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Abstract

In this paper we address the consensus problem in the context of networked agents whose communication graph splits into
clusters: interactions between agents in the same cluster are cooperative, while interactions between agents belonging to
different clusters are antagonistic. This problem set-up arises in the context of social networks and opinion dynamics, where
reaching a consensus means that the opinions of the agents in the same cluster converge to the same decision, that is typically
different for the different clusters. Under the assumption that agents belonging to the same cluster have the same amount of
trust (/distrust) to be distributed among their cooperators (/adversaries), we propose a modified version of DeGroot’s law.
By simply constraining how much agents in each group should be conservative about their own opinions, it is possible to
achieve a nontrivial solution by means of a distributed algorithm. The result is then particularised to unweighted complete
communication graphs, and subsequently extended to a class of nonlinear multi-agent systems.
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1 Introduction

Unmanned air vehicles, sensor networks, opinion for-
mation, mobile robots, and biological systems represent
just a few examples of the wide variety of contexts where
distributed control, and in particular consensus and
synchronization algorithms, have been largely employed
Lin et al. (2004); Ogren et al. (2004); Proskurnikov &
Tempo (2017); Ren et al. (2007). The existence of such
a broad area of application stimulated a rich literature.
Consensus and synchronization problems for multi-
agent networked systems have been addressed under
different assumptions on the agents’ description, their
processing capabilities, the communication structure,
the reliability of the communication network, etc.
Most of the literature on consensus has focused on the
problem of leading all the agents to a common decision,
by assuming that the agents cooperate and that the
communication network satisfies some form of connect-
edness. Recently (see, e.g., Monaco & Ricciardi Celsi
(2019)), the case of cooperative multi-agent networks,
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whose communication graphs are not strongly con-
nected, but admit an almost equitable partition, has
been investigated. It was shown that in this set up, the
standard DeGroot’s law DeGroot (1974) does not lead
to standard consensus, but it allows to achieve “multi-
consensus”. This means that agents, described as simple
integrators and belonging to certain subsets (that do
not coincide, in general, with the cells of the partition),
asymptotically converge to the same value.
Social networks, however, provide clear evidence that
mutual relationships may not always be cooperative, and
yet the dynamics of opinion forming may exhibit sta-
ble asymptotic patterns Cisneros-Velarde et al. (2021);
Estrada (2019); Xue et al. (2020). In particular, Altafini
(2013) showed that, in a network with cooperative and
competitive interactions, the agents’ opinions may split
into two groups that asymptotically converge to two
opposite values. Such bipartite consensus is possible, by
making use of DeGroot’s control law, if the communi-
cation network is connected and structurally balanced,
namely the agents are partitioned into two groups such
that intra-group relationships are cooperative and inter-
group relationships are antagonistic. This analysis was
later extended from the case of simple integrators to the
case of homogeneous agents described by an arbitrary
state-space model Valcher & Misra (2014) (see, also,
Bauso et al. (2009); Easley & Kleinberg (2010)), and
has been in turn investigated by several other authors
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under different working conditions Xia et al. (2016).
Recently, Meng et al. (2020) showed that if the signed
communication graph is quasi-strongly connected, inter-
val bipartite consensus is possible for networks of simple
integrators that adopt DeGroot’s control law, provided
that the set of leaders includes balanced nodes. On the
other hand, if the graph is (strongly) connected but not
structurally balanced, the only possible long-term sce-
nario of a multi-agent network applying DeGroot’s law
is the trivial one, in which all agents’ states converge
to zero Altafini (2013) (this phenomenon is known as
neutralisation Liu, Xue, Hirche & Buss (2019)).

So, it is clear that in a connected signed network which
is not structurally balanced, different strategies need to
be adopted in order to guarantee that some form of non-
trivial consensus is asymptotically achieved. In the last
decade there has been a good number of contributions
aiming at enforcing some form of multi-consensus/group
consensus in different settings Liu & Chen (2011); Qin
et al. (2015); Qin & Yu (2013a); Qin et al. (2016); Qin
& Yu (2013b); Wu et al. (2009); Xia & Cao (2011); Yu &
Wang (2010). A common ingredient of all these papers
is the assumption that the communication network sat-
isfies the “in-degree balanced condition”. This assump-
tion means that interactions within the same group are
cooperative, while interactions between agents of dif-
ferent groups have both signs, and every agent has a
perfect balance between collaborative relationships and
antagonistic relationships in every other group. For in-
stance, in Xia & Cao (2011) the concept of n-cluster
synchronization is introduced for diffusively coupled net-
works. In Qin & Yu (2013a) group consensus for ho-
mogeneous multi-agent systems described by a stabiliz-
able pair (A,B) is achieved by means of a state feed-
back law, under the assumption that the communica-
tion graph admits an “acyclic partition”. In Qin et al.
(2016) group consensus for networked systems is inves-
tigated, by assuming that agents are modelled as double
integrators. Group consensus can be achieved if the un-
derlying topology for each cluster satisfies certain con-
nectivity assumptions and the intra-cluster weights are
sufficiently high. The “in-degree balanced condition” is
used also in Han et al. (2015), where it is referred to as
“inter-cluster common influence”. In Zhan & Li (2017)
cluster consensus for systems of single integrators under
a pinning control action has been studied. For a recent
survey about consensus, including all results achieved
for group/cluster consensus, see Qin et al. (2017).

There are contexts, however, in which splitting the
agents in groups so that the “in-degree balanced condi-
tion” holds, does not seem very realistic and does not
lead to any long term stable pattern with a meaningful
practical interpretation. Consider, for instance, the case
of social networks with antagonistic relationships that
arise when modelling soccer fans supporting different
clubs, or political activists voting for different parties. In
these cases, it is natural to assume that interactions be-

tween agents in the same cluster are cooperative, while
interactions between agents belonging to different clus-
ters may only be antagonistic. Also, it is reasonable to
assume that the dynamics of decision/opinion forming
mirrors the group partition of the agents Altafini (2012).
This set-up represents the natural extension to the case
of an arbitrary number of clusters of the one adopted in
Altafini (2013) for two groups. For networks clustered
in this way, it makes sense to investigate whether a dif-
ferent control strategy, rather than DeGroot’s control
law, can ensure that all individuals that cooperate (and
hence necessarily belong to the same cluster) converge
to the same decision/opinion. This seems much closer
to the kind of consensus problems arising in the eco-
nomical, biological, sociological fields (see, e.g., Easley
& Kleinberg (2010); Wasserman & Faust (1994)). So-
ciological models were, in fact, the primary motivation
behind the set-up adopted in Altafini (2013). The pro-
posed extension to an arbitrary number of clusters
explored in this paper is in perfect agreement with the
perspective adopted in Proskurnikov & Tempo (2017),
and in the milestone paper by Davis (1957), where the
concept of clustering balance was introduced. It is also
worth remarking that, as shown in Cisneros-Velarde &
Bullo (2020), clustering balance naturally arises as a
stable long term configuration in social networks whose
agents try to minimise the cognitive dissonances, by
modifying their mutual appraisals.

In detail, in this paper we assume that the communica-
tion among agents is modeled by an undirected, signed,
weighted, connected graph, and that the agents are
partitioned into k clusters, such that intra-cluster in-
teractions may only be nonnegative, while inter-cluster
interactions can only be nonpositive. We investigate un-
der what conditions a revised version of the DeGroot’s
distributed feedback control law can lead the multi-
agent system to k-partite consensus. To explore this
problem we introduce a homogeneity condition (in fact,
similar to the one adopted in Xia & Cao (2011)) that
requires that each agent in a group distributes the same
amount of “trust” to the agents in its own group and
“distrust” to the agents belonging to adverse groups.
This represents an alternative extension of the concept
of equitable partition for signed graphs with respect to
the one proposed in Liu, Ji & Hou (2019).

This work generalizes the preliminary results presented
in De Pasquale & Valcher (2020) for the case of multi-
agent systems partitioned into three groups. The gener-
alisation is not trivial, since it requires to extend the pro-
posed algorithm from three steps to an arbitrary num-
ber of steps. Moreover, the assumptions under which k-
partite consensus is achieved have been generalised and
better clarified. Finally, k-partite consensus is also ex-
tended to a special class of nonlinear models.

The rest of the paper is organized as follows. First,
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some definitions and basic properties in the context of
signed graphs are introduced. Section 2 formalizes the
k-partite consensus problem for a multi-agent network,
whose agents are described as simple integrators and
whose communication graph is split into k clusters. Sec-
tion 3 provides some preliminary results about k-partite
consensus. Section 4 provides a complete solution to
this problem, under the aforementioned homogeneity
assumption. As a special case, we address the case of
a complete graph in Section 5. In Section 6, k-partite
consensus for a class of nonlinear models is studied.
Finally, Section 7 concludes the paper.

Notation. Given k, n ∈ Z, with k ≤ n, the symbol [k, n]
denotes the integer set {k, k + 1, . . . , n}. In the sequel,
the (i, j)-th entry of a matrix A is denoted by [A]i,j ,
while the i-th entry of a vector v by [v]i. A matrix A is
nonnegative (positive) if all its entries are nonnegative
(positive), namely [A]i,j ≥ 0 ([A]i,j > 0) for every i, j.
If so we use the notation A ≥ 0 (A > 0). The same
notation holds for vectors.

A symmetric matrix P ∈ Rn×n is positive (semi) defi-
nite if x⊤Px > 0 (x⊤Px ≥ 0) for every x ∈ Rn,x ̸= 0,
and when so we use the notation P ≻ 0 (P ⪰ 0). The
notation A = diag{A1, . . . , Ak} indicates a block diag-
onal matrix whose diagonal blocks are A1, . . . , Ak. The
symbols 0n and 1n denote the vectors in Rn with all en-
tries equal to 0 and to 1, respectively.
For n ≥ 2, a matrix A ∈ Rn×n is irreducible (see Minc
(1988)) if In + |A| + · · · + |A|n−1 > 0, where |A| is the
matrix whose (i, j)-th entry is |[A]i,j |. A Metzler ma-
trix is a real square matrix, whose off-diagonal entries
are nonnegative. If A is an n × n Metzler matrix, then
Son & Hinrichsen (1996) it exhibits a real dominant (not
necessarily simple) eigenvalue, λF (A). This means that
λF (A) > Re(λ),∀ λ ∈ σ(A), λ ̸= λF (A). If A is Metzler
and irreducible, λF (A) is necessarily simple.

An undirected, signed and weighted graph is a triple Mo-
har (1991) G = (V, E ,A), where V = {1, . . . , N} = [1, N ]
is the set of vertices, E ⊆ V × V is the set of arcs, and
A ∈ RN×N is the adjacency matrix of G. An arc (j, i)
belongs to E if and only if [A]i,j ̸= 0. As the graph is
undirected, (i, j) belongs to E if and only if (j, i) ∈ E , or,
equivalently, A is a symmetric matrix. We assume that
the graph G has no self-loops, i.e., [A]i,i = 0 for every
i ∈ [1, N ], and arcs in E have either positive or negative
weights, namely the (nonzero) off-diagonal entries of A
are either positive or negative. If all the nonzero weights
take values in {−1, 1}, we call the graph unweighted. We
say that two vertices i and j are friends (enemies) if
there is a edge with positive (negative) weight connect-
ing them.
A sequence j1 ↔ j2 ↔ j3 ↔ · · · ↔ jk ↔ jk+1 is a
path of length k connecting j1 and jk+1 provided that
(j1, j2), (j2, j3), . . . , (jk, jk+1) ∈ E . A graph is said to be
connected if for every pair of vertices i, j ∈ [1, N ] there
is a path connecting j and i. This is equivalent to the

fact that the adjacency matrix A is irreducible.
The graph G is complete if, for every i, j ∈ V, i ̸= j, there
is an edge connecting them, namely (i, j) ∈ E . Also, G
has a (nontrivial) clusteringDavis (1957) if it has at least
one negative edge and the set of vertices V can be par-
titioned into say k ≥ 2 disjoint subsets V1, . . . ,Vk such
that for every i, j ∈ Vp, p ∈ [1, k], [A]i,j ≥ 0, while for
every i ∈ Vp, j ∈ Vq, p, q ∈ [1, k], p ̸= q, [A]i,j ≤ 0.

2 k-partite consensus: Problem statement

We consider amulti-agent system consisting ofN agents,
each of them described as a continuous-time integrator
Altafini (2013); Meng et al. (2020); Monaco & Riccia-
rdi Celsi (2019); Olfati-Saber et al. (2007); Olfati-Saber
& Murray (2004); Ren et al. (2007). This simple model
has proved to be very effective to test control algorithms
in a number of meaningful applications Zhao & Sun
(2017). The overall system dynamics is described as

ẋ(t) = u(t), (1)

where x ∈ RN and u ∈ RN are the state and input
variables, respectively.

Assumption 1 on the communication structure.
[Connectedness and clustering] The communication
among the N agents is described by an undirected, signed
and weighted communication graph G = (V, E ,A), with
V = [1, N ] and A = A⊤. The agents i and j have a coop-
erative relationship if [A]i,j > 0 and an antagonistic one
if [A]i,j < 0. The graph G is connected and the agents are
grouped in k ≥ 3 clusters, Vi, i ∈ [1, k], with ni = |Vi|.

The aim of this paper is to propose an extension to the
case of k clusters of the results reported in Altafini (2013)
for structurally balanced graphs, namely graphs with two
clusters, by proposing conditions under which agents in
the same cluster Vi, i ∈ [1, k], reach consensus. In other
words, we investigate conditions ensuring that the state
variables of the agents belonging to the same cluster
asymptotically converge to the same value. When deal-
ing with multi-agent systems with cooperative and an-
tagonistic relationships, one can use the DeGroot’s type
distributed feedback control law Altafini (2013); DeG-
root (1974); Ren et al. (2007):

ui(t) = −
∑

j:(j,i)∈E

|[A]i,j | · [xi(t)− sign([A]i,j)xj(t)],

i ∈ [1, N ], with sign(·) as the sign function, that corre-
sponds, in aggregated form, to

u(t) = −Lx(t), (2)

where L is the Laplacian matrix associated with the
adjacency matrix A, defined as in Altafini (2013);
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Hou et al. (2003), i.e., [L]i,i =
∑

h:(h,i)∈E |[A]i,h|, and
[L]i,j = −[A]i,j , for i ̸= j.
As shown in Altafini (2013), however, this con-
trol law leads to an autonomous multi-agent system
ẋ(t) = −Lx(t), that achieves a nontrivial consensus
only if the underlying communication graph is struc-
turally balanced. This immediately implies that if the
agents can be partitioned into k ≥ 3 clusters, but not
into a smaller number of clusters, and the graph is con-
nected, the only possible consensus is the one to the zero
value. So, in this paper we investigate how to modify the
distributed control law (2), to achieve consensus when
the communication graph is connected and signed, but
the agents split into k ≥ 3 disjoint groups.
In the following we will assume that the agents belong-
ing to the cluster V1 are the first n1, the agents in the
cluster V2 are the subsequent n2, ... and the agents in the
cluster Vk are the last nk. Clearly, n1+n2+· · ·+nk = N .
We can always reduce ourselves to this case by means
of a relabelling of the nodes/agents. Accordingly, the
adjacency matrix of the graph G is block-partitioned as

A =


A1,1 A1,2 . . . A1,k

A2,1 A2,2 . . . A2,k

...
...

. . .
...

Ak,1 Ak,2 . . . Ak,k

 (3)

with Ai,j ∈ Rni×nj , Ai,i = A⊤
i,i ≥ 0, ∀i ∈ [1, k], Ai,j ≤ 0

∀i ̸= j, i, j ∈ [1, k], [Ai,i]ℓ,ℓ = 0, ∀i ∈ [1, k], ℓ ∈ [1, ni].
We consider a distributed control law for the system (1)
of the type

u(t) = −LDx(t), (4)

where LD ∈ RN×N takes the form
LD := D −A,

D := diag{D1,D2, . . . ,Dk} ∈ RN×N ,

Di := δiIni ,

(5)

with A the adjacency matrix of G and ni the cardinal-
ity of the i-th cluster. The overall multi-agent system is
hence described as

ẋ(t) = −LDx(t), (6)

and the aim of this paper is to investigate if it is possible
to choose the parameters δi so that all the agents reach
k-partite consensus. This means that for every initial
condition x(0) ∈ RN (except for a set of zero measure in
RN ) all the state variables, associated to agents in the
same cluster, converge to the same value, namely

lim
t→+∞

x(t) = [γ11
⊤
n1
, γ21

⊤
n2
, . . . , γn1

⊤
nk
]⊤, (7)

for suitable γi = γi(x(0)) ∈ R, i ∈ [1, k], not all of them
equal to zero.
The diagonal entries δi, i ∈ [1, k], of the matrix D are
henceforth our design parameters. Each δi can be seen
as the degree of “stubbornness” of the agents of the i-th
cluster. It quantifies how much individuals in the cluster
Vi are conservative about their own opinions. As it will
be clear in the following, the proposed control scheme is
not fully distributed, since the agents will not be able to
autonomously decide the level of stubborness to adopt
in order to guarantee k-partite consensus. However the
proposed modification of the standard control law is
minimal, since it only requires the agents to modify the
weight that each of them gives to its own opinion. Note
that once the diagonal entries of D have been set, the
control algorithm is implemented in a distributed way.

3 k-partite consensus: Preliminary results

As a first step, we present a simple lemma that provides
necessary and sufficient conditions for k-partite consen-
sus. The result is elementary and extends the analogous
result for consensus of cooperative multi-agent systems.
Also, it has similarities with Proposition 6 in Yu &Wang
(2010) derived for cooperative networks. For this reason
the proof is omitted.

Lemma 1 If the communication graph G satisfies As-
sumption 1, then the closed-loop multi-agent system (6),
with LD ∈ RN×N as in (5), reaches k-partite consensus
if and only if the following conditions hold:

(C.1) LD is a singular positive semidefinite matrix.
(C.2) All vectors in the kernel of LD have the following
structure: z = [α11

⊤
n1
, . . . , αk1

⊤
nk
]⊤, αi ∈ R, i ∈ [1, k].

We now introduce some additional assumptions on the
communication graph that will be used in the following
analysis, and comment on their meaning.

Assumption 2 on the communication structure.
[Homogeneity of trust/mistrust] All the agents in a class
Vi have the same constant and pre-fixed amount of trust
to distribute among their cooperators and distrust, spe-
cific for each class Vj , j ̸= i, to distribute among the
agents in antagonistic classes. This means that all row
sums in the same block take the same value, namely for
every i, j ∈ [1, k], Ai,j1nj

= cij1ni
, where cii ≥ 0 and

cij ≤ 0, ∀i ̸= j.
Note that even if the adjacency matrix is symmetric, cij
may differ from cji.

Example 1 Consider the undirected, signed, un-
weighted, connected and clustered communication graph
G, with k = 3 clusters of cardinality n1 = 2, n2 = 4,
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n3 = 1, and adjacency matrix

A =



0 1 −1 −1 0 0 −1

1 0 0 0 −1 −1 −1

−1 0 0 1 1 0 −1

−1 0 1 0 0 1 −1

0 −1 1 0 0 1 −1

0 −1 0 1 1 0 −1

−1 −1 −1 −1 −1 −1 0


G satisfies both Assumption 1 and Assumption 2, and the
parameters cij are c11 = 1, c12 = −2, c13 = −1, c21 =
−1, c22 = 2, c23 = −1, c31 = −2, c32 = −4, c33 = 0.

Remark 2 Assumption 2 may be regarded as a form of
equitable partition, a concept originally introduced for
undirected, unweighted and unsigned graphs, see Egerst-
edt et al. (2012). A definition of almost equitable partition
for signed communication graphs was given in Liu, Ji &
Hou (2019) (see Definition 5), based on the Laplacian
associated with A. While signed communication graphs
satisfying Assumption 2 admit an almost equitable par-
tition according to Liu, Ji & Hou (2019), the converse is
not necessarily true.

We now present some technical results.

Lemma 3 (Boyd & Vandenberghe (2004)) Let Ω =[
Φ S

S⊤ Q

]
∈ Rn×n, with Φ ∈ Rk×k, be a symmetric ma-

trix. If Φ = Φ⊤ is positive definite and its Schur comple-
ment H = Q− S⊤R−1S is positive (semi)definite, then
Ω is positive (semi)definite, and σ(Ω) = σ(Φ) ∪ σ(H).

Lemma 4, below, follows from basic results about M-
matrices (see Berman & Plemmons (1979)), and hence
its proof is omitted.
Lemma 4 Let D ∈ Rn×n be a diagonal matrix and let
A ∈ Rn×n be a symmetric Metzler matrix, then:

i) D − A is positive definite if and only if there exists
z ∈ Rn, z > 0, such that (D −A)z > 0.

ii) If i) holds, then (D −A)−1 ≥ 0 and is symmetric.

The proof of Lemma 5 is elementary and hence omitted.

Lemma 5 Given ε > 0 and matrices A ∈ Rn×n, B ∈
Rn×m and C ∈ Rm×n, with A = A⊤ Metzler, it is always
possible to choose a scalar matrix D = δIn ∈ Rn×n,
δ > 0, such that |[C(D −A)−1B]i,j | < ε, ∀ i, j ∈ [1,m].

Assumption 3 on the communication struc-
ture. [Close friendship] There exist k − 1 distinct
indices i1, i2, . . . , ik−1 ∈ [1, k] such that every clus-
ter Vh, h ∈ {i2, . . . , ik−1}, either consists of a single

Fig. 1. Graphical representation of conditions a) (on the left)
and b) (on the right) in Assumption 3.

node/agent or for every choice of two distinct agents
i, j ∈ Vh either one of the following cases applies:

a) i and j are friends (the edge (i, j) belongs to E and it
has a positive weight);

b) i and j are enemies of two (not necessarily distinct)
vertices, say r and s, that belong to the same connected
component of Vi1 .

Remark 6 The idea behind this assumption is that
if two agents belong to the same clusters Vh, h ∈
{i2, i3, . . . , ik−1}, they have a close relationship: they are
either friends (case a)) or they are enemies of agents
belonging to the same group of friends in Vi1 (case b)).
Figure 1 illustrates these two cases for a single pair (i, j).
Solid lines represent friendly relationships, while dashed
lines antagonistic ones. Figure 2 provides a graphical
representation of this property for the whole graph. The
property holds for Vi2 and Vi3 (not for Vi4).

Fig. 2. Graphical representation of Assumption 3.

Remark 7 Assumption 3 has important algebraic con-
sequences that we will exploit in the main result. In-
deed, we know that for every h ∈ {i2, i3, . . . , ik−1} the
matrix Ah,h is nonnegative, while the matrices Ah,i1
and Ai1,h are nonpositive. On the other hand, for ev-
ery scalar matrix Di1 such that Di1 − Ai1,i1 is positive
definite (see Lemma 4), we have (Di1 − Ai1,i1)

−1 ≥ 0
and thereforeAh,h+Ah,i1(Di1 −Ai1,i1)

−1Ai1,h is a non-
negative matrix. Assumption 3 guarantees that for every
i, j ∈ Vh, i ̸= j, either [Ah,h]i,j > 0 or there exists t ∈ Z+

such that [Ah,i1At
i1,i1

Ai1,h]i,j > 0. This ensures (see the

power series expansion of (Di1 −Ai1,i1)
−1) that

[Ah,h +Ah,i1(Di1 −Ai1,i1)
−1Ai1,h]i,j > 0, ∀ i ̸= j. (8)

By referring to the previous Example 1, it is easy to
see that Assumption 3 trivially holds for every choice
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of i1, i2 ∈ [1, 3], i1 ̸= i2. Note that V3 consists of a sin-
gle node, while V1 and V2 consist of a single connected
component.

4 k-partite consensus: Problem solution under
the homogeneity constraint

We are now in a position to prove that under the ho-
mogeneity constraint imposed by Assumption 2 and the
close friendship hypothesis formalised in Assumption 3,
we can always find scalar matrices Di = δiIni , i ∈ [1, k],
that lead the multi-agent system to k-partite consensus.

Theorem 8 Consider the multi-agent system (1), with
communication graph G satisfying Assumptions 1, 2 and
3. There exist δi ∈ R, i ∈ [1, k], such that the closed-
loop multi-agent system (6), with LD ∈ RN×N as in (5),
reaches k-partite consensus, (i.e., (7) holds for suitable
γi = γi(x(0)) ∈ R, i ∈ [1, k]).

Proof. We assume without loss of generality that
Assumption 3 holds for i1 = 1 and ih = h + 1 for
h = 2, 3, . . . , k − 1. In fact, we can always relabel the
clusters, and accordingly permute the blocks of A, so
that this condition is satisfied.
By Lemma 1, we need to prove that under the the-
orem assumptions it is always possible to choose the
real parameters δ1, δ2, . . . , δk so that: (C.1) the ma-
trix LD is singular and positive semidefinite; and
(C.2) its kernel is spanned by vectors taking the form
z = [α11

⊤
n1
, α21

⊤
n2
, . . . , αk1

⊤
nk
]⊤, αi ∈ R, i ∈ [1, k].

Condition (C.1). To impose that LD is singular and pos-
itive semidefinite, we present an algorithm that recur-
sively makes use of Lemma 3. Specifically, starting from
H1 := LD = D − A, we block-partition each matrix
Hh, h ∈ [1, k − 1], as follows:

Hh =

Φh Sh

S⊤
h Qh

 , Φh ∈ Rnh×nh . (9)

We choose δh so that Φh is positive definite and define
Hh+1 as the Schur complement of Φh inHh, i.e.,Hh+1 :=
Qh−S⊤

h Φ−1
h Sh. At the k-th step, the matrixHk = Φk ∈

Rnk×nk is obtained. We choose δk so that Φk is positive
semidefinite and singular.

The whole procedure, whose first steps we will now de-
scribe in detail, is summarised, at the end, in Algorithm
1. To make the algorithm details clear, it is convenient
to introduce some notation.
Set M(1) := A, so that H1 = D −M(1). Clearly, M(1)

is block-partitioned according to the block-partitioning

of A, which means that M(1)
i,j = Ai,j , i, j ∈ [1, k].

As a first step, we choose δ1 so that Φ1 (see (9) for h = 1)

is positive definite. This means that condition

Φ1 := D1 −M(1)
1,1 = δ1In1

−A1,1 ≻ 0 (10)

holds. We note that if we assume δ1 > m
(1)
1,1 := c11 ≥ 0,

then Φ11n1
= (δ1In1

− A1,1)1n1
> 0. Therefore, by

Lemma 4, part i), for D = δ1In1
, A = M(1)

1,1 = A1,1 (a

Metzler matrix) and z = 1n1
, we can claim that Φ1 =

D−A is positive definite. The Schur complement of Φ1

in H1, namely H2, is given in (11) and can be expressed
as H2 = diag{D2, . . . ,Dk} −M(2), where

M(2) :=


M(2)

2,2 . . . M(2)
2,k

...
. . .

...

M(2)
k,2 . . . M(2)

k,k

 ∈ R(N−n1)×(N−n1),

and M(2)
i,j := M(1)

i,j +M(1)
i,1Φ

−1
1 M(1)

1,j = Ai,j +Ai,1(D1 −
A1,1)

−1A1,j , with i, j ∈ [2, k]. By Lemma 4, part ii),

Φ−1
1 = (D1−A1,1)

−1 is symmetric and nonnegative, and

henceM(2)
2,2 := A2,2+A2,1Φ

−1
1 A1,2 is a Metzler matrix.

We now choose δ2 so that Φ2, the first block of H2, is
positive definite, namely

Φ2 := D2−M(2)
2,2 = D2−A2,2−A2,1Φ

−1
1 A1,2 ≻ 0. (13)

Again, by Lemma 4, part i), for D = D2 and A = M(2)
2,2

(a Metzler matrix) and z = 1n2 , we observe that if we
impose

δ2 > m
(2)
2,2 := c22 + c12(δ1 − c11)

−1c21, (14)

then

Φ21n2
= (D −A)1n2

= (δ2 − c22)1n2
−A2,1Φ

−1
1 c121n1

= (δ2 − c22)1n2
− c21(δ1 − c11)

−1c121n1
> 0,

where we used the fact that Φ−1
1 1n1

= (D1 −
A11)

−11n1
= (δ1 − c11)

−11n1
. Therefore Φ2 = D −A is

positive definite, namely (13) holds.
The Schur complement of Φ2 in H2 is H3 (see (12)) and

its first block can be expressed as Φ3 := D3 − M(3)
3,3,

where

M(3)
3,3 :=M(2)

3,3 +M(2)
3,2Φ

−1
2 M(2)

2,3

= A3,3 +A3,1Φ
−1
1 A1,3 + [A3,2

+ A3,1Φ
−1
1 A1,2] · Φ−1

2 [A2,3 +A2,1Φ
−1
1 A1,3].

From Assumption 3 and the properties of Φ−1
1 = (D1 −

A1,1)
−1 it follows (see Remark 7) that M(2)

ℓ,ℓ , ℓ ∈ [3, k],

6



H2 =


D2 −M(1)

2,2 −M(1)
2,3 . . . −M(1)

2,k

−M(1)
3,2 D3 −M(1)

3,3 . . . −M(1)
3,k

...
...

. . .
...

−M(1)
k,2 −M(1)

k,3 . . . Dk −M(1)
k,k

−


M(1)

2,1

M(1)
3,1

...

M(1)
k,1

Φ−1
1

[
M(1)

1,2 M(1)
1,3 . . . M(1)

1,k

]
=

Φ2 S2

S⊤
2 Q2

 (11)

————————————————————————————————————————————————

H3 :=


D3 −M(2)

3,3 . . . −M(2)
3,k

...
. . .

...

−M(2)
k,3 . . . Dk −M(2)

k,k

−

M(2)

3,2

...

M(2)
k,2

Φ−1
2

[
M(2)

2,3 . . . M(2)
2,k

]
=

Φ3 S3

S⊤
3 Q3

 (12)

————————————————————————————————————————————————

(and hence, in particular, M(2)
3,3) is a nonnegative ma-

trix whose off-diagonal entries are all positive. On the
other hand, by Lemma 5 we can always choose δ2 > 0
sufficiently large (something that ensures, in particular,
that (14) is satisfied) to guarantee that the entries of

M(2)
3,2Φ

−1
2 M(2)

2,3 are arbitrarily small. This ensures that

the off-diagonal entries of M(3)
3,3 are positive.

If we now choose δ3 such that

δ3 > m
(3)
3,3 := c33 +

c31c13
δ1 − c11

+
(
c32 +

c31c12
δ1 − c11

)
·

·
(
δ2 − c22 −

c21c12
δ1 − c11

)−1(
c23 +

c21c13
δ1 − c11

)
, (15)

we ensure that Φ3 satisfies Φ31n3
> 0. And since −Φ3

is a (irreducible) Metzler matrix, this proves that Φ3 is
positive definite.

The procedure generalizes as follows (see Algorithm 1).
At each step h, ranging from 4 to k − 1:

• We first determine the expression of Hh and verify

that the off-diagonal entries of M(h)
h,h are positive. If

this is not the case, we can increase the values of
δ2, . . . , δh−1 (meanwhile respecting all the previous in-
equalities) to impose this condition 1 . Indeed, we note

thatM(h)
h,h is the sum ofM(2)

h,h and of other terms that

depend on Φ−1
2 , . . . ,Φ−1

h−1. Assumption 3 ensures that

M(2)
h,h is a Metzler matrix with positive off-diagonal

entries. So, by making use of Lemma 5 we can al-
ways increase the coefficients δ2, . . . , δh−1 (in this or-
der) so that all the entries of the terms that depend

1 As a matter of fact, Algorithm 1 provides a more efficient
procedure to choose the δh’s so that at each step there is no
need to go backward and increase their values.

Algorithm 1 Selection of the δh, h = 1, 2, . . . , k.

for i, j ∈ [1, k] do ▷ Initialization

M(1)
i,j := Ai,j

m
(1)
i,j := ci,j

for h ∈ [1, k − 1] do ▷ Recursive Step
Choose δh > 0 so that

δh > m
(h)
h,h and

if h ≥ 2 then
∀ ℓ ∈ [h+ 1, k],∀ i ̸= j

[M(h)
ℓ,ℓ +M(h)

ℓ,h [δhInk −M(h)
h,h]

−1M(h)
h,ℓ ]ij > 0

Set
Dh := δhInh

Φh := Dh −M(h)
h,h

ϕh := δh −m
(h)
h,h

M(h+1)
i,j := M(h)

i,j +M(h)
i,hΦ

−1
h M(h)

h,j

m
(h+1)
i,j := m

(h)
i,j +m

(h)
i,hϕ

−1
h m

(h)
h,j ∀i, j ≥ h

Set ▷ Final Step

δk := m
(k)
k,k

Dk := δkInk

Φk := Dk −M(k)
k,k

ϕk := δk −m
(k)
k,k = 0

on Φ−1
2 , . . . ,Φ−1

h−1 become negligible, and hence M(h)
h,h

has positive off-diagonal entries. This allows to say
that, for every choice of Dh = δhInh

, the matrix −Φh

is (irreducible and) Metzler.

• We choose δh > m
(h)
h,h, where m

(h)
h,h1nh

:= M(h)
h,h1nh

.
This ensures that the irreducible Metzler matrix
−Φh = −Dh + M(h)

h,h = −δhInh
+ M(h)

h,h satisfies

−Φh1nh
< 0, and hence Φh is (symmetric and) posi-

tive definite.

By proceeding in this way, we construct all positive defi-
nite matrices Φ1, . . . ,Φk−1 and at the last step we choose
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δk > 0 so that −Φk1nk
= 0. Being −Φk an irreducible

Metzler matrix, this ensures (see Berman & Plemmons
(1979)) that 0 is a simple dominant eigenvalue of −Φk.
Therefore Φk is positive semidefinite and singular, with
a simple eigenvalue in 0. Since σ(LD) = ∪h∈[1,k]σ(Φh),
then LD is positive semidefinite with a simple eigenvalue
in 0.

Condition (C.2). We want to prove that if the param-
eters δ1, δ2, . . . , δk are selected according to Algorithm
1, then LD has an eigenvector associated with the 0
eigenvalue with the desired block structure. If this is
the case, since we proved that 0 is a simple eigenvalue,
all the eigenvectors of LD corresponding to 0 have the
desired block structure.
We note that z = [α11

⊤
n1
, α21

⊤
n2
, . . . , αk1

⊤
nk
]⊤ is an

eigenvector of LD associated with the zero eigen-
value if and only if w = [α1, α2, . . . , αk]

⊤ is an
eigenvector of D − C corresponding to 0, where
D := diag{δ1, δ2, . . . , δk} and C := [cij ]i,j∈[1,k]. So, we
need to simply prove that D − C is a singular matrix.
If we evaluate first the (1, 1) entry of D − C and then
the (1, 1)-entry of each of the k− 1 Schur complements,
obtained from D − C according to the same algorithm
that we used to define the matrices Φh, h ∈ [1, k − 1],
we obtain the sequence of coefficients ϕ1, ϕ2, . . . , ϕk. By
Algorithm 1, the first k − 1 are positive, while ϕk = 0.
On the other hand, det(D−C) = ϕ1ϕ2 . . . ϕk, and hence
D− C is singular. □
Example 2 Consider, again, Example 1. As previously
remarked, the communication graph satisfies Assump-
tions 1, 2 and 3 for i1 = 1 and i2 = 3 (as in the proof).
If we apply Algorithm 1 we obtain the constraints

δ1 > 1, δ2 > 2 +
2

δ1 − 1
,

δ3 =
2

δ1 − 1
+

(
−4 + 4

δ1−1

)(
−1 + 1

δ1−1

)
[
δ2 − 2− 2

δ1−1

] .

If we assume δ1 = 2 then, independently of δ2, one gets
δ3 = 2. It turns out that for every choice of δ2 > 4 the
eigenvector corresponding to the zero eigenvalue of LD
is z = [ 1 1 | 0 0 0 0 | −1]⊤.
Figure 3 shows the state evolution of the system described
as in (6), with adjacency matrix as in Example 1, with
random initial conditions x(0) taken as realizations of a
gaussian vector with 0 mean and variance σ2 = 4, i.e.
x(0) ∼ N (0, 4). The graph shows that tripartite consen-
sus is reached after about 1.5 units of time with regime
values γ1 = −1.39, γ2 = 0, γ3 = 1.39.

Fig. 3. Graph corresponding to Example 2.

5 k-partite consensus for multi-agent systems
with complete unweighted graph

In this subsection we will focus our attention on multi-
agent systems with complete, unweighted and undi-
rected communication graphs, clustered into an arbi-
trary number k of groups. By resorting to a suitable
relabelling of the agents, we can always assume that the
adjacency matrix A is described as in (3) with

Ai,i = 1ni
1⊤
ni
−Ini

andAi,j = −1ni
1⊤
nj
, for i ̸= j, (16)

ni being the cardinality of the i-th cluster. Also in
this case we plan to design a distributed control law for
the system (1) of the type (4), with LD = D −A, and
D = diag{δ1In1

, . . . , δkInk
} ∈ RN×N .

Under the previous hypotheses on the adjacency matrix
A, Assumptions 1, 2 and 3 are trivially satisfied. So, the
existence of a choice of the coefficients δi, i ∈ [1, k], that
ensures k-partite consensus follows from Theorem 8. On
the other hand, the particular structure of A allows to
obtain a much simpler proof as well as an explicit ex-
pression of (a possible choice of) the δi’s that cannot be
obtained in the general homogeneous case. For this rea-
son we provide here an independent proof of this result.

Theorem 9 Consider an unweighted and complete
communication graph G split into k clusters, with ad-
jacency matrix A as in (3), and blocks described as in
(16). If we assume δi = 2ni−1, i ∈ [1, k], the closed-loop
multi-agent system (6), with LD ∈ RN×N described as
in (5), reaches k-partite consensus.

Proof. By Lemma 1, we need to prove that under the
theorem hypotheses and by assuming the parameters
δi = 2ni−1, i ∈ [1, k], we can ensure that: (C.1) the ma-
trix LD is singular and positive semidefinite; and (C.2)
its kernel is spanned by vectors taking the block form
z = [α11

⊤
n1
, α21

⊤
n2
, . . . , αk1

⊤
nk
]⊤, αi ∈ R, i ∈ [1, k].

Condition (C.2). By assuming δi = 2ni − 1, i ∈ [1, k],
and by imposing LDz = 0N , for z described as above, we
obtain the family of equations Nk [α1 α2 . . . αk]

⊤ = 0,
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where Nk := 1k[n1 n2 . . . nk] is a singular ma-
trix whose kernel coincides with ker[n1 n2 . . . nk].
This implies that ker LD includes all the vectors
z = [α11

⊤
n1
, α21

⊤
n2
, . . . , αk1

⊤
nk
]⊤, with [α1, α2, . . . , αk] ∈

ker[n1 n2 . . . nk]. To prove that all the eigenvec-
tors of LD corresponding to the zero eigenvalue take
the form [α11

⊤
n1
, . . . , αk1

⊤
nk
]⊤, αi ∈ R, i ∈ [1, k], let

w = [w⊤
1 w⊤

2 . . . w⊤
k ]

⊤ be any eigenvector of LD
corresponding to 0. Then condition LDw = 0N implies

2niwi = (1⊤
ni
wi)1ni

−
k∑

j=1,j ̸=i

(1⊤
nj
wj)1ni

, i ∈ [1, k].

This ensures that every wi is a scalar multiple of 1ni
.

Condition (C.1). We now prove that by assuming

δi = 2ni − 1, i ∈ [1, k]:
(A) the upper diagonal block of LD, namely Φ :=
2n1In1

− 1n1
1⊤
n1
, is positive definite, and

(B) its Schur complement

H :=


H2,2 H2,3 . . . H2,k

H3,2 H3,3 . . . H3,k

...
...

. . .
...

Hk,2 Hk,3 . . . Hk,k

 ,

with Hi,i = 2niIni − 1ni1
⊤
ni

− 1ni1
⊤
n1
(2n1In1 −

1n1
1⊤
n1
)−11ni

1⊤
ni

and Hi,j = 1ni
1⊤
nj

− 1ni
1⊤
n1
(2n1In1

−
1n11

⊤
n1
)−11ni1

⊤
nj
, i ̸= j, is positive semidefinite and

singular.
Therefore, by Lemma 3, LD is positive semidefinite and
singular.
By Lemma 4 part i), we can claim that, since
(2n1In1

− 1n1
1⊤
n1
)1n1

= n11n1
> 0, (A) holds.

Now, we observe that, for any vector
z = [α11

⊤
n1
, α21

⊤
n2
, . . . , αk1

⊤
nk
]⊤, with [α1, α2, . . . , αk] ∈

ker[n1 n2 . . . nk], we have 0 = (2n1In1
−1n1

1⊤
n1
)α11n1

+
1n1

α2n2 + · · ·+ 1n1
αknk, and hence

(2n1In1
− 1n1

1⊤
n1
)−11n1

= − α1

(
∑k

i=2 αini)
1n1

=
1

n1
1n1

.

This allows to verify that the matrix H takes the block
diagonal form H = diag{2n2In2

− 21n2
1⊤
n2
, 2n3In3

−
21n31

⊤
n3
, . . . , 2nkInk

− 21nk
1⊤
nk
}. Each diagonal block

2niIni
− 21ni

1⊤
ni
, i ∈ [2, k], is easily seen (by a straight-

forward extension of Lemma 4) to be positive semidefi-
nite and singular (with 0 as a simple eigenvalue). So, we
have shown that LD is positive semidefinite and singu-
lar and hence (B) holds. Therefore condition (C.1) holds
and k-partite consensus is asymptotically achieved. □
Example 3 Consider the multi-agent system (6), with
unweighted and complete communication graph and

5 clusters of size n1 = 128, n2 = 72, n3 = 44, n4 =
115, n5 = 194. We assume δi = 2ni − 1, i ∈ [1, 5],
and x(0) ∼ N (0, 4). The system reaches 5-partite con-
sensus after about 0.08 units of time, with regime val-
ues γ1 = 0.1193, γ2 = −0.1022, γ3 = −0.3281, γ4 =
−0.2236, γ5 = 0.1655, as illustrated in Fig. 4.

Fig. 4. Graph corresponding to Example 3.

6 k-partite consensus for a class of nonlinear
models

In the following, an extension of the k-partite consensus
analysis to nonlinear systems is proposed. To this aim,
by adopting a set-up similar to the one in Altafini (2013),
we consider a multi-agent system described as in (1),
with communication graph G satisfying Assumption 1
and subjected to the feedback law

u = f(x), (17)

where f : RN → RN is a Lipschitz continuous function
satisfying f(0) = 0.

Assumption 4 on the vector field f:We assume for f
a distributed additive expression. Specifically, each com-
ponent fi(x), i ∈ [1, N ], of the function f depends only
on the states of the neighbours of the i-th agent, namely
those entries xj such that (j, i) ∈ E. It is expressed as

fi(x) = −
∑

j:(j,i)∈E

(
[D]ih̃i(xi(t))− [A]i,j h̃j(xj(t))

)
(18)

where [D]i is a real number, and the nonlinear function

h̃ℓ(·) is the same for all the agents belonging to the same
cluster. So, if we assume that the agents are partitioned
into k clusters and ordered in such a way that A is de-
scribed as in (3), the vector x is accordingly partitioned

as x =
[
x⊤
1 x⊤

2 . . . x⊤
k

]⊤
, with xi ∈ Rni representing

the states of the agents belonging to the i-th cluster. The
function f can be expressed as the product of the matrix
LD, given in (5), and of a nonlinear function h(x):

ẋ = −LDh(x), (19)
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with h(x) = [h1(x1)
⊤ h2(x2)

⊤ . . . hk(xk)
⊤]⊤, and

hi(xi) : Rni → Rni , i ∈ [1, k], is described as follows

hi(xi) = [hi(xsi+1) hi(xsi+2) . . . hi(xsi+ni
)]⊤, (20)

where s1 = 0, while si =
∑

j<i nj , i ∈ [2, k]. The

scalar functions hi(·) are assumed to be monotone, bi-

jective functions belonging to the set R :=
{
h : R →

R : (h(xa) − h(xb))(xa − xb) > 0, xa ̸= xb, h(0) =

0,
∫ xa

xb
(h(z) − h(xb))dz → ∞ as |xa − xb|→ ∞

}
. Each

function hi(xsi+m), m ∈ [1, ni], represents how the
opinion of the (si + m)-th agent in the i-th cluster is
perceived by its neighbours.

The following theorem provides sufficient conditions for
a networked closed-loop system described as in (19) to
reach k-partite consensus that extend those given in
Theorem 8. Similarly, the extension of Theorem 9 would
be possible.

Theorem 10 Consider the multi-agent system (1), with
communication graph G satisfying Assumptions 1, 2 and
3, and distributed control law (17) satisfying Assumption
4 and (18). There exist δi ∈ R, i ∈ [1, k], such that the
closed-loop multi-agent system described as in (19), with
the function h(x) defined as above, and LD ∈ RN×N

described as in (5), reaches k-partite consensus.

Proof. Clearly, the equilibrium points of system (19)
are all the vectors x∗ in RN such that 0 = LDh(x

∗).
We want to show that it is possible to choose the coeffi-
cients δi, i ∈ [1, k], so that all the equilibrium points of
the system are block partitioned according to the block
partitioning of the matrix LD, and they are globally
simply stable. This ensures that the set of all such equi-
librium points is the attractor of every state trajectory
(there cannot be limit cycles and the trajectories cannot
diverge), and hence the multi-agent system asymptoti-
cally reaches k-partite consensus.
We have proved (see Theorem 8) that under As-
sumptions 1, 2 and 3 it is possible to choose the
coefficients δ1, δ2, . . . , δk ∈ R so that LD is a singu-
lar positive semidefinite matrix, having 0 as a simple
eigenvalue and the corresponding eigenvector takes
the form z = [α11

⊤
n1
, α21

⊤
n2
, . . . αk1

⊤
nk
]⊤, for suitable

αi ∈ R, i ∈ [1, k]. This implies that the equilibrium
points of the system (19) are the vectors x∗ such that
h(x∗) ∈ ⟨z⟩. As the maps hi belong toR, for every c ∈ R
such that c·αi belongs to the image of the corresponding
hi for every i ∈ [1, k], there exist β1, β2 . . . βk ∈ R such
that c · [α11

⊤
n1
, . . . αk1

⊤
nk
]⊤ = h([β11

⊤
n1
, . . . βk1

⊤
nk
]⊤).

Suppose, without loss of generality, that this is the case
for c = 1, set x∗ := [β11

⊤
n1
, β21

⊤
n2
, . . . , βk1

⊤
nk
]⊤, and

consider a suitably modified version of the Lyapunov

function V : RN → R adopted in Altafini (2013):

V (x) =

k∑
i=1

si+ni∑
j=si+1

∫ xj

x∗
j

(hi(z)− hi(x
∗
j ))dz =

=

k∑
i=1

si+ni∑
j=si+1

∫ xj

βi

(hi(z)− αi)dz, (21)

(see Assumption 4 for the definition of si) for x ̸= x∗.
Also, V (x) is radially unbounded and its derivative is

V̇ (x) =

k∑
i=1

si+ni∑
j=si+1

(hi(xj)− hi(x
∗
j ))ẋj

=−(h(x)− h(x∗))⊤LDh(x) = −h(x)⊤LDh(x) ≤ 0,

where we used the fact that LD = L⊤
D and LDh(x

∗) =
LDz = 0, and the last inequality holds since LD is a sin-
gular positive semidefinite matrix. This ensures that ev-
ery equilibrium point x∗ of the system is globally stable
and since all such equilibrium points have the required
block-structure, k-partite consensus is guaranteed. □
Example 4 Consider the multi-agent system (19),
with unweighted and complete communication graph,
h(x(t)) = tanh(x(t)), and 4 clusters of size n1 =
137, n2 = 81, n3 = 53, n4 = 98. We have assumed
that x(0) ∼ N (0, 4) and δi = 2ni − 1 for every
i ∈ [1, 4]. The system reaches 4-partite consensus af-
ter approximately 0.07 time units, with regime values
γ1 = 0.9387, γ2 = 0.9248, γ3 = 2.0188, γ4 = −1.1172, as
illustrated in Fig. and 6.

Fig. 5. Graph associated with Example 4: time evolution of
h(x(t)) = tanh(x(t)).

7 Conclusions

In this work we addressed the consensus problem for
multi-agent systems whose agents split into k groups:
agents belonging to the same group cooperate, while
those belonging to different ones compete. The pro-
posed algorithm represents a modified version of the
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Fig. 6. Graph associated with Example 4: time evolution of
x(t).

classical DeGroot’s type of consensus algorithm. The
modification pertains how much agents in the same
group are conservative of their own opinions in order
to guarantee that they converge to a common decision,
namely they reach k-partite consensus. We investigated
this problem under the assumption that agents in the
same cluster have the same amount of trust(/distrust)
to be distributed among their friends(/enemies). For
the special case of complete, signed, unweighted graphs
a simplified solution was proposed. Finally, an exten-
sion of the k-partite consensus problem to a nonlinear
set-up was investigated.
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