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 CURRENT
OPINION Managing uncertainty in antifungal dosing:

antibiograms, therapeutic drug monitoring and
drug–drug interactions

Russell E. Lewisa and David R. Andesb

Purpose of review

A number of pharmacokinetic and pharmacodynamic factors in critically ill or severely immunosuppressed
patients influence the effectiveness of antifungal therapy making dosing less certain. Recent position papers
from infectious diseases societies and working groups have proposed methods for dosage individualization
of antibiotics in critically ill patients using a combination of population pharmacokinetic models, Monte-
Carlo simulation and therapeutic drug monitoring (TDM) to guide dosing. In this review, we examine the
current limitations and practical issues of adapting a pharmacometrics-guided dosing approaches to dosing
of antifungals in critically ill or severely immunosuppressed populations.

Recent findings

We review the current status of antifungal susceptibility testing and challenges in incorporating TDM into
Bayesian dose prediction models. We also discuss issues facing pharmacometrics dosage adjustment of
newer targeted chemotherapies that exhibit severe pharmacokinetic drug-drug interactions with triazole
antifungals.

Summary

Although knowledge of antifungal pharmacokinetic/pharmacodynamic is maturing, the practical
application of these concepts towards point-of-care dosage individualization is still limited. User-friendly
pharmacometric models are needed to improve the utility of TDM and management of a growing number
of severe pharmacokinetic antifungal drug-drug interactions with targeted chemotherapies.

Keywords

antifungal drug interactions, antifungal pharmacology, antifungal resistance, susceptibility testing, therapeutic
drug monitoring

INTRODUCTION

The dosing of antifungal agents in severely ill or
immunocompromised patients is often uncertain
due to changes in antimicrobial pharmacokinetics
and pharmacodynamics. Factors influencing drug
pharmacokinetics include altered drug bioavailabil-
ity, changes in the volume of distribution (Vd) and
drug penetration at the site of infection, or fluctu-
ating drug clearance associated with the underlying
disease or drug interactions [1,2]. The host immune
status, disease burden at the time of diagnosis, infec-
tion with intrinsically resistant fungal species or
development of acquired antifungal resistance dur-
ing treatment are pharmacodynamic factors can
also impact the probability of treatment success.

Pharmacokinetic/pharmacodynamic (PK/PD)
studies explore how drug exposures indexed to a
standardized measure of drug potency such as the
mean inhibitory concentration (MIC) can be used to

predict microbiological and clinical effects of anti-
microbial treatment [3]. As such, PK/PD analysis is
fundamental for predicting which antimicrobial or
dosing regimens have the highest probabilityof treat-
ment success and provides a basis for measuring and
minimizing dosing uncertainty.

Several infectious diseases societies and working
groups have published position papers on the
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importance of individualizing the PK/PD perfor-
mance of antimicrobial therapy in critically ill
patients [4,5

&&

]. Recommendations have included
the use of computerized dosing software with

embedded population pharmacokinetic models to
predict a priori a dosing regimen for an individual
patient with a higher probability of PK/PD target
attainment for a give range of MICs; Confirmation of
model-predicted antibiotic exposures through ther-
apeutic drug monitoring (TDM) and patient-specific
MIC data, and a posteriori personalization of dosing
recommendations through Bayesian estimation
(Fig. 1).

Although this approach is becoming more
widely applied for antibacterial agents, many chal-
lenges remain in adopting this strategy for anti-
fungal dosing. In this review, we examine
individualized dosing of antifungal agents at the
bedside with a specific focus on antibiograms
(MIC testing), TDM and managing drug-drug inter-
actions. We will also explore alternative strategies
that can be considered in the absence of definitive
microbiology data and individualized PK/PD predic-
tions to reduce antifungal dosing uncertainty.

PHARMACODYNAMIC VARIABILITY AND
THE ANTIBIOGRAM

Antifungal susceptibility testing is the principal
tool for identifying pharmacodynamic variability

KEY POINTS

� Intra-individual variability in patient pharmacokinetics
and pharmacodynamics are important causes of
treatment failure and toxicity for antifungal therapy that
can addressed through dosage individualization
and optimization.

� Advances in population pharmacokinetic modelling
and simulation are needed to improve precision dosing
of antifungals through TDM, especially for antifungals
with complex pharmacokinetics such as voriconazole.

� Antifungal drug interactions are becoming an
increasingly challenging clinical problem, particular in
high-risk patients with haematological malignancies
undergoing treatment with targeted small-molecule
kinase inhibitors metabolized by CYP3A4.
Management and dosage adjustment of SMKIs could
show similar benefit from model-informed precision
dosing to improve the safety and efficacy of these
targeted chemotherapies.

FIGURE 1. Pharmacological factors contributing to antimicrobial treatment response and the analysis approach (dotted boxes)
to dosage individualization.
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associated with intrinsic or acquired antifungal
resistance [6

&&

]. The Clinical Laboratory Standards
Institute (CLSI) and European Committee on Anti-
microbial Susceptibility Testing (EUCAST) have pro-
posed and continually update standardized
methods for measuring antifungal MICs in vitro
against common yeast and moulds [7–9]. Current
U.S. and European treatment guidelines for invasive
candidiasis recommend susceptibility testing for all
Candida isolates from blood and deep tissue sites
[10,11]. Susceptibility testing for moulds has not
been routinely recommended except in regions with
high rates of triazole-resistant Aspergillus spp.
[12,13]. Yet, in a survey of over 4000 acute care
hospitals in the U.S. enrolled in the National Health-
care Safety Network, fewer than one in four offered
antifungal susceptibility testing onsite or reflexively
performed testing in fungal isolates from sterile
sources (i.e. without clinician request) [14]. This
suggests that in most institutions, cumulative anti-
fungal susceptibility reports or antibiograms will not
be available. Therefore, MICs are likely inferred from
the most frequently isolated Candida species and
regional/national susceptibility surveillance pro-
grammes [15], or based on established CLSI/EUCAST
susceptibility breakpoints [6

&&

].
Clinical susceptibility breakpoints have been

proposed for several triazole or echinocandin
drug-species combinations by both CLSI and
EUCAST [9,16,17]. These breakpoints, which link
an MIC value measured in vitro with achievable drug
concentrations in vivo, attempt to define MICs cut-
offs associated with a higher probability of treat-
ment failure. Several data sources are used to set
breakpoints including MIC distributions, genetic
markers of antifungal resistance, PK/PD data, usual
antifungal dosing (EUCAST) and data from clinical
trials describing patient outcome [6

&&

]. Less com-
mon yeast and moulds, however, lack sufficient
clinical data to establish breakpoints. In these cases,
an MIC value with an epidemiological cut-off value
may be reported instead of a classical susceptibility
designation, that is ’S, I or R.’ The epidemiological
cut-off value (ECV or ECOFF) encompasses the dis-
tribution of MICs for isolates without phenotypi-
cally or genotypically detected resistance
mutations. Although not shown to be predictive
of clinical outcome, an MIC result above the ECOFF
may require altered dosing approaches or selection
of an alternative treatment.

Recently, the EUCAST has changed definitions
of susceptibility testing categories of ‘S, I, and R’ to
clarify the relationship of drug dosing/exposure
with the breakpoint designation. ‘S’ indicates sus-
ceptible-to standard dosing regimen when there is a
high likelihood of therapeutic success using a

standard dosing regimen; ‘I’ was changed from inter-
mediate to susceptible increased exposure when there is
a high likelihood of therapeutic success when drug
exposure is increased by adjusting the dosing regi-
men or by virtue of high concentration at the site of
infection. The revised ‘I’ category is analogous to
‘susceptible-dose-dependent (SDD)’ interpretative
breakpoint used by the CLSI for fluconazole against
Candida spp. when MICs are in the range of 4–32 mg/
ml and can potentially be treated with higher doses
(e.g. 12 mg/kg/day). ‘R’ is resistant when there is a
high likelihood of clinical failure despite increased
drug exposures. A fourth category of area of technical
uncertainty (ATU) is assigned when the MIC is in an
area where the MIC is not reproducible interpret-
able.

Individual MIC results are rarely available in the
first week of empiric antifungal treatment. There-
fore, it is often more practical to use and established
breakpoint or ECOFF for the most likely pathogen(s)
as the MIC target for initial PK/PD dosage calcula-
tions, even if an individual MIC value is found to be
within the susceptible range or below ECOFF cut-offs
[18]. For isolates with MICs just above the ECOFF
without susceptibility breakpoints, some experts
have recommended using a value of the ECOFF
MIC plus 2 dilutions for PK/PD dosing calculations
to minimize underdosing risk [18]. If the isolate MIC
is several dilutions above the ECOFF or resistance
breakpoint, MIC-guided therapy may not be feasible
and alternative therapies should be considered.

A growing proportion of fungal infections are
diagnosed based on molecular or antigen biomark-
ers such as b-D-glucan and galactomannan without
culture diagnosis. The kinetics of b-D-glucan [19]
and galactomannan [20,21] in response to antifun-
gal treatment are predictive of clinical response to
antifungal therapy and could possibly be analysed as
an in vivo pharamcodynamic endpoint instead of
the MIC using pharmacometric models [21].

The detection and interpretation of pharmaco-
dynamic variability is less well standardized with
antifungals versus antibacterials, making precision
dosing with antifungals less certain. However,
increasing antifungal resistance in yeast and moulds
along with the anticipated approval of novel new
antifungal therapies in the coming decade will place
greater demand for clinically relevant and timely
antifungal susceptibility testing results.

PHARMACOKINETIC VARIABILITY AND
THERAPEUTIC DRUG MONITORING

Pharmacokinetic variability is undoubtably an
important contributor to treatment failure and tox-
icities associated with antifungal therapy [22]. The

Infections of the immunocompromised host
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most common factors in critically ill patients that
need to be considered are age, weight (obesity),
altered volume of distribution associated with sepsis
and/or hypoalbuminemia, altered renal function,
extracorporeal circuits, including replacement ther-
apy or extracorporeal membrane oxygenation
(ECMO), and drug interactions. Bioavailabilityof oral
triazole antifungal may be reduced in patients with
chemotherapy-associated mucositis, graft-versus
host disease involving the gut, diarrhoea and poor
food intake, or altered gut perfusion [23]. Voricona-
zole is metabolized predominantly by CYP2C19 and
to a lesser extent CY2C9 and CYP3A4. The drug
exhibits nonlinear Michaelis-Menton pharmacoki-
netics in adults due to saturable clearance. Allelic
variations in CYP2C19 contributes to high intra-
individual pharmacokinetic variability, with poor
metabolism genotypes associated with three-fold
higher voriconazole exposures than patients who
are homozygous extensive metabolizers [24].

Age is an important covariate affecting antifun-
gal volume of distribution and clearance rates, with
the greatest variability observed in paediatric pop-
ulations. Clearance rates of fluconazole, voricona-
zole and posaconazole are more rapid in children
and often resulting in subtherapeutic drug expo-
sures unless higher or more frequent dosing is used
[25]. Van der Elst et al. [26] reported that 40% of
febrile neutropenic paediatric patients did not
achieve recommended minimum therapeutic expo-
sures (trough concentrations of< 11 mglL or AUC�
400 mg�h/l) with fluconazole doses of 6 mg/kg/day
administered in two divided doses. Voriconazole
clearance is more rapid and unpredictable in chil-
dren due to a three to five higher rate of CYP2C19
metabolism and enhanced activity of flavin-con-
taining monooxygenase 3 [27,28]. Adequate con-
centrations of oral posaconazole may only be
possible to achieve in paediatric patients who
require weight-based dosing with a new fine-powder
formulation [29].

Fluconazole and voriconazole require dosage
adjustment based on total body weight an adjusted
body weight, respectively [30]. Although conflicting
data have been reported for itraconazole and pos-
aconazole based on TDM studies, Wasmann et al.
[31] found that higher doses of the intravenous
posaconazole (400 mg twice daily loading, then
400 mg daily) were required to achieve similar expo-
sures to standard 300 mg intravenous doses in
patients weighing more than 140 kg. No dosage
adjustment has been recommended for isavucona-
zole in obesity, but patients with low body mass
index (< 18 g kg/m2) appear to be at a higher risk for
supratherapeutic isavuconazole exposures with
standard dosing [32].

All three echinocandins exhibit altered pharma-
cokinetics as weight increases above 65–75 kg [30].
In a recent empirical trial of micafungin for critically
ill mechanically ventilated patients, micafungin
100 mg daily was found to be associated with at
relatively lower (< 80%) probability of PK/PD target
attainment for C. albicans, C. glabrata and C. para-
psilosis inpatientsweighingmore than 80 kg [33].Asa
result, doses of 150 mg/day of caspofungin and mica-
fungin are recommended, and loading and mainte-
nance doses of anidulafungin should be increased by
25 and 50% in patients weighing more than 140 kg
and more than 200 kg, respectively [34,35].

Significant intra-patient pharmacokinetic vari-
ability is observed with liposomal amphotericin B in
both paediatrics [36] and adults [37]. This variability
has been attributed to differences in saturable
uptake of the liposome drug carrier into tissues or
interactions with plasma proteins [37]. Limited
pharmacokinetic data suggest that liposomal
amphotericin B should not be administered based
on total body weigh in obese patients, rather fixed
doses of 300 or 500 mg should be considered in
patients more than 100 kg [38].

Therapeutic drug monitoring

Therapeutic drug monitoring (TDM) is the most
direct method for detecting altered drug exposure
in patients and has been recommended for patients
receiving itraconazole, voriconazole, posaconazole
suspension and flucytosine [23]. The most common
approach for triazole antifungals is to sample trough
concentrations once the patient reaches steady state
typically 1-week into therapy, with empiric dosage
adjustments to achieve recommended target serum
trough levels (Table 1). However, changes in vori-
conazole pharmacokinetics occur more rapidly and
initially sampling can be performed within the first
2–5 days. Conversely, the prolonged half-life of
isavuconazole (mean 130 h) means that steady state
may not be reached until 4 weeks into therapy.

The trough concentration (Cmin) is the most
practical sample for estimating the AUC that drives
efficacy of triazoles (Table 1). When analysed expo-
sures fall outside proposed therapeutic ranges, tri-
azole dosages are often adjusted empirically (i.e.
increased or decreased by 50%) with repeat TDM
follow-up. This approach to dose personalization is
less precise and inefficient, especially for drugs such
as voriconazole that exhibit extreme pharmacoki-
netic variability or altered clearance with increasing
doses [39]. Pharmacometrics models for precise dos-
age calculation of voriconazole in adults and chil-
dren has been developed and prospectively tested
[27,40–42]. Collectively, these studies have shown
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improved precision and time to achieving target
trough concentrations of 1–3 mg/l), although inten-
sive TDM sampling (n¼4 samples per occasion per
patient) was required to accurately model the non-
linear pharmacokinetic variability of voriconazole
[40]. Although these models are useful for predicting
optimal blood sampling times and interpreting
TDM results, their use in patient care still requires
regulatory approval in many countries and
approaches to make them widely available and
user-friendly are still in their infancy.

The importance of routine TDM with the newer
posaconazole tablet formulations is still a matter of
debate. In phase III clinical trials, 96% of patients
achieved plasma Cmin between 0.5 and 3.75 mg/l
[43], although wide pharmacokinetic variability is
still observed [44,45]. A higher rate of subtherapeu-
tic exposures (Cmin < 0.7 mg/l during prophylaxis
with posaconazole tablets has been reported in
patients more than 90 kg, with severe diarrhoea or
receiving protein pump inhibitors [46–48]. The
presence of these risk factors, suspected noncompli-
ance or breakthrough fungal infections would
clearly favour documentation of posaconazole
exposure by TDM. However, in patients without
these risk factors receiving posaconazole for routine
prophylaxis, the prevalence of ‘subtherapeutic’

posaconazole exposures may not be sufficiently
high (> 10%) to justify the resources needed for
routine TDM for posaconazole tablets [49]. There-
fore, rational selective TDM based on specific clini-
cal risk factors may be more appropriate [50].

The need for TDM during isavuconazole treat-
ment is also unclear. Data from phase III trials did
not identify specific dose–response relationships
between the AUC, Cmin and clinical response or
all-cause mortality [51,52]. Clinical experience has
also suggested most patients achieve putative ther-
apeutic exposure (Cavg or Cmin> 1 mg/l) [53].
Patients who may benefit from TDM are patients
with low body mass, suspected therapeutic failure,
noncompliance or unexplained hepatotoxicity, or
age less than 18 years [53].

While the importance of adequate exposures for
clinical efficacy is generally accepted, the role of
routine TDM to reduce toxicity risk is less clear.
Trough concentrations of voriconazole more than
5.5 mg/l have been associated with increased rates of
CNS adverse effects, but in the only prospective
randomized trial of voriconazole TDM performed
to date, the rate of CNS adverse effects was not
reduced in patients randomized to TDM-guided
dosage reduction versus the non TDM group [54].
The major benefit was that patients randomized to

Table 1. Pharmacokinetics/pharmacodynamics of antifungal agents

Antifungal class
Preclinical efficacy

PK/PD target
Clinical PK/PD efficacy

target
Clinical PK/PD
toxicity target

Routine TDM
recommended? References

Amphotericin B
deoxycholate

Cmax/MIC Not established Not established No [67–69]

Liposomal
amphotericin B

AUC0–24/MIC
(Candida spp.)

AUC0–24/MIC
(Aspergillus spp.)

Not established Not established No [67,70]

Flucytosine fT>MIC > 20–45%T>MIC Cmax> 100 mg/l
(haematological and

hepatic toxicity)

Yes; [71]

Fluconazole AUC0–24/MIC AUC/MIC > 25–100;
Cmin 10–15 mg/l

Not established No [72,73]

Itraconazole AUC0–24/MIC Cmin > 0.5 mg/l
(prophylaxis);

Cmin >1 mg/l (treatment)

Cavg: 17.1 mg/l (bioassay)
3–4 mg/l (HPLC)

(gastrointestinal toxicity)

Yes [74–77]

Voriconazole AUC0–24/MIC fAUC/MIC 25–50;
Cmin >1 mg/l or

Cmin/MIC 2–5mg/l

Cmin > 5mg/l
(central nervous system

toxicity)

Yes [54,78–80]

Posaconazole AUC0–24/MIC fAUC/MIC 25–50;
Prophylaxis Cmin >0.5 mg/l or

0.7; treatment Cmin > 1 mg/l

Not established Yes [81–83]

Isavuconazole AUC0–24/MIC fAUC/MIC 25–50 Cmin > 5mg/l
(gastrointestinal toxicity)

No [52,84]

Echinocandins AUC0–24/MIC AUC/MIC >3000 Not established No [85]

AUC0–24/MIC, 24 h area under the concentration-time curve to mean inhibitory concentration; Cavg, average serum concentrations; Cmax/MIC, ratio of peak
serum concentrations to MIC; Cmin, trough serum concentrations; Cmin/MIC ration of trough serum concentration to MIC; fT>MIC, duration of free (unbound drug
concentration) remains above the MIC during the dosing interval.
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undergo routine TDM had voriconazole discontin-
ued less frequently once adverse effects developed,
which was ultimately associated with higher clini-
cal success rates. Clinical experience suggests that
subsequent serious CNS toxicities are uncommon in
asymptomatic patients with supratherapeutic vor-
iconazole concentrations [55]. Therefore, in the
absence of toxicity, empiric dosage reductions,
especially in patients with documented fungal
infections, is probably not advisable based only
on a single supratherapeutic concentrations and
should probably only prompt closer follow-up
and screening for potential explanations such as
drug interactions.

DRUG-DRUG INTERACTIONS

Pharmacokinetic drug-drug interactions are highly
prevalent among patients receiving mould-active
triazoles that are potent inhibitors of cytochrome
P450 3A4, occurring in between 75 and 88% of
hospital admissions [56]. Up to 75% of drug inter-
actions can be classified as severe depending on the
mould-active triazole prescribed [56]. The clinical
severity of drug-drug interactions with mould-active
triazoles is generally driven by two factors: the mag-
nitude of the interaction caused by the perpetrator
drug; and the therapeutic index of the victim drug.
When triazoles are the victim drug, coadministra-
tion of perpetrator drugs that affect oral bioavail-
ability (e.g. omeprazole with posaconazole
suspension) or accelerate metabolism and clearance
of the triazole (e.g. CYP3A4 inducer rifampin with
any triazole) and can lead to insufficient drug expo-
sures and a high risk of treatment failure. Avoidance
of these combinations, or in the case of weaker
perpetrators, TDM documentation of antifungal
serum concentrations with careful clinical monitor-
ing and dosage adjustment if needed, is essential
when starting and stopping antifungal therapy.

The most common clinical scenario for drug
interactions with triazoles involves mould-active
triazoles acting as a potent perpetrator to inhibit
CYP3A4-emdiated metabolism of a victim drug.
When the therapeutic index of the victim drug is
narrow, as is the case of chemotherapy for haema-
tological malignancies or immunosuppressive ther-
apy administered after transplantation, then
coadministration of mould-active triazoles should
be avoided or preemptive dosage reduction of the
victim drug is essential.

The problem of drug interactions with mould-
active triazoles has become even more important in
the last 5 years with exploding number of small-
molecule kinase inhibitors (SMKIs) introduced into
clinical practice as targeted therapy for lymphoid

and myeloid malignancies. The majority of these
SMKIs metabolized through CYP3A4/5 and have a
narrow therapeutic range and potentially severe
dose-dependent side effects including prolongation
of the QTc interval [57

&&

]. Drug interactions with
these agents differs from traditional chemotherapy,
however, in that these agents are administered
orally primarily in the outpatient setting for pro-
longed periods. Unfortunately, limited medical
guidance for managing SMKI- triazole drug interac-
tions is available, and clinicians often are forced to
consider forgoing antifungal prophylaxis or treat-
ment with triazoles, use alternative intravenous-
only prophylaxis, or continue both drug at full-dose
strength and carefully monitor for toxicities [58].

One of the most frequently prescribed SMKIs,
venetoclax, an inhibitor of B-cell lymphoma-2
(BCL-2) protein that regulates cellular apoptosis.
Venetoclax is used for the treatment of chronic lym-
phocytic leukaemia, small lymphocytic lymphoma
and acute myelogenous leukaemia in combination
with hypomethylating agents (azacitidine, decita-
bine). When administered in combination with pos-
aconazole, the Cmax and AUC of venetoclax is
increased 7.1 and 8.8-fold, respectively [59] resulting
in prolonged thrombocytopenia and neutropenia. As
a result, it is recommended that the dose of veneto-
clax be reduced by at least 75% with strong CYP3A4
inhibitors (itraconazole, voriconazole,posaconazole)
and at least by 50% is moderate CYP3A4 inhibitors
(fluconazole, isavuconazole). However, the duration
of neutropenia and thrombocytopenia with veneto-
clax was not necessarily predicted by the strength of
the inhibitors, as patients receiving isavuconazole
exhibited significantly longer times to neutrophil
and absolute neutrophil count recovery versus vor-
iconazole and posaconazole [60,61,62

&

]. Similar dos-
age recommendations have been proposed or are
probably applicable for SMKIs that target PI3Kd (ide-
lalisib), Bruton-tyrosine kinase (ibrutinib), Janus-
kinase-1 and -2 (ruxolitinib), isocitrate dehydroge-
nase1 or 2 (ivosidenib, enasidenib), and Bcr-Abl
fusion gene tyrosine kinase inhibitors (imatinib,
ponatinib, nilotinib, bosutinib)- as discussed in more
detail in recent reviews [57

&&

,63,64].
Inhibitors of FMS-like tyrosine kinase 3 ligand

(FLT-3) such as midostaurin, sorafenib and gilteriti-
nib, pose a major dilemma as these SMKIs are used
either as part of an induction chemotherapy regi-
men or as salvage/rescue therapy for patients with
acute myelogenous leukaemia, a particularly high-
risk patient group for invasive mould disease [65].
Coadministration of midostaurin with potent
CYP3A4-inhibitors (voriconazole, posaconazole)
was associated with an accelerated time to Grade
III/IV toxicities, but dosage-reduction of
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midostaurin was associated with significantly
higher risk of AML relapse or death [66].

Further complicating matters, the pharmacol-
ogy of many SMKIs is complex. Similar, to triazoles,
these targeted therapies exhibit high degrees of
intra-individual pharmacokinetic variability and
several drugs have active metabolites proposed to
contribute to antitumor activity. Therefore, it is
unclear whether simple fixed dosing adjustments
similar to what is proposed for venetoclax will be
possible or effective.

TDM in combination with direct measurement
of pharmacodynamic biomarkers of tumour
response has been proposed as a method to improve
precision dosing of SMKIs and manage drug inter-
actions, but pharmacometric models required to
support this strategy are currently in early stages
of development and validation [63]. As a result, the
management of antifungal drug interactions, with
targeted SMKIs for haematological malignancies
remains largely empirical and imprecise.

CONCLUSION

Pharmacokinetic and pharmacodynamic variability
is commonly encountered in patients with invasive
fungal disease, making dosage selection less certain.
Although susceptibility testing for fungi has contin-
ued to progress over the last two decades, MIC data
are rarely in hand at the time of initial regimen
selection placing a greater importance on rapid
and accurate pathogen identification, knowledge
of local epidemiology and resistance patterns. Phar-
macokinetic variability is best detected by TDM but
is currently only employed in a crude fashion for
triazole antifungals for dosage adjustment or evalu-
ation of treatment failure or unexpected toxicities.
Ultimately, precision dosing of antifungal therapy
will require greater development of user-friendly
pharmacometric models that can be individualized
through TDM to identify treatment regimens with
the greatest probability of treatment success without
toxicity. Similar approaches will be needed for
SMKIs when used in combination with triazole anti-
fungals to ensure the safety and efficacy of these
lifesaving targeted chemotherapies.
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