49



3.2 Results and discussion Chapter 3

3.2 Results and discussion

The solvation free energy is a termodynamic parameter to describe the e�ects

of the solvent. [136] The solvation e�ect is globally due to intermolecular

interactions between the solute and the solvent, as well as a change in the

intramolecular interactions of the solute and, a reorganization of the solvent

because of the solute. Among these phenomena, the electrostatics represent

the main contribution in the abovementioned interactions.

As anticipated, autoMEP descriptors encode into autocorrelation vec-

tors the three-dimensional spatial distribution and the intensity of the elec-

trostatic potential projected on the molecular surface. Then, we have used

autoMEP descriptors in combination with a response surface analysis tech-

nique (autoMEP/RSA) to predict the solvation free energy of a set of 248

organic chemicals (training set). This training set is a collection of small

organic molecules, that belong to di�erent chemical classes (Table 3.1).

Table 3.1: Frequency of functional groups in the training set.

No. Functionalities

14 Alkanes

15 Alkenes

7 Alkines

57 Halogen derivatives

22 Aromatics and cycles

20 Aromatics and N containing compounds

7 Nitro derivatives and nitriles

10 Amines

30 Alcohols

7 Ketones

12 Aldehydes

16 Ethers

26 Esters

5 S containing compounds

The parameters for the calculation of autocorrelation coe�cients are the

following: dlower = 0 ; dupper = 5; L = 12; point density = 20 points/Å2,

according to eq. 2.3.4. The preliminary application of the stepwise regression

and the cluster analysis on the original twelve autoMEP descriptors led to

the selection of �ve independent variables into RSA model: autoMEP 1, 7,

8, 10 and 12. The calibration step, performed as described in 2.6.1 section,

50



Chapter 3 3.2 Results and discussion

has provided a very high correlation coe�cient (r = 0.99), con�rming the

good choice of the independent variables, as summarized in Figure 3.2.1 and

Table 3.2.

Figure 3.2.1: AutoMEP/RSA model; experimental ∆Ghyd values vs pre-
dicted ∆Ghyd values after LOO cross-validation on the training set.

Table 3.2: Summary of the statistical parameters of autoMEP/RSA model.

Number of molecules 248

X variables 5

r 0.99

r cv
a 0.93

Slope 0.87

O�set -0.25

qb 0.92

RMRc 0.069

RSSd 1.19
aCross-validated r after LOO cross-validation procedure: rcv=[SXY/(SXX)

1
2 (SY Y )

1
2 ], SXY=

∑
(X -

Xmean)(Y -Ymean), SXX=
∑
(X -Xmean)

2 and SYY=
∑
(Y -Ymean)

2 with X=YExperimental and

Y=YP redicted;
b
r of the internal test set; croot mean square of residuals: RMR; dresidual sum of squares:

RSS.

A LOO cross-validation technique has been applied for validating the �-

nal autoMEP/RSA model to statistically con�rm its robustness (r cv = 0.93).

Interestingly, autoMEPs 1 and 7 seem to play a major role in describing the

complexity of the �nal response surface. A representation of solvation free

energy as function of autoMEP 1 and autoMEP 7 is shown in Paper I.

By analyzing Table 3.1, the predictivity of autoMEP/RSA model does

not present any particular dependence from the chemical structure of the
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considered organic compounds. The residuals of 248 derivatives of the train-

ing set overcome 1 kcal/mol, and it happens especially whether chloride

and �uorine atoms are present or for some aliphatic and aromatic alcohols

and aromatic amines, as reported in Paper I. In most cases the solvation

free energy of halogen derivatives is overestimated, while alcohols and aro-

matic amines are generally underestimated, if compared to the respective

experimental values. However, it is interesting to note that as all other 3D-

QSPR approaches, also autoMEP/RSA model is able to discriminate among

stereoisomers, improving the limits of some models that have utilized, for

example, atomic constants as molecular descriptors (Paper I ). [128]

A test set of 23 molecules with a di�erent chemical structure and solvation

free energy values has been selected to further validate our autoMEP/RSA

model. The experimental vs predicted solvation free energies values are col-

lected in Figure 3.2.2 and Table 3.3.

The predicted and experimental solvation free energy values are very sim-

ilar. A very good correlation coe�cient calculated on the test set (q = 0.92)

is an additional evidence about the good predictivity of the autoMEP/RSA

model, as reported in Table 3.2 (Paper I ). The predicted solvation free en-

ergies result very close to the experimental values, as shown in Figure 3.2.2.

Figure 3.2.2: Comparison between experimental (s) and predicted (n)
∆Ghyd values by autoMEP/RSA model for the test set.
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Table 3.3: Experimental and predicted solvation free energies (∆Ghyd in
kcal/mol) by our autoMEP/RSA model for the test set of 23 molecules.

No. Molecule name
Exp. ∆Ghyd

(kcal/mol)
Pred. ∆Ghyd

(kcal/mol)
Residuals∗

1 2-methylpentane 2.56 2.53 -0.03

2 cis -1,2-dimethylcyclohexane 1.60 2.38 0.78

3 1-hexene 1.73 1.96 0.23

4 2,3-dimethyl-1,3-butadiene 0.40 0.33 -0.07

5 toluene -0.77 0.28 1.05

6 tert -butylbenzene -0.44 -0.30 0.14

7 dichloromethane -1.42 -1.82 -0.40

8 1,3-dibromopropane -1.99 -1.60 0.39

9 chloroethylene 0.50 -0.76 -1.26

10 1,4-dichlorobenzene -1.02 -1.75 -0.73

11 diethyl sul�de -1.45 -0.80 0.65

12 diisopropyl ether -0.54 -0.96 -0.42

13 ethane thiol -4.08 -2.98 1.10

14 3-hexanol -3.73 -3.8 -0.07

15 hexanal -2.85 -2.54 0.31

16 2-butanone -3.76 -2.63 1.13

17 methylformate -2.82 -4.34 -1.52

18 ethylpropionate -2.83 -2.75 0.08

19 isoamylacetate -2.24 -2.54 -0.30

20 propylamine -4.56 -3.88 0.68

21 dibutylamine -3.38 -1.46 1.92

22 1-nitropropane -3.38 -4.18 -0.80

23 2-isobutylpyrazine -5.11 -3.84 1.27
∗Predicted ∆Ghyd (kcal/mol) - Experimental ∆Ghyd (kcal/mol).

Indeed, less accurate estimation are again reported for halogen deriva-

tives and amines (see for example, molecules 9, 21 and 23 in Figure 3.2.2

and Table 3.3). These molecules have a chemical structure in common with

the worst predicted compounds in the training set, such as chloroethylene,

dibutylamine and 2-isobutylpyrazine, for which autoMEP/RSA deviations

from the corresponding experimental values are higher than 1 kcal/mol.

Overall, we can consider the combination of autocorrelation MEP vectors

with a response surface analysis an alternative tool to evaluate the aqueous

solvation free energy of organic compounds.
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3.3 Final remarks

The solvent environment of molecules plays a very important role in their

structure and function. Consequently, it is important to consider solva-

tion e�ects accurately and e�ciently in the prediction and simulation of the

molecular properties.

In this work, we present an alternative 3D-QSPR approach combining

autoMEP molecular descriptors with Response Surface Analysis (RSA) tech-

nique to evaluate the aqueous solvation free energy of organic compounds.

Considering our results, autoMEP vectors can be considered an interesting

electrostatic �ngerprint able to describe the solvation e�ects, crucial in both

pharmacodynamic and pharmacokinetic processes.
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Parallel application of linear and

nonlinear QSAR methodologies

The autocorrelated descriptors encoding for Molecular Electrostatic Poten-

tial (autoMEP) in combination with both linear (Partial Least Square, PLS)

and nonlinear (Response Surface Analysis, RSA) strategies was demonstrated

to be a reliable tool to quantitatively predict the binding a�nity of human

adenosine receptor antagonists. In this work, a collection of 127 known hu-

man hA2A antagonists has been utilized to generate two 3D-QSAR models

(autoMEP/PLS and autoMEP/RSA). PLS analysis is able to describe linear

correlations, whether RSA detects the possible nonlinearity in the relation-

ships between the molecular descriptors and the target property. However,

we show that the parallel approach by using both techniques can lead to a

more robust consensus in the prediction results. To validate our approach

we have used our strategy to predict the binding a�nity of �ve new human

hA2A pyrazolo-triazolo-pyrimidine antagonists.
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Ligand-based approaches are widely and successfully used to develop quan-

titative models able to correlate, and predict, the biological activities based

on various molecular descriptors, especially when the bioactive conformation

of the ligand is unknown, as in the case of some G protein-coupled recep-

tors (GPCRs). The bioactive conformation represents the starting point

of all 3D-QSAR strategies such as Comparative Molecular Field Analysis

(CoMFA) or 3D-Pharmacophore search. [137, 138]

As anticipated, 3D-QSAR methods require the knowledge of the con-

formational properties of the molecules in order to calculate their struc-

tural or property descriptors. It was demonstrated that the autoMEP vec-

tors in combination with Partial Least Square (PLS) analysis can represent

an alternative 3D-QSAR tool to CoMFA. [132-134] However, both CoMFA

and autoMEP/PLS methodologies can be classi�ed as linear QSAR methods

considering the mathematical relationship among molecular descriptors and

the chemical/biological response space. Very recently, a nonlinear method

based on a response surface analysis (RSA) application in tandem with the

autoMEP descriptors (autoMEP/RSA) was also presented as an alternative

3D-QSAR method. [60, 135]

As case study we have considered the prediction of the pharmacodynamic

pro�le of human adenosine A2A receptor antagonists. More speci�cally, we

would like to show how the applicability in parallel of both linear and non-

linear 3D-QSAR methods (autoMEP/PLS and autoMEP/RSA) can help to

predict the binding a�nity data of a new set of human adenosine A2A re-

ceptor antagonists.

4.2 Human A 2AR antagonists dataset

Brie�y, the adenosine A2A receptors are classi�ed in the adenosine recep-

tor (AR) family of GPCRs, which includes A1, A2A, A2B and A3 di�erent

subtypes, abundantly expressed in diverse areas of human body and poten-

tially in the same cellular types1. [139] Being heptahelical transmembrane

GPCRs, they are involved in several signal transduction pathways, as shown

in Figure 4.2.1.

1Further details on the four human AR subtypes are reported in section 7.2.
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Figure 4.2.1: Signal transduction pathways of adenosine receptors.

Moreover, they are codi�ed by distinct genes and they have been cloned

from various mammalian species, where they seem to di�erentiate for their

pharmacological pro�le. [139] In particular, the human adenosine A2A re-

ceptor (hA2AR) has been discovered to be crucial in some neurological dis-

orders, which involve also other neurotransmission systems, above all the

dopamine D2 receptor, antagonistically associated to this adenosine receptor

subtype. [140] It has been demonstrated that the activation of the human

A2AR causes the inhibition of platelet aggregation, attenuates the in�amma-

tory responses mediated by cytokines, involves the regulation of the immune

cells functions, while adenosine A2A receptor antagonists show a neuroprotec-

tive activity during ischemic processes. [141] The inhibition of A2A receptor,

blocking the e�ects of adenosine, has been suggested as key strategy for the

treatment of diverse pathologies. [142] In more detail, one of the main po-

tential therapeutic applications of A2A receptor antagonists is the promotion

of cellular survival and the reduction of neuronal damage in Parkinson's or

Huntington's diseases. [142-144]

In the last few years, several di�erent potent and selective human adeno-

sine A2A receptor antagonists have been discovered. [145] In particular,

pyrazolo-triazolo-pyrimidine and triazolo-pyridine derivatives were described

as promising hA2AR antagonists. Their chemical structures are summarized

in Figure 4.2.2. In the present study, a collection of 127 known human

A2AR antagonists has been utilized to derive a couple of 3D-QSAR models

(autoMEP/PLS and autoMEP/RSA). The binding a�nity of the compounds

is expressed as K i (nM) after displacement experiments by using [3H]-NECA
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Figure 4.2.2: Chemical structures of known pyrazolo-triazolo-pyrimidine
and triazolo-pyridine human A2AR antagonists in the training set.

binding at human A2A receptors expressed in CHO or HEK-293 cells (Paper

II ). To validate our in tandem approach, they have been utilized to predict

the binding a�nity of �ve new human A2AR pyrazolo-triazolo-pyrimidine

antagonists, following the �owchart shown in Figure 4.2.3.

Figure 4.2.3: Partial Least Square (PLS) and Response Surface Analysis
(RSA) approaches applied in tandem.
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As summarized in Figure 4.2.3, a collection of pyrazolo-triazolo-pyrimidine

and triazolo-pyridine analogues (molecules 1-127) was selected as training

set in both linear and nonlinear QSAR models. [146-152] An internal test

set of 10 training set analogues (molecules 128-137) was selected for the

validation process of both PLS and RSA models. Finally, �ve new pyrazolo-

triazolo-pyrimidine analogues (molecules 138-142) has been analyzed as ad-

ditional validation set2.

4.3 Results and discussion

Topological and electrostatic complementarities are considered two key as-

pects in the molecular recognition processes. Both potentialities and ad-

vantages of the use of autoMEP descriptors in di�erent 3D-QSAR applica-

tions have been previously discussed. [60, 132-135] In this work, using the

autoMEP vectors, mentioned in chapter 2, we have assessed the possibility

to combine in parallel two di�erent linear and nonlinear strategies, PLS and

RSA, to �nd a consensus in the quantitative binding a�nity predictions.

4.3.1 PLS and RSA models

Both 3D-QSAR models have been derived by using 96 pyrazolo-triazolo-

pyrimidine and 31 triazolo-pyridine derivatives as training set of known A2A

receptor antagonists. Moreover, both models have been subjected to a val-

idation process by using a test set of 10 molecules (de�ned as the internal

test set), structurally related to those included into the training set. Twelve

autoMEP vectors have been used as independent variables in both PLS and

RSA analysis (calculated as described in chapter 2); a preliminary variable

selection step has been introduced before deriving RSA model (Paper II ).

Concerning PLS analysis, the resulting model has shown acceptable sta-

tistical quality in both calibration and internal validation steps as demon-

strated by the r and r cv values of 0.80 and 0.78, respectively, using only

three latent variables (Figure 4.3.1 and Table 4.1). The robustness of the

PLS model is also supported by the good value of the correlation coe�cient

calculated on the test set (q = 0.85), as reported in Figure 4.3.2, Table 4.1

and Table 4.2.
2Experimental binding a�nity data kindly provided by the work coordinated by Prof.

G. Spalluto (University of Trieste) for the synthesis and by Prof. K. N. Klotz (University
of Würzburg) for the pharmacological characterization.
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Figure 4.3.1: AutoMEP/PLS model; experimental pKi data plotted vs pre-
dicted pKi values (after LOO cross-validation) for the training set.

Table 4.1: Summary of the statistical parameters of autoMEP/PLS model.

Number of molecules 127

Latent variables 3

r 0.80

r cv
a 0.78

Slope 0.62

O�set -0.57

qb 0.85

RMRc 0.043
aCross-validated r after LOO cross-validation procedure: rcv=[SXY/(SXX)

1
2 (SY Y )

1
2 ], SXY=

∑
(X -

Xmean)(Y -Ymean), SXX=
∑
(X -Xmean)

2 and SYY=
∑
(Y -Ymean)

2 with X=YExperimental and

Y=YP redicted;
b
r of the internal test set; croot mean square of residuals: RMR.
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Figure 4.3.2: Comparison of autoMEP/PLS (n) and autoMEP/RSA pre-
dicted pKi (l) with experimental pKi values (s) of the internal test set.

Table 4.2: Experimental and predicted pKi for the internal test set. Dif-
ferences between predicted and experimental pKi values for both models are
reported; PLS = autoMEP/PLS model; RSA = autoMEP/RSA model.

No. Exp. pK i Pred. pK i PLS Pred. pK i RSA
∆ pK i

a

PLS
∆ pK i

a

RSA

128 0.89 -0.11 0.25 -1.00 -0.64

129 -0.64 -0.55 -0.65 0.09 -0.01

130 -0.43 -0.04 -0.20 0.39 0.23

131 -2.79 -2.36 -2.66 0.43 0.13

132 -2.70 -1.47 -1.65 1.23 1.05

133 -3.02 -2.44 -2.08 0.58 0.94

134 -0.29 -1.37 -1.39 -1.08 -1.10

135 -1.00 -0.82 -0.85 0.18 0.15

136 -1.43 -1.08 -1.14 0.35 0.29

137 -1.86 -1.13 -1.11 0.73 0.75
aPredicted pK i - Experimental pK i.
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In parallel, we have delivered a nonlinear RSA model using the same

training and test sets. The stepwise regression analysis together with the

cluster analysis on the original 12 molecular descriptors led us to select �ve

of them as �nal combination to utilize as independent variables into the RSA

model: autoMEP 2, 4, 6, 7 and 11 (Paper II ). The statistical parameters

and the �nal RSA model are collected in Figure 4.3.3 and Table 4.3.

Figure 4.3.3: AutoMEP/RSA model; experimental pKi data plotted vs pre-
dicted pKi values (after LOO cross-validation) for the training set.

Table 4.3: Summary of the statistical parameters of autoMEP/RSA model.

Number of molecules 127

X variables 5

r 0.98

r cv
a 0.82

Slope 0.68

O�set -0.49

qb 0.87

RMRc 0.043
aCross-validated r after LOO cross-validation procedure: rcv=[SXY/(SXX)

1
2 (SY Y )

1
2 ], SXY=

∑
(X -

Xmean)(Y -Ymean), SXX=
∑
(X -Xmean)

2 and SYY=
∑
(Y -Ymean)

2 with X=YExperimental and

Y=YP redicted;
b
r of the internal test set; croot mean square of residuals: RMR.

We can observe a very high correlation coe�cient (r = 0.98) for the

calibration step con�rming the good choice of the independent variables.
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The correlation coe�cients after LOO cross-validation and calculated on

the test set are also appreciable (r cv = 0.82 and q = 0.87, respectively).

These results represent additional evidences about the good predictivity of

the autoMEP/RSA model, as shown in Figure 4.3.2 and Table 4.2.

Even if both methods are statistically acceptable, the autoMEP/RSA

model presents higher predictivity than autoMEP/PLS model (Table 4.2).

However, both methodologies are able to coherently discriminate between

"more active" and "less active" analogues. This result is very interesting

because ensemble, or consensus, approaches to classi�cation and regression

have been considered as attractive tools. [153] In fact, these methods have

been shown to outperform a single predictor usability on a wide range of

scienti�c tasks. [153]

4.3.2 External test set prediction

The application in parallel of di�erent strategies may con�rm the predic-

tions achieved by using single models alone. In this study, we used both

autoMEP/PLS and autoMEP/RSA models as an ensemble of binding a�n-

ity predictors to prioritize the synthesis of new human A2AR antagonists.

Following these encouraging results, we have tested the real predictive

capability of our PLS and RSA models on an external test set, which con-

sisted in �ve new pyrazolo-triazolo-pyrimidine analogues. This is a prelimi-

nary proof of concept of our parallel PLS/RSA approach. As anticipated in

the Introduction, we aim at simultaneously performing di�erent 3D-QSAR

approaches to create a more even balance between false positive and false

negative performance rates than the use of a single method can achieve.

In our laboratories, we are still developing new potent and selective hu-

man A2AR antagonists decorating the pyrazolo-triazolo-pyrimidine sca�old

using di�erent strategies. [154] In this context, we analyzed a new class of N5-

substituted derivatives in which a di�erent series of benzyloxy-phenyl-acetyl

substituents are present3. Once autoMEP vectors have been computed for

this new set of ligands, we have applied both PLS and RSA models for their

binding a�nity predictions (Figure 4.3.4 and Table 4.4).

3Experimental binding a�nity data kindly provided by the work coordinated by Prof.
G. Spalluto (University of Trieste) for the synthesis and by Prof. K. N. Klotz (University
of Würzburg) for the pharmacological characterization.
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Figure 4.3.4: Experimental pKi activity data (s) of the external test set
compared to pKi values predicted by autoMEP/PLS (n) and autoMEP/RSA
(l) models. The relative molecular sca�old is reported on the left.

Table 4.4: Experimental and predicted pKi for the new synthesized pyrazolo-
triazolo-pyrimidine derivatives 138-142. Di�erences between predicted and
experimental pKi values for both models are reported; PLS = autoMEP/PLS
model; RSA = autoMEP/RSA model.

No. R
Exp.
K i

a

(nM)

Exp.
pK i

Pred.
pK i

PLS

Pred.
pK i

RSA

∆ pK i
b

PLS
∆ pK i

b

RSA

138 H 233 -2.37 -1.96 -2.14 0.41 0.23

139 2-CH3 333 -2.52 -1.87 -1.85 0.65 0.67

140 2,6-Cl 281 -2.45 -1.83 -1.94 0.62 0.51

141 3-Cl 278 -2.44 -1.67 -1.98 0.77 0.46

142 4-CH3 751 -2.88 -1.82 -1.97 1.06 0.91
a
K i obtained by displacement of speci�c [3H]-NECA binding at human A2A receptors expressed in CHO

cells; bPredicted pK i - Experimental pK i.

As shown in Table 4.4, both methods predicted all �ve derivatives active

in the low nM range (K i values in between to 50 and 150 nM), with a better

performance of the autoMEP/RSA model with respect to autoMEP/PLS

one. Interestingly, even if both methods overestimated all binding a�nities,

new synthesized pyrazolo-triazolo-pyrimidine analogues are active in the nM

range (K i values in between to 230 and 750 nM), as theoretically predicted

(Figure 4.3.4).
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4.4 Final remarks

In light of the consideration that GPCR ligands represent one of the major

continuing source of novel potent therapeutic agents, and that 3D structures

of GPCRs as determined by experimental techniques are still unavailable,

ligand-based drug discovery methods remain the most feasible computational

approaches to the analysis of growing data sets of developmental GPCR

ligands.

We have proposed the application of a couple of complementary QSAR

methodologies to evaluate the binding a�nity data of a new series of human

A2AR antagonists. Two statistically meaningful models have been generated

from a common training set, and their predictivity has been evaluated by

using both internal and external test sets. We are continuously analyzing new

series of ligands with the aim to improve the robustness and the predictivity

of our QSAR models. The purpose is to perform in silico screening of real

or virtual libraries to research for new potent and selective human A2AR

antagonists.
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Chapter 5

Isoform speci�city of cytochrome

P450 substrates

Each drug can potentially be metabolized by di�erent cytochrome P450

(CYP450) isoforms. In the development of new drugs, the prediction of the

metabolic fate is important to prevent drug-drug interactions. The present

study deeply analyzes a collection of 554 CYP450 substrates by applying

multi- and single-label classi�cation strategies, after the computation and the

selection of suitable molecular descriptors. Cross-training with support vec-

tor machine and counter-propagation neural network modeling methods were

used in the multilabel approach, which allows one to classify the compounds

simultaneously in multiple classes. In the single-label models automatic vari-

able selection was combined with various cross-validation experiments and

modeling techniques. Moreover, the reliability of both multi- and single-

label models was assessed by the prediction of an external test set. Finally,

the predicted results of the best models were compared to show that, even

if the models present similar performances, the multilabel approach more

coherently re�ects the real metabolism information.1

1This work has been carried out at Molecular Networks, Erlangen (Germany), with
the supervision of Prof. J. Gasteiger and the collaboration of Dr. L. Ter�oth.
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5.1 Cytochrome P450 in drug metabolism

The metabolic pro�le of a drug candidate is an important aspect to be con-

sidered in the selection of a potential new drug. Several problems related to

stability, toxicity of xenobiotics and drug interactions might represent seri-

ous adverse e�ects. In fact, in the case of co-administration of drugs, the

pharmacological pro�le of each drug might be modi�ed by the presence of

other drugs in the human body. [155, 156] If two drugs are co-administered

and metabolized by the same enzyme, the competition for the binding site

can result in the inhibition of the biotransformation of one or both drugs.

Focusing the attention on metabolism in the ADMET process, a cru-

cial role is played by the cytochrome P450 (CYP450) class of hemoprotein

enzymes. The CYP450 superfamily of enzymes is abundantly expressed

in the liver and remarkably in the small intestine, where it is responsible

for the detoxi�cation of xenobiotics. [157, 158] In the Phase I metabolism

cytochrome P450 isoforms chemically modify a large variety of substrates

mainly through oxidation reactions to make them more water-soluble and to

ease their elimination. [159] This detoxi�cation system is highly complex,

since it includes many di�erent CYP450 isoforms characterized by multiple

binding sites, polymorphism and enzyme induction or modulation phenom-

ena. [160] These aspects are involved in drug-drug interactions, which might

lead to unpredictable blood concentrations of one of the xenobiotics with

consequent possible toxic e�ects or loss of activity. CYP450 enzymes are

classi�ed in several isoforms according to the similarity of their amino acidic

sequences. We have investigated CYP450 1A2, 2C9, 2D6, 2E1 and 3A4

substrates, that cover almost all possible metabolism routes (Figure 5.1.1).

Figure 5.1.1: Importance, as percentage (%), of the di�erent CYP450
isoforms in the metabolic process; CYP1A2 (orange), CYP2C9 (blue),
CYP2C19 (purple), CYP2D6 (yellow), CYP2E1 (green), CYP3A4 (light
blue), other isoforms (red).
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In our analysis, we have excluded CYP2C8 and CYP2C19 isoforms,

poorly represented, as they are not much involved in the metabolic pro-

cess. The same analysis with seven CYP450 isoforms has been performed,

as reported in Paper III. CYP450 1A2 metabolizes planar molecules char-

acterized by moderate volume and basicity. [157] CYP450 2C9 substrates

are acidic or neutral, and lipophilic molecules, in particular sulfonylureas and

NSAIDs (non steroidal anti-in�ammatory drugs) drug classes. [157] CYP450

2D6 shows polymorphism and about 25% of all drugs are at least partial sub-

strates of this isoform. They show a hydrophilic character and have a basic

nitrogen atom. [157] Mostly small and polar molecules, like volatile anesthet-

ics, are substrates of CYP450 2E1 isoform which is involved in many drug

interactions. [157] The CYP450 3A4 isoform, ubiquitously found, is respon-

sible for the metabolism of high volume and lipophilic xenobiotics; almost

50% of all drugs are metabolized by this isoform. [157] For this reason its

activity is largely a�ected by chemically di�erent compounds and CYP3A4

represents the most populated class in the dataset investigated in this study.

However, di�erent isoforms might be responsible for the detoxi�cation of the

same drug.

5.2 Computational approaches to CYP450

The early detection of ADMET properties of drugs under in vivo conditions

is experimentally time-consuming and expensive, therefore computational

methods can pro�tably speed up the collection of new data. [161-163] A

challenging problem in this �eld is the prediction of CYP450 isoform speci-

�city. Di�erent chemoinformatic tools have already been attempted for the

prediction of CYP-related metabolism properties. [164, 165] In more de-

tail, several ligand-based approaches were applied to classify CYP450 sub-

strates according to their route of metabolism. [44, 45, 166-170] Anyway,

most solutions consider local models for each CYP450 isoform and they do

not approach the problem globally. Among these, the traditional single-

label classi�cation deals exclusively with non-overlapping classes. Following

this approach, a classi�cation model was developed to predict the isoform

speci�city for CYP3A4, CYP2D6 and CYP2C9 substrates considering non-

overlapping classes, i.e. assuming each compound to be metabolized by a

single, predominant CYP450 isoform. [76]
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In the present study we would like to extend the abovementioned model

to cover other CYP450 isoforms and to �nd a strategy to predict the sub-

strates which are metabolized by more than one isoform. Such a multilabel

classi�cation analysis represents a di�erent approach that can be applied

whether our dataset comprises elements assigned simultaneously to more

than one class. The prediction of the metabolism pro�le of CYP450 sub-

strates represents a novel application of this methodology.

This work aims at the prediction of the isoform speci�city from infor-

mation on the substrates metabolism. The substrates were represented by

di�erent sets of structural and physicochemical descriptors. Then, various

classi�cation techniques - both multilabel and single-label approaches - were

used to derive models for the prediction of the isoform(s) responsible for

metabolism of CYP450 1A2, 2C9, 2D6, 2E1 and 3A4 substrates. The pro-

cedures we followed are separately illustrated in Figure 5.2.1.

Figure 5.2.1: Flowchart of the multilabel and single-label approaches for
the prediction of CYP450 isoform speci�city.
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We applied a multilabel classi�cation method to distinguish between sub-

strates of �ve CYP450 isoforms. Then, only single-label compounds, i.e.

compounds metabolized by a single isoform, were utilized to build a classi-

�er. Variable selection and optimization of the models were performed in

the present study. The single-label classi�cation models were directly gener-

ated after an automatic variable selection process. The modeling results and

the metabolism pro�les of the CYP450 substrates of the test sets predicted

by the di�erent approaches were compared to verify the reliability of both

multi- and single-label classi�cation methods.

5.3 Dataset

A collection of 554 cytochrome P450 substrates with di�erent chemical struc-

tures was used to derive our classi�cation models. In particular, we con-

sidered the dataset compiled in the recently published paper by Block et

al. [170] It includes 253 substrates metabolized by CYP1A2, CYP2C19,

CYP2C8, CYP2C9, CYP2D6 and CYP3A4 isoforms. At least one isoform

may be responsible for the metabolism of a single substrate, i.e. a com-

pound might be metabolized by several isoforms and then belongs to several

classes. Since we considered all possible routes of metabolism, our classi�-

cation problem is multilabel. Further substrates were extracted from other

published papers and publicly available lists. [171-174] Moreover, 267 ad-

ditional compounds from the Metabolite reaction database were included.

[175] When inconsistencies resulted in the comparison between the datasets,

we considered more reliable the information about the compounds metabolic

fate published by Block et al. In the �nal collection (554 compounds) 484

substrates are metabolized by one CYP450 isoform and the remaining 70

compounds are metabolized by several CYPs. Only 13% of all compounds in

the dataset are multilabel. Considering the 484 compounds metabolized by

one isoform, 46 are CYP1A2 substrates (9.5%), 50 are CYP2C9 substrates

(10.3%), 106 are CYP2D6 substrates (21.9%), 49 are CYP2E1 substrates

(10.1%) and 233 are CYP3A4 substrates (48.2%). Not all isoforms have the

same relevance in the xenobiotic metabolism, consequently these classes are

di�erently populated and our dataset is quite unbalanced.

For our modeling studies two di�erent data sets were compiled (Data set

1 and Data set 2). Data set 1 was manually split into training, validation
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and test set with a similar distribution of the considered classes in the en-

tire data set and the subsets. Most of the compounds from the Metabolite

data set were used as test set, even if some substrates were included in the

training and the validation set (Paper III ). Data set 2 was simply split into

a training and a validation set, applying the same selection criterion (similar

distribution of the substrates in the considered classes).

5.3.1 Data set 1

Data set 1 comprises the initial collection of 554 chemically di�erent sub-

strates, metabolized by �ve CYP450 isoforms (CYP1A2, CYP2C9, CYP2D6,

CYP2E1 and CYP3A4 single- and multilabel substrates). Data set 1 was

used to perform a multilabel classi�cation analysis. The distribution of the

classes in the training, validation and test sets is reported in Table 5.1.

Table 5.1: Data set 1 used in this analysis. 554 single- and multilabel
CYP450 substrates classi�ed in �ve isoforms (CYP1A2, CYP2C9, CYP2D6,
CYP2E1 and CYP3A4). The distribution of the substrates in training, vali-
dation and test sets 1 are listed.a

Training set 1 Validation set 1 Test set 1

CYP450 Isoform S M S M S M

CYP1A2 26 17 6 5 14 9

CYP2C9 31 13 8 3 11 7

CYP2D6 46 24 7 8 53 11

CYP2E1 30 2 8 0 11 1

CYP3A4 110 32 21 10 102 14

Total (554) 243 40 50 12 191 18
aSingle-label substrates occur only once in each class; multilabel substrates belong to more
than one class. Consequently, the sum of multilabel substrates for all the classes within a
column is higher than the number of multilabel substrates for Training set 1, Validation
set 1 and Test set 1; S = single-label; M = multilabel.

5.3.2 Data set 2

Only the single-label substrates in Data set 1 were selected to perform a

single-label classi�cation analysis. Then, 484 compounds, a subset of Data

set 1, was used as Data set 2. In the new training set (Training set 2) exactly

the same single-label substrates collected in the Training set 1 and Validation

set 1 (totally 293 compounds) were included, while in the Test set 2 only the

single-label substrates in the Test set 1 (191 compounds) were considered.
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Data set 2 was utilized to develop a single-label classi�cation model. The

results of the splitting process for Data set 2 can be inferred by considering

the "S" columns for the training, validation and test sets in Table 5.1.

5.4 Results

The prediction of isoform speci�city represents a multilabel classi�cation

problem, characterized by high complexity of the feature space. In this study,

we built a model to simultaneously classify a collection of substrates metab-

olized by �ve CYP450 isoforms (CYP1A2, CYP2C9, CYP2D6, CYP2E1 and

CYP3A4). Various descriptors and data analysis techniques were combined

to predict the isoform speci�city using two di�erent data sets, which corre-

spond to (1) multilabel classi�cation models (Data set 1) and (2) single-label

classi�cation model (Data set 2). In more detail, cross-training with Support

Vector Machine (ct-SVM) and counter-propagation neural networks (CPG

NN) have been applied as multilabel classi�cation techniques, while SVM was

used to develop single-label classi�cation models. Only the best-performing

experiments are reported in this chapter.

5.4.1 Multilabel classi�cation with Data set 1

Since the information about the reaction site of the substrates was not re-

ported, several models were derived combining global, topological, shape

and functional group counts descriptors with 2D topological or 3D spatial

autocorrelation vector components (descriptors reported in section 2.3 and

in Table 2.1). A manual descriptor selection process was combined with ct-

SVM multilabel modeling method in the optimization procedure using the

Training set 1. The best subset of global, topological, shape and functional

groups count descriptors was selected according to the model performance

after each single-descriptor addition step. In more detail, a descriptor was

included in the best subset if the model predictivity results on the Valida-

tion set 1 improved. The best model corresponded to the �nal set of 27

descriptors, as reported in Table 5.2.

The information encoded by the autocorrelation molecular electrostatic

potential descriptors improved the predictivity of the model in comparison to

the model computed without these twelve variables (Paper III ). It supports

the concept that the distribution of electrostatic properties on the molecu-
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Table 5.2: Twenty seven descriptors selected for the training set in multil-
abel classi�cation models with Data set 1.

No. Name Details

1 MW Molecular weight

1 HAccPot Hydrogen bond acceptor potential

1 TPSA Topological polar surface area

1 ASA Approximate surface area

1 D3 Diameter

1 R3 Radius

1 I 3 Geometric shape coe�cient

1 r2 Radius perpendicular to D3

1 r3 Radius perpendicular to D3 and R2

1 naro_amino Number of aromatic amino groups

1 n tert_amino Number of tertiary aliphatic amino groups

1 nprim_sec_amino nprim_amino+nsec_amino
1 nbasic_nitrogen Number of basic, N containing functional groups

1 nacidic_groups Number of acidic functional groups

1 qπ_1 =
∑
q2
π property: π-charge qπ

12 SurfACorr_ESP
Surface autocorrelation; property: molecular electro-
static potential

lar surface represents an important determinant in the prediction of isoform

speci�city. In the ct-SVM modeling method, the best results were achieved

using the T-criterion to transform the real-valued scores assigned by the cor-

responding classi�er into labels. This descriptor set was used to derive a �rst

ct-SVM classi�cation model with Training set 1. As previously described,

the model parameters were optimized by predicting the Validation set 1.

Then, TP, FP, TN, FN rates and the percentage (%) of correct predictions

were calculated from the confusion matrix (Table 5.3).

Table 5.3: Multi-classi�cation ct-SVM model; the statistical parameters for
each class after prediction on the Validation set 1 (62 substrates) are reported.

Classes
TP
rate

FP
rate

TN
rate

FN
rate

Recall Precision
% correct
predictions

CYP1A2 0.64 0.04 0.96 0.36 0.64 0.78 90.3

CYP2C9 0.82 0.05 0.95 0.18 0.82 0.75 95.2

CYP2D6 0.87 0.00 1.00 0.13 0.87 1.00 93.5

CYP2E1 0.88 0.00 1.00 0.12 0.88 1.00 98.4

CYP3A4 0.87 0.25 0.75 0.13 0.87 0.75 87.1

As seen in Table 5.3, a good predictivity is achieved for almost all the
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classes if we analyze the values of recall and precision. Training set 1 and the

Validation set 1 were merged to derive a new classi�er with the optimized

parameters. The performance measures of the �nal ct-SVM model are shown

in Table 5.4.

Table 5.4: Multi-classi�cation ct-SVM model; performance measures after
prediction on the Validation set 1 (62 substrates) and the Test set 1 (209
compounds) are reported.

Model prediction Accuracy ML One-error Coverage Average precision

Validation set 1 0.84 0.10 1.53 0.93

Test set 1 0.70 0.25 1.52 0.85

Satisfactory results for the multilabel approach were also achieved by the

application of CPG NN technique with the set of 27 descriptors in Table 5.2.

A graphical representation of our analysis is shown in Figure 5.4.1.

Figure 5.4.1: Flowchart of the CPG NN analysis with �ve output layers
(CYP450 isoforms) applied to our multilabel classi�cation problem.

Di�erent map sizes, topologies and number of epochs were selected for the

learning process and the best model with a rectangular topology is discussed

here. After LOO and 5-fold cross-validation procedures, the best CPG NN

model was selected. The model performances are reported in Table 5.5.

Good values of precision and recall were obtained for CYP2C9, CYP2D6,

CYP2E1 and CYP3A4 classes, by applying the best CPG NN model. A low

predictivity of CPG NN model can be observed for CYP1A2 and CYP2C9
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Table 5.5: Multi-classi�cation CPG NN; the statistical parameters for each
class after LOO and 5-fold cross-validation (345 substrates) are reported.

TP rate FP rate TN rate FN rate Recall Precision

Classes LOO
5-
fold

LOO
5-
fold

LOO
5-
fold

LOO
5-
fold

LOO
5-
fold

LOO
5-
fold

CYP1A2 0.33 0.48 0.10 0.10 0.90 0.90 0.66 0.52 0.33 0.48 0.39 0.47

CYP2C9 0.60 0.58 0.07 0.07 0.93 0.93 0.40 0.42 0.60 0.58 0.62 0.60

CYP2D6 0.79 0.79 0.09 0.06 0.91 0.93 0.21 0.21 0.79 0.79 0.74 0.80

CYP2E1 0.87 0.85 0.01 0.03 0.99 0.98 0.12 0.15 0.87 0.85 0.95 0.77

CYP3A4 0.77 0.77 0.24 0.21 0.76 0.78 0.22 0.23 0.77 0.77 0.76 0.78

classes in terms of lower TP rate or, alternatively, higher FN rate.

In general, a model with a minimum predictivity for one class might not

be able to detect substrates metabolized by this particular isoform, whether

it was applied to an external test set. However, at least 75% of the com-

pounds for each class were correctly classi�ed (Paper III ). In Figure 5.4.2

the �ve output layers of the CPG NN network are shown.

Figure 5.4.2: CPG NN model; projection of the CYP450 substrates into
�ve maps, corresponding to CYP1A2, CYP2C9, CYP2D6, CYP2E1 and
CYP3A4 classes. CYP1A2 substrates in orange, CYP2C9 substrates in yel-
low, CYP2D6 substrates in blue, CYP2E1 substrates in green, CYP3A4 sub-
strates in light blue are indicated (according to the most frequent output).
For each map, neurons containing substrates which do not belong to the cor-
responding class are red. In the maps below con�icting neurons in black are
also shown. Black neurons contain compounds of di�erent CYP450 classes.
White squares represent empty neurons.

In each layer, the CYP450 substrates tend to cluster. This tendency is

not particularly evident for CYP1A2 class, where the occupied neurons are

spread out in the corresponding layer. Few con�ict neurons are present in the
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maps, and most of them are caused by CYP3A4 substrates, con�icting with

the substrates metabolized by other classes. In fact, CYP3A4 represents

the major and the most chemically heterogeneous class. In some cases, the

descriptor set we selected is not able to correctly classify the substrates with

similar structural features and di�erent class memberships.

5.4.2 Single-label classi�cation with Data set 2

Data set 2 includes only single-label substrates extracted from Data set 1

and it is therefore suitable for the following data analysis. In the single-

label approach, a systematic variable selection procedure was performed,

by considering global, topological, shape and functional group counts, 128

spatial autocorrelation vectors (totally 168 descriptors in Table 2.1). Finally,

nineteen descriptors were automatically selected by using the Training set 2,

as summarized in Table 5.6.

Table 5.6: Nineteen descriptors resulting from automatic variable selection
for the training set in single-label classi�cation models with Data set 2.

No. Name Details

1 HDonPot Hydrogen bond donor potential

1 TPSA Topological polar surface area

1 ASA Approximate surface area

1 µ Molecular dipole moment

1 r2 Radius perpendicular to D3

1 r3 Radius perpendicular to D3 and R2

1 naliph_amino Number of aliphatic amino groups

1 nprim_sec_amino nprim_amino + nsec_amino

1 nbasic_nitrogen Number of basic, N containing functional groups

1 nacidic_groups Number of acidic functional groups

1 3D-AC identity [1.2-1.3 Å] Spatial autocorrelation; property: identity

1 3D-AC identity [1.3-1.4 Å] Spatial autocorrelation; property: identity

1 3D-AC identity [1.4-1.5 Å] Spatial autocorrelation; property: identity

1 3D-AC identity [1.7-1.8 Å] Spatial autocorrelation; property: identity

1 3D-AC identity [2.3-2.4 Å] Spatial autocorrelation; property: identity

1 3D-AC identity [2.7-2.8 Å] Spatial autocorrelation; property: identity

1 3D-AC identity [3.1-3.2 Å] Spatial autocorrelation; property: identity

1 3D-AC identity [4.2-4.3 Å] Spatial autocorrelation; property: identity

1 3D-AC identity [5.3-5.4 Å] Spatial autocorrelation; property: identity
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The 3D autocorrelation identity descriptors re�ect the distribution of

the interatomic distances in the 3D molecular structure and complete the

information given by the �rst selected subset. In more detail, the BestFirst

automatic criterion implemented in Weka was applied to select the variables.

[121] The descriptor space was explored in order to detect the subset that

is likely to predict the classes best. The attribute evaluator CfsSubsetEval

combined with Best First search method has been applied. The variable

selection process was repeated for each fold during the model validation

step. The selected nine components of 3D autocorrelation identity vectors

correspond to particular atom distances and show an important contribution

in the model building process.

We have generated a single-label classi�cation model, by combining the

automatic variable selection with Support Vector Machine. The standard

parameters suggested in Weka software were selected for the computation.

In the SVM model, a polynomial kernel with exponent equal to three was

used. The results are reported in Table 5.7.

Table 5.7: Single-label classi�cation SVM model; the statistical parameters
using nineteen descriptors for the Training set 2.

% correct predictions

Partition CV No. of runs Mean StDev Min Max

Training set 2 1 85.7 - 85.7 85.7

Training set 2 LOO 1 75.8 - 75.8 75.8

10-fold 10 76.3 1.3 74.7 78.2

5-fold 20 76.0 1.2 73.3 78.2

3-fold 33 75.3 1.7 71.0 78.1

2-fold 50 75.1 2.2 69.3 80.2

Test set 2 1 78.0 - 78.0 78.0

The model is quite stable if we analyze the pro�le of the standard de-

viation values for each n-fold cross-validation and the predictivity in Table

5.7. In the LOO cross-validation a predictivity of 75.8% was obtained. The

percentage of correct predictions is lower for the other n-fold cross-validation

procedures, with a di�erence of 10.6% between the Training set 2 predictiv-

ity and the average prediction accuracy in 2-fold cross-validation. Test set

2 is predicted with an accuracy of 78%. Table 5.8 shows the TP, FP, TN

and FN rates of the Training set 2 in LOO cross-validation for SVM model.

Further details on the models derived are reported in Paper III.
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Table 5.8: Single-label classi�cation SVM model; predictivity results after
LOO cross-validation for Training set 2.

Classes TP rate FP rate TN rate FN rate Recall Precision

CYP1A2 0.34 0.01 0.99 0.66 0.34 0.73

CYP2C9 0.72 0.04 0.96 0.28 0.72 0.74

CYP2D6 0.77 0.05 0.95 0.23 0.77 0.77

CYP2E1 0.89 0.06 0.94 0.11 0.89 0.68

CYP3A4 0.82 0.18 0.82 0.18 0.82 0.79

5.4.3 Validation of the models with an external test set

In our analysis di�erent test sets were studied, according to the data set used

to build up the classi�cation models, as described in paragraph 5.2. The

isoform speci�city was predicted for each test set by applying the multilabel

(Test set 1) or the single-label classi�cation (Test set 2) models.

Test set 1. 209 substrates (Test set 1) were analyzed by both ct-SVM

and CPG NN isoform predictors. The prediction results on Test set 1 by

using ct-SVM and CPG NN techniques are summarized in Table 5.9 and

Table 5.10, respectively.

Table 5.9: Multilabel classi�cation ct-SVM: predicted results of the model
for the Test set 1. The number of true positives is indicated in the second
column for each class.

Classes TP rate (TP) TN rate Recall Precision
% correct
predictions

Matthews
correlation
coe�cient

CYP1A2 0.65 (15/23) 0.90 0.65 0.44 87.1 0.47

CYP2C9 0.44 (8/18) 0.96 0.44 0.53 91.9 0.44

CYP2D6 0.59 (38/64) 0.92 0.59 0.78 82.3 0.58

CYP2E1 0.75 (9/12) 0.98 0.75 0.69 96.6 0.70

CYP3A4 0.84 (97/116) 0.70 0.84 0.78 77.5 0.56

In the ct-SVM model predictions the FN rate is remarkable for CYP2C9

class. Considering that the classi�er is based on �ve classes, the model pre-

diction capability is quite accurate.

Regarding CPG NN model, only for the CYP2E1 class surprisingly good

results were achieved, with a recall of 0.92, as reported in Table 5.10. Sta-

tistically acceptable values of TP rate corresponded to CYP2D6 (0.70) and

CYP3A4 (0.72) isoforms, while a low predictivity was found for the remain-

ing classes.
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Table 5.10: Multilabel classi�cation CPG NN model; predicted results for
the Test set 1.

Classes TP rate TN rate Recall Precision
% correct
predictions

Matthews
correlation
coe�cient

CYP1A2 0.52 0.85 0.52 0.30 81.3 0.29

CYP2C9 0.61 0.93 0.61 0.44 89.9 0.46

CYP2D6 0.70 0.88 0.70 0.72 82.8 0.58

CYP2E1 0.92 0.97 0.92 0.69 97.1 0.78

CYP3A4 0.72 0.79 0.72 0.81 75.6 0.52

Test set 2. In the single-label model the Test set 2 (191 CYP450 sub-

strates) was used to assess its predictivity. As seen in Table 5.7, the per-

centage of correct predictions for Test set 2 resulted in 78% for the SVM

model. This value is slightly higher than the corresponding value of correct

predictions after 2-fold cross-validation. In Table 5.11 the prediction rates

of the same single-classi�cation model for each class of the Test set 2 are

reported.

Table 5.11: Single-label classi�cation SVM model; predicted results for the
Test set 2. The number of true positives is indicated in the second column
for each class.

Classes TP rate (TP) TN rate Recall Precision
Matthews
correlation
coe�cient

CYP1A2 0.64 (9/14) 0.97 0.64 0.60 0.59

CYP2C9 0.73 (8/11) 0.98 0.73 0.67 0.68

CYP2D6 0.77 (41/53) 0.91 0.77 0.76 0.67

CYP2E1 1.00 (11/11) 0.97 1.00 0.65 0.79

CYP3A4 0.78 (80/102) 0.85 0.78 0.85 0.64

All CYP2E1 substrates are correctly predicted (the TP rate is equal to

one) and the values of TP rate for the remaining classes are included in

the interval 60-80%. Moreover, the SVM model was applied to predict the

eighteen multilabel substrates in Test set 1, not included in Test set 2. The

prediction results were considered in the �nal comparison with the other

multilabel classi�cation methods.
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5.5 Discussion

5.5.1 Aspects related to the data set

The classi�cation of multilabel data represents a complex problem. So far,

many di�erent strategies were explored to classify drugs metabolized by a

single isoform. However, this approach does not re�ect the real scenario, in

which the route of metabolism might involve several enzymes for the bio-

transformation. In fact, the same molecular structure can be recognized by

di�erent isoforms, on the other hand the same CYP450 isoform might metab-

olize chemically diverse compounds and this is particularly true for CYP3A4

isoform. Therefore, CYP450 enzymes are not selective and in the metabolic

process the CYPs show a di�erent role and relevance. As a consequence, the

data set is unbalanced, with few compounds classi�ed as CYP1A2, CP2C19,

CYP2C8, CYP2C9, CYP2E1 substrates and more represented by CYP2D6

and CYP3A4 classes.

Moreover, in our analysis we dealt with information coming from dif-

ferent sources and in some cases it was inconsistent or incomplete. Then,

the uncertainty of information led us to choose a compromise by considering

more reliable the most recent source.

5.5.2 Considerations on the selected descriptors

In the metabolic process a recognition mechanism is responsible for the com-

plementary interaction between the substrates and cytochrome P450 iso-

forms. Therefore, the chemical nature of the substrates and especially the

distribution of particular properties on their surface are involved in the deter-

mination of their metabolic fate. The speci�city of the interactions is driven

by several molecular properties. Moreover, the function of autocorrelation

is a useful strategy to overcome the dependence on the spatial rotation and

translation of the molecules. In fact, the autocorrelation concept is able to

describe the distribution of a particular property on the molecular surface

and to represent molecules of di�erent size with a vector of �xed length.

In ct-SVM model the selected descriptors (Table 5.2) have been con-

�rmed relevant by the prediction results for CYP1A2, CYP2C9 and CYP3A4

classes. The CPG NNmodel is based on the same descriptors set. The clearly

distinguishable clusters in the maps corresponding to each layer/class further

on support the good choice of the variables. The results demonstrate that
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the molecular size and the presence of particular functional groups as well

as the distribution of the electrostatic or charge properties positively a�ect

the model predictivity. However, the autocorrelation molecular electrostatic

potential descriptors are more understandable than the 3D autocorrelation

identity components used in the single-label model, so they can easily sub-

stitute the vectorial properties used in the paper by Ter�oth et al. [76]

Seven out of nineteen descriptors in the single-label classi�cation SVM

model are in common with the manually selected variables in the multilabel

classi�cation models (TPSA, ASA, r2, r3, nprim_sec_amino, nbasic_nitrogen
and nacidic_groups descriptors). Various shape and size related descriptors

were recognized as important in the single-label analysis, while speci�c acid-

basic properties were selected in all models, con�rming that these descriptors

are crucial in the prediction of isoform speci�city.

5.5.3 ct-SVM and CPG NN models

The prediction results for the Test set 1 were analyzed to compare the per-

formances of the ct-SVM and CPG NN models. The predictivity of ct-SVM

for CYP1A2 and CYP3A4 classes is higher than the CPG NN model results.

On the other hand, if we consider the remaining isoforms, the values of recall

underline the better performances of the CPG NN model. After the com-

parison of the percentages of correct predictions, the values are similar for

the corresponding isoforms.

5.5.4 ct-SVM and SVM models

We compared the prediction results of the multilabel classi�cation ct-SVM

model on Test set 1 (209 substrates) and the predictivity of single-label clas-

si�cation SVM model for Test set 2 (191 substrates) to verify whether the

multilabel approach might be a valid alternative to the single-label method-

ology, by applying the same algorithm as modeling method. In this analysis

we had to consider that the test sets comprise a di�erent number of com-

pounds, since in Test set 1 eighteen compounds are multilabel.

On �rst analysis, the recall shows similar performances of the models

for CYP1A2 class and an increase of predictivity for CYP3A4 class in the

multilabel model. Regarding CYP2C9, CYP2D6 and CYP2E1 classes, the

recall drops down in the multilabel classi�er. On the other hand, the pro�le

of the precision values re�ects better performances of the ct-SVM model if
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CYP2D6 and CYP2E1 classes are considered, with the precision values of

0.78 and 0.69, respectively. In the single-label model the values of recall are

0.60 (CYP1A2 class), 0.67 (CYP2C9 class) and 0.85 (CYP3A4 class), higher

than the corresponding values in the multilabel classi�er. If we analyze the

number of TP in the single-label model, 9 out of 14 CYP1A2 substrates, 8

out of 11 CYP2C9 substrates, 41 out of 53 CYP2D6 substrates, 11 out of

11 CYP2E1 substrates and 80 out of 102 CYP3A4 substrates resulted. The

number of correctly predicted compounds using the single-label approach

(Table 5.11) is very close in comparison to the number of TP in the multil-

abel results reported in Table 5.9.

It seems clear that the single-label model is not able to give a complete

picture of the metabolism information. In fact, the ct-SVM model perfor-

mances result at least comparable to the SVM model ones. However, in the

single-label approach, inevitably, we lose important details about isoform

speci�city, since each substrate is implicitly supposed to be metabolized by

an unique CYP450 isoform.

5.5.5 Analysis of some classi�ed compounds

We compared the prediction results of the ct-SVM, CPG NN and SVM

models on the Test set 1, including multi- and single-label substrates. Also

the multilabel compounds in the Test set 1 were predicted by the single-

label model. The CYP450 substrates in Test set 1 not extracted from the

Metabolite database were analyzed. [175] The experimental and predicted

classes for these compounds are reported in Table 5.12.

Nine out of 44 compounds (two of them are multilabel) are incorrectly

predicted by both multilabel ct-SVM and CPG NN models. The single-label

SVM model assigned a wrong class to ten compounds and all the multilabel

compounds were correctly assigned to one of the experimental classes by ct-

SVM and CPG NN models. Regarding multilabel compounds, most ct-SVM

predictions are correct even if partial. Two examples are Clomipramine and

Methadone. The drug Clomipramine (173) is metabolized by four di�erent

CYP450 isoforms and the ct-SVM model correctly predicted three of them

(CYP1A2, CYP2D6 and CYP3A4), while both CPG NN and SVM classi�ers

have only assigned one class. Similarly, Methadone (189) is predicted by the

multilabel models to be metabolized by CYP2D6 and CYP3A4 isoforms,

showing a good correspondence with the experimental metabolic pro�le.
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Table 5.12: Some experimental and predicted isoforms after applying ct-
SVM, CPG NN and SVM models are summarized. Ct-SVM and CPG NN
models are multilabel; SVM model was carried out by using the single-label
approach. In the second column the multilabel substrates are bold; M = multi-
label; S = single-label.; 1A2 = CYP1A2; 2C9 = CYP2C9; 2D6 = CYP2D6;
2E1 = CYP2E1; 3A4 = CYP3A4.

No. Name
Exp.
classes

Pred. ct-
SVM (M)

Pred. CPG
NN (M)

SVM
(S)

166 Acetaminophen 1A2 1A2 1A2 1A2

167 Alpidem 3A4 3A4 3A4 3A4

168 Ami�amine 2D6 1A2 2D6 2D6

169 Aripiprazole 2D6 3A4 3A4 3A4 3A4

170 Azatadine 3A4 3A4 3A4 3A4

171 Bufuralol 2D6 2D6 2D6 2D6

172 Cinnarizine 2D6 2D6 2D6 2D6

173 Clomipramine
1A2 2C9 1A2 2D6

2D6 2D6
2D6 3A4 3A4

174 Clopidogrel 1A2 3A4 2D6 2D6 3A4

175 Deprenyl 2D6 3A4 2D6 3A4 2E1

176 Desipramine 1A2 2D6 2D6 2D6 2D6

177 Dihydrocodeine 2D6 3A4 2D6 3A4 2D6 2D6

178 Ebastine 3A4 3A4 3A4 3A4

179 Enalapril 3A4 3A4 2C9 1A2

180 Fluconazole 3A4 2C9 3A4 3A4 1A2

181 Flunarizine 2D6 2D6 2D6 2D6

182 Formoterol 2C9 2D6 2D6 2D6 2D6

183 Indomethacin 2C9 3A4 2C9 2C9

184 Levonorgestrel 3A4 3A4 3A4 3A4

185 Lidocaine 2D6 3A4 1A2 2D6 3A4 2D6

186 Lisuride 3A4 1A2 3A4 3A4 3A4

187 Lobeline 2D6 2D6 3A4
1A2 2D6

3A4
3A4

188 Lornoxicam 2C9 2C9 2C9 2C9

189 Methadone
1A2 2D6

2D6 3A4 2D6 3A4 3A4
3A4

190 Methoxyphenamine 2D6 2D6 2D6 2D6

191 Mexiletine 1A2 2D6 2D6 2D6 2D6

192 Montelukast 2C9 3A4 3A4 3A4 3A4

193 Omeprazole 2C9 3A4 3A4 1A2 3A4

(continued on next page )
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No. Name
Exp.
classes

Pred. ct-
SVM (M)

Pred. CPG
NN (M)

SVM
(S)

1A2 2D6
194 Ondansetron

3A4
1A2 3A4 3A4

195 Phenylbutazone 2C9 1A2 1A2 3A4

196 Quercetin 3A4 1A2 1A2 1A2

197 Ramelteon
1A2 2C9

3A4 2C9 3A4
3A4

198 Remoxipride 2D6 3A4 3A4 3A4

199 Sertindole 3A4 3A4 3A4 3A4

200 Sparteine 2D6 2D6 2D6 2D6

201 Sulfamethizole 2C9 2C9 2C9 3A4

202 Sul�dimidine 3A4 3A4 2C9 3A4

203 Tamsulosin 2D6 3A4 3A4 3A4 3A4

204 Theophylline 1A2 2E1 1A2 3A4 1A2 1A2

205 Tolterodine 2D6 3A4 2D6 3A4 2D6 3A4 2D6

206 Trimethoprim 2C9 3A4 3A4 3A4

207 Valdecoxib 2C9 3A4 2C9 2C9 3A4

208 Zidovudine 3A4 3A4 3A4 1A2

209 Zileuton
1A2 2C9

3A4 2E1 1A2
3A4

These examples con�rm that the multilabel approach is able to perform

an extensive investigation of the drug metabolism, while the single-label

results are limited to the prediction of a single class. A deep analysis of each

compound in Table 5.12 is reported in Paper III.

5.6 Final remarks

In the present study, we investigated several classi�cation strategies to pre-

dict the isoform speci�city of known CYP1A2, CYP2C9, CYP2D6, CYP2E1

and CYP3A4 substrates. The multilabel approach was applied to a data set

including �ve classes, by using the ct-SVM and the CPG NN methods. The

best model (ct-SVM) was derived after the selection of 27 descriptors and

yielded 77.5-96.6% of correct predictions for the �ve classes of the corre-

sponding test set. Similarly, the CPG NN model achieved 75.6-97.1% of

correct predictions. A �ve-classes data set was used to perform an extensive

single-label classi�cation analysis, in combination with automatic variable

selection. The highest predictivity on the corresponding test set, achieved

by using the SVM technique based on nineteen descriptors, was 78% of cor-
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rect predictions. All the presented models show acceptable performances,

however the multilabel prediction results re�ect more coherently the real

metabolic fate of drugs.

In conclusion, our results underline the high complexity of this classi-

�cation problem and suggest the application of the multilabel approach to

predict CYP450 isoform speci�city. The advantage of the CPG NN tech-

nique is the graphical visualization of the results. Both ct-SVM and the

CPG NN strategies might be extended to quantitative data. The multilabel

methodology can be used to explore the metabolic pro�le of new chemical

entities and the prediction capability might be improved by collecting other

multilabel substrates in the dataset.
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Classi�cation and regression to

investigate selectivity and binding

a�nity

The selectivity is an important aspect of drug discovery, and in the develop-

ment of G protein-coupled receptors (GPCRs) ligands to distinguish between

related receptor subtypes is often the key to therapeutic success. Nowadays,

the prediction of receptor subtype selectivity represents a very challenging

task. In the present study, we present an alternative application of Support

Vector Machine (SVM) and Support Vector Regression (SVR) methodolo-

gies to simultaneously describe both A2AR versus A3R subtypes selectivity

pro�le and the corresponding receptor binding a�nities. We have imple-

mented an integrated application of SVM-SVR approach, based on the use

of the autocorrelated molecular descriptors encoding for the Molecular Elec-

trostatic Potential (autoMEP), to simultaneously discriminate A2AR versus

A3R antagonists and to predict the binding a�nity to the corresponding

receptor subtype of a large dataset of known pyrazolo-triazolo-pyrimidine

analogs. To validate our approach, we have synthesized 51 new pyrazolo-

triazolo-pyrimidine derivatives anticipating both A2AR/A3R subtypes selec-

tivity and receptor binding a�nity pro�les.
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6.1 Introduction

G protein-coupled receptors (GPCRs) represent the target for many drugs

under development. The e�cacy problems and limiting side-e�ects of some

candidates are due to the lack of di�erentiation between receptor subtypes.

There is thus considerable interest in attaining therapeutic selectivity by

identifying the single receptor subtype that a�ects a particular physiology.

The goal is to reduce, as more as possible, the side-e�ects, while retain-

ing the desired function. To date, very few valuable computational tools

are available for the prediction of receptor subtype selectivity, which is still

considered a complex problem. Conversely, di�erent in silico approaches

are accessible to estimate the distinct receptor-ligand a�nity, in particular

QSAR is the commonly used approach in this �eld. [176, 177]

In the last few years, the possibility to discover new potent and selective

adenosine receptors (ARs) antagonists has been intensively explored. Brie�y,

the adenosine receptor (AR) family belongs to GPCR family A, including

four di�erent subtypes, referred to as A1, A2A, A2B and A3, which are widely

but di�erentially distributed throughout the body1. [139, 142] In this study

we will focus on A2AR and A3R subtypes and selective ligands to these ARs

are becoming increasingly attractive drugs due to their potential role of this

receptor in several physiopathological processes. [140, 141, 144, 178, 179] In

particular, A2AR antagonists seem to play a role in the reduction of neuronal

damage in Parkinson's or Huntington's diseases, while A3R antagonists have

a potential application in the tumor growth inhibition and in the treatment

of glaucoma. [142-144]

Consequently, several receptor-based and ligand-based drug design ap-

proaches have been carried out with the aim to improve potency and se-

lectivity of di�erent molecular sca�olds and, in particular, the pyrazolo-

triazolo-pyrimidine sca�old has been extensively studied. Moreover, it has

been demonstrated that proper substitutions at the N5 and N8 positions

drive the antagonist selectivity to the human A3R subtype. [149] On the

other hand, the substitution at the position N7 shifts the selectivity pro�le

to the human A2AR subtype. [146] However, this very empirical rule based

on experimental evidences does not provide a criterion to assign the correct

pharmacological A2A and A3 receptors pro�les of novel pyrazolo-triazolo-

pyrimidine derivatives.
1Further details on the four human AR subtypes are reported in section 7.2.
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Here, we describe an alternative application of the Support Vector Ma-

chine (SVM) and Support Vector Regression (SVR) methodologies to predict

both A2AR versus A3R subtypes selectivity pro�le and the corresponding re-

ceptor binding a�nities. As anticipated, SVM is very utilized to solve both

classi�cation and regression problems. [82, 85] In this study, we have imple-

mented an integrated application of SVM-SVR approach, based on the use

of autoMEP descriptors, to simultaneously discriminate A2AR versus A3R

antagonists and to predict the binding a�nity to the corresponding receptor

subtype of a large dataset of known pyrazolo-triazolo-pyrimidine analogs.

To validate our approach, we have newly synthesized 51 pyrazolo-triazolo-

pyrimidine derivatives anticipating both A2AR/A3R subtypes selectivity and

receptor binding a�nity pro�les.

6.2 Dataset

A collection of 104 selective N7- and N8-substituted pyrazolo-triazolo-pyrimi-

dine analogues (molecules 1-104) has been selected as training set in the �rst

SVM classi�cation (SVMclass) model. [146-151, 180]

In the SVR regression (SVR) model 104 N8-substituted pyrazolo-triazolo-

pyrimidine derivatives (molecules 1-71, 105-137), selective and not selective,

have been used as training set of both human A2AR and A3R nonlinear SVR

models. [146, 149, 150, 180, 181]

Finally, a test set of 51 N8-substituted pyrazolo-triazolo-pyrimidine ana-

logues (molecules 138-188) has been selected to validate both SVMclass and

SVR models2 (Table 6.1).

2Experimental binding a�nity data kindly provided by the work coordinated by Prof.
G. Spalluto (University of Trieste) for the synthesis and by Prof. K. N. Klotz (University
of Würzburg) for the pharmacological characterization.
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Table 6.1: Biological pro�le at the hA2AR and hA3R subtypes of the test
set compounds.

No. R R1 hA2AR (K i, nM)a hA3R (K i, nM)b

138 CH2-α-naphthyl CH 2CH2CH2Ph 305 343

139 CHPh2 CH3 216 0.25

140 CH2-Ph-Ph CH 3 193 11.2

141 CHPh2 CH2CH2CH(CH3)2 159 5.86

142 CH2-Ph-Ph CH 2CH2CH(CH3)2 9.18 268

143 CHPh2 CH2CH2Ph 53.1 6.49

144 CH2-Ph-Ph CH 2CH2Ph 46.9 125

145 CHPh2 CH2CH2CH2CH3 114 1.20

146 CH2-Ph-Ph CH 2CH2CH2CH3 39.6 189

147 CH2-3-Cl-Ph CH 3 30.5 1.94

148 CHPh2 CH2CH2CH3 46.5 0.93

149 CH2-Ph-Ph CH 2CH2CH3 52.5 65.4

150 CH2-4-Cl-Ph CH 3 156 12.7

151 CH2-Ph-Ph CH 2CH3 70.9 14.2

152 CH2-4-OCH3-Ph CH3 62.5 0.95

153 CH2-β-naphthyl CH 2CH2CH(CH3)2 15.7 409

154 CH2-β-naphthyl CH 2CH2Ph 42.1 180

155 CH2-2-thienyl CH 2CH2Ph 8.8 330

156 CH2-3-thienyl CH 2CH2Ph 12.9 726

157 CH2-α-naphthyl CH 2CH3 74.6 3.05

158 CH2-β-naphthyl CH 2CH3 18.4 36.3

159 CH2-3-thienyl CH 2CH3 23 765

160 CH2-2-thienyl CH 2CH3 15.9 196

161 CH2-2-thienyl CH 3 56 5.26

162 CH2-3-thienyl CH 3 31.3 1.25

163 CH2-β-naphthyl CH 3 77.5 14.5

164 CH2-α-naphthyl CH 3 80.5 3.47

165 CH2-α-naphthyl CH 2CH2CH3 38.7 17.3
aDisplacement of speci�c [3H]-NECA binding at human A2A receptors expressed in CHO cells;
bdisplacement of speci�c [3H]-NECA binding at human A3 receptors expressed in CHO cells.

(continued on next page )
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No. R R1 hA2A (K i, nM)a hA3 (K i, nM)b

166 CH2-β-naphthyl CH 2CH2CH3 7.99 95.9

167 CH2-α-naphthyl CH 2CH2CH2CH3 11.7 100

168 CH2-4-CF3-Ph CH3 75.9 1.22

169 CH2-2-thienyl CH 2CH2CH2CH3 4.15 99.8

170 CH2-3-thienyl CH 2CH2CH2CH3 3.13 189

171 CH2-O-Ph-4-Cl CH 3 39.3 223

172 CH2-3-Cl-Ph CH 2CH2CH(CH3)2 1.86 273

173 CH2-4-Cl-Ph CH 2CH2CH(CH3)2 2.75 56.5

174 CH2-3-Cl-Ph CH 2CH2Ph 5.75 273

175 CH2-4-CF3-Ph CH2CH2CH(CH3)2 5.43 266

176 CH2-4-F-Ph CH 2CH2CH(CH3)2 3.69 116

177 CH2-4-F-Ph CH 3 54.1 0.97

178 CH2-2,6-Cl2-Ph CH2CH2CH(CH3)2 18.7 207

179 CH2-2,6-Cl2-Ph CH3 45.2 44.4

180 CH2-4-F-Ph CH 2CH2CH2Ph 211 58.5

181 CH-Ph2 CH2CH2CH2Ph 326 12.6

182 CH2-β-naphthyl CH 2CH2CH2Ph 73.6 717

183 CH2Ph CH2CH2CH2Ph 43.9 5.49

184 CH2-3-Cl-Ph CH 2CH2CH2Ph 182 110

185 CH2-4-Cl-Ph CH 2CH2CH2Ph 89.9 30.5

186 CH2-O-Ph-4-Cl CH 2CH2CH2Ph 27.2 400

187 CH2-2,6-Cl2-Ph CH2CH2CH2Ph 186 601

188 CH2-Ph-Ph CH 2CH2CH2Ph 256 410
aDisplacement of speci�c [3H]-NECA binding at human A2A receptors expressed in CHO cells;
bdisplacement of speci�c [3H]-NECA binding at human A3 receptors expressed in CHO cells.

6.3 Results and discussion

Support Vector Machine represents a group of supervised learning tech-

niques, which �nd now diverse applications in classi�cation and regression

problems. SVM has been originally developed for classi�cation, then the

introduction of a suitable ε-insensitive loss function together with the ad-

vantages of the kernel representation have enabled its application in the

regression analysis, as reported in chapter 2.6. Recently, the application of

SVM and SVR approaches has helped to solve several classi�cation problems,

as for example active and non active compounds discrimination, and to de-

rive QSARs for the prediction of di�erent chemical and biological properties.

[89-92, 100, 103] SVR seems to be a promising tool, with good generalization

performance and increased robustness compared with the neural networks.
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We consider both topological and electrostatic complementarities ex-

tremely crucial in describing the receptor subtypes selectivity. Basing on

the motivations underlined in section 4.3, we believe that the autoMEP vec-

tors can be used as interesting molecular descriptors. We have also reported

that pyrazolo-triazolo-pyrimidine is a versatile sca�old to cover a large spec-

trum of the adenosine receptor selectivity. As anticipated, pyrazolo-triazolo-

pyrimidines bearing speci�c substitutions at the N5 and N8 positions have

been described as highly potent and selective human A3R antagonists, while

the position N7 shifts the selectivity pro�le to the human A2AR subtype.

[146, 149] However, the observation of the sca�old and its substitutions is

not an unfailing strategy to correctly assign the selectivity pro�le of new

pyrazolo-triazolo-pyrimidine antagonists.

In this chapter we present an integrated approach based on the introduc-

tion of two distinct support vector machine tools both using as input matrix

the autoMEP vectors. The �rst tool is a SVM-driven selectivity classi�er and

the second one is a couple of SVR-driven receptor-a�nity predictors. The

work�ow of the abovementioned procedure is summarized in Figure 6.3.1.

Figure 6.3.1: Flowchart of the in series autoMEP/SVMclass and au-
toMEP/SVR approach for the selection of new selective and potent human
A2AR and A3R antagonists.
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We have introduced the autoMEP of each pyrazolo-triazolo-pyrimidine

antagonist to optimize the experimental A2AR/A3R subtypes selectivity pro-

�le using a SVM classi�er (autoMEP/SVMclass). Then, the two di�er-

ent A2AR and A3R receptor-a�nity predictors can be generated using the

autoMEP vectors as input values. The application of the autoMEP/SVMclass

model ahead of the two receptor-a�nity predictors can re�ne the prediction

of both A2AR/A3R subtypes selectivity pro�le and A2AR/A3R binding a�n-

ity values of new pyrazolo-triazolo-pyrimidine derivatives.

6.3.1 SVM classi�cation model

To build our SVM-driven selectivity classi�er, we have selected 104 "selec-

tive" pyrazolo-triazolo-pyrimidines derivatives (molecules 1-104). In more

detail, 48.1% of the SVMclass model training set include hA2AR antago-

nists (50 compounds) and the remaining percentage (51.9%) is composed of

hA3R antagonists (54 compounds). The de�nition of "selectivity" used for

our classi�cation approach is based on a simple binary criteria: the selectiv-

ity index is set to "+1" if it is referred to a selective hA2AR antagonist, and

is "-1" for a selective hA3R antagonists. Moreover, we have considered as

selectivity threshold a di�erence of at least 2 orders of magnitude between

the corresponding K i values.

Information encoded by twelve autoMEP vectors (calculated by select-

ing default parameters, as described in chapter 2) has been used as input

matrix for our SVMclass model. The best classi�er was obtained by using

a Gaussian radial basis function kernel (C = 150; γ = 0.01) and this model

has been subjected to an extensive n-fold cross-validation procedure (Table

6.2).

Table 6.2: AutoMEP/SVMclass model; the statistical parameters after the
cross-validation procedure on the selected classi�er are collected.

% correct predictions

Partition CV No. of runs Mean StDev Min Max

Training set 1 99.0 - 99.0 99.0

Training set LOO 1 93.3 - 93.3 93.3

10-fold 10 91.4 2.5 86.5 95.2

5-fold 10 91.7 2.1 88.5 94.2

Test set 1 78.4 - 78.4 78.4
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The percentages obtained after repeated 10-fold and 5-fold cross-validation

processes con�rm the statistical reliability of this model. Interestingly, it

yielded 93.3% correct predictions after LOO cross-validation. The statisti-

cal robustness is also con�rmed by the percentage (%) values of sensitivity

(92.0%) and speci�city (94.4%). Therefore, we decided to select this model

as SVM-driven selectivity classi�er for the �nal validation step.

6.3.2 SVM regression models

A di�erent collection of 104 pyrazolo-triazolo-pyrimidine analogs (molecules

1-71, 105-137) has been selected as training set of known hA2AR and hA3R

antagonists to derive our autoMEP/SVR models. The selection of all train-

ing set candidates was not performed according to a selectivity criterion, due

to the fact that the principal aim of our regression model is to accurately

predict the receptor binding a�nity. Indeed we have utilized 17 hA2AR se-

lective antagonists (16.4%), 54 hA3R selective antagonists (51.9%) and 33

non selective antagonists (31.7%). Also in this step, information encoded

by twelve autoMEP vectors of all training set antagonists has been used as

input matrix. For the generation of both regression models, we have utilized

a Gaussian radial basis function kernel.

An acceptable hA2AR SVR model (C = 200, ε = 0.0005, γ = 0.0006) was

obtained as indicated by the LOO cross-validated correlation coe�cient (r cv)

of 0.78 and a root mean square of residuals (RMSR) of 0.050, as reported in

Figure 6.3.2 and Table 6.3.
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Figure 6.3.2: AutoMEP/SVR hA2AR model; experimental pKi values vs
predicted pKi values after LOO cross-validation on the training set.

Table 6.3: Statistical parameters of the autoMEP/SVR hA2AR model.

Number of molecules 104

r 0.83

r cv
a 0.78

Slope 0.62

O�set -0.71

qb 0.82

RMSRc 0.050
aCross-validated r after LOO cross-validation procedure: rcv=[SXY/(SXX)

1
2 (SY Y )

1
2 ], SXY=

∑
(X -

Xmean)(Y -Ymean), SXX=
∑
(X -Xmean)

2 and SYY=
∑
(Y -Ymean)

2 with X=YExperimental and

Y=YP redicted;
b
r of the internal test set; croot mean square of residuals: RMSR.

On the other hand, the best hA3R SVR model (C = 150, ε = 0.3, γ

= 0.005) was derived as described by the LOO cross-validated correlation

coe�cient (r cv) of 0.85 and a root mean square of residuals (RMSR) of 0.046

(Figure 6.3.3 and Table 6.4). The results of SVR analysis are noteworthy

considering that the same training set was used to generate two di�erent

robust models. The validation of SVR models is discussed in the following

paragraph.
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Figure 6.3.3: AutoMEP/SVR hA3R model; experimental pKi values vs
predicted pKi values after LOO cross-validation on the training set.

Table 6.4: Statistical parameters of the autoMEP/SVR hA3R model.

Number of molecules 104

r 0.95

r cv
a 0.85

Slope 0.75

O�set -0.11

qb 0.85

RMSRc 0.046
aCross-validated r after LOO cross-validation procedure: rcv=[SXY/(SXX)

1
2 (SY Y )

1
2 ], SXY=

∑
(X -

Xmean)(Y -Ymean), SXX=
∑
(X -Xmean)

2 and SYY=
∑
(Y -Ymean)

2 with X=YExperimental and

Y=YP redicted;
b
r of the internal test set; croot mean square of residuals: RMSR.

6.3.3 Validation of in series SVMclass and SVR models

As anticipated, the principal aim of the present work has been to evaluate the

robustness of the tandem autoMEP/SVMclass and autoMEP/SVR models

in the prediction of both A2AR/A3R subtypes selectivity and receptor bind-

ing a�nity pro�les of new pyrazolo-triazolo-pyrimidine derivatives, and in

particular 51 analogs (molecules 138-188) were considered (Table 6.5).
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Table 6.5: Predicted and experimental hA2AR and hA3R both pKi and Ki
for the test set. Di�erences between predicted and experimental pKi values
for both SVR models (hA2AR and hA3R) are reported. In the middle column
hA2AR selective antagonists (red) and hA3R selective antagonists (blue) are
highlighted.

Pred.
pK i

(nM)
hA2AR

Exp.
pK i

(nM)
hA2AR

∆
pK i

∗

Pred.
K i

(nM)
hA2AR

Exp.
K i

(nM)
hA2AR

No.

Exp.
K i

(nM)
hA3R

Pred.
K i

(nM)
hA3R

∆
pK i

∗

Exp.
pK i

(nM)
hA3R

Pred.
pK i

(nM)
hA3R

-2.25 -2.48 0.23 177.83 305 138 343 107.15 0.51 -2.54 -2.03

-1.79 -2.33 0.54 61.66 216 139 0.25 0.47 -0.27 0.60 0.33

-2.04 -2.29 0.25 109.65 193 140 11.2 35.48 -0.50 -1.05 -1.55

-2.07 -2.20 0.13 117.49 159 141 5.86 2.88 0.31 -0.77 -0.46

-1.05 -0.96 -0.09 11.22 9.18 142 268 144.54 0.27 -2.43 -2.16

-1.47 -1.73 0.26 29.51 53.1 143 6.49 1.70 0.58 -0.81 -0.23

-1.18 -1.67 0.49 15.14 46.9 144 125 70.79 0.25 -2.10 -1.85

-1.85 -2.06 0.21 70.79 114 145 1.20 0.56 0.33 -0.08 0.25

-1.21 -1.60 0.39 16.22 39.6 146 189 51.29 0.57 -2.28 -1.71

-1.59 -1.48 -0.11 38.90 30.5 147 1.94 2.24 -0.06 -0.29 -0.35

-1.87 -1.67 -0.20 74.13 46.5 148 0.93 0.60 0.19 0.03 0.22

-1.15 -1.72 0.57 14.13 52.5 149 65.4 44.67 0.17 -1.82 -1.65

-1.67 -2.19 0.52 46.77 156 150 12.7 6.92 0.26 -1.10 -0.84

-1.41 -1.85 0.44 25.70 70.9 151 14.2 72.44 -0.71 -1.15 -1.86

-1.78 -1.80 0.02 60.26 62.5 152 0.95 3.39 -0.55 0.02 -0.53

-1.32 -1.20 -0.12 20.89 15.7 153 409 85.11 0.68 -2.61 -1.93

-1.12 -1.62 0.50 13.18 42.1 154 180 46.77 0.59 -2.26 -1.67

-1.41 -0.94 -0.47 25.70 8.8 155 330 269.15 0.09 -2.52 -2.43

-1.58 -1.11 -0.47 38.02 12.9 156 726 707.95 0.01 -2.86 -2.85

-1.65 -1.87 0.22 44.67 74.6 157 3.05 11.48 -0.58 -0.48 -1.06

-1.52 -1.26 -0.26 33.11 18.4 158 36.3 23.99 0.18 -1.56 -1.38

-1.73 -1.36 -0.37 53.70 23 159 765 489.7 0.19 -2.88 -2.69

-1.52 -1.20 -0.32 33.11 15.9 160 196 186.21 0.02 -2.29 -2.27

-1.64 -1.75 0.11 43.65 56 161 5.26 1.12 0.67 -0.72 -0.05

-1.71 -1.50 -0.21 51.29 31.3 162 1.25 3.55 -0.45 -0.10 -0.55

-1.63 -1.89 0.26 42.66 77.5 163 14.5 3.55 0.61 -1.16 -0.55

-1.79 -1.91 0.12 61.66 80.5 164 3.47 2.51 0.14 -0.54 -0.40

-1.69 -1.59 -0.10 48.98 38.7 165 17.3 67.61 -0.59 -1.24 -1.83

-0.99 -0.90 -0.09 9.77 7.99 166 95.9 57.54 0.22 -1.98 -1.76

-1.48 -1.07 -0.41 30.20 11.7 167 100 61.66 0.21 -2.00 -1.79
∗Predicted pK i - Experimental pK i.

(continued on next page )
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Pred.
pK i

(nM)
hA2AR

Exp.
pK i

(nM)
hA2AR

∆
pK i

∗

Pred.
K i

(nM)
hA2AR

Exp.
K i

(nM)
hA2AR

No.

Exp.
K i

(nM)
hA3R

Pred.
K i

(nM)
hA3R

∆
pK i

∗

Exp.
pK i

(nM)
hA3R

Pred.
pK i

(nM)
hA3R

-1.76 -1.88 0.12 57.54 75.9 168 1.22 18.20 -1.17 -0.09 -1.26

-1.41 -0.62 -0.79 25.70 4.15 169 99.8 173.78 -0.24 -2.00 -2.24

-0.76 -0.50 -0.26 5.75 3.13 170 189 22.39 0.93 -2.28 -1.35

-1.06 -1.59 0.53 11.48 39.3 171 223 52.48 0.63 -2.35 -1.72

-0.23 -0.27 0.04 1.70 1.86 172 273 97.72 0.45 -2.44 -1.99

0.11 -0.44 0.55 0.78 2.75 173 56.5 125.89 -0.35 -1.75 -2.10

-1.23 -0.76 -0.47 16.98 5.75 174 273 169.82 0.21 -2.44 -2.23

-0.86 -0.73 -0.13 7.24 5.43 175 266 89.13 0.47 -2.42 -1.95

-0.14 -0.57 0.43 1.38 3.69 176 116 173.78 -0.18 -2.06 -2.24

-1.93 -1.73 -0.20 85.11 54.1 177 0.97 14.45 -1.17 0.01 -1.16

-0.85 -1.27 0.42 7.08 18.7 178 207 112.20 0.27 -2.32 -2.05

-1.32 -1.66 0.34 20.89 45.2 179 44.4 8.51 0.72 -1.65 -0.93

-1.96 -2.32 0.36 91.20 211 180 58.5 223.87 -0.58 -1.77 -2.35

-2.34 -2.51 0.17 218.78 326 181 12.6 2.82 0.65 -1.10 -0.45

-1.82 -1.87 0.05 66.07 73.6 182 717 524.81 0.14 -2.86 -2.72

-1.33 -1.64 0.31 21.38 43.9 183 5.49 14.79 -0.43 -0.74 -1.17

-2.07 -2.26 0.19 117.49 182 184 110 245.47 -0.35 -2.04 -2.39

-1.26 -1.95 0.69 18.20 89.9 185 30.5 213.80 -0.85 -1.48 -2.33

-1.29 -1.43 0.14 19.50 27.2 186 400 602.56 -0.18 -2.60 -2.78

-2.48 -2.27 -0.21 302.00 186 187 601 1258.93 -0.32 -2.78 -3.10

-2.18 -2.41 0.23 151.36 256 188 410 48.98 0.92 -2.61 -1.69
∗Predicted pK i - Experimental pK i.

The experimental A2AR and A3R binding a�nities are collected in Table

6.1. Moreover, 19.6% of the compounds are selective hA2AR (molecules 142,

153, 155, 156, 159, 170, 172, 174-176 in Table 6.5) and 9.8% are selec-

tive hA3R antagonists (molecules 139, 141, 145, 152, 181 in Table 6.5) in

the test set. Following the work�ow reported in Figure 6.3.1, the autoMEP

vectors of these new 51 antagonists have been used as input matrix for the

previously generated autoMEP/SVMclass model. Our classi�cation model

was able to correctly assign the 78.4% of the compounds in the collected test

set to their class (Table 6.2). Almost all selective compounds of our test

set are correctly classi�ed and only 11 of them (22%) are erroneously recog-

nized. In Paper IV additional information on autoMEP/SVMclass model

predictions are reported.

After passing the selectivity �ltering process, each of the hA2AR and

hA3R antagonists has been analyzed by the corresponding SVR binding a�n-
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ity predictor. The comparison of all the experimental with the predicted pK i

values by the abovementioned hA2AR and hA3R SVR models on the test set

again support the quality of the predictors, as underlined by the good values

of the correlation coe�cient (q = 0.82 and q = 0.85, respectively) (Table 6.3

and Table 6.4).

In Figure 6.3.4 and Figure 6.3.5 only the hA2A classi�ed antagonists pre-

dicted by the hA2AR SVR model and only the hA3R classi�ed antagonists

predicted by the hA3R SVR model, respectively, have been separately con-

sidered.

Figure 6.3.4: Test set prediction by autoMEP/SVR hA2AR model. a) Ex-
perimental pKi activity data plotted vs predicted pKi values; b) experimental
pKi activity data (r) of the classi�ed selective hA2AR antagonists in the test
compared to the pKi values predicted by autoMEP/SVR hA2AR model (m).

Figure 6.3.5: Test set prediction by autoMEP/SVR hA3R model. a) Ex-
perimental pKi activity data plotted vs predicted pKi values; b) experimental
pKi activity data (r) of the classi�ed selective hA3R antagonists in the test
compared to the pKi values predicted by autoMEP/SVR hA3R model (m).
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The prediction accuracies, as demonstrated by the di�erences between

the experimental and the predicted pK i values, are statistically satisfactory

for both hA2AR and hA3R SVR models, with few exceptions in particular

regarding the hA3R binding a�nity prediction, such as molecules 168, 170,

185 and 188 (see Table 6.5, Figure 6.3.4b and Figure 6.3.5b). In Paper

IV additional considerations on the external test set potency pro�les are

reported.

6.4 Final remarks

To show the useful application of the machine learning in solving a pharma-

codynamic selectivity problem, we have presented a combination of Support

Vector Machine tools able to predict both A2AR versus A3R subtypes se-

lectivity pro�le and the corresponding receptor binding a�nities of a large

dataset of known pyrazolo-triazolo-pyrimidine analogs. The preliminary re-

sults based on a new set of 51 pyrazolo-triazolo-pyrimidines are very encour-

aging. To further validate our integrated SVM approach, we are extending

the applicability of this method to other classes of hAR antagonists and, at

the same time, we are exploring the possibility to describe, using a multi-

classi�cator, the full adenosine receptor selectivity spectrum, as we propose

in the following chapter.
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Exploring potency and selectivity of

hAR antagonists

Nowadays, in medicinal chemistry adenosine receptors (ARs) represent some

of the most studied targets, and there is growing interest on the di�erent

AR subtypes. The AR subtypes selectivity is highly desired in the devel-

opment of potent ligands to achieve the therapeutic success. So far, very

few ligand-based strategies have been investigated to predict the receptor

subtypes selectivity. We have carried out a novel application of the mul-

tilabel classi�cation approach by combining the autocorrelated molecular

descriptors encoding for the Molecular Electrostatic Potential (autoMEP)

with Support Vector Machines (SVMs). Three valuable models, based on

decreasing thresholds of potency, have been generated as in series quantita-

tive sieves for the simultaneous prediction of the hA1R, hA2AR, hA2BR and

hA3R subtypes potency pro�le and selectivity of a large collection, more than

500, of known antagonists such as xanthine and pyrazolo-triazolo-pyrimidine

analogs. The robustness and reliability of our multilabel classi�cation mod-

els were assessed by predicting an internal test set. Finally, we have applied

our strategy to 13 newly synthesized pyrazolo-triazolo-pyrimidine derivatives

inferring their full adenosine receptor potency spectrum and hAR subtypes

selectivity pro�le.
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7.1 Introduction

Adenosine receptors (ARs) are widely considered interesting and promising

therapeutic targets. In the last decade, the growing knowledge about the

di�erent adenosine receptor subtypes has inspired the development of po-

tent and selective ligands. [142, 182] During the optimization step of drug

discovery process, the general aim is to design drugs more e�ective in the

therapeutic treatment, but with minimum side-e�ects. If compounds do not

di�erentiate between receptor subtypes, their therapeutic application might

be accompanied by e�cacy problems or side-e�ects. Therefore, after identi-

fying the single receptor subtype that is responsible for a particular function,

the drug candidates may be sifted out according to criteria of high potency

pro�le and subtype selectivity.

The detection of selective compounds by using in silico tools represents

a di�cult task and to date, not many examples of selectivity prediction have

been described in the literature. [183, 184] Only few pioneer studies suggest

an integration of both traditional classi�cation and regression analysis as

useful �ltering strategy to select potent and selective ligands, as previously

described in chapter 6.

We would like to demonstrate how a novel application of the multilabel

classi�cation approach by combining the autocorrelated molecular descrip-

tors encoding for the Molecular Electrostatic Potential (autoMEP) vectors

with Support Vector Machine (SVM) analysis can represent a very powerful

tool to simultaneously describe the hA1R, hA2AR, hA2BR and hA3R potency

pro�les and identify the possible subtype selectivity for hAR antagonists.

In the previous chapter, we have developed an integrated SVM-SVR

method by using the autoMEP molecular descriptors to discriminate A2AR

versus A3R antagonists and to predict the binding a�nity to the correspond-

ing receptor subtype. However, in the traditional single-label classi�cation

classes are considered mutually exclusive. In our classi�cation task some

samples belong to multiple classes, since the hAR antagonists may present a

good potency pro�le for more subtypes. The multilabel classi�cation anal-

ysis seems to be appropriate, whereas our dataset deals with non-mutually

exclusive and overlapping classes. In this �eld a novel multilabel classi�ca-

tion technique, cross-training with Support Vector Machines (ct-SVM), has

been recently proposed. [108, 109]
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In the present study, the combination of autoMEP vectors with ct-SVM

analysis (autoMEP/ct-SVM) represents a novel strategy for the prediction

of the complete hARs potency pro�les and infer hAR subtypes selectivity of

known xanthine and pyrazolo-triazolo-pyrimidine analogs. Interestingly, our

autoMEP/ct-SVM approach has been extended to all four hAR subtypes. In

more detail, a large collection of hAR antagonists has been utilized to carry

out and validate three autoMEP/ct-SVM models. They have been applied

in series as quantitative sieves, based on decreasing thresholds of potency

(500 nM, 250 nM and 100 nM), corresponding to di�erent binding a�nity

K i values. For the further validation of our strategy, we have synthesized

13 new pyrazolo-triazolo-pyrimidine derivatives to inspect their A1R, A2AR,

A2BR and A3R potency pro�les.1 The work�ow applied in our analysis is

represented in Figure 7.1.1.

Figure 7.1.1: Work�ow for the generation of autoMEP/ct-SVM multil-
abel classi�cation models and the prediction of the hAR antagonists potency
pro�les.

1Experimental binding a�nity data kindly provided by the work coordinated by Prof.
G. Spalluto (University of Trieste) for the synthesis and by Prof. K. N. Klotz (University
of Würzburg) for the pharmacological characterization.
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7.2 Adenosine receptor antagonists

In the last few years an intensive exploration of the chemical space has been

pursued to discover new highly potent and selective adenosine receptors

(ARs) antagonists. As anticipated, the adenosine receptor family belongs

to GPCR (G protein-coupled receptors) family A, including four di�erent

subtypes, referred to as A1, A2A, A2B and A3, which are widely but di�er-

entially distributed in the tissues (Figure 7.2.1)2. [142, 182] Moreover, they

have been cloned from various mammalian species, where they di�erentiate

for both their pharmacological pro�le and e�ector coupling. [139]

Figure 7.2.1: Signal transduction pathways involved in the activation of
adenosine receptors. A1 and A3 activation inhibits adenylyl cyclase through
Gi family of G proteins, whereas A2A and A2B receptors activate Gs fam-
ily, that stimulates the adenylyl cyclase activity. Furthermore, A1R subtype
may lead to the activation of G0 family that increases the conductance of
K+ ions (e�ux from inside to outside the cell) and in�uences some protein
kinase activities. Finally, A3 and A2B receptors activation can involve Gq
proteins, with the resulting stimulation of phospholipase C (PLC). Diacyl-
glycerol (DAG) and inositol (1,4,5)-trisphosphate (IP3) are implicated in the
regulation of protein kinase C (PKC) activity and the intracellular concen-
tration of Ca2+ ions, respectively. The adenosine receptors activation may
involve other G proteins, a�ecting further cellular pathways.

Diverse potent and selective ligands for each subtype have demonstrated

the potential therapeutic role of the adenosine receptor in several phys-

iopathological processes. [140, 141, 143, 144, 178, 179, 185-187] In particular,

A1R selective antagonists have shown anxiolytic e�ects and they have been

2Adapted from Moro, S.; Spalluto, G.; Jacobson, K. A. Trends Pharmacol. Sci. 2005,
26, 44-51.
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reported as promising candidates for the treatment of cognitive disorders,

such as dementia. The antagonism selectivity for A1R is also the proposed

mechanism for some diuretic agents, which are considered e�ective in con-

gestive hearth failure and in oedema. [142, 185] A2AR antagonists have a

neuroprotective activity during ischemic processes and seem to play a role in

the reduction of neuronal damage in Parkinson's or Huntington's diseases.

[141-144] A potential therapeutic activity in the asthma disease has been

discovered for A2BR selective antagonists or mixed antagonists to A2BRs

and A3Rs. [142] A2BR antagonists are also studied as hypoglycaemic agents

in diabetes, while A3R antagonists have a potential application in tumor

growth inhibition and in the treatment of glaucoma. [142, 178, 179, 187]

Basing on di�erent molecular sca�olds, diverse drug design approaches

have been applied for the discovery of more potent and selective human

AR (hAR) antagonists. To this aim, the xanthine and pyrazolo-triazolo-

pyrimidine sca�olds have been properly modi�ed to introduce novelty in the

chemical space of known adenosine receptors antagonists. [146, 149, 188]

In particular, improving selectivity for the hA1R subtype has been obtained

by decorating the classical xanthine sca�old with 8-aryl or 8-cycloalkyl sub-

stituents. [189] On the other hand, hA2BR selective antagonists have been

developed with di�erent substitutions at the N1, N3 and 8 positions in the

same xanthine sca�old. [190-192] Regarding the pyrazolo-triazolo-pyrimidine

derivatives, the position N7 has been suggested to be crucial for the selectiv-

ity to the hA2AR subtype. [146] Conversely, proper substituents at N5 and

N8 positions shift the antagonism towards the hA3R subtype. [149] Further-

more, an alternative imidazo[2,1-f ]purinone sca�old has been discovered to

improve potency and selectivity for the human A3R antagonists. [193] This

structural information is summarized in Table 7.1.

7.3 Dataset

Unfortunately, only a limited number of known AR antagonists has been

synthesized and tested on all four human AR subtypes. In the past, most of

the literature partially reported the binding a�nity to some hAR subtypes or

the dataset was obtained by using ARs cloned from other mammalian species.

We have collected 514 hAR antagonists, synthesized and tested on all four

hAR subtypes, to derive and validate our three autoMEP/ct-SVM multilabel
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Table 7.1: Examples of potent and selective AR antagonists to the four A1,
A2A, A2B, and A3 subtypes.

Structures Exp. binding a�nity Ref(s).

A1 adenosine receptor antagonists

hA1R K i = 7.1 nM

[190]
hA2AR K i = 1200 nM

hA2BR K i = 625 nM

hA3R K i = 395 nM

A2A adenosine receptor antagonists

hA1R K i = 2160 nM

[146]
hA2AR K i = 0.22 nM

hA2BR K i > 10,000 nM

hA3R K i > 10,000 nM

A2B adenosine receptor antagonists

hA1R K i = 566 nM

[146]
hA2AR K i > 1,000 nM

hA2BR K i = 18 nM

hA3R K i > 1,000 nM

A3 adenosine receptor antagonists

[192]
hA1R K i = 1214 nM

hA2AR K i = 1115 nM

hA2BR K i = 305 nM

hA3R K i = 0.81 nM

hA1R K i > 1,000 nM

[193]
hA2AR K i > 1,000 nM

hA2BR K i > 1,000 nM

hA3R K i = 0.8 nM
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classi�cation models. [134, 146, 147, 149-151, 180, 181, 188-195] They are

xanthine derivatives, N7 and N8 pyrazolo-triazolo-pyrimidine analogs. This

large dataset was split into training set (318 compounds), validation set (65

compounds) and internal test set (131 compounds). In Figure 7.3.1 the

potency and selectivity spectrum for each hAR subtype, considering only

our collected homogeneous data on human ARs, is summarized.

Figure 7.3.1: Distribution representation of the experimental Ki binding
a�nity data of hAR antagonists in our dataset (514 molecules), including
training set, validation set and internal test set. The classes are completely
overlapping.

The number of hAR antagonists are reported in di�erent ranges of bind-

ing a�nity for each subtype: K i ≤ 100 nM (�), 100 nM < K i ≤ 250 nM (�),

250 nM < K i ≤ 500 nM (�), K i > 500 nM (�). A similar distribution of the

corresponding potency pro�les intervals is present for hA2AR, hA2BR and

hA3R subtypes, with a noteworthy number of potent antagonists having a

binding a�nity K i value lower or equal to 100 nM to the distinct subtypes

(Figure 7.3.1). Concerning the hA1R subtype, our collection is short of po-

tent compounds and many hA1R antagonists have a binding a�nity K i value

higher than 250 nM. In the �nal collection, 209 hAR antagonists (41%) are

selective for one hAR subtype, with the corresponding K i values lower than

100 nM. Considering these 209 compounds, 5 are selective for hA1R (2%),

31 are selective for hA2AR (15%), 79 are hA2BR selective antagonists (38%)

and the remaining 94 are hA3R selective antagonists (45%). Considering the

limited information on hA1R subtype and on human AR antagonists, it is

very di�cult to correctly predict the complete hAR potency pro�les and infer

the selectivity of novel xanthine and pyrazolo-triazolo-pyrimidine derivatives.

Finally, 13 newly synthesized pyrazolo-triazolo-pyrimidine analogues have

been selected as external test set.
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7.4 Results and discussion

In the last years, the Support Vector Machine method has shown good gen-

eralization performance and high accuracy as supervised learning technique

in many classi�cation tasks. [82, 85] Unfortunately, the traditional classi�-

cation models do not give any quantitative information about the biologi-

cal a�nity of the compounds to the corresponding receptor. Moreover, in

chemoinformatics the classical single-label classi�cation considers mutually

exclusive classes, while in some cases compounds are simultaneously labeled

in multiple classes. In the present work, hAR antagonists may present mul-

tiple molecular properties of multiple hAR subtypes. Since our dataset deals

with non-mutually exclusive and overlapping classes, the alternative ct-SVM

multilabel classi�cation provides an appropriate approach. [108, 109]

Both topological and electrostatic complementarities are crucial in de-

scribing the receptor subtypes selectivity, and the investigation of the MEP

on the molecular surface is a useful strategy for rationalizing the interactions

involved in the molecular recognition processes. [52, 57, 58] In this case, the

distribution of the MEP on the molecular surface is able to discriminate the

selectivity for di�erent receptor subtypes. The introduction of the autocorre-

lation vector allows then for overcoming the MEP information inconvenience

to be reliant on the spatial rotation and translation of the molecule.

As anticipated, the pyrazolo-triazolo-pyrimidine sca�old can be properly

modi�ed to obtain hA2AR or hA3R selectivity (chapter 6). On the other

hand, the xanthine sca�old has been investigated to develop highly potent

and selective hA1R or A2BR antagonists. However, the observation of the

sca�old and its substitutions is not an unfailing strategy to correctly as-

sign the potency pro�le covering all hAR subtypes of new human pyrazolo-

triazolo-pyrimidine and xanthine AR antagonists.

Our "sieve system" is composed of three in series ct-SVM multilabel clas-

si�cation models using as input matrix our autoMEP vectors (Figure 7.1.1).

We aim at introducing autoMEP descriptors of each antagonist to best ap-

proximate the experimental hA1R, hA2AR, hA2BR and hA3R subtypes po-

tency pro�le applying three independent autoMEP/ct-SVM classi�cation

models. In particular, our autoMEP/ct-SVM models have been derived af-

ter the selection of di�erent thresholds of binding a�nity, corresponding to

three diverse K i values: 500 nM for MODEL 1, 250 nM in MODEL 2 and 100

nM for MODEL 3 (Figure 7.1.1). Interestingly, our models can provide at the
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same time a quantitative information about the binding a�nity K i values to

all hAR subtypes. In fact, starting from the calculation of autoMEP vectors

of novel pyrazolo-triazolo-pyrimidine and xanthine analogs, our MODELs 1,

2 and 3 are able to detect potent and selective hAR antagonists.

7.4.1 autoMEP/ct-SVM classi�cation models

Each model is characterized by n binary classi�ers, with n corresponding to

the number of AR subtypes (n=4). The score values have been transformed

in the predicted classes according to the C criterion. [108] To derive our

autoMEP/ct-SVM models we selected a collection of 318 pyrazolo-triazolo-

pyrimidine and xanthine derivatives (molecules 1-318), and we have de�ned

them as our training set. Furthermore, we have considered 65 additional

pyrazolo-triazolo-pyrimidine and xanthine analogs (molecules 319-383) as

validation set for each model to �nd the optimal parameters of the four bi-

nary classi�ers. As previously described, in our autoMEP/ct-SVM models

the actual labels (experimental classes) are assigned by selecting a di�erent

binding a�nity K i value as threshold. In particular, a binary criterion assign

"1" if the hAR subtype binding a�nity K i value is lower than the selected

threshold (500 nM, 250 nM or 100 nM according to the MODELs 1, 2 or 3,

respectively). Conversely, "0" is assigned if the hAR antagonists are less po-

tent than the threshold, i.e. the corresponding hAR subtype binding a�nity

K i value is higher than 500 nM, 250 nM or 100 nM in the corresponding

MODELs 1, 2 and 3. The selected thresholds act as meshes of our "sieve

system", able to �lter hAR antagonists with increasing potency.

We have considered as selectivity criterion a di�erence of at least 2

orders of magnitude between the corresponding hAR subtypes K i values,

with the lower receptor subtype K i value ≤ 100 nM. To carry out the �nal

autoMEP/ct-SVM classi�cation models the corresponding training set and

validation set were merged in a collection of 383 compounds for the train-

ing of the new classi�ers with the ct-SVM optimized parameters3. Finally,

an internal test set (molecules 384-514) has been selected to validate our

MODELs 1, 2 and 3.

3MODEL 1 classi�ers: hA 1R (C = 4, γ = 2); hA2AR (C = 4, γ = 0.5); hA2BR (C
= 16, γ = 0.5); hA3R (C = 16, γ = 0.5). MODEL 2 classi�ers: hA 1R (C = 4, γ = 2);
hA2AR (C = 8, γ = 0.5); hA2BR (C = 4, γ = 0.5); hA3R (C = 16, γ = 1). MODEL 3
classi�ers: hA 1R (C = 4, γ = 0.5); hA2AR (C = 4, γ = 0.5); hA2BR (C = 4, γ = 0.5);
hA3R (C = 4, γ = 0.5).
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7.4.2 Internal validation

As anticipated, our autoMEP/ct-SVM multilabel classi�cation models have

been evaluated in their in series applicability as "sieve system" for new xan-

thine and pyrazolo-triazolo-pyrimidine derivatives. In this validation process

each of the hA1R, hA2AR, hA2BR and hA3R antagonists has been analyzed

by MODELs 1, 2 and 3. In Figure 7.4.1 the potency pro�les of �ve struc-

turally di�erent and correctly predicted hAR antagonists have been con-

sidered as examples for the predictions interpretation. Di�erently colored

columns are used for each antagonist to show the predicted subtypes/labels

by MODELs 1, 2 and 3. The predicted value "1" by the corresponding hAR

binary classi�er is represented with a color for each model to indicate the

relative percentage (%) of potency pro�le. In Figure 7.4.1 the colors have

been assigned in this way: hA1R (�), hA2AR (�), hA2BR (�) and hA3R (�).

Figure 7.4.1: Flowchart of the correctly predicted pro�les of �ve hAR an-
tagonists by applying our autoMEP/ct-SVM multilabel classi�cation models
on the internal test set.

Thus, the prediction "1"/"0" refers to the corresponding hAR subtype

K i value, resulting to be lower/higher than the thresholds 500 nM, 250 nM

or 100 nM for the MODELs 1, 2 or 3, respectively. A predicted relative

percentage (%) of potency pro�le lower than 100% for at least one class

means that the compound is more potent than the selected threshold K i
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for multiple hAR subtypes. Moreover, the selectivity can be inferred by

one-color columns in all three models. Then, by observing Figure 7.4.1, the

�rst N7-substituted pyrazolo-triazolo-pyrimidine analog (compound 388) re-

sulted to have 100% hA2AR potency pro�le for all three models, with totally

red columns. This corresponds to a K i value lower than 100 nM only for

the hA2AR subtype and a K i value higher than 500 nM for the remain-

ing hAR subtypes. Consequently, the compound 388 is hA2AR selective.

The compound 400, a xanthine derivative, is predicted to have a complete

hA2BR potency pro�le by the MODELs 1, 2 and 3. By observing the re-

sulting columns, both compounds 429 and 480 show a mixed potency pro-

�le. They are N8-substituted pyrazolo-triazolo-pyrimidine analogs and each

autoMEP/ct-SVM model is able to inform about the experimental K i values

for all hAR subtypes. Finally, we have predicted a negative potency pro�le

for all hAR subtypes in the last example (compound 491), characterized by

a di�erent chemical structure. In fact, no colored columns are present in the

autoMEP/ct-SVM models prediction.

In our analysis the internal test set has been sifted out by three quan-

titative �lters. We have compared the experimental with the corresponding

predicted relative percentages (%) of potency pro�le by MODELs 1, 2 and 3

for the internal test set, as illustrated in Figure 7.4.2, 7.4.3 and 7.4.4, respec-

tively. The colored columns indicate the positive potency pro�le for hA1R

(�), hA2AR (�), hA2BR (�) and hA3R (�) pro�les.

Figure 7.4.2: Graphical representation of the (a) experimental and (b)
predicted by MODEL 1 (threshold = 500 nM) potency pro�les for the internal
test set. The colored columns show whether the Ki values to the relative hAR
subtype are lower than 500 nM.
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Figure 7.4.3: Graphical representation of the (a) experimental and (b)
predicted by MODEL 2 (threshold = 250 nM) potency pro�les for the internal
test set. The colored columns show whether the Ki values to the relative hAR
subtype are lower than 250 nM.

Figure 7.4.4: Graphical representation of the (a) experimental and (b)
predicted by MODEL 3 (threshold = 100 nM) potency pro�les for the internal
test set. The colored columns show whether the Ki values to the relative hAR
subtype are lower than 100 nM.

Good values of accuracy were obtained for our autoMEP/ct-SVM multi-

label classi�cation models in the prediction of the collected internal test set

(86%, 81% and 78% for MODELs 1, 2 and 3, respectively). The satisfying

prediction accuracies can be also inferred by the graphical comparison of the

experimental (Figure 7.4.2a, 7.4.3a and 7.4.4a) with the predicted (Figure

7.4.2b, 7.4.3b and 7.4.4b) potency pro�les for each model. The comparison of

the experimental with the corresponding predicted graphical representations

has shown high similarity in the color distribution.
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Moreover, the satisfactory prediction results are highlighted by the good

values of the statistical base-class parameters (Table 7.2).

Table 7.2: Statistical parameters of our models after prediction of the in-
ternal test set.

MODEL 1 MODEL 2 MODEL 3

Classes Recall Precision Recall Precision Recall Precision

hA1R 0.61 0.79 0.34 0.65 0.39 0.70

hA2AR 0.92 0.84 0.95 0.82 0.79 0.75

hA2BR 0.96 0.86 0.96 0.89 0.78 0.91

hA3R 0.94 0.97 0.80 0.92 0.92 0.98

The analysis of the experimental and the predicted hAR potency pro�les

of the internal test set by the abovementioned models, with the exception

of the hA1R subtype, again support the quality of our �ltering strategy. Af-

ter considering in series our autoMEP/ct-SVM models, 26/49 selective hAR

antagonists have been perfectly predicted (molecules 385, 388, 390, 392,

395, 396, 400, 404-406, 408, 425, 431, 450, 454-459, 466, 468, 471,

474, 487 and 507) and we are able to infer hAR subtype selectivity of 10

compounds by analyzing their partially correct predictions (molecules 384,

386, 389, 394, 398, 403, 407, 452, 461 and 513). However, MODEL 3

has correctly assigned the potency pro�le of other 10 out of 49 selective hAR

antagonists (molecules 412, 424, 427, 432, 434, 440, 441, 463, 472 and

473), as reported in Figure 7.2.2, 7.2.3 and 7.2.4. Concerning the prediction

of potent (K i ≤ 100 nM) hAR antagonists, MODEL 3 has detected 39% po-

tent hA1R antagonists, 79% potent hA2AR antagonists, 78% potent hA2BR

antagonists and 96% potent hA3R antagonists.

7.4.3 External validation

In the optimization step of drug discovery, the principal application of the

autoMEP/ct-SVM models described in the present work is the prediction

of the complete hAR binding a�nity pro�le and hAR subtypes selectivity

of new potential antagonists. To evaluate the prediction capability of our

autoMEP/ct-SVM strategy, we have considered as potential new hAR antag-

onists 13 novel N8-substituted pyrazolo-triazolo-pyrimidine analogs (external

test set, compounds 515-527), which have been synthetized and tested on

all four hAR subtypes.
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The experimental human A1R, A2AR, A2BR and A3R binding a�nities

are collected in Table 7.3.4

Table 7.3: Biological pro�le at the four hAR subtypes of the external test
set (515-527).

Mol. R1 R2

hA1

(K i

nM)a

hA2AR
(K i

nM)b

hA2BR
(K i

nM)c

hA3R
(K i

nM)d

515 - - 1,250 87.3 3,700 1,537

516 - - 1,710 2,520 >10,000 25.5

517 CH3 CH2-O-Ph 42 15.1 >10,000 692

518 CH2CH3 CHPh2 156 131 248 0.98

519 CH2CH2CH3 CH2-2-thienyl 228 6.21 2,853 255

520 CH2CH2CH3 CH2-3-thienyl 170 4.51 2,820 3.14

521 CH2CH2CH2CH3 CH2-β-naphthyl 113 7.94 1,200 174

522 CH2CH2CH(CH3)2 CH2-4-OCH3-Ph 22.6 1.95 460 359

523 CH2CH2CH(CH3)2 CH2-2-thienyl 20.5 2.03 2,030 308

524 CH2CH2CH(CH3)2 CH2-3-thienyl 31.5 3.88 2,487 540

525 CH2CH2CH(CH3)2 CH2-O-Ph-4-Cl 155 16.1 >10,000 2,306

526 CH2CH2Ph CH2-O-Ph-4-Cl 199 31.7 >30,000 3,251

527 CH2CH2CH2Ph CH2-4-OCH3-Ph 44.8 8.93 2,690 120
aDisplacement of speci�c [3H]-CCPA binding at human A1 receptors expressed in CHO cells, (n=3-6);
bdisplacement of speci�c [3H]-NECA binding at human A2A receptors expressed in CHO cells; c

K i values
of the inhibition of NECA-stimulated adenylyl cyclase activity in CHO cells expressing hA2B receptors;
ddisplacement of speci�c [3H]-NECA binding at human A3 receptors expressed in CHO cells. Data are
expressed as geometric means, with 95% con�dence limits.

These derivatives are the result of various substitution and homologa-

tion experiments in two di�erent positions to increase the selectivity of the

pyrazolo-triazolo-pyrimidine sca�old to hA2AR and hA3R subtypes. autoMEP

vectors of these new 13 hAR antagonists have been used as input matrix for

the previously generated autoMEP/ct-SVM multilabel classi�cation MOD-

ELs 1, 2 and 3.

4Experimental binding a�nity data kindly provided by the work coordinated by Prof.
G. Spalluto (University of Trieste) for the synthesis and by Prof. K. N. Klotz (University
of Würzburg) for the pharmacological characterization.
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In Figure 7.4.5 we have reported the predicted potency pro�les by MOD-

ELs 1, 2 and 3, where the relative percentages (%) indicate positive potency

pro�le for hA1R (�), hA2AR (�), hA2BR (�) and hA3R (�) subtypes. In

most cases our models are able to assign the potency pro�le with at least

the 75% of accuracy for each compound in the collected external test set

(Figure 7.4.5).

Figure 7.4.5: External test set predictions by a) MODEL 1 - 500 nM, b)
MODEL 2 - 250 nM, c) MODEL 3 -100 nM. The graphical representation
indicates the percentage (%) of accuracy for each compound and the predicted
relative percentages (%) of the potency pro�les for hAR subtypes.

Our methodology has correctly classi�ed most of the selective compounds

in the external test set. In more detail, the compounds 515 and 518, hA2AR

and hA3R selective antagonists, respectively, are perfectly predicted. Consid-

ering their similar structure, our autoMEP/ct-SVM models are able at least

to select almost all potent hA2AR antagonists (molecules 519-527), without

missing out any potent hA3R antagonist (molecule 520) in the �ltering pro-

cedure (see Figure 7.4.5c). Surprisingly, MODEL 3 has not misattributed

any compound to hA2BR class.
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7.5 Final remarks

A novel multilabel classi�cation approach combining autoMEP molecular

descriptors with Support Vector Machine (autoMEP/ct-SVM) has been pre-

sented as powerful tool to predict hA1R, hA2AR, hA2BR and hA3R sub-

types potency pro�le and infer the potential selectivity of known xanthine

and pyrazolo-triazolo-pyrimidine derivatives. Three statistically meaningful

models have been generated from the same training set by using di�erent

binding a�nity K i values as thresholds for hAR classi�ers and very positive

results were achieved in the validation procedure.

The independent application of each of our models can be used to select

with high accuracy hAR antagonists having a binding a�nity K i value lower

than 500 nM, 250 nM or 100 nM, according to the aim of the �ltering pro-

cess. To further improve the predictivity of our dynamic autoMEP/ct-SVM

strategy, we aim at integrating new information on hAR antagonists in our

dataset, especially regarding the hA1R subtype.
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Prediction of toxicodynamic and

toxicokinetic properties

Quantitative structure-activity relationship (QSAR) analysis has been fre-

quently utilized as computational tool for the prediction of several ecotox-

icological parameters including the acute aquatic toxicity. In this chapter

we describe a novel integrated strategy to predict the acute aquatic toxicity

through the combination of both toxicokinetic and toxicodynamic behaviors

of chemicals. In particular, a robust classi�cation model (TOXclass) has

been derived by combining Support Vector Machine (SVM) analysis with

three classes of toxicokinetic-like molecular descriptors: the autocorrelation

molecular electrostatic potential (autoMEP) vectors, Sterimol topological

descriptors and logP(o/w) property values. TOXclass model is able to as-

sign chemicals to di�erent levels of acute aquatic toxicity, providing an ap-

propriate answer to the new regulatory requirements. Moreover, we have

extended the abovementioned toxicokinetic-like descriptor set with more

toxicodynamic-like descriptors, as for example HOMO and LUMO energies,

to generate a valuable SVM classi�er (MOAclass) for the prediction of the

mode of action (MOA) of toxic chemicals. As preliminary validation of our

approach, the toxicokinetic (TOXclass) and the toxicodynamic (MOAclass)

models have been applied in series to inspect both aquatic toxicity hazard

and mode of action of 296 chemical substances with unknown or uncertain

toxicodynamic information to assess their potential ecological risk and toxic

mechanism.
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8.1 Introduction

The need for various toxicological data of chemicals in limited time and

animal experiments requires the application of alternative computational so-

lutions. As anticipated in chapter 1, the attempt of REACH regulation is

the improvement of the toxicity assessment process, by identifying the most

hazardous properties of chemicals. [24, 25] Regardless animal and in vivo

testing strategies are still reliable methods for the human and environmental

toxicology risk assessment, the computational toxicology o�ers a valuable

tool to speed up the costly screening of high numbers of compounds. As a

consequence, several Intelligent or Integrated Testing Strategies (ITS) have

been proposed as rapid, e�cient approaches to obtain exposure and e�ects

data and identify di�erent modes of toxic action. [28, 29] In more detail, in

vitro or computational methods, optimized in vivo studies, chemical cate-

gories, read-across analysis and thresholds of toxicological concern (TTCs)

are admitted non-testing strategies to replace missing data or endpoints, and

pro�tably reduce costly animal experiments. [27] So far, powerful computa-

tional toxicology prediction systems have been developed for the exposure

and hazard assessment to satisfy the new regulatory requests. [30] In drug

discovery the in silico approaches for the toxicity prediction of safety-relevant

endpoints are precious contributions to early discovery of adverse drug reac-

tions. [31, 35]

In the last years several "data driven systems" and "expert systems"

have become available for the prediction of toxicological endpoints. Data

driven based programs generate statistically valuable structure-activity rela-

tionships (SARs) by processing large groups of unrelated chemicals, without

user bias or prior organization, to �nd associations based on similar chemi-

cal structures, known as structural alerts, that most probably correspond to

the same toxicological mechanism. Examples for data driven softwares able

to predict toxicity endpoints are TOPKAT, MCASE and Lazar. [196-198]

Unfortunately, the ease prediction in these techniques is penalized by the

accurate statistical validation needed. For this reason, they are better sug-

gested to detect general alerting properties. On the other hand, the expert

systems embody a series of knowledge based rules, considering small classes

of similar-acting chemicals or groups of compounds with similar structure

to build classes of potential toxicity. Even if their application is more lim-

ited in comparison with the data driven systems, the expert systems o�er
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more easily interpretable results. [31] In particular, various expert systems

can provide the prediction of aquatic toxicity endpoints, such as ECOSAR,

DEREK, HazardExpert and OASIS. [199-206]

In toxicology quantitative structure-activity relationships are widely used

approaches to infer the toxicological properties of compounds from their

molecular structure. The traditional linear QSAR methodologies are still

the most applied strategies in this �eld. Several studies have focused on the

prediction of the aquatic toxicity of chemical substances as basic information

in the hazard and environmental risk assessment for species living in the wa-

ter. [37-41] In this context, two main QSAR strategies, chemical class-based

and toxicological-based, have been carried out. In the class-based approach

the aquatic toxicity is modeled on small series of homologous chemical sub-

stances, according to the concept that similar compounds should behave

with a similar toxic mode. [207-209] A problem in this classi�cation scheme

is represented by the di�cult treatment of complex molecular structures.

Alternatively, the toxicological-based QSAR models are developed for com-

pounds supposed to act with the same toxic mechanism. [210-212] However,

the toxicological-based approach is closely related to the toxicodynamic in-

formation and considers toxicity dependent on the mode of action (MOA).

Moreover, in both methods the class assignment is not unambiguous, if more

functional groups are involved in the same compound/mechanism of action.

In a previous work, Colombo has highlighted the advantages of the ap-

plication of simple constitutional and quantum chemical descriptors for the

classi�cation of chemicals into structure-related subsets to derive QSAR lo-

cal models, independently from the mode of action. [213] As proposed so far,

most of the QSAR local models require the chemical grouping into structural

or toxicodynamic classes �rst.

The typical endpoint for the assessment of acute toxicity is the concen-

tration lethal to 50% of the organisms (LC50), produced by chemicals with

di�erent mechanisms, and well-de�ned thresholds for acute toxicity have

been established by UNECE in the Globally Harmonized System of Classi�-

cation and Labeling of Chemicals (GHS). [214] The toxic e�ect may involve

di�erent types of biochemical molecular interaction between the chemicals

and the biological target. Concerning aquatic toxicology, the classi�cation

scheme published by Verhaar and included in Toxtree is one of the �rst

strategies to assign chemicals to mechanisms of action. [215, 216]
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Russom and collaborators have utilized the information on the toxico-

dynamic pro�les in the fathead minnow specie to develop an expert system

based on substructural fragments for the classi�cation of chemical substances

in di�erent modes of action. [217] In the recent years, alternative reliable

classi�cation models based on various molecular descriptors have been intro-

duced. [218-222] The classi�cation approach has recently been proposed in

the prediction of genotoxicity, a property deeply involved in the toxicological

pro�le of compounds. In such application, a preprocessing of experimental

toxicity data by selecting a threshold was required for the classes de�nition.

[223] Very recently, the well-known EPA Fathead Minnow Acute Toxicity

(EPAFHM) database, reporting 96-h LC50 values for fathead minnow of di-

verse industrial chemicals, has been selected to derive a local support vector

regression model. [224]

In the present work we describe a novel classi�cation approach able to as-

sign a large number of compounds in the publicly available EPAFHM dataset

to di�erent classes of acute aquatic toxicity and modes of toxic action. The

work�ow of our approach is illustrated in Figure 8.1.1.

Figure 8.1.1: Flowchart of the in series TOXclass and MOAclass approach
for the prediction of the toxicokinetic and toxicodynamic risk pro�les of new
chemicals.
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Our �rst attempt is to provide an easily interpretable answer to the reg-

ulatory requirements by de�ning two classes of environmental hazard based

on a 96-h LC50 threshold value. We have carried out a couple of novel clas-

si�cation models combining Support Vector Machine with two di�erent sets

of molecular descriptors (TOXclass and MOAclass models). In particular,

a statistically appreciable classi�cation model (TOXclass) has been derived

by combining SVM analysis with three classes of molecular descriptors: the

autocorrelation molecular electrostatic potential (autoMEP) vectors, Steri-

mol topological descriptors and logP(o/w) property values. Once developed

a model to predict the level of acute aquatic toxicity, we have extended the

previous descriptor set by introducing further properties, that in�uence the

toxicodynamic pro�le. Based on this descriptor set, we have generated a

robust SVM classi�er (MOAclass) for the prediction of the multiple MOA

of toxic chemicals. The toxicokinetic and the toxicodynamic models have

been applied in series to identify both aquatic toxicity classes and modes of

action of 296 chemicals with unknown MOA or moderate con�dence MOA

assignment to assess both potential ecological risk and mechanism of toxicity.

8.2 Dataset

A collection of 559 industrial chemicals in the original EPAFHM database

has been selected to derive and validate our TOXclass and MOAclass mod-

els. [217] EPAFHM dataset provides for each compound the chemical struc-

ture, 96-h LC50 values in mg/L and mmol/L and speci�es the mode of action

with the corresponding con�dence. The toxicity pro�les distribution of the

dataset considered in the present work is summarized in Table 8.1 and re-

ported in Figure 8.2.1.

Table 8.1: The classi�cation of substances in mg/L according to the GHS
legislation and the corresponding LC50 (mmol/L) intervals for our dataset
are reported; tox = toxicity.

Minor classes Values LC 50 (mg/L) Values LC 50 (mmol/L)

Acute Tox 1 (AT1) AT1 ≤ 1 mg/L AT1 ≤ 0.00848 mmol/L

Acute Tox 2 (AT2) 1 mg/L < AT2 ≤ 10 mg/L 0.001 ≤ AT2 ≤ 0.131 mmol/L

Acute Tox 3 (AT3) 10 mg/L < AT3 ≤ 100 mg/L 0.028 ≤ AT3 ≤ 1.285 mmol/L

No Acute Tox (nAT) nAT > 100 mg/L nAT ≥ 0.360 mmol/L
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Figure 8.2.1: Graphical representation of 559 chemicals in our dataset. a)
Data distribution indicating the acute toxicity classes according to the GHS
classi�cation scheme for substances hazardous to the aquatic environment:
LC50 ≤ 1 mg/L (red), 1 mg/L < LC50 ≤ 10 mg/L (orange), 10 mg/L <
LC50 ≤ 100 mg/L (yellow), LC50 > 100 mg/L (green); (b) data distribu-
tion indicating the intervals of pLC50 (mmol/L) values corresponding to the
classes reported in (a); the threshold for acute toxicity (pLC50 = 0.3) is
highlighted.

In the present study, a training set of 554 compounds has been used to

carry out our TOXclass model (TOXclass training set). Moreover, 263 chem-

icals have been selected as training set of our MOAclass model (MOAclass

training set). They show a high or high-moderate level of con�dence in the

assigned nine modes of action and this collection is partially overlapping

to the abovementioned TOXclass training set. Finally, a preliminary test

set comprising 296 compounds has been considered in both TOXclass and

MOAclass models. These chemicals display a moderate or low level of con-

�dence in the classi�cation by MOA and they are partially included in the

TOXclass training set. In particular, 187 chemicals in the test set (subset

1) have a low or moderate MOA con�dence, while for the remaining 109

compounds (subset 2) the mode of action is unknown. The mechanistic in-

formation should be experimentally determined to verify the goodness of our

predictions.

Acute toxicity data are expressed as LC50 values (in mmol/L) to quan-

tify the concentration lethal to 50% juvenile fathead minnows (Pimephales

promelas) in 96-�ow-through exposure tests. [217] In our analysis LC50 val-

ues in mmol/L are transformed in classes of aquatic toxicity, as described

in section 8.3. The mode of action of chemicals was assigned based on joint

toxic action studies, involving the analysis of behavioral responses and dose-

response relationships after interpreting 96 h LC50 experiments. [217]
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8.3 Results and discussion

Computer-based identi�cation of molecular structure properties qualitatively

(SAR) or quantitatively (QSAR) related to biological activity represents the

main useful application in predictive toxicology. [30, 31, 35] In fact, the

unknown toxicological properties of new chemicals can be inferred by con-

sidering the available information on toxic molecular structures or fragments.

Even if SAR and QSAR methodologies are more and more rising impor-

tance in this �eld, their applicability requires good quality and homogeneous

experimental data. Firstly, LC50 precise value of acute aquatic toxicity is not

needed in the case of general evaluation of the environmental risk of a chem-

ical. Just one unit of di�erence between experimental and predicted pLC50

corresponds to ten times the same di�erence expressed in LC50 (mmol/L).

So the claim for the prediction of exactly the LC50 value by using a classical

QSAR local model is very challenging. Moreover, if the mechanism of action

is unknown or uncertain, and LC50 values are inaccurate, the possibility to

derive reliable QSAR local models for each MOA subset is excluded. So,

these methods are better tailored for a posteriori identi�cation of alerting

classes from the predicted values. Therefore, a classi�cation approach inde-

pendent from MOA, by selecting a particular threshold of aquatic toxicity,

seems to be more appropriate.

To date, the classical models for acute aquatic toxicity prediction by

chemical class or mode of action have approached toxicity as a property de-

pending on the presence of particular sca�olds/functional groups and on the

available toxicodynamic information. Some chemicals with di�erent struc-

ture might be very toxic by acting with the same mechanism (Paper VI ).

Then, we can hypothesize that local models based on chemical classes are

not able to correctly assess the level of toxicity of new chemically di�erent

compounds. Moreover, the di�erent molecular intrinsic properties might be

somehow responsible for a similar toxicokinetic. In EPAFHM dataset the

toxic compounds displaying a di�erent mode of action, but analogous molec-

ular structures, are present (Paper VI ). Even in this case, a local model by

MOA might not recognize as toxic new compounds with similar structure

but di�erent toxicodynamic pro�le.

Our in series TOXclass/MOAclass strategy has been developed to over-

come these problems in the toxicity prediction. Interestingly, we have con-

sidered the general toxicity as a property well described by molecular de-
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scriptors, rather than a priori in�uenced by the chemical structure or toxic

mechanism. As synthetically represented in Figure 8.3.1, we have derived

two robust TOXclass and MOAclass models to predict the level of acute

aquatic toxicity and the mode of toxic action, respectively. Our procedure

has analyzed toxicity as a property independent from the mechanism of ac-

tion, since di�erently acting chemicals can be equally toxic. Moreover, MOA

information is not needed to predict the potential toxicological risk. Con-

sequently, we suggest to apply TOXclass and MOAclass models in series

for the prediction of the toxicokinetic and toxicodynamic pro�les of new

chemicals.

Figure 8.3.1: Synthesis of the in series TOXclass and MOAclass approach.

8.3.1 TOXclass model

We have used 554 structurally di�erent chemicals in the same EPAFHM

dataset as our training set to carry out a �rst binary classi�cation model

(TOXclass). By considering data distribution of LC50 values in mmol/L

according to GHS legislation, reported in Table 8.1 and Figure 8.2.1, we

have selected 0.5 mmol/L as LC50 threshold value for high acute toxicity

(pLC50=0.3). Then, we have divided our training set into two classes: high

acute aquatic toxicity (LC50 ≤ 0.5 mmol/L), that comprises 66% of the train-

ing set, and low acute aquatic toxicity (LC50 > 0.5 mmol/L), including the

remaining 34%. As anticipated, we have combined three classes of molec-

ular descriptors with SVM analysis: autoMEP vectors (calculated by using

default parameters indicated in chapter 2), Sterimol topological descriptors

and logP(o/w) property values, as reported in Table 8.2.
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Table 8.2: List of the eighteen descriptors selected for the binary classi�ca-
tion model to predict the level of acute toxicity.

No. Name Details

12 autoMEP vectors
Spatial autocorrelation; property: molecular electro-
static potential

5 Sterimol Topological

1 logP(o/w) Log octanol/water partition coe�cient

In this study, the autocorrelation allows in particular to easily compare

surface properties of structurally unrelated compounds of di�erent size. Ste-

rimol descriptors have been introduced to represent topological properties,

as in previous papers. [60, 225] Finally, logP, or log of the n-octanol/water

partition coe�cient, describes the partitioning equilibria and is parameter

commonly used as molecular descriptor in the evaluation of pharmacokinetic

and pharmacodynamic properties and in modeling of toxicity. [212, 219-222]

We have selected these molecular properties to represent properly the chem-

ical in�uence to the toxicological pro�le of each compound.

A statistically appreciable TOXclass model has been carried out by us-

ing a Gaussian radial basis function kernel setting the C parameter value to

32 and the γ parameter value to 1. The results are shown in Table 8.3 and

Table 8.4.

Table 8.3: Statistical parameters of TOXclass model after cross-validation
procedure.

% correct predictions

Partition CV No. of runs Mean StDev Min Max

Training set 1 88.6 - 88.6 88.6

Training set LOO 1 84.3 - 84.3 84.3

10-fold 10 82.4 4.5 70.9 92.9

5-fold 20 82.0 3.4 70.3 89.2

3-fold 33 81.3 2.2 76.2 85.9

2-fold 50 80.5 1.8 76.2 85.2

Table 8.4: Statistical parameters of TOXclass model after LOO cross-
validation.

Classes TP (TP rate) FP (FP rate) Recall Precision

highAT 323 (0.88) 43 (0.23) 0.88 0.88

lowAT 144 (0.77) 44 (0.12) 0.77 0.77

125



8.3 Results and discussion Chapter 8

The percentages (%) of correct predictions obtained after the extensive n-

fold cross-validation procedures are higher than 80% (80.5% is the minimum

average predictivity for the 2-fold cross-validation), with 84.3% correctly

classi�ed chemicals after LOO cross-validation procedure. The robustness of

TOXclass model is con�rmed by the values of recall and precision for both

classes. These results demonstrate the good capability of TOXclass model

to infer the toxicokinetic pro�le of chemicals prior any consideration on the

toxicodynamic mechanism. Therefore, we have decided to apply this model

as toxicity classi�er, as described in 8.3.3 paragraph.

8.3.2 MOAclass model

Regarding the MOA training set, 263 chemicals with high or high-moderate

MOA con�dence in the EPAFHM database have been assigned to nine dif-

ferent MOA and their distribution is given in Figure 8.3.2.

Figure 8.3.2: MOAclass model. Data distribution indicating the percent-
age (%) of the single MOA classes: baseline narcosis (green), polar narcosis
(red), arylate and ester narcosis (light blue), electrophile or proelectrophile
phosphorylation (yellow), neurodepressant (purple), uncoupler of oxidative
phosphorylation (violet), central nervous system seizure mechanisms (blue),
AchE inhibition (orange) and respiratory blocker or inhibition mechanisms
(black). The percentages correspond to 142 baseline narcosis, 32 polar nar-
cosis, 11 arylate and ester narcosis, 44 electrophile or proelectrophile phos-
phorylation, 6 neurodepressant, 11 uncoupler of oxidative phosphorylation, 9
central nervous system seizure mechanisms, 7 AchE inhibition and 1 respi-
ratory blocker or inhibition acting chemicals, respectively.

This training set is characterized by very unbalanced classes, with few

chemicals acting with neurodepressant, uncoupler of oxidative phosphoryla-

tion, central nervous system seizure, AchE inhibition and respiratory blocker

or inhibition mechanisms. However, this distribution re�ects the actual well-

established knowledge on the toxicodynamic pro�le of chemicals.
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The descriptor set used in the MOAclass model is an extension of the

family of descriptors reported above for the TOXclass model, as listed in

Table 8.5.

Table 8.5: List of the twenty four descriptors selected for the MOAclass
model.

No. Name Details

12 autoMEP vectors
Spatial autocorrelation; property: molecular electro-
static potential

5 Sterimol Topological

1 logP(o/w) Log octanol/water partition coe�cient

1 HDon
Number of hydrogen bonding donors derived from the
sum of NH and OH groups in the molecule

1 HAcc
Number of hydrogen bonding acceptors derived from
the sum of nitrogen and oxygen atoms in the molecule

1 TPSA Topological polar surface area

1 ASA Approximate surface area

1 HOMO
The energy (eV) of the Highest Occupied Molecular
Orbital

1 LUMO-HOMO
Di�erence between the energy (eV) of the Lowest Un-
occupied Molecular Orbital and the energy (eV) of the
Highest Occupied Molecular Orbital

Besides autoMEP vectors, Sterimol and logP(o/w) descriptors, further

quantum-physical-chemical properties were introduced to more accurately

describe chemistry related the toxicodynamic pro�le (the number of hydro-

gen bonding donors and acceptors, the topological polar and approximate

surface areas, HOMO and the di�erence LUMO-HOMO energy descriptors).

The SVM methodology has been utilized in combination with the above-

mentioned descriptors to derive a robust MOAclass classi�er, by using Gaus-

sian radial basis function kernel (C = 32, γ = 0.9). MOAclass model statis-

tical parameters are summarized in Table 8.6 and Table 8.7.

An acceptable MOAclass model has been obtained as indicated by the

percentage (%) of correct predictions after LOO cross-validation procedure

and the recall and precision values higher than 70% for the A, B, E, F and

H MOA classes. Interestingly, 77% correct predictions, yielded after LOO

cross-validation, con�rm the reliability of this model. Regardless the high

n-fold standard deviations, MOAclass analysis gave noteworthy results con-

sidering that MOA classes are highly unbalanced. Moreover, the inclusion of

new molecular descriptors considerably improved the model predictivity for
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Table 8.6: Statistical parameters of the MOAclass model after cross-
validation.

% correct predictions

Partition CV No. of runs Mean StDev Min Max

Training set 1 97.3 - 97.3 97.3

Training set LOO 1 77.2 - 77.2 77.2

10-fold 10 75.1 8.0 57.7 92.6

5-fold 20 73.3 5.5 58.5 84.9

3-fold 33 69.7 4.3 55.7 78.2

2-fold 50 65.8 4.0 57.2 74.0

Table 8.7: MOAclass model. The statistical parameters after LOO cross-
validation procedure. In the �rst column baseline narcosis (green), polar
narcosis (red), arylate and ester narcosis (light blue), electrophile or proelec-
trophile phosphorylation (yellow), neurodepressant (purple), uncoupler of ox-
idative phosphorylation (violet), central nervous system seizure mechanisms
(blue), AchE inhibition (orange) and respiratory blocker or inhibition (black)
mode-of-action classes are highlighted.

Classes TP (TP rate) FP (FP rate) Recall Precision

l (A) 126 (0.89) 30 (0.25) 0.89 0.81

l (B) 23 (0.72) 10 (0.04) 0.72 0.70

l (C) 5 (0.45) 4 (0.02) 0.45 0.56

l (D) 25 (0.57) 11 (0.05) 0.57 0.70

l (E) 5 (0.83) 0 (0.00) 0.83 1.00

l (F) 9 (0.82) 2 (0.01) 0.82 0.82

l (G) 5 (0.56) 3 (0.01) 0.56 0.62

l (H) 5 (0.71) 0 (0.00) 0.71 1.00

l (I) 0 (0.00) 0 (0.00) 0.00 0.00

B, C, D and G classes (polar narcosis, arylate and ester narcosis, electrophile

or proelectrophile phosphorylation and central nervous system seizure mech-

anisms, respectively). This MOAclass predictor has been selected to evaluate

the test set, as described in the following paragraph.

8.3.3 Applicability of TOXclass and MOAclass models

As preliminary proof, TOXclass and MOAclass models have been applied in

series to predict both toxicokinetic and toxicodynamic pro�les of 296 chem-

icals (test set) with experimentally uncertain mechanisms of toxicity. In

particular, our attempt is the evaluation of the potential ecological risk and,
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in a second step, the mode of toxic action.

Our classi�cation approach is able to intrinsically predict the toxicolog-

ical classes instead of the numerical values of LC50, with a low probabil-

ity of signi�cant errors with respect to classical QSAR regression methods.

In more detail, our TOXclass model can directly assign chemicals to "high

acute aquatic toxicity" or "low acute aquatic toxicity" classes, corresponding

to LC50 values in mmol/L lower or higher than 0.5, respectively. Following

the work�ow reported in Figure 8.3.1, the eighteen descriptors reported in

Table 8.2 of all chemicals in the test set have been used as input matrix for

TOXclass model and the prediction results are reported in Table 8.8.

Table 8.8: Statistical parameters after the test set prediction by TOXclass
model.

Classes TP (TP rate) FP (FP rate) Recall Precision

highAT 183 (0.93) 18 (0.18) 0.93 0.91

lowAT 81 (0.82) 14 (0.07) 0.82 0.85

TOXclass model yielded a percentage (%) of 89.2 correct predictions for

the test set, with recall and precision higher than 80% for both aquatic toxic-

ity classes. Only 14 high acute toxic aquatic chemicals have been erroneously

recognized as low acute toxic.

After predicting the toxicokinetic pro�le, the ideal procedure should be

the exclusive prediction of MOA for compounds with hazard toxicity (LC50

≤ 0.5 mmol/L). In this work, we have applied MOAclass model to the whole

test set and the results have been analyzed separately for the subsets 1 and

2. In this case, the descriptor set reported in Table 8.5 was used to represent

the compounds in the test set for the prediction by MOAclass model. The

experimental (low and moderate con�dence) and predicted MOA classes for

subset 1 are summarized in Table 8.9 and Table 8.10, respectively.

Only 49% predicted classes corresponds to the experimental toxicody-

namic pro�les. The comparison of the experimental with the predicted MOA

classes for the subset 1 supports the debatable quality of the experimental

data. However, a good correspondence in the distribution of chemicals within

the toxicological classes has been found, as underlined by the comparison of

the graphical representations in Table 8.9 and Table 8.10.
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Table 8.9: Graphical representation of the experimental toxicodynamic
classes for chemicals with low or moderate MOA con�dence in the test set
(subset 1). The percentages (%) and the corresponding colors indicating the
distribution of chemicals within the classes are reported in the table below.

Experimental MOA classes Percentage (%)

l (A) - Baseline narcosis 53

l (B) - Polar narcosis 4

l (C) - Arylate and ester narcosis 8

l (D) - Electrophile or proelectrophile phosphorylation 27

l (E) - Neurodepressant 0

l (F) - Uncoupler of oxidative phosphorylation 1

l (G) - Central nervous system seizure mechanisms 0

l (H) - AchE inhibition 0

l (I) - Respiratory blocker or inhibition 1

m (A and B) 6

Table 8.10: Graphical representation of the predicted toxicodynamic classes
for chemicals with low or moderate MOA con�dence in the test set (subset 1).
The percentages (%) and the corresponding colors indicating the distribution
of chemicals within the classes are reported in the table below.

Predicted MOA classes Percentage (%)

l (A) - Baseline narcosis 61

l (B) - Polar narcosis 12

l (C) - Arylate and ester narcosis 2

l (D) - Electrophile or proelectrophile phosphorylation 15

l (E) - Neurodepressant 1

l (F) - Uncoupler of oxidative phosphorylation 4

l (G) - Central nervous system seizure mechanisms 3

l (H) - AchE inhibition 2

l (I) - Respiratory blocker or inhibition 0
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In Table 8.11 the compounds in subset 2, classi�ed by MOAclass model,

have been reported.

Table 8.11: Graphical representation of the predicted toxicodynamic classes
by MOAclass model for the chemicals with unknown MOA in the test set
(subset 2). The number of compounds for each class are indicated, and the
corresponding percentages (%) with the colors showing the distribution of
chemicals within the classes are reported in the table below.

Predicted MOA classes Percentage (%)

l (A) - Baseline narcosis 67

l (B) - Polar narcosis 9

l (C) - Arylate and ester narcosis 4

l (D) - Electrophile or proelectrophile phosphorylation 15

l (E) - Neurodepressant 0

l (F) - Uncoupler of oxidative phosphorylation 1

l (G) - Central nervous system seizure mechanisms 3

l (H) - AchE inhibition 1

l (I) - Respiratory blocker or inhibition 0

Most chemicals have been predicted as baseline narcosis (74 compounds)

and electrophile or proelectrophile phosphorylation (16 compounds) acting

(Table 8.11). The following step should be to experimentally verify our

subset 2 predictions and extend the applicability of our approach to new

chemicals.

8.4 Final remarks

The toxicokinetic and toxicodynamic aspects of aquatic toxicity have been

investigated to provide useful tools in agreement with the recent regulatory

system for the evaluation of the environmental hazards. We have applied
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novel powerful classi�cation methods to discriminate chemicals into classes

of toxicity and mode of toxic action. The novelty of the strategy is rep-

resented by a �rst approach to toxicity not related to toxicodynamic and

chemical information. Moreover, our models have provided an easily inter-

pretable answer to the regulatory requirements by de�ning two classes of

acute aquatic toxicity. In particular, we have presented a couple of robust

SVM classi�cation models in combination with two families of molecular de-

scriptors. The �rst TOXclass classi�er has been applied to a test set to

predict the level of aquatic toxicity, while the second MOAclass model has

been used to infer the toxic mechanism.

The experimental evaluation of the acute aquatic toxicity and the mode of

toxic action would represent an e�ective validation of our TOXclass/MOAclass

approach. Finally, we aim at incorporating new compounds in the training

sets to extend the TOXclass/MOAclass strategy to other chemicals for the

aquatic toxicity prediction.
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Chapter 9

General conclusions

The present thesis has focused on the development of nonlinear QSAR mod-

els, mainly by using machine learning methods, as an attractive and helpful

strategy in drug discovery. Our �rst intent is to demonstrate the wide ap-

plicability of nonlinear methodologies in pharmaceutical research tasks. The

promising prediction results underlined by the six reported case studies in

the �eld of pharmacodynamic, pharmacokinetics and toxicology have been

obtained by combining several families of molecular descriptors with nonlin-

ear techniques, to properly describe the relationship between the molecular

properties and the desired endpoint.

Response Surface Analysis in combination with autoMEP vectors, en-

coding for 3D molecular structures, resulted as a robust methodology in the

evaluation of both aqueous solvation free energy of organic compounds and

binding a�nity K i values of human A2AR antagonists, as described in chap-

ters 3 and 4. Moreover, the case study discussed in chapter 4 has emphasized

the potential parallel use of nonlinear methods to support the predictivity

of linear strategies.

Especially Support Vector Machine has been suggested for its good pre-

dictive power and the generalization capability in a large number of regres-

sion and classi�cation studies. The classi�cation-based approaches aim at

predicting classes of activity (high and low) or mechanisms of activity, while

the regression-based methods o�er the precise prediction of activity or prop-

erty data. In chapter 5 we have reported interesting results about the appli-

cation of nonlinear classi�cation approaches to predict the cytochrome P450

metabolism undergone by xenobiotics in humans. In the pharmacodynamic
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�eld, novel powerful SVM methodologies have been proposed to predict po-

tency and selectivity of human AR antagonists, �rst focusing on A2AR and

A3R subtypes (chapter 6) to �nally extend our task to all hAR subtypes

(chapter 7). In more detail, we have generated single-label and multilabel

classi�cation models, respectively, trying to develop a �ltering strategy to de-

tect potent and selective hAR antagonists. Further algorithms and screening

approaches are being developing to improve the results in the selection pro-

cess of drug candidates.

Regarding the prediction of the toxicological pro�le of chemicals, in sil-

ico approaches are more and more applied as alternative methods to ani-

mal testing in order to re�ne and reduce the experiments. Consequently,

in computational toxicology investigations the QSAR models should be in

agreement with the recent regulatory system for the evaluation of the en-

vironmental hazards. In chapter 8 we have discussed a novel classi�cation

strategy to evaluate the toxicokinetic and toxicodynamic aspects of aquatic

toxicity. Interestingly, we introduced a new approach for studying toxicity,

which is not strictly dependent on the toxicodynamic pro�le of chemicals.

Then, the e�orts should be directed to the interpretation of other toxicolog-

ical endpoints, in order to built a complete system supporting costly animal

testing protocols.
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Supporting Information

In the electronic version of this thesis you �nd attached �les containing the

supplementary information material.

Appendix A includes the training set, the test set with the relative refer-

ences used to develop the autoMEP/RSA model for aqueous solvation free

energy prediction, as described in chapter 3 (Paper I ).

Appendix B reports the binding a�nity data for the training set, both

internal and external test sets, with the corresponding references, utilized

for the generation of linear autoMEP/PLS and nonlinear autoMEP/RSA

models derived in chapter 4 (Paper II ).

Appendix C collects the whole dataset of cytochrome P450 substrates,

with the relative references, as described in chapter 5 (Paper III ). Additional

tables reporting the results of a multi-classi�cation model by considering 7

classes, together with further parameters corresponding to the models de-

rived by using 5 classes are included.

Appendix D reports both training sets used in the SVMclass and SVR

models, as summarized in chapter 6 (Paper IV ). Moreover, the binding a�n-

ity data for the test set is reported.

Appendix E includes the training set, validation set and internal test

set used in the multi-classi�cation models to predict potency and selectivity

of adenosine receptor antagonists, as described in chapter 7 (Paper V ), to-

gether with further tables reporting additional information on the validation

process and the predictions on the external test set.

Appendix F reports both training sets utilized in chapter 8 for the gen-

eration of TOXclass and MOAclass classi�ers, with the predicted toxicody-

namic and toxicokinetic information about the test set (Paper VI ).
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A.2 Test set.
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A.1 Training set

1-248: [1]

Mol

Id
Molecule name

Exp. 4Ghyd

(kcal/mol)

Pred. 4Ghyd

(kcal/mol)

1 methane 1.98 2.55

2 ethane 1.81 2.22

3 propane 2.02 2.08

4 n-butane 2.18 2.26

5 2-methylpropane 2.32 2.29

6 n-pentane 2.36 2.25

7 2,2-dimethylpropane 2.69 2.65

8 cyclopentane 1.22 1.87

9 n-hexane 2.58 2.07

10 3-methylpentane 2.54 2.57

11 cyclohexane 1.24 2.08

12 methylcyclopentane 1.62 1.87

13 2,2-dimethylbutane 2.63 2.63

14 n-heptane 2.65 2.49

15 2,4-dimethylpentane 2.92 2.48

16 methylcyclohexane 1.73 1.92

17 n-octane 2.93 2.43

18 2,2,4-trimethylpentane 2.89 2.47

19 ethylene 1.30 0.32

20 propylene 1.28 1.23

21 1-butene 1.40 1.51

22 2-methylpropene 1.30 1.06

23 1-pentene 1.69 1.80

24 trans -2-pentene 1.35 1.09

25 cyclopentene 0.57 1.29

26 2-methyl-2-butene 1.33 0.78

27 3-methyl-1-butene 1.85 1.58

28 cyclohexene 0.37 1.20

29 4-methyl-1-pentene 1.93 1.72

30 trans -2-heptene 1.69 1.61

31 1-methylcyclohexene 0.68 0.38

32 1-octene 2.20 1.85

33 1,3-butadiene 0.57 0.46

34 1,4-pentadiene 0.95 1.21

35 2-methyl-1,3-butadiene 0.69 0.44

36 1,5-hexadiene 1.02 1.39

37 propyne -0.48 -1.42

38 butyne -0.17 -1.67

39 1-pentyne 0.01 -0.32

40 1-hexine 0.29 -0.37

2



Appendix A Paper I

Training set: continued

Mol

Id
Molecule name

Exp. 4Ghyd

(kcal/mol)

Pred. 4Ghyd

(kcal/mol)

41 1-heptyne 0.61 0.25

42 1-octyne 0.72 0.55

43 1-nonyne 1.06 0.37

44 benzene -0.90 -0.30

45 ethylbenzene -0.62 0.01

46 o-xylene -0.91 -0.50

47 m -xylene -0.82 -0.41

48 p-xylene -0.82 -0.53

49 propylbenzene -0.54 -0.10

50 2-propylbenzene -0.30 -0.61

51 1,2,4-trimethylbenzene -0.87 -0.15

52 butylbenzene -0.40 -0.07

53 2-butylbenzene -0.46 -0.29

54 tert -amylbenzene -0.18 -0.30

55 naphthalene -2.45 -0.48

56 acenaphtene -3.44 -2.07

57 anthracene -4.34 -2.97

58 phenanthrene -4.12 -3.98

59 chloromethane -0.54 -2.39

60 trichloromethane -1.04 -2.14

61 tetrachloromethane 0.10 0.20

62 bromomethane -0.80 -1.45

63 dibromomethane -1.99 -1.17

64 tribromomethane -2.16 -1.91

65 iodomethane -0.90 -0.85

66 chloro�uoromethane -0.79 -2.47

67 chlorotri�uoromethane 2.56 -0.56

68 dichlorodi�uoromethane 1.71 -0.11

69 chloroethane -0.64 -1.03

70 bromoethane -0.70 -0.12

71 iodoethane -0.73 -0.22

72 1,1-dicloroethane -0.86 -2.12

73 1,2-dichloroethane -1.75 -2.34

74 1,2-dibromoethane -2.13 -2.99

75 1-chloro-2-bromoethane -1.98 -2.88

76 1,1,1-trichloroethane -0.25 -0.76

77 1,1,2-trichloroethane -1.98 -2.31

78 pentachloroethane -1.38 -3.21

79 hexachloroethane -1.42 0.38

80 chloropenta�uoroethane 2.90 -0.08

81 1,1,2,2-tetrachloro-di�uoroethane 0.83 1.02

82 1,1,2-trichloro-tri�uoroethane 1.80 1.25

83 1,1-dichloro-tetra�uoroethane 2.54 0.68

3



Paper I Appendix A

Training set: continued

Mol

Id
Molecule name

Exp. 4Ghyd

(kcal/mol)

Pred. 4Ghyd

(kcal/mol)

84 1,2-dichloro-tetra�uoroethane 2.35 1.44

85 1-chloropropane -0.36 -0.71

86 2-chloropropane -0.25 -0.87

87 1-bromopropane -0.57 -0.35

88 2-bromopropane -0.48 -0.29

89 1-iodopropane -0.62 -0.32

90 2-iodopropane -0.47 -0.49

91 1,2-dichloropropane -1.27 -2.88

92 1,3-dichloropropane -1.92 -3.28

93 1,2-dibromopropane -1.96 -2.10

94 1-chlorobutane -0.14 -0.24

95 1-bromobutane -0.41 -0.35

96 1-bromo-2-methylpropane -0.03 -0.33

97 1-iodobutane -0.26 -0.29

98 1,1-dichlorobutane -0.70 -0.95

99 1-chloropentano -0.07 -0.87

100 2-chloropentane 0.07 0.04

101 3-chloropentane 0.04 -0.13

102 1-bromo-3-methylbutane 0.21 -1.30

103 cis -1,2-dichloroethylene -1.19 -1.37

104 trans -1,2-dichloroethylene -0.77 -0.82

105 1,2,3-trichloroethylene -0.44 -0.82

106 tetrachloroethylene 0.06 -0.76

107 3-chloropropene -0.58 -0.70

108 chlorobenzene -1.02 -1.93

109 bromobenzene -1.48 -2.15

110 1,2-dichlorobenzene -1.38 -1.30

111 1,3-dichlorobenzene -0.99 -1.46

112 1,4-dibromobenzene -2.33 -2.46

113 p-bromotoluene -1.41 -1.29

114 1-bromo-2-ethylbenzene -1.20 -1.02

115 o-bromocumene -0.86 -0.80

116 dimethyl ether -1.92 -1.88

117 dimethyl sul�de -1.56 -1.09

118 1,3-dioxolane -4.14 -5.60

119 diethyl ether -1.77 -2.00

120 methylpropyl ether -1.69 -2.34

121 methyl isopropyl ether -2.03 -2.00

122 tetrahydrofuran -3.51 -3.20

123 dioxane -5.11 -3.67

124 ethylpropyl ether -1.84 -1.23

125 methyl tert -butyl ether -2.24 -2.69

126 2-methyltetrahydrofuran -3.34 -3.11
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Training set: continued

Mol

Id
Molecule name

Exp. 4Ghyd

(kcal/mol)

Pred. 4Ghyd

(kcal/mol)

127 tetrahydropyran -3.16 -2.32

128 dipropyl ether -1.17 -1.10

129 1,2-dietoxyethane -3.30 -1.94

130 1,1-dietoxyethane -3.32 -3.43

131 di-n-butyl ether -0.84 -0.38

132 anisole -1.05 -3.11

133 thioanisole -2.76 -1.21

134 2,2'-dichlorodietyl sul�de -3.97 -1.68

135 methanol -5.14 -6.09

136 methan thiol -1.26 -2.17

137 ethanol -4.96 -4.66

138 2,2,2-tri�uoroethanol -4.35 -4.27

139 1-propanol -4.92 -4.24

140 2-propanol -4.81 -3.81

141 allyl alcohol -5.10 -5.78

142 1,1,1-tri�uoro-2-propanol -4.21 -6.09

143 2,2,3,3-tetra�uoropropanol -4.96 -4.77

144 2,2,3,3,3-penta�uoropropanol -4.20 -4.95

145 1-butanol -4.78 -4.85

146 2-butanol -4.67 -3.80

147 tert -butyl alcohol -4.57 -2.86

148 2-methyl-1-propanol -4.57 -3.34

149 1-pentanol -4.55 -4.46

150 2-pentanol -4.45 -4.18

151 2-methyl-1-butanol -4.48 -4.31

152 2-methyl-2-butanol -4.49 -3.42

153 1-hexanol -4.42 -4.15

154 cyclohexanol -5.02 -4.74

155 2,3-dimethylbutanol -3.97 -3.62

156 2-methyl-3-pentanol -3.94 -4.33

157 4-methyl-2-pentanol -3.79 -4.11

158 2-methyl-2-pentanol -3.98 -3.09

159 1-heptanol -4.31 -3.94

160 1-octanol -4.16 -4.39

161 phenol -6.62 -7.13

162 4-bromophenol -7.20 -5.30

163 thiophenol -2.58 -4.39

164 2-cresol -5.94 -6.29

165 4-nitrophenol -6.20 -6.26

166 4-tert -butylphenol -6.00 -4.86

167 acetaldehyde -3.55 -3.00

168 propanal -3.48 -3.30

169 butanal -3.22 -3.56

5
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Training set: continued

Mol

Id
Molecule name

Exp. 4Ghyd

(kcal/mol)

Pred. 4Ghyd

(kcal/mol)

170 pentanal -3.07 -2.86

171 heptanal -2.71 -2.24

172 octanal -2.32 -2.45

173 nonanal -2.10 -3.23

174 trans -2-butenal -4.28 -4.03

175 trans -2-hexenal -3.73 -4.26

176 trans -2-octenal -3.48 -3.44

177 trans -trans -2,4-hexadienal -4.70 -3.21

178 benzaldehyde -4.08 -3.43

179 acetone -3.85 -2.22

180 2-pentanone -3.56 -2.33

181 2-heptanone -3.11 -2.75

182 2-octanone -2.92 -2.22

183 2-nonanone -2.51 -1.56

184 2-undecanone -2.18 -1.16

185 acetophenone -4.64 -4.32

186 ethylformate -2.68 -2.39

187 methylacetate -3.36 -4.03

188 propylformate -2.51 -2.71

189 isopropylformate -2.04 -2.28

190 ethylacetate -3.12 -3.08

191 methylpropionate -3.01 -3.53

192 isobutylformate -2.25 -2.44

193 propylacetate -2.89 -2.86

194 isopropylacetate -2.68 -2.95

195 methylbutyrate -2.87 -2.93

196 isoamylformate -2.16 -2.70

197 butylacetate -2.58 -2.45

198 isobutylacetate -2.39 -2.48

199 propylpropionate -2.49 -2.38

200 isopropylpropionate -2.25 -2.61

201 ethylbutyrate -2.53 -2.47

202 methylpentanoate -2.57 -2.66

203 amylacetate -2.49 -2.53

204 propylbutyrate -2.31 -2.51

205 ethylpentanoate -2.56 -2.09

206 methylhexanoate -2.51 -2.87

207 hexylacetate -2.29 -3.13

208 amylpropionate -2.02 -2.38

209 methyloctanoate -2.07 -3.73

210 ethylheptanoate -2.33 -2.10

211 methylbenzoate -4.34 -4.76

212 ethylamine -4.67 -3.76

6
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Training set: continued

Mol

Id
Molecule name

Exp. 4Ghyd

(kcal/mol)

Pred. 4Ghyd

(kcal/mol)

213 butylamine -4.43 -3.81

214 pentylamine -4.14 -4.15

215 hexylamine -4.09 -2.43

216 dimethylamine -4.34 -3.83

217 diethylamine -4.12 -2.39

218 pyrrolidine -5.54 -3.71

219 piperidine -5.17 -3.74

220 dipropylamine -3.70 -1.16

221 hexamethyleneimine -4.97 -3.42

222 trimethylamine -3.27 -4.15

223 triethylamine -3.07 -3.61

224 n-methylpirrolidine -4.02 -5.29

225 n-methylpiperidine -3.94 -5.04

226 propionitrile -3.90 -4.34

227 butyronitrile -3.69 -5.07

228 nitroethane -3.76 -4.51

229 2-nitropropane -3.18 -3.58

230 nitrobenzene -4.17 -4.54

231 2-nitrotoluene -3.63 -3.67

232 3-nitrotoluene -3.50 -3.87

233 pyridine -4.75 -4.26

234 2-methylpyridine -4.68 -4.58

235 3-methylpyridine -4.84 -4.70

236 4-methylpyridine -4.99 -5.01

237 2-ethylpyridine -4.38 -4.38

238 4-ethylpyridine -4.78 -2.45

239 2,3-dimethylpyridine -4.88 -5.02

240 2,4-dimethylpyridine -4.92 -4.97

241 2,5-dimethylpyridine -4.77 -4.55

242 2,6-dimethylpyridine -4.66 -3.66

243 3,4-dimethylpyridine -5.28 -4.85

244 3,5-dymethylpyridine -4.90 -4.76

245 2-methylpirazine -5.58 -4.45

246 2-ethylpyrazine -5.53 -4.23

247 2-ethyl-3-methoxypirazine -4.45 -4.19

248 2-isobutyl-3-methoxypirazine -3.73 -4.56

7
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A.2 Test set

1-23: [1]

Mol

Id
Molecule name

Exp. 4Ghyd

(kcal/mol)

Pred. 4Ghyd

(kcal/mol)

1 2-methylpentane 2.56 2.53

2 cis -1,2-dimethylcyclohexane 1.60 2.38

3 1-hexene 1.73 1.96

4 2,3-dimethyl-1,3-butadiene 0.40 0.33

5 toluene -0.77 0.28

6 tert -butylbenzene -0.44 -0.3

7 dichloromethane -1.42 -1.82

8 1,3-dibromopropane -1.99 -1.6

9 chloroethylene 0.50 -0.76

10 1,4-dichlorobenzene -1.02 -1.75

11 diethyl sul�de -1.45 -0.8

12 diisopropyl ether -0.54 -0.96

13 ethane thiol -4.08 -2.98

14 3-hexanol -3.73 -3.8

15 hexanal -2.85 -2.54

16 2-butanone -3.76 -2.63

17 methylformate -2.82 -4.34

18 ethylpropionate -2.83 -2.75

19 isoamylacetate -2.24 -2.54

20 propylamine -4.56 -3.88

21 dibutylamine -3.38 -1.46

22 1-nitropropane -3.38 -4.18

23 2-isobutylpyrazine -5.11 -3.84

A.3 References

[1] Viswanadhan, V. N.; Ghose, A. K.; Singh, U. C.; Wendoloski, J. J. Pre-
diction of solvation free energies of small organic molecules: additive-
constitutive models based on molecular �ngerprints and atomic constants.
J. Chem. Inf. Comput. Sci. 1999, 39, 405-412.

8



Appendix B

Paper II

Supplementary Information

B.1 Training set.

B.2 Internal test set.

B.3 External test set.

B.4 References.

1



Paper II Appendix B

B.1 Training set

1-15: [1]; 16: [2]; 17-18: [3]; 19-20: [1]; 21-81: [4]; 82-84: [5]; 85: [1]; 86-87: [4];

88-90: [5]; 91-96: [6]; 97-108: [7]; 109-127: [7]
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B.2 Internal test set

128-129: [1]; 130: [3]; 131-133: [4]; 134: [5]; 135: [6]; 136-137: [7]
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B.3 External test set

138-142: [8]

Mol
Id

R
Predicted
pK i (nM)
(PLS)

Predicted
pK i (nM)
(RSA)

Experimental
pK i (nM)
hA2AR

Experimental
K i (nM)
hA2AR

138 H -1.96 -2.14 -2.37 233

139 2-CH3 -1.87 -1.85 -2.52 333

140 2,6-Cl -1.83 -1.94 -2.45 281

141 3-Cl -1.67 -1.98 -2.44 278

142 4-CH3 -1.82 -1.97 -2.88 751
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Supplementary Information

C.1 Dataset.

C.2 References.

Table C.1 Descriptors selected for the training set in Model 3 in the previous

publication to classify CYP450 substrates in three classes.1 The numbers in the

�rst column refer to the publication by Ter�oth et al.

Table C.2 Multi-classi�cation model by applying the ct-SVM technique to

Data set 1 after the computation of the twelve selected descriptors in Model

3 published in Ter�oth et al. paper1: the statistical parameters for each class

after prediction on the Validation set 1 (67 substrates) are reported.

Table C.3 Multi-classi�cation model by applying the ct-SVM technique to

Data set 1 after the computation of the twelve selected descriptors in Model 3

published in Ter�oth et al. paper1: performance measures after prediction on

the Validation set 1 (67 substrates) and on the Test set (217 substrates) are

summarized.

Table C.4 Multi-label classi�cation ct-SVM/7classes model using the same de-

scriptors of Model 3 in ISOCYP paper1: predicted results of the model for the

Test set 1.

Table C.5 ct-SVM/7classes model parameters.

1Ter�oth, L.; Bienfait, B.; Gasteiger, J. Ligand-based models for the isoform speci�city of
cytochrome P450 3A4, 2D6 and 2C9 substrates. J. Chem. Inf. Model. 2007, 47, 1688-1701.
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Table C.6 ct-SVM/5classes model parameters.

Table C.7 CPG-NN/5classes model parameters.

Table C.8 SVM/5classes model parameters.

Table C.9 CPG-NN/5classes percentage (%) of correct predictions after LOO

validation procedure.
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Table C.1

No. Name Details

94 2D-AC identity (5) Topological autocorrelation
145 2D-ACqπ (3) Topological autocorrelation
148 2D-ACqπ (6) Topological autocorrelation
126 2D-ACχπ (5) Topological autocorrelation
133 2D-ACqσ (1) Topological autocorrelation
134 2D-ACqσ (2) Topological autocorrelation
116 2D-ACχσ (6) Topological autocorrelation
223 3D-AC identity ([5.8-5.9]Å) Spatial autocorrelation
33 nacidic_groups Number of acidic functional groups
27 naliph_amino Number of aliphatic amino groups

32 nbasic_nitrogen
Number of basic, nitrogen contain-
ing functional groups

26 r3 Radius perpendicular to D3 and R2
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Table C.2

Classes
TP
rate

FP
rate

TN
rate

FN
rate

Recall Precision
% correct
predictions

CYP1A2 0.09 0.02 0.98 0.91 0.09 0.50 83.6
CYP2C19 0.25 0.02 0.98 0.75 0.25 0.50 94.0
CYP2C8 0.25 0.02 0.98 0.75 0.25 0.50 94.0
CYP2C9 0.73 0.04 0.96 0.27 0.73 0.80 92.5
CYP2D6 0.93 0.08 0.92 0.07 0.93 0.78 92.5
CYP2E1 1.00 0.02 0.98 0.00 1.00 0.89 98.5
CYP3A4 0.68 0.17 0.83 0.32 0.68 0.78 76.1
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Table C.3

Model prediction Accuracy ML(α=1) One-error Coverage
Average
precision

Validation set 1 0.70 0.19 2.04 0.85
Test set 1 0.71 0.25 1.94 0.82
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Table C.4

Classes
TP
rate

FP
rate

TN
rate

FN
rate

Recall Precision
% correct
predictions

CYP1A2 0.48 0.05 0.95 0.52 0.48 0.52 89.9
CYP2C19 0.10 0.01 0.99 0.90 0.10 0.25 94.5
CYP2C8 0.33 0.02 0.98 0.77 0.33 0.17 94.5
CYP2C9 0.44 0.03 0.97 0.56 0.44 0.61 93.1
CYP2D6 0.86 0.15 0.85 0.14 0.86 0.70 85.2
CYP2E1 0.92 0.03 0.97 0.08 0.92 0.61 96.3
CYP3A4 0.78 0.22 0.78 0.22 0.78 0.80 78.3

34



Appendix C Paper III

Table C.5

Classes CYP
1A2 2C19 2C8 2C9 2D6 2E1 3A4

Parameters
C 4 4 4 4 4 4 8
γ 0.5 2 0.5 0.5 0.5 0.5 0.5
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Table C.6

Classes CYP
1A2 2C9 2D6 2E1 3A4

Parameters
C 4 4 8 4 4
γ 0.5 0.5 0.5 0.5 0.5
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Table C.7

Parameter set
Net dimensions 18x15
Initial span (x, y) 9, 7.5
Span step (x, y) 0.9, 0.75
Number of cycles 3450 (10 epochs)
Topology rectangular
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Table C.8

Parameter set
Kernel polynomial, degree=3
C 1
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Table C.9

Classes
% correct
predictions

CYP1A2 81.4
CYP2C9 87.8
CYP2D6 87.8
CYP2E1 98.0
CYP3A4 76.5
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Paper IV

Supplementary Information

D.1 SVM classi�cation model, training set.

D.2 SVM regression model, training set.

D.3 Test set.

D.4 References.
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D.1 SVM classi�cation model, training set

1-42: [1]; 43: [2]; 44-56: [3]; 57-62: [4]; 63-71: [5]; 72-91: [2]; 92-93: [6]; 94-96:

[7]; 97-101: [2]; 102-104: [8]
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D.2 SVM regression model, training set

1-42: [1]; 43: [2]; 44-56: [3]; 57-62: [4]; 63-71: [5]; 105-128: [1]; 129-133: [3]; 134-135:
[4]; 136-137: [9]
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D.3 Test set

138-188: [5]
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Table E.1

Classes TP FP TN FN Recall Precision

hA1R 11 12 32 10 0.52 0.48

hA2AR 26 7 27 5 0.84 0.79

hA2BR 28 6 27 4 0.87 0.82

hA3R 29 7 29 2 0.93 0.81
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Table E.2

Classes TP FP TN FN Recall Precision

hA1R 2 5 48 10 0.17 0.29

hA2AR 22 6 29 8 0.73 0.79

hA2BR 23 6 29 7 0.77 0.79

hA3R 22 5 34 4 0.85 0.81
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Appendix E Paper V

Table E.3

Classes TP FP TN FN Recall Precision

hA1R 2 1 58 4 0.33 0.67

hA2AR 14 5 39 7 0.67 0.74

hA2BR 12 4 42 7 0.63 0.75

hA3R 17 5 40 3 0.85 0.77

41



Paper V Appendix E

Table E.4

MODEL 1 MODEL 2 MODEL 3

Classes Recall Precision Recall Precision Recall Precision

hA1R 0.54 1.00 0.18 1.00 0.00 0.00

hA2AR 1.00 0.92 1.00 0.92 0.82 1.00

hA2BR 0.50 0.25 1.00 0.50 - -

hA3R 1.00 0.67 1.00 0.50 1.00 0.28

AccuracyML (α=1) 0.77 0.69 0.57
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Appendix F

Paper VI

Supplementary Information

F.1 TOXclass model, training set (no. refers to the reference database, Exper-

imental and predicted classes: highAT, high acute toxicity; lowAT, low acute

toxicity).

F.2 MOAclass model, training set (no. refers to the reference database. Ex-

perimental and predicted classes: A, baseline narcosis; B, polar narcosis; C,

arylate and ester narcosis; D, electrophile or proelectrophile phosphorylation;

E, neurodepressant; F, uncoupler of oxidative phosphorylation; G, central ner-

vous system seizure mechanisms; H, AchE inhibition; I, respiratory blocker or

inhibition).

F.3 Test set (no. refers to the reference database. Experimental and predicted

classes by TOXclass model: highAT, high acute toxicity; lowAT, low acute

toxicity; experimental and predicted classes by MOAclass model: A, baseline

narcosis; B, polar narcosis; C, arylate and ester narcosis; D, electrophile or

proelectrophile phosphorylation; E, neurodepressant; F, uncoupler of oxidative

phosphorylation; G, central nervous system seizure mechanisms; H, AchE inhi-

bition; I, respiratory blocker or inhibition).

F.4 References.
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