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To Compute or Not to Compute? Adaptive Smart
Sensing in Resource-Constrained Edge Computing

Luca Ballotta , Member, IEEE, Giovanni Peserico , Francesco Zanini , and Paolo Dini

Abstract—We consider a network of smart sensors for an edge
computing application that sample a time-varying signal and send
updates to a base station for remote global monitoring. Sensors are
equipped with sensing and compute, and can either send raw data
or process them on-board before transmission. Limited hardware
resources at the edge generate a fundamental latency-accuracy
trade-off: raw measurements are inaccurate but timely, whereas
accurate processed updates are available after processing delay.
Hence, one needs to decide when sensors should transmit raw
measurements or rely on local processing to maximize network
monitoring performance. To tackle this sensing design problem,
we model an estimation-theoretic optimization framework that
embeds both computation and communication latency, and propose
a Reinforcement Learning-based approach that dynamically allo-
cates computational resources at each sensor. Effectiveness of our
proposed approach is validated through numerical experiments
motivated by smart sensing for the Internet of Drones and self-
driving vehicles. In particular, we show that, under constrained
computation at the base station, monitoring performance can be
further improved by an online sensor selection.

Index Terms—Communication latency, computation latency,
edge computing, Q-learning, resource allocation, sensing design.

I. INTRODUCTION

D ISTRIBUTED computation scenarios such as the Internet
of Things and Industry 4.0 represent a major breakthrough

in engineering applications, whereby coordination of sensing
and actuation moves away from classical centralized controllers
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to servers and devices at the network edge. This empowers
multiple local systems to achieve together complex goals at
global level: this happens with management of electricity and
energy harvesting in smart grids [1], [2], resource utilization
in smart agriculture [3], [4], modularization and productivity
enhancement in Industry 4.0 [5], [6], [7], urban traffic with inter-
connected vehicles [8], [9], and space-air-ground services [10].

In particular, recent advances in both embedded electronics,
with powerful micro controllers and GPU processors [11], [12],
and new-generation communication protocols for massive net-
works, such as 5G [13], [14], are currently pushing network
systems to rely on sensors and, more in general, edge devices to
carry most of the computational burden. Indeed, distributed com-
putation paradigms such as edge and fog computing [15], [16],
[17], [18], [19] and federated and decentralized learning [20],
[21], [22], even though still in their infancy, enjoy febrile activity
and excitement across the research community.

Despite the growing resources and technological develop-
ment, emerging edge technologies are still limited compared
to centralized servers: indeed, edge devices are forced to trade
several factors, such as hardware cost for processing speed for
energy consumption. In particular, data processing on devices
at the edge requires a non-negligible computational time.

In this work, we consider a group of edge smart sensors,
such as compute-equipped IoT nodes or UAVs, that measure
a signal of interest – e.g., voltage in a smart grid, or movements
of vehicles for surveillance – and transmit the measurements
to a base station that performs remote global monitoring and
possibly decision-making. Limited hardware resources induce
a latency-accuracy trade-off at each sensor, that can supply
either raw, inaccurate samples of the monitored signal or refine
those same data on-board by running suitable algorithms, which
produce high-quality measurements at the cost of processing
delay caused by constrained hardware. Such local processing
may consist of averaging or filtering a batch of noisy samples,
or feature extraction from images or other high-dimensional
data [23], [24], to mention a few examples. Because the mon-
itored system evolves dynamically, delays in transmitted mea-
surements may hinder usefulness of these in real-time tasks, so
that sensing design for multiple, heterogeneous sensors becomes
challenging. In particular, as sensors cooperate, it is unclear
which of them should rely on local computation to transmit ac-
curate information, and which ones would be better off sending
raw data. Also, channel constraints such as limited bandwidth
may introduce non-negligible communication latency, further
increasing complexity of the sensing design. Specifically, local
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processing might compress acquired samples, so that transmis-
sion of raw data to the base station takes longer.

A. Related Literature

Resource allocation in terms of sensor and actuator selection
represents a major research topic in IT, robotics, and control.
Classically, the need for selection emerges from maximization
of a performance metric subject to limited resource budget,
being it of economical, functional (e.g., weight of autonomous
platforms), spatial (e.g., locations to place sensors), or other
nature. Typical works in this field [25], [26], [27], [28], [29],
[30], [31], [32], [33] focus on such budget-related constraints
and pay little attention to impact on system dynamics. For
example, [25] proposes selection strategies based on coverage
probability and energy consumption for a target tracking prob-
lem, [33] studies a clustering-based selection to address com-
munication constraints in underwater environments, and [31]
tackles placement of cheap and expensive sensors to optimize re-
construction of dynamical variables. The aforementioned works,
even though address computation and/or communication issues,
either care about energy consumption or address latency in a
qualitative way, but do not use that information to compute an
exact performance metric that depends on the system dynamics.
Another, more control theoretic, body of work exploits tools
from set-valued optimization, e.g., submodular functions with
matroid constraints [34], or studies analytical bounds [35] or
convex formulations [30], [36], yet within a static framework
that does not address changes in the overall dynamics.

In a similar realm, control theory is traditionally concerned
with either channel-aware estimation and control, or co-design
of communication and controller, addressing wireless chan-
nel issues such as unreliability, latency, and more in general
limited information [37], [38], [39], [40], [41], [42]. For ex-
ample, [37], [42] are concerned with rate-constrained stabi-
lizability, while [38], [41] address LQR and LQG control.
More recently, performance of wireless cyber-physical systems
subject to state and input constraints has been thoroughly in-
vestigated leveraging model-based prediction and optimization
tools such as MPC [43], [44], [45], [46]. However, also this
line of work does not consider processing-dependent delays and
their effect on dynamics and performance. Even in recent work
on sensing, communication, and control co-design [47], [48]
there is no unifying framework that exactly relates sensing and
computation on resource-limited platforms to estimation and
control performance in dynamical networks. A novel framework
concerned with an adaptive design for LQG control which ad-
dresses accuracy-dependent sensing latency is presented in [49].
However, it considers a single sensor and proposes a heuristic
solution with no theoretical guarantees.

A recent body of literature tailored to edge and fog com-
puting studies distributed computation on resource-constrained
devices, focusing on minimization of delays [50], [51], [52], [53]
or latency-dependent energy consumption [54]. While there is a
clear, empirically supported intuition that outdated sensory in-
formation is detrimental to performance through the dynamical
nature of monitored systems, the above works do not address

the true performance metrics (which may be unknown or too
complicated to compute), but employ heuristic proxies (e.g.,
delays) without quantifying impact on closed-loop performance.

Finally, a similar trend is found within a recent body of the
communications literature on Age of Information (AoI) [55],
[56], [57], [58], a metric that quantifies the time elapsed since
the latest received update from a source of information. These
works focus on minimizing quantities related to AoI of updates,
but typically neglect dynamics of the measured variables. Also,
most works, e.g., [59], [60], assume that the dynamical systems
measured by different sensors are uncoupled, limiting applica-
bility of this approach in networked control systems.

B. Novel Contribution and Organization of the Article

In contrast to previous work, we jointly address sensor local
processing, computation and communication latency, and sys-
tem dynamics towards a dynamical smart sensing design.

In [61], the authors proposed a general model for a processing
network, including impact of computation-dependent delays
on monitoring performance, and provided a heuristic sensing
design. However, that design is static. i.e., sensors cannot adapt
to the monitored system during operation, which may hinder
performance. For example, time-varying systems generally pre-
vent the optimal sensing configuration to be static. Also, sensors
could store incoming samples into an unlimited buffer. We
advance such issues through a novel design framework that
builds on the insights in [61]. Moreover, this article considerably
expands the preliminary version [62] as described next.

First, in Section II-A we propose a novel model for a pro-
cessing network tailored to data acquisition and transmission
by resource-constrained smart sensors. These can adapt their
local computation overtime and exploit the latency-accuracy
trade-off online to maximize global network performance, by
choosing to either transmit raw samples or refine data on-board.
In addition, motivated by [61], we let sensors temporary stand-by
(sleep) to alleviate the computational burden for sensor fusion.
Roughly speaking, such online sensor selection can crucially im-
prove global monitoring performance if the processing resources
available at the base station cannot handle large amounts of
sensory data in real time. Remarkably, this result goes against the
common wisdom that deploying more sensing resources always
improve performance.

In Section II-B, we formulate an optimal design problem
to manage sensing resources in a network of smart sensors.
We do this by computing an estimation-theoretic performance
metric that embeds both dynamical parameters and accuracy
and delays associated with sensory data. To partially overcome
intractability of the problem, in Section III we formulate a
simplified version of it, which is tackled via a Reinforcement
Learning approach in Section IV, see Fig. 1. Reinforcement
Learning, and data-driven methods in general, are now popular
in network systems and edge computing because of challenges
raised by real-world scenarios [63], [64], [65].

Finally, in Section V we validate our approach with nu-
merical experiments motivated by sensing for autonomous
driving and Internet-of-Drone tracking. We address realistic
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Fig. 1. Scheme of the proposed methodological framework: the RL algorithm
learns a sensing design to maximize performance of the estimation algorithm.

communication through an industrial-oriented simulator (OM-
NeT++) that accurately models the lower layers of the protocol
stack. We show that accounting for latency due to resource con-
straints can improve performance through a careful allocation
of sensing and computation. In particular, the online sensor
selection becomes crucial when a large number of sensors is
available.

II. SETUP AND PROBLEM FORMULATION

In this section, we first model a processing network composed
of smart sensors (Section II-A), and then formulate the sensing
design as an optimal estimation problem (Section II-B).

A. System Model

Dynamical System: The signal of interest is described by a
time-varying discrete-time linear dynamical system,

xk+1 = Akxk + wk, (1)

where xk ∈ Rn collects the variables (state) of the system,
Ak ∈ Rn×n is the state matrix, and white noisewk ∼ N (0,Wk)
captures model uncertainty. Such class of models is widely used
in control applications, by virtue of their simplicity but also
powerful expressiveness [28], [66], [67], [68], [69]. For example,
a standard approach in control of systems modeled through
nonlinear differential equations is to approximate the original
model as a parameter- or time-varying linear system, for which
efficient control techniques are known [28], [70], [71].

In view of transmission of sensor samples, we assume
discrete-time dynamics with time stepT , where subscript k ∈ N
means the kth time instant kT . Without loss of generality, we
fix the first instant k0 = 1. The sampling time T represents
a suitable time scale for the global monitoring and, possibly,
decision-making task at hand. For example, typical values of T
are one or two seconds for trajectory planning of ground robots,
while higher frequency is required for drones performing a fast
pursuit or for self-driving applications.

Smart Sensors: The system modeled by (1) is measured by
N smart sensors (or simply sensors) gathered in the set V .

=
{1, . . . , N}, which output a noisy version of the state xk,

y
(i)
k = xk + v

(i)
k , v

(i)
k ∼ N (0, Vi,k), (2)

where y(i)k is the measurement produced by the ith sensor at time

k, for any i ∈ V , and v
(i)
k is measurement noise.

Smart sensors are equipped with processing capabilities
alongside standard sensing hardware, and can either transmit
raw samples of the signal xk or locally process acquired samples
to provide refined measurements. For example, a smart camera
may send raw frames or run computer vision algorithms on the

acquired images to get high-quality information, as in typical
robot navigation applications where informative features are
extracted from visual data. Symbol y(i)k indifferently refers to
raw or processed measurements: as formalized in Assumption 1,
the difference between such two kinds of data is embedded into
the measurement noise covariance Vi,k.

Remark 1 (Sensor processing): We consider the case where
sensor local processing is static, that is, sensors can refine
the current sample (as in [49], [61]), but do not (re-)process
past samples. This model is suitable to devices that provide
data without need (or possibility) of tracking the history of the
measured signal, which is handled by the base station. This is
different than, e.g., works [72], [73], where sensor processing is
adaptive and involves the history of collected samples. Although
it might be possible to integrate such kind of processing into our
framework, this is a compelling research direction that will be
explored in the future.

Sensors face a latency-accuracy trade-off through limited
hardware: raw data are less accurate, but local data processing
introduces extra computational delays that make refined updates
more outdated with respect to the current state of the system.

For example, consider a car that is approximately moving
at constant speed, with wk capturing small unmodeled accel-
erations: as the car moves, knowledge of its real-time position
through the nominal model (constant speed) becomes more and
more imprecise because of unknown accelerations hidden inwk,
which make the car drift away from its nominal trajectory. In
this case, a sensor may prefer to sample the system (e.g., collect
positions of the car) more often, rather than spending time to
obtain precise, but outdated, position measurements.

We formally model the latency-accuracy trade-off with the
next assumptions. We also introduce a third operating mode
(sleep mode) that lets sensors stand-by. The usefulness of sleep
mode is associated with limited computational resources for ag-
gregation of sensory data, and will be motivated in the paragraph
“Base Station” below and in Section II-B.

Assumption 1 (Sensing modes): Each sensor i ∈ V can be in
raw, processing, or sleep mode.

Raw mode: measurements are generated after delay τi,raw with
noise covariance Vi,k ≡ Vi,raw.

Processing mode: measurements are generated after process-
ing delay τi,proc with noise covariance Vi,k ≡ Vi,proc.

Sleep mode: the sensor is temporary set idle (asleep): neither
data sampling nor transmission occur under this mode.

Assumption 2 (Latency-accuracy trade-off): For each sensor
i ∈ V , it holds τi,proc > τi,raw and Vi,raw � Vi,proc.1

Similarly to [61], Assumption 2 models high accuracy through
long computation (Fig. 2) and “small” covariance (intensity)
of measurement noise, e.g., raw distance measurements with
uncertainty of 1m2 while processed ones of 0.1m2.

Next, we define how local operations are ruled overtime.
Definition 1 (Sensing policy): A sensing policy for the ith

sensor is a sequence of categorical decisions πi
.
= {γi

k}k≥k0
. If

1Even though Löwner order obeyed by covariance matrices is partial, we
require it in our model so that the latency-accuracy trade-off is well defined.
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Fig. 2. Data collection and transmission. Computation at the ith sensor is
ruled by sensing policy πi. Here, sensing decisions {γi

kj
}3j=0 = {p,p, s, r}

are shown and (4) reads Ki[0] = s0i (k0) = k0, Ki[1] = si(k0) = k1, and
Ki[2] = si(k1) = k3. Measurements are received after delays induced by
local computation (rectangular blocks) and communication (dashed arrows).
For example, under γi

k0
= p, the sample acquired at time k0 is first processed

(with processing delay τi,proc), then transmitted at time k1 = k0 + τi,proc (with
communication delay δi,proc), and finally received at the base station at time
k1 + δi,proc = k0 +Δi,proc (with delay at reception Δi,proc).

γi
k = r, measurement y(i)k is transmitted raw; if γi

k = p, y(i)k is
processed; if γi

k = s, no measurement is acquired at time k.
According to Definition 1, different sensing modes can be

alternated online. However, because of constrained resources, a
sensor cannot acquire measurements arbitrarily often. The actual
sampling frequency is determined as formalized next.

Assumption 3 (Sampling frequency): Assume that the ith
sensor acquires a sample at time k under either raw (γi

k = r)
or processing (γi

k = p) mode. Let time k′ be defined as

k′ .
=

{
k + τi,raw if γi

k = r
k + τi,proc if γi

k = p
. (3a)

Then, the next sample (under any mode) occurs at time si(k),

si(k)
.
= min

h∈N

{
h ≥ k′ : γi

h �= s
}
. (3b)

Finally, the sequence of all sampling instants Ki is given by

Ki =
{
sli(k0)

}
l≥0

, (4a)

where consecutive sampling times are defined by the recursion

sl+1
i (k) = si

(
sii(k)

)
s0i (k0)

.
= min

h∈N

{
h ≥ k0 : γi

h �= s
}
, (4b)

and Ki[l] denotes the lth element of the sequence, with l ∈ N.
In words, Assumption 3 states that sensors can acquire a new

sample only after the previous measurement has been transmit-
ted. This is a realistic assumption if agents have limited storage
resources [74]. The effect of a sensing policy on sampling and
local data processing is illustrated in Fig. 2.

Communication Channel: All sensors transmit data to a com-
mon base station through a shared communication channel,
which is wireless or wired according to the application require-
ments. The channel induces communication latency that may
further delay transmitted updates and depends on several factors
such as transmission medium, network traffic, and interference.

Fig. 3. Data processing at the base station. Resource-constrained centralized

processing introduces fusion delayφk5
to estimate xk5

. Measurements y(i)
k1

and

y
(j)
k3

are received before computation starts at time k4 = k5 − φk5
and are used

to compute x̂k5
, i.e., y(i)

k1
, y

(j)
k3

∈ Yk5
, while y(l)

k2
is received after time k4 and

cannot be used in estimation of xk5
, i.e., y(l)

k2
/∈ Yk5

.

We let δi,raw and δi,proc denote communication delays of raw
and processed data transmitted by the ith sensor, respectively.
In general, δi,raw and δi,proc might differ depending on possible
data compression due to processing. In case δi,raw = δi,proc,
we denote both delays by δi. The total delay experienced by
updates from sampling to reception at the base station is given
by Δi,raw = τi,raw + δi,raw for raw and Δi,proc = τi,proc + δi,proc

for processed data. Data sampling, processing, and transmission
are depicted in Fig. 2.

Base Station: Data are transmitted to a base station in charge of
estimating the state of the systemxk in real time. Such estimation
enables remote global monitoring and decision-making, e.g.,
coordinated tracking or exploration. Let x̂k denote the real-time
estimate of xk. In view of the sequential nature of centralized
data processing, the real-time estimate of xk is computed in
φk time (fusion delay), which is proportional to the amount of
data used in the update [61]. Consider Fig. 3: from time k1
through k4, new data are received at the base station (green
dashed arrows). If the estimation routine starts at time k4, it
takes φk5

to process all newly received sensory data (possibly,
also old ones if some data arrive out of sequence), and hence the
next updated state estimate, x̂k5

, will be available at time k5 =
k4 + φk5

. Hence, fusion delays induce open-loop predictions
that degrade quality of the computed estimates (similarly to what
discussed about local sensor processing), and motivate sleep
mode to reduce the incoming stream of sensory data and improve
overall performance [61].

Assumption 4 (Available sensory data): In view of
Assumptions 1, 3, all sensory data available at the base station
and used to compute x̂k at time k are

Yk
.
=

⋃
i∈V

⋃
l∈N

{(
y
(i)
Ki[l]

, Vi,Ki[l]

)
: Ki[l] + Δi,Ki[l] + φk ≤ k

}

Δi,Ki[l]
.
=

{
Δi,raw if γi

Ki[l]
= r

Δi,proc if γi
Ki[l]

= p
, (5)

where the lth measurement from the ith sensor y(i)Ki[l]
is sampled

at time Ki[l] and received after overall delay Δi,Ki[l], and φk is
the time needed to compute x̂k at the base station.
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Fig. 4. Real-time estimation at the base station. The state estimate is updated at
each point in time (top). Because of limited resources at the base station, open-
loop updates are performed whenever fresh sensory data are being processed
(bottom), causing estimation to degrade overtime through additive noise wk in
nominal dynamics (1). As soon as the data processing subroutine produces an
updated estimate with new measurements, e.g., x̂k1

at time k1, the estimation
inaccuracy is reduced. Note that the top plot is qualitative: the estimate quality
does not degrade linearly, in general.

According to Assumption 4, a measurement y(i)h can be used
to compute the estimate of xk in real time if it is successfully
delivered to the base station (with delay at receptionΔi,h) before
or at time k − φk, where φk is the amount of time needed to
compute x̂k. Data processing at the base station with limited
resources and data availability is depicted in Fig. 3.

Remark 2 (Real-time estimation): Based on the above dis-
cussion, new data cannot be used by an estimation procedure
between times k and k + φk. In a real system, a real-time
state estimate must always be available for effective monitoring.
We assume that two parallel jobs are executed. A support sub-
routine processes received measurements and computes a state
estimate at time k in φk time (cf. Fig. 3). The real-time estima-
tion routine computes one-step-ahead open-loop updates at each
point in time according to the nominal dynamics (1) (progres-
sively degrading estimation quality), and resets when the support
subroutine outputs an updated estimate with new measurements
(with higher estimate quality).2 A schematic representation is
shown in Fig. 4 . Importantly, degradation of estimation in the
top plot is not due to lack of new measurements (like in Age of
Information literature), but is caused by constrained resources
that induce a computational bottleneck in the support subroutine
(bottom plot in Fig. 4).

B. Problem Statement

The trade-offs introduced in the previous section call for a
challenging sensing design at the network level. In particular,
all possible choices of local sensor processing (we address a
specific choice for all sensors as a sensing configuration) affect
global performance in a complex manner, whereby it is unclear
which sensors should transmit raw measurements, with poor
accuracy and possibly long communication delays, and which
ones should refine their samples locally to produce high-quality
measurements. In fact, the authors in [61] show that the opti-
mal configuration when considering steady-state performance
is nontrivial. Also, the optimal sensing configuration is time
varying, in general. Thus, sensing policies πi, i ∈ V , have to be
suitably designed to maximize the overall network performance.

2One-step-ahead open-loop steps are assumed computationally cheap.

The state xk is estimated via Kalman predictor, which is the
optimal observer for linear systems with Gaussian disturbances.
It can be shown, e.g., via state augmentation, that the Kalman
predictor is optimal even with delayed measurements, whereby
it suffices to ignore updates associated with missing data (see
Appendix A in Supplementary Material). Out-of-sequence ar-
rivals can be handled by recomputing all predictor steps since
the latest arrived measurement has been acquired, or by more
sophisticated techniques [75], [76].

Let x̃k
.
= xk − x̂k the estimation error of Kalman predictor

at time k, and let Pk
.
= Var(x̃k) its covariance matrix. We

formulate the sensing design as an optimal estimation problem.
Problem 1 (Sensing Design for Processing Network): Given

system (1)–(2) and Assumptions 1–4, find the optimal sensing
policies πi, i ∈ V , that minimize the time-averaged estimation
error variance with horizon K,

arg min
πi∈Πi,i∈V

1

K

K∑
k=k0

Tr (Pπ
k ) (6a)

s.t. Pπ
k = fKalman (Yπ

k ) (6b)

Pπ
k0
= P0, (6c)

where the Kalman predictor fKalman(·) computes at time k the
state estimate x̂π

k and the error covariance matrix Pπ
k using data

Yπ
k available at the base station according to π

.
= {πi}i∈V , and

Πi gathers all causal sensing policies of the ith sensor.
Remark 3 (Impact of processing on estimation): Processed

measurements are more accurate than raw ones: hence, if de-
lays were neglected, the optimal (trivial) design would be to
always process, because this yields the smallest variance of
measurement noise (Assumption 1) and minimizes the estima-
tion error variance of the Kalman predictor when updates with
measurements are performed. However, computational delays
associated with data processing introduce extra open-loop steps
that increase the error variance, making the optimal design
nontrivial. In other words, uncertainty about the true dynamics
(captured in (1) by noise wk) makes refined measurements be
less informative about the current state of the system, so that
high accuracy alone might not pay off in real-time monitoring.

Remark 4 (Novelty of sensor selection): Sleep mode actually
implements an online sensor selection, whereby sleeping sen-
sors do not supply data to the base station. We identify two key
elements that make our framework fundamentally different from
standard sensor selection in the literature. First, while we exploit
sleep mode towards optimal performance, sensors are typically
selected to trade performance for available resources under the
conventional belief that more sensors yield better performance.
In contrast, selection emerges naturally in our framework to
maximize performance in view of the computational bottleneck
at the base station that may increase the estimation cost in (6).
Moreover, rather than a static selection, we allow for dynamical
switching to and from sleep mode, which both enables perfor-
mance improvement through richer design options and is more
challenging to optimize.
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III. SENSING POLICY: A CENTRALIZED IMPLEMENTATION

Problem 1 is combinatorial in the number of sensors and raises
a computational challenge in finding efficient sensing policies,
because the search space may easily explode. For example,
10 sensors yield 210 = 1024 possible sensing configurations
at each sampling instant. Also, Problem 1 requires to design
a potentially asynchronous schedule for each sensor, which is
an additional combinatorial problem in the time horizon K. To
further complicate things, a sensing policy πi not only affects
delay and accuracy of measurements supplied by the ith sensor,
but also determines the very sequence of sampling instants Ki

(cf. (3)–4), augmenting the search space to all possible time
sequences over K steps. In particular, sleep mode represents a
computational challenge, because it requires evaluation of all
instants subsequent to its activation to decide the best time for
triggering a new update.

To partially ease the intractability of the problem, and mo-
tivated by practical applications, we restrict the domain of
candidate sensing policies to reduce problem complexity while
maintaining a meaningful setup. First, we look at the simple but
relevant scenario with a homogeneous network and motivate
the design of a centralized policy in Section III-A. We then go
back to the general scenario with a heterogeneous network and
formulate a simplified version of Problem 1 in Section III-B.

A. Homogeneous Network

Sensor Model: In this scenario, all smart sensors have equal
measurement noise distributions,

y
(i)
k = xk + v

(i)
k , v

(i)
k ∼ N (0, Vk), (7)

with Vk = Vraw or Vk = Vproc for raw and processed data, re-
spectively. Also, all sensors feature identical computational
and transmission resources, given by delays τrow, δrow for raw
measurements and τproc, δproc for processed measurements, re-
spectively (δ in case of no compression). This homogeneous
network models the special but relevant case where sensors are
interchangeable. This happens for example with sensor networks
measuring temperature in plants or chemical concentrations in
reactors. Also, this model captures smart sensors collecting
high-level environmental information, such as UAVs tracking
the position of a body moving in space.

Centralized Policy: In this case, it is sufficient to decide
how many, rather than which, sensors follow a certain mode.
Accordingly, we focus on the design of a centralized policy that
commands all sensors with no distinctions among them.

Definition 2 (Homogeneous sensing policy): A homogeneous
sensing policy is a sequence of categorical decisions πhom =
{γhom

� }L�=1. Each decision γhom
� = (N − ns, np) is taken at time

k(�) such thatns sensors are in sleep mode andnp out of the other
N − ns sensors are in processing mode between times k(�) and
k(�+1), with 0 ≤ ns ≤ N and 0 ≤ np ≤ N − ns. Without loss
of generality, we set k(1) = k0, k(L) ≤ K.

In words, the base station decides a configurations for all
sensors at predefined time instants, which is both practical
for applications and convenient to reduce complexity of the
problem. However, decisions may be taken at any times, as long

Fig. 5. Homogeneous sensing policy. Sampling and data processing at iden-
tical sensors are ruled by policy πhom. Decision γhom

� is communicated at time

k(�) and realized at individual sensors as γi
� = r and γj

�
= s. Concurrently, the

ith sensor disregards its current processed measurement (red cross) and switches
to raw mode, acquiring a new sample at time k(�).

as these are consistent with sensor computational delays (e.g.,
to guarantee that one sample is collected for each decision).

With a slight abuse of notation, to denote the mode of a specific
sensor that is following the homogeneous decision γhom

� , we
write γi

� = m meaning that the ith sensor is set in mode m by
the �th homogeneous decision, where m ∈ {r, p, s} can be raw
(r), processing (p), or sleep mode (s), respectively. We stress
that in this context γi

� does not represent a decision of a single-
sensor sensing policy πi (as in Definition 1), but all decisions
are centralized and γi

� denotes the mode that the base station
commands to the ith sensor through decision γhom

� .
By design, centralized decisions are communicated regardless

of current sensing status. In light of common practice in real-time
control [77], [78], [79], [80], [81], we assume what follows.

Assumption 5 (Sampling frequency with homogeneous sens-
ing policy): Decision γhom

� switches mode of the minimum
amount of sensors possible. If the ith sensor switches mode,
the measurement currently being acquired or processed (if any)
is immediately discarded. If the new commanded mode is either
raw or processing, a new sample is acquired according to such
new mode right after the decision γhom

� is communicated.

Formally, given measurement y(i)k sampled at time k < k(�)

obeying decision γhom
�−1, the sampling dynamics (3b) becomes

shom
i (k)

.
=

{
k′ if k(�) ≥ k′

k(�̄) otherwise,
(8a)

�̄
.
= min

�′∈{1,...,L}
{
�′ : �′ ≥ � ∧ γi

�′ �= s
}
. (8b)

Further, y(i)k is discarded (not transmitted) if shom
i (k) �= k′.

The new sampling mechanism is depicted in Fig. 5. According
to Assumption 5, a measurement is not transmitted to the base
station if it is not ready when a concurrent decision is commu-
nicated. In Fig. 5 the ith sensor discards a measurement whose
processing is not completed at time k(�), when a new decision
switches its mode. Formally, a sensor disregards raw (resp.
processed) measurements sampled at time k̄ < k(�) such that
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k̄ + τrow > k(�) (k̄ + τproc > k(�)), i.e., their acquisition ends
after a different mode is imposed by decision γhom

� (cf. (8a)). We
denote by Yπhom

k all available data at the base station at time k
according to (8) and such discard mechanism imposed by policy
πhom, that excludes some data included in Yk (cf. (5)).

B. Heterogeneous Network

We now return to the original model (2) with heterogeneous
sensors. Without loss of generality, we assume that the sensor
set V is partitioned into M subsets V1, . . . ,VM , where subset
Vm, m ∈ {1, . . . ,M}, is composed of homogeneous sensors of
the mth class. From what discussed in the previous section, it
is sufficient to specify how many sensors follow a certain mode
within each subset Vm. Hence, we narrow down the domain of
all possible policies according to the next definition.

Definition 3 (Network sensing policy): A network sensing
policy is a collection πnet

.
= {πhom,m}Mm=1, where each homo-

geneous sensing policy πhom,m is associated with homogeneous
sensor subsetVm, and all homogeneous decisions {γhom,m

� }Mm=1

are communicated together at time k(�).
In Definition 3, decision times are fixed like in the homoge-

neous case, so that decisions are communicated to all sensors
at once. At time k(�), homogeneous decision γhom,m

� involves
sensors in Vm, and the overall sensing configuration is given by
the ensemble of such decisions. All data available at the base
station at time k are collected in Yπnet

k
.
= {Yπhom,m

k }Mm=1.
Finally, we get the following simplified problem formulation.
Problem 2 (Centralized Sensing Design for Processing Net-

work): Given system (1)–(2) with Assumptions 1–5, find the
optimal network sensing policy πnet that minimizes the time-
averaged estimation error variance with horizon K,

arg min
πnet∈Πnet

1

K

K∑
k=k0

Tr (Pπnet
k ) (9a)

s.t. Pπnet
k = fKalman (Yπnet

k ) (9b)

Pπnet
k0

= P0, (9c)

where the Kalman predictor fKalman(·) computes at time k the
state estimate x̂πnet

k and the error covariance matrix Pπnet
k , using

data available at the base station according to πnet, and Πnet is
the space of causal network sensing policies.

IV. REINFORCEMENT LEARNING ALGORITHM

By assuming complete knowledge of delays and measure-
ment noise covariances affecting sensors in the different modes,
both Problems 1 and 2 can be analytically solved. However,
the computation of the exact minimizer requires to keep track
of all starts and stops of data transmissions for each sensor,
resulting in a cumbersome procedure which admits no closed-
form expression, and requires to solve a combinatorial problem
which does not scale with the number of sensors. Moreover, the
assumptions considered in the formulation of the problem may
be too conservative in real-life scenarios, and the latter method
cannot be relaxed. Indeed, as long as either delays or covariances
are not explicitly known or have some variability, i.e., they can be

Fig. 6. Learning framework. The RL algorithm receives accuracy of estimates
(state) and outputs sensing configurations (action) that affect sensory data.

modeled by proper random variables, the minimization becomes
intractable. This is true even if the expectations of these random
variables are known, since the dynamics in Problem 2 lead to a
nonlinear behavior for the quantity to be minimized.

For the reasons above, we tackle the problem of choosing
the optimal sensing policy to minimize estimation uncertainty
through a Reinforcement Learning (RL) algorithm, which ex-
ecutes a sequential decision-making suitable for a dynamical
sensing design and can flexibly address the general problem
formulation. Specifically, the RL algorithm is run at the base
station and implements a network sensing policy πnet by iter-
atively choosing a sensing configuration at each time k(�). A
scheme of the overall framework is given in Fig. 6.

A. Optimizing Latency-Accuracy Trade-Off

The Reinforcement Learning problem of maximizing a re-
ward function through the correct sequence of actions is ad-
dressed in this work by the Q-learning algorithm. The latter is
a model-free and off-policy algorithm which updates the current
estimate of the action-value-function targeting an optimistic
variant of the temporal-difference error. In a finite Markov Deci-
sion Process, this approach converges to the optimal action-value
function under standard Monro-Robbins conditions [82], and is
efficient with respect to standard competitors [83], [84].

With regard to Problem 1, policyπi is composed of categorical
variables corresponding to sensing modes, and characterizes the
potential for intervention in the operations of the ith sensor. The
constraints due to the centralized implementation in Problem 2
allow us to consider a single policyπnet : S → A describing how
many sensors are required to process or sleep for each subsetVm.
In particular, action a ∈ A is described by M pairs of integers
specifying, for each group Vm, i) how many sensors transmit
and ii) how many out of the latter ones are in processing mode
(cf. Definition 2). For example, if V = V1 ∪ V2 with |V1| = 4
and |V2| = 5, action a = {(2, 1), (3, 0)} means that, within V1,
two sensors are commanded to transmit, one of these being in
processing mode, and the other two sleep, and similarly for V2.

Since we aim to minimize the time-averaged error vari-
ance (9a), a straightforward metric to be chosen as reward
function is the negative trace of matrix Pπnet

k , which evolves
according to the Kalman predictor with delayed updates. In
the considered framework the base station is allowed to change
sensing configuration (corresponding to a new action) at each
time k(�), therefore a natural way of defining the reward is to
take the average of the negative trace of the covariance during
the interval between times k(�) and k(�+1), so that the base
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station can appreciate the performance of a particular sensing
configuration in that interval.

This leads to the following instantiation of the RL problem,

max
πnet∈Πnet

−E

⎡
⎣ L∑

�=1

γ�

k(�+1) − k(�)

k(�+1)∑
k=k(�)

Tr (Pπnet
k )

⎤
⎦ (10a)

s.t. Pπnet
k = fKalman (Yπ

k ) (10b)

Pπnet
k0

= P0, (10c)

with k(L+1) .
= K. The quantity of interest is the trace of the

error covariance and thus a straightforward approach would take
S = R+. To keep the Q-learning in a tabular (finite) setting, we
discretize the state space through a function d : R+ → N+. In
particular, the image of d[·] is given by M bins, which were
manually tuned in our numerical experiments to yield a fair
representation of the values ofPπnet

k observed along the episodes.
Then, based on the bin associated with Tr(P

k(�)), the agent

outputs a sensing configuration a ∈ A through πnet(·) at each
time k(�), given by a� = πnet(d[Tr(P

k(�))]).

Notably, choosing γ = 1 and time intervals [k(�), k(�+1)] of
equal length matches (10a) and the objective cost (9a) exactly.

Remark 5 (System dynamics and computational complexity):
The Reinforcement Learning procedure is concerned only with
the selection of the sensing scheme and not with computation
of the estimate x̂k (contrary to data-driven estimation). In par-
ticular, the sensor configuration is optimized with respect to
the evolution (10b) of the covariance matrix Pk induced by
the Kalman predictor and not with respect to the actual system
dynamics (1), which are measured by the sensors. The Rein-
forcement Learning step is then independent from the dimension
n of the original system (1), because it deals only with the error
variance of state estimates, while the estimation is performed by
the Kalman predictor in a model-based fashion.

B. Discussion: Challenges of Reinforcement Learning

While the proposed RL-based solution can tackle Problem 2 in
more flexible and efficient way than brute-force or greedy search,
it also comes with nontrivial limitations due to computational
and performance challenges of RL algorithms, which we discuss
next. Tackling such challenges requires dedicated efforts that
will be addressed in follow-up work. Note however that the
framework considered in this article is representative of a broad
range of control applications, and the following issues do not
constitute a threat in the current setting.

First, while we consider a single processing mode in
Assumption 1, a smart sensor may in general choose among sev-
eral options to refine raw samples. For example, a robot equipped
with cameras may run multiple geometric inference algorithms
for perception, each trading runtime for accuracy [49], [85]. In
general, the sensing policy of each sensor might feature several
design options (modes), which in turn imply a larger action space
for the Q-learning and might raise a nontrivial computational
challenge because the total number of actions does not scale
with the number of sensors.

Second, even though we focus on a centralized learning
technique, this inevitably leads to poor computational scalability
especially with heterogeneous sensors, because the action space
is the combination of actions of individual sensors. While it is
worth pointing out that many control and robotic applications
involve either identical or a few different sensors, for which a
centralized learning approach is feasible, investigating compu-
tationally efficient strategies to improve the scalability of the
training in general is a relevant research question. One way
to tackle this challenge might be Multi-Agent Reinforcement
Learning [86], where each agent (here, smart sensor) receives
the reward from the environment and autonomously trains its
own policy, possibly exchanging information with other agents.
In this scenario, each agent chooses only its own actions, so that
the total number of actions actually scales with the number of
agents and permits a computationally scalable training. Another
argument in favor of this scenario is the possibility of training
asynchronous sensing policies tailored to the general problem
formulation (6), which is hardly solvable via centralized learn-
ing and might turn especially useful to effectively trigger the
sleep mode. However, the price to pay is the reduced or absent
coordination among the agents, which can slow down the overall
training or even prevent convergence.

Last, although the Q-learning algorithm is one of the most
widespread algorithms because of its effectiveness and ease of
implementation, the proposed procedure could be improved by
refining some aspects of the current set up. One of the most
challenging aspects is the handling of the continuous state-
space, which has been solved through a simple discretisation.
The latter can be seen as the simplest instance of function
approximation, so there could be better ways of addressing the
specific state-space resulting from the present formulation. It
is nonetheless remarkable that satisfactory results can already
be achieved with this simple version, proving the flexibility of
the Q-learning algorithm. Note indeed that the particular frame-
work of a continuous state-space and a discrete action-space
significantly reduces the range of algorithms that can be applied
to solve the problem addressed in this work. The Q-learning
algorithm proved flexible enough to handle the difficulties of
the non-Markovian environments in both settings considered
in Section V. To assess its effectiveness, the convergence is nu-
merically studied in Appendix C in the Supplementary Material,
together with a discussion on how the sample complexity scales
with the number of sensors in the homogeneous setting. While
more powerful RL algorithms could give better solutions, an
extensive investigation is out of the scope of this work, whose
goal is to propose a general methodology for the addressed
sensing design problem.

V. NUMERICAL SIMULATIONS

In the previous sections, we have presented an estimation-
theoretic framework for optimal sensing design under resource
constraints at processing units and communication channel,
together with a solution approach based on Reinforcement
Learning. We next showcase applicability of our setup through
two edge-computing scenarios. This allows us to get insight
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Fig. 7. Drone tracking simulation setup. The base station estimates the trajec-
tory of the moving target (car) based on visual updates from drones.

TABLE I
SENSOR PARAMETERS FOR DRONE-TRACKING SCENARIO

TABLE II
LEARNING HYPERPARAMETERS FOR DRONE-TRACKING SCENARIO

into the structure of optimal sensing, and also shows that our
proposed approach can outperform standard design choices.

In Section V, we consider drones for target tracking and
see how online sensor selection can improve performance. In
Section V-B, we consider smart sensors monitoring an au-
tonomous car to get insight into processing allocation for het-
erogeneous networks.3 Finally, in Section V-C we elaborate
on the role of Reinforcement Learning in conjunction with a
model-based tool such as Kalman filter.

A. Team of Drones for Target Tracking

We simulated a team of 25 drones tracking a vehicle on the
road (Fig. 7) modeled as a double integrator [61]. Each drone
carries a camera and can either transmit raw frames or run
neural object detection on-board, sending fairly precise bound-
ing boxes. We simulated in Python, with parameters in Table I
based on experiments in [87], [88] and communication delays
δ = 10 ms. We set fusion delays φk proportional to the number
of data that are processed by Kalman predictor to compute
x̂k. We addressed an optimization horizon [0,K] split into ten
500ms-long windows and Q-learning hyperparameters reported
in Table II, where t means the tth episode (one episode being
one horizon), training for 500000 episodes.

The sensing design policy learned for the horizon is shown
in Table III (second row). Notably, only raw mode is chosen:
in particular, 10 drones are active in raw mode during the first
window and 20 through the rest of the horizon. This means that,
with the parameters in Table I, data processing at the edge is
inconvenient because the resource constraints of drones induce
long processing delays. In addition, the use of sleep mode, that

3Code available at github.com/lucaballotta/ProcessingNetworks-RL.

TABLE III
NETWORK SENSING POLICY πNET LEARNED BY Q-LEARNING

Fig. 8. Estimation error variance in drone tracking simulation.

TABLE IV
MEAN ERROR VARIANCE IN DRONE-TRACKING SIMULATION

actually implements an online sensors selection, improves per-
formance: in words, transmission of data from all drones cannot
be efficiently handled by the base station and introduces extra
computation latency, with consequent performance degradation.
This finding is remarkable because it clashes against the typical
assumption that performance improves monotonically with the
number of sensors.

We compare our approach against two standard, static design
choices: all sensors transmit raw data at all times (all-raw) and
all sensors refine measurements at all times (all-processing).
The comparison is shown in Fig. 8 and Table IV. Both baselines
are outperformed by optimization (9). Interestingly, our solution
also keeps small the Moving Average (MA) of the error variance
with respect to the other two designs (see Fig. 8). The largest im-
provement is recorded at steady-state, while during the transient
all curves are very close, with all-raw performing best at times.
This may have two causes: the transient phase is more difficult to
explore for the Q-learning, but also, that seemingly sub-optimal
behavior during the first two windows might be necessary given
that the learning procedure targets the whole horizon. Indeed,
the optimal solution to (9) need not patch together policies that
optimize different time windows.

To further investigate the structure of optimal sensing design,
we have trained policies with different values of sensor param-
eters. In particular, we have considered data processing with
progressively higher accuracy, quantified by measurement noise

github.com/lucaballotta/ProcessingNetworks-RL
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Fig. 9. Total energy consumption in drone-tracking simulation.

TABLE V
ENERGY CONSUMPTION BREAKDOWN DURING TRANSIENT (TRANS., WINDOWS

1-2) AND AT STEADY STATE (SS., WINDOWS 3-10) FOR SAMPLING AND

TRANSMISSION (TX) AND PROCESSING (PROC.) IN DRONE-TRACKING

SIMULATION

variances vproc ∈ {1, 0.5, 0.1}. The learned sensing policies are
shown in Table III. As the accuracy of data processing improves,
fewer sensors are needed to achieve high estimation quality
(small error variance), while the enhanced processing induces to
set more sensors to processing mode. This is indeed consistent
with intuition and may help in design of real applications. De-
tailed results for the two additional cases are given in Appendix B
in Supplementary Material.

Remark 6 (Energy saving): An appealing side effect of our
proposed design through the online sensor selection it induces
is reduced energy consumption, which can increase the lifespan
of the system. Considering industrial devices such as Genie
Nano cameras [89], with typical power consumption of 3.99W
for sampling and transmission, and assuming 0.15 W for data
processing [90], the energy consumption under the confronted
sensing policies is shown in Fig. 9 and Table V . In particular,
our policy uses only 76% of the energy consumed by all-raw.

Remark 7 (Computational scalability): As mentioned in
Section IV-B, our centralized learning approach can handle
small-to-medium network sizes but may struggle when the num-
ber of sensors is large. To evaluate how the learning complexity
scales with the network, we have run experiments with various
numbers of drones, which are reported in Appendix C.

B. Smart Sensing for Self-Driving Vehicle

In our second experiment, we considered a self-driving car
traveling at approximately constant speed. Specifically, we con-
sidered its transversal position with respect to the center of the
lane, which is estimated by an internal controller (base station)
that receives data from sensors on-board the car and tracks the
car trajectory (Fig. 10), for example to control a lane shift at
sustained speed (e.g., for passing or on a highway). The car

Fig. 10. Autonomous-driving simulation setup. Sensors on-board measure the
position of the car and a centralized microcontroller tracks its trajectory.

TABLE VI
SENSOR PARAMETERS FOR AUTONOMOUS DRIVING SCENARIO

dynamics are modeled through a double integrator, which is a
flexible choice used for uncertain dynamics with direct control
of accelerations [47], [91], [92], [93], [94]. Given such a model,
Kalman predictor is an effective estimator assuming that lateral
movements are limited compared to the car speed.

We considered two radar devices, two cameras and one lidar,
which are commonly employed in self-driving applications [95].
Many techniques used in autonomous driving exploit lidar
point clouds, such as segmentation, detection and classification
tasks [96]. Also, radars are emerging as a key technology for
such systems. Some of today’s self-driving cars, e.g., Zoox, are
equipped with more than 10 radars providing 360◦ surrounding
sensing capability under any weather conditions [97]. Finally,
camera images are essential to enable commercialization of
self-driving cars with autonomy at level 3 [98]. The sensor
parameters (Table VI, with = vrawI and Vproc = vprocI) were
chosen based on real-world experiments [99], with sampling
period T = 1 ms to ensure real-time vehicle control.

The sensor network is designed according to the architecture
proposed in [100]: here, smart sensors embed a sensor (e.g.,
camera) and a microcontroller that can refine raw sensory data to
decrease the computational effort for sensor fusion. The base sta-
tion is a controller inside the car that manages all jobs needed for
autonomous driving. Because the application is safety-critical,
transmissions occur through two redundant high-speed Ethernet
cables. In light of the small number of sensors and transmission
speed, we assume that communication latency is negligible with
respect to sampling and processing.

Communication was simulated through the discrete-event
simulator Objective Modular Network Testbed in C++ (OM-
NeT++) [101]. This is widely adopted to simulate networks,
because it combines standard communication protocols (e.g.,
IEEE 802.3) and the possibility to create customized proce-
dures exploiting existing modules. Further, it enables realistic
simulations by accurately modeling both the electromagnetic
environment and the lower layers of the protocol stack (from
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TABLE VII
LEARNING HYPERPARAMETERS FOR AUTONOMOUS-DRIVING SCENARIO

TABLE VIII
Q-LEARNING POLICY FOR AUTONOMOUS-DRIVING SCENARIO

Fig. 11. Estimation error variance in autonomous-driving simulation.

physical to transportation layers). In our simulations, sensors
carry IEEE 802.3 (so-called Ethernet) communication boards.

For training, we considered a time horizon [0,K] split into five
time windows with length 300 ms each, and trained for 100000
episodes with hyperparameters reported in Table VII.

From Table VIII we can infer that the learned policy requires
processing almost from all the sensors when the error variance
is high (top row). However, the need for processing diminishes
with the variance, turning to raw mode both lidar and radars at
the smallest values (bottom row). Interestingly, processing mode
is always chosen for cameras, revealing that refining of image
frames overhangs the additional computational delay. Note that
in this case, given the small amount of sensors, the fusion delays
induced at the base station are negligible and sleep mode is never
selected, namely, sensors always transmit.

The learned policy was tested against the two standard de-
sign choices all-raw and all-processing like the previous sce-
nario. The outcome over the horizon is plotted in Fig. 11 and
summarized in Table IX. As it is possible to appreciate from
Fig. 11, the Q-learning learns to cleverly allocate computational

TABLE IX
MEAN ERROR VARIANCE IN AUTONOMOUS-DRIVING SIMULATION

resources according to the current estimate accuracy. During the
transient phase (till 600 ms), when the error variance is large,
processing mode is selected for lidar, cameras and one radar,
according to the first two rows in Table VIII. Notably, this choice
performs close to all-processing (red curve), while the all-raw
configuration is clearly disadvantageous (higher blue curve).
Conversely, at steady state only the cameras are in processing
mode: this resembles more closely the all-raw policy, which
performs better (lower blue curve) than all-processing.

Overall, we can see from Table IX that the proposed approach
leads to a total improvement of about 5% compared to baseline
policies. While this result may look marginal, we note that
the improvement is rather small over the main transient phase,
because the Kalman predictor is able to drop the error variance
very quickly for all sensing configurations, but is way larger
(about 15−20%) when the curves settle about small values.
Also, while the objective cost (9a) refers to the whole horizon,
we note that in fact the learned policy performs better than the
baselines nearly at each point in time, as Fig. 11 shows, with the
curve obtained with the Q-learning policy being almost always
below the others. Further, the MA is again consistently smaller
than both baselines, highlighting an even better performance of
the proposed approach with respect to the targeted optimization.

C. Discussion: The Role of Learning in Model-Based
Estimation

The exposed simulations suggest that the proposed approach
can improve performance of smart sensor networks dealing with
estimation tasks as compared to standard design choices with
static processing decisions. In particular, the learning-based
design exploits observation of the estimation error online to
select effective sensing configurations at different points in time,
while baselines cannot adapt to transient or steady-state regimes
that benefit from different processing allocations.

It is noteworthy that a learning method such as Q-learning
can effectively drive the sensing design, leading to improve-
ment with respect to baselines, even with an estimation tool
as effective and robust as the Kalman predictor. Indeed, due
to optimality of the latter algorithm applied to the chosen dy-
namical system, one can expect even trivial choices (such as
all-raw and all-processing) to yield acceptable performance.
Conversely, it is hard to suggest good heuristics in the present
framework, as the performance varies with respect to the system
dynamics, delays, and error variances. In particular, an optimal
design given all available options is far from trivial: even the
simplest setup bears a combinatorial problem that quickly makes
deriving an optimal solution computationally infeasible. Indeed,
submodularity properties that allow to analytically bound sub-
optimality of greedy algorithms [47] are hard to meet in realistic
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scenarios, e.g., under delays, out-of-sequence message arrivals,
or multi-rate sensors [61].

Given these premises, the performance improvements ob-
tained via the studied learning method are encouraging not
only with regard to the addressed framework, but mostly in
supporting the contribution of such tools to general estimation
and control tasks, which can benefit from the power of learn-
ing to circumvent computational bottlenecks associated with
optimization-based design. Hence, rather than looking at the two
domains of model-based and data-driven control as mutually
exclusive approaches, this work aims to reinforce arguments
supporting a unified, best-of-both-worlds framework.

VI. CONCLUSION

Motivated by smart sensing for Edge Computing, we have
proposed an adaptive design that addresses impact of resource-
constrained data sampling, processing, and transmission on
performance of a monitoring task. Starting from a suitable
mathematical model for the considered class of systems, we
have tackled the sensing design problem via Q-learning, showing
that the learned design can considerably improve performance
compared to standard configurations that do not adapt to the time
evolution of the system.

Future research avenues are multifold. Besides challenges of
Reinforcement Learning (see Section IV-B), model assumptions
may be adjusted to address more realistic sensing and commu-
nication, as well as different dynamics or control tasks. Also,
our approach should be validated with real-world data.
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