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Human mobility in response 
to COVID‑19 in France, Italy and UK
Alessandro Galeazzi  1*, Matteo Cinelli2,3, Giovanni Bonaccorsi  4, Francesco Pierri  5, 
Ana Lucia Schmidt2, Antonio Scala3, Fabio Pammolli4,6 & Walter Quattrociocchi2

The COVID-19 pandemic is one of the defining events of our time. National Governments responded 
to the global crisis by implementing mobility restrictions to slow down the spread of the virus. To 
assess the impact of those policies on human mobility, we perform a massive comparative analysis 
on geolocalized data from 13 M Facebook users in France, Italy, and the UK. We find that lockdown 
generally affects national mobility efficiency and smallworldness—i.e., a substantial reduction of 
long-range connections in favor of local paths. The impact, however, differs among nations according 
to their mobility infrastructure. We find that mobility is more concentrated in France and UK and 
more distributed in Italy. In this paper we provide a framework to quantify the substantial impact of 
the mobility restrictions. We introduce a percolation model mimicking mobility network disruption 
and find that node persistence in the percolation process is significantly correlated with the economic 
and demographic characteristics of countries: areas showing higher resilience to mobility disruptions 
are those where Value Added per Capita and Population Density are high. Our methods and findings 
provide important insights to enhance preparedness for global critical events and to incorporate 
resilience as a relevant dimension to estimate the socio-economic consequences of mobility restriction 
policies.

The COVID-19 pandemic caused an unprecedented global health crisis with high fatality rates that stressed the 
national health systems and the socio-economic structures of countries1–4. National Governments have responded 
with non-pharmaceutical interventions (NPI) aimed at reducing the mobility of citizens to decrease the rate of 
contagion5. In response to the threat, the research community has exerted impressive efforts to understand on 
one side the epidemiological features of the outbreak6–9 and on the other side its economic consequences10–12. This 
unprecedented scenario calls, indeed, for a better understanding of human mobility patterns during emergencies 
as well as in the immediate post-disaster relief. The study of mobility habits is a foundational instance for several 
issues ranging from traffic forecasting, up to virus spreading, and urban planning13–16. However, a quantitative 
assessment of its statistical properties at different geographical scales remains elusive17–26. The availability of 
rich datasets on the mobility of individuals, coupled with the urgency of the current situation, has fostered the 
collaboration between tech giants, such as Facebook and Google, institutions, and scholars8,27–30. Along this 
path, the present work builds upon a collection of data from Facebook users and addresses the dynamics of 
spatial redistribution of individuals as a response to mobility restrictions applied to limit the disease outbreak. 
We perform a massive analysis of aggregated and de-identified data provided by Facebook through its Disease 
Prevention movement maps31 to compare the effects of lockdown measures applied in France, Italy, and the UK 
in response to the COVID-19 outbreak. The limitation to these three countries depends on the data available at 
the time of the investigation. However, the overall dataset spans over 1 month of observations and accounts for 
the daily movements of over 13 M people.

We model countries as networks of mobility flow and, similarly to32, we find that restrictions elicit geographi-
cal fragmentation through a transition toward local/short-range connections, thus causing a loss in the efficiency 
of mobility.

Furthermore, to quantify the substantial effect of the lockdown we provide a model to simulate the effects 
of movement restrictions and find that the responses to the shock observed in real mobility networks can be 
fairly approximated through different network dismantling strategies. Indeed, the mobility restrictions caused 
a general reduction of the overall efficiency in the mobility network and a geographical fragmentation with a 
massive reduction of long-range connections. However, different countries experience changes depending upon 
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their initial structure of inter-connections. The three countries exhibit differentiated mobility patterns that reflect 
the structural diversity in their underlying infrastructure: more centralized around their capital cities in the 
case of France and the UK, and more clustered in the case of Italy. Such infrastructural characteristics, together 
with different responses to national lockdown, contributed to the emergence of varied configurations in terms 
of residual mobility patterns. France shows one big cluster centered in Paris and many other smaller spots that 
disconnect as soon as the segregation process starts. Italy exhibits four interconnected clusters, centered approxi-
mately along the high-speed rail lines in Naples, Rome, Milan, and Turin, that remain interconnected over time 
thus showing a high persistence and resilience. Finally, the UK has one cluster centered in London, but most 
of England exhibits a higher persistence with respect to France and Italy, thus suggesting the presence of more 
capillary infrastructures. As a further step, we try to assess the impact of mobility restrictions by coupling our 
modeling approach to some economic indicators. Indeed, the correlations among mobility, disease spreading, and 
economic variables are crucial both in emergency scenarios and in ordinary times since the different resilience 
of mobility networks could be both a predictor of the severity of future systemic crises and a guide to improve 
the economic and social impact of policies. Hence the understanding of different resilience features in national 
mobility networks is fundamental to craft and tailor specific release policies, and to smooth the economic impact 
of NPIs. To obtain a first intuition of the reasons behind the different behaviors of the three countries in our 
sample, we address the correlation among nodes’ persistence in the dismantling process and their economic and 
demographic features. We find a positive and significant relation between node persistence and, on the one side, 
production per capita (either measured by GDP per Capita or Value Added Per Capita) and on the other side 
with population density. However, the two relations are stronger for Italy and France and have a weaker effect 
in the UK, signaling that in this last case, as a consequence of the structural features of the capillary mobility 
network, also less populated and wealthy areas of Great Britain are showing high resilience to mobility disruption.

Connectivity of national mobility networks
We represent national mobility networks of France, Italy, and the UK as weighted directed graphs, built upon 
movement maps provided by Facebook through their “Data for Good” program31 (see “Materials and methods” 
for further details). Notice that the analysis is limited solely to Italy, UK, and France because, at the time of the 
analysis, data comprising the lockdown dates were available only for these three countries.

In our framework nodes correspond to municipalities and edges are weighted according to the amount of 
traffic between pairs of nodes. We first aggregate mobility flows in two symmetric disjoint time windows before 
and after the day of national lockdown (see Materials and Methods), as shown in panels (A–F) of Fig. 1. By com-
paring mobility networks in the period before the intervention (panels A–C of Fig. 1) and during the lockdown 
phase, we note a significant reduction of the overall connectivity. We find that mobility restrictions have a higher 
impact on the connectivity of France, whereas they yield more limited effects in the other two countries. Italy 
and UK, indeed, show respectively a reduction of 16% and 21% in the size of the largest weakly connected com-
ponent (LWCC, i.e., the maximal subgraph of a network in which any two vertices are interconnected through 
an un-directed path), whereas France exhibits a reduction of almost 79%.

In panels G–I of Fig. 1, we further characterize daily connectivity patterns by computing the number of 
weakly connected components (No. WCC) and the size of the LWCC of mobility networks constructed on a 
daily basis. In all cases, we observe a decrease in the LWCC size and an increase in the number of WCCs. We 
also observe periodic changes in correspondence with weekends, perhaps because of the reduced necessity to 
commute during weekdays. In France (where the LWCC is Paris-centric), we notice a strong fragmentation of 
the network since the beginning: the number of WCCs is larger than the size of the LWCC, suggesting that the 
mobility is well distributed along with the whole country. However, Paris remains connected by long-range 
connections to the remaining most active areas of Bordeaux, Toulouse, Marseille, and Lyon. In the case of Italy 
(where the LWCC contains all the main Italian cities distributed on the high-speed rail line, i.e. Naples, Rome, 
Milan, and Turin), the lockdown enhances the importance of local mobility. Notice that, while in the Center 
and South of Italy mobility remains defined mainly at the regional level (in Fig. 1E one can distinguish Sicilia, 
Campania, Lazio, and Toscana), the lockdown unveils that northern Italy is more interconnected, showing a 
clustered mobility for the main industrial regions, i.e. Piedmont, Lombardy, Veneto, and Emilia-Romagna. The 
UK is clearly London-centric: the size of the LWCC remains higher than the number of WCCs, with strong local 
mobility patterns only in the Bristol and in Manchester-Liverpool areas. The number of WCCs and the size of 
the LWCC reflect the different underlying structure of the three countries: France has a hub in Paris which is 
star-connected via long-range links to the local city-centered areas, Italian national mobility is distributed mostly 
over the center-northern region, and the UK appears as an extension of London, whose network of mobility 
remains pervasive even after the lockdown.

Efficiency of national mobility networks
We further investigate the effect of lockdown focusing on the global efficiency33 of mobility networks, as shown 
in Fig. 2. The global efficiency is a measure that quantifies how optimal is the information flow in a network and 
it can be used as a proxy to measure its smallworldness33(further details are reported in “Materials and meth-
ods”). We notice a decreasing trend of the efficiency in the period before national lockdown and a steady-state 
in the days after the intervention (Fig. 2), which is consistent with the observed decrease in global connectivity 
(Fig. 1). Since the network efficiency is a measure that condensates information related to both clustering (i.e. 
connectedness of neighbors) and small-world effect (i.e. presence of long-range connections that act as shortcuts), 
the trends observed in top panels of Fig. 2 well describe the effect of an ongoing shock that cuts both long-range 
connections and the overall cohesiveness. Moreover, the three countries experience different amounts of decen-
tralization as a consequence of the lockdown. To better quantify the differences, we measure the heterogeneity 
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of nodes in terms of their contribution to global efficiency using the Gini index34 (see “Materials and methods”). 
We first observe that, in correspondence with the initial decrease of global efficiency, the Gini index displays 
an increasing trend that becomes steady after the lockdown date (Fig. 2). The observed trend means that the 
contribution of nodes to global efficiency becomes more and more heterogeneous over time until it reaches a 
steady-state. This result indicates a progressive disruption with very heterogeneous effects on the single nodes, 
suggesting that policies should be carefully tailored to avoid enhancing unequal treatments of different areas: 
as an example, in Italy, it has been observed that the lockdown could enhance economic disparities29 among 
municipalities. Such an effect could be even more uttered in France, which shows a higher level of heterogeneity 
in connectivity at municipal level with respect to Italy. Indeed, in the French context disconnected nodes are 
more likely to remain isolated when compared to the Italian case, which exhibits a more distributed mobility 
network. We observe a more nuanced response to the shock in the UK, where mobility is distributed more evenly 
among distinct municipalities.

Resilience of national mobility networks
To quantify the substantial effect of the mobility restrictions applied in France, Italy, and the UK in this section, 
we explore the drivers behind the empirical evidence reported in previous sections. We perform an analysis 
based on percolation theory35 on the aggregated graph which corresponds to the period before the national 
lockdown. We assume that this setting is a good proxy for the structure of the mobility network in “business as 
usual” conditions (see “Materials and methods”). We implement bond percolation on the aggregated networks 
by iteratively deleting edges following an increasing (respectively decreasing) weight order. During the process 

Figure 1.   Outlook on national mobility networks for France, Italy and UK during COVID-19 pandemic. 
Panels (A–F) show the largest weakly connected components (LWCC) of national mobility networks built on 
two disjoint symmetric windows: respectively 2 weeks before (panels A–C) and 2 weeks after (D–F) the day of 
national lockdown. The lockdown dates are respectively March 17th for France, March 9th for Italy and March 
24th for UK. Bright dots represent municipalities that belong to the LWCC. We observe the following reductions 
in terms of nodes that disappear from the main cluster. France: from 5495 to 1174 nodes. Italy: from 2733 to 
2293 nodes. UK: from 1072 to 844 nodes. Panels (G–I) show the temporal evolution of daily connectivity for 
national mobility networks of municipalities, in terms of number of weakly connected components (No. WCC) 
and size of the largest weakly connected component (LWCC). Both quantities are normalized using the number 
of nodes of the corresponding network. We visualize trends by means of a LOESS regression (dashed lines with 
95% confidence intervals shaded in grey) and highlight lockdown and week-end days with vertical red lines, 
respectively solid and dashed .
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of network dismantling, we keep track of measures related to both cohesiveness and distance, namely the LWCC 
size, global efficiency, and node persistence. In more detail, the node persistence measures the extent to which a 
node remains connected to the LWCC, that is, how much the node is resilient to percolation. Notice that several 
edge removal strategies can be considered to model different percolation processes and quantify different node 
characteristics. We tried several removal strategies based on different edge features such as weight, geographi-
cal distance, and edge betweenness. We chose edge weight removal strategy since it turns out to be the one that 
better approximates the real data (see “Materials and methods”).

The top row of Fig. 3 shows the results of the percolation process in terms of node persistence, carried out 
by removing edges in increasing weight order for France, Italy, and the UK. To each node we assign an area 
on the map calculated using Voronoi tessellation36 and colored according to node persistence (see “Materials 
and methods”). The empirical evidence displayed in previous sections finds support in the percolation results. 
Indeed, comparing the three cases, the differences in the network structure among countries emerge. While 
France has one big cluster centered in Paris and many smaller modules that disconnect as soon as the process 
occurs, Italy exhibits four interconnected clusters, centered approximately in Naples, Rome, Milan and Turin (that 
roughly correspond to the high-speed rail lines), that remain interconnected and thus showing high persistence 
levels. Conversely, UK has one cluster centered on London, but most of England exhibits a higher persistence 
with respect to France and Italy, thus suggesting the presence of a more resilient network with a very capillary 
structure.

To compare the effects of the percolation dynamics on each of the three countries, in the middle and bottom 
rows of Fig. 3 we show trends for LWCC size and global efficiency throughout the process.

We first notice that the decay of the LWCC size differs depending both on the country and edge removal 
strategy: removing edges sorted by decreasing weight affects less the decay of the LWCC size than removing edges 
sorted by increasing weight, for all countries. However, we see differences in the decay of LWCC size among the 
three nations in the increasing case: while France exhibits an almost linear trend, UK shows a significant drop 
only after an important amount of connections is removed. Moreover, Italy seems to be in an intermediate situ-
ation, showing an almost linear but scattered decay. We observe that the largest connected component is quickly 
disrupted when edges are deleted for increasing order of weights. Following results from network dismantling 
theory37, transportation networks generally exhibit higher vulnerability to such weak link removal and are 
more robust to the deletion of edges with higher weight. This effect can be explained by assuming a “rich club” 
structure38, where links corresponding to higher mobility flows are concentrated around core regions. Indeed, the 
largest fragility of the mobility network toward the deletion of weaker edges hints at a core-periphery structure.

The bottom row of Fig. 3 displays the normalized global efficiency as a function of the residual edge. Also in 
this case, France has a smoother decay with respect to Italy and the UK, mainly when percolation is performed 
on increasing order of weights. Furthermore, when removing the same percentage of residual edges by increasing 
order of weights, UK yields the highest efficiency across countries. However, such a relationship changes when 
the opposite percolation strategy is taken into account. In this case, the UK has a slightly steeper decay of global 
efficiency, hinting the presence of a large number of strong connections among nodes. Again, we observe that 
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Figure 2.   Evolution of global efficiency and of its heterogeneity. Top panels display the temporal evolution of 
global efficiency (normalized by its maximum value during the period of observation), for the mobility network 
of municipalities. We visualize trends using a LOESS regression (dashed lines with 95% confidence intervals 
shaded in grey) and highlight lockdown dates using a solid vertical line. Bottom panels display the temporal 
evolution of the Gini index of the nodal efficiency. The Gini index is used as a measure of heterogeneity and it is 
computed considering the nodal contributions to global network efficiency. Overall, we observe an increase of 
the Gini index indicating an increasing heterogeneity over time.
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core regions (the ones where strong links are more concentrated, i.e. the most persistent regions in the upper 
panels) are the most relevant. The steepest decrease in the efficiency occurs when deleting the strongest edges 
first. Conversely, periphery regions only mildly contribute to the network efficiency, as demonstrated by the 
slowest decrease upon cutting weakest edges first37.

To highlight the impact of the lockdown on actual mobility networks, we superimpose values in the networks 
observed across distinct weeks over the results of the percolation process. Each point in the curve corresponds to 
a certain statistic computed on the mobility network aggregated over each week (see “Materials and methods”). 
Mobility networks are divided into three categories based on the period taken into account: the weeks before the 
national lockdown, the week in which the lockdown took place, and the weeks after the lockdown.

We observe that the residual amount of edges decreases over time and it differs from country to country. 
France displays the lowest percentage of residual edges, while Italy and the UK tend to retain a higher percent-
age of their edges. Moreover, we notice how Italy and UK strongly differ in terms of the evolution of LWCC size: 
although they lose roughly the same fraction of edges, there is a strong difference in terms of the number of 
connected nodes. Despite such differences, percolation by increasing order of weights approximates adequately 

Figure 3.   Results of the percolation process in terms of node persistence and edge removal strategies. A 
percolation process is performed by iterating a cutting procedure on edges according to their weights calculated 
in the whole period before lockdown. Top row: node persistence during the percolation process. Node 
persistence is defined as the number of iterations a node remains connected to the LWCC over the maximum 
number of iterations before the network is completely disconnected; the more persistent the node, the brighter 
the color. Notice that we are defining persistence upon deleting edges by their increasing strength: hence, 
brighter nodes are not only the last to be disconnected, but are also those embedded in stronger mobility flows. 
Middle row: size of the LWCC (largest weakly connected component) as a function of the number of residual 
edges. Green and blue curves correspond to deleting edges respectively in decreasing and increasing order of 
their weight. Bottom row: variation of global network efficiency obtained deleting edges by increasing (green) 
or decreasing (blue) weight. In both middle and bottom rows, we plot the “empirical” values of LWCC and 
global efficiency for the mobility networks calculated aggregating flows in the weeks before (dots), during (stars) 
and after (cross) the lockdown date. Notice that, while lockdown cut out the peripheries of national networks 
(middle panels, but see also panels (D–F) of Fig. 1), the reduced mobility severely affects also the network 
efficiency (bottom panels).
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the decreasing trend of the LWCC size observed in all countries. The case of the normalized global efficiency is 
somewhat different: all countries show a similar loss proportionally to their initial efficiency. Additionally, the 
trend of the empirical curves is closer to that of the decreasing weight percolation strategy. The major differ-
ence observed between the middle and bottom rows of Fig. 3 is based on the fact that the considered empirical 
statistics follow opposite link removal strategies. This effect is due in part to the nature of the two measures; 
the former more related to the density and the structure of connections and the second more related to their 
weight. Overall, it is interesting to observe how the lockdown cannot be modeled by a removal strategy based 
only on edge weights. Rather, it is the result of a joint effect deriving from the removal of links based both on 
their structural importance and weight.

Economic and demographic features of most resilient nodes
As the last step in the analysis, we examine if the resilience of nodes in the network can be explained by spe-
cific economic and demographic characteristics. In the left panel of Fig. 4, we plot the relation between Gross 
Domestic Product (GDP) Per Capita in 2016 and Node Persistence of the municipalities in the mobility network 
aggregated at the province level. Colors correspond to three countries in the sample and the size of the scatter 
points is proportional to the total population in the province for the year 2019. To eliminate the effect of outliers 
we calculate correlations removing the top 1% observations by GDP (results on the full sample are reported in 
Table 1 of section “Materials and methods”). We find an overall positive and significant correlation among the 
two variables (Pearson’s R (P–R): P ∼ 0 R = 0.37 ; Spearman’s Rho (S–R): P ∼ 0 R = 0.39 ; Kendall’s Tau (K–T): 
P ∼ 0 R = 0.27 ) meaning that the most persistent nodes are often located in provinces where production per 
capita is higher, confirming the insights acquired when studying the patterns of country mobility resilience. 
However, by looking at the country-specific correlations (the colored dashed lines in the left panel of Fig. 4) we 
find that the positive relation is especially true for France and Italy while GDP per Capita in the UK has a weaker 
relation with Node Persistence. By looking at correlation coefficients for single countries (reported in “Materials 
and methods”) we note that coefficients for Italy and France are higher and significant while UK correlation is 
lower and significant only at a significance level between 0.1 and 0.05. This finding is explained by the different 
patterns of resilience in the UK which is more equally distributed across municipalities without showing the 
emergence of a strong core-periphery structure.

The relation between total population and persistence is instead less strong in the whole sample (P–R: P ∼ 0 
R = 0.22 ; S–R: P ∼ 0 R = 0.32 ; K–T: P ∼ 0 R = 0.21 ) as also signaled by the absence of a visible pattern of the 
size of the scatter points. However, unlike the correlation with GDP per Capita, the weaker relation is significant 

Figure 4.   Correlation of node persistence with economic and demographic variables. Left panel: correlation 
between Node Persistence and GDP per Capita in 2016, with the size of nodes corresponding to Total 
Population in 2018. Right panel: correlation between Node Persistence and Value Added per Capita in 2016, 
with the size of nodes corresponding to Population Density in 2018. Overall correlation is significantly positive 
with respect to GDP per Capita (P–R: P ∼ 0 R = 0.37 ; S–R: P ∼ 0 R = 0.39 ; K–T: P ∼ 0 R = 0.27 ) and Valued 
Added per Capita (P–R: P ∼ 0 R = 0.3 ; S–R: P ∼ 0 R = 0.4 ; K–T: P ∼ 0 R = 0.27 ). Country correlations with 
Value Added per Capita are positive and significant for all countries, while for GDP per Capita are positive and 
significant only for Italy and France but not for UK (full results reported in section “Materials and methods”). 
Nodes have been aggregated at the province level to match economic variables. Colors of scatter points 
correspond to three countries in the sample. Full sample regression line reported as the continuous black line, 
while regressions lines for single countries are reported as colored dashed lines. Top 1% of the nodes by GDP 
Per Capita (left) or Value Added per Capita (right) has been removed to avoid the influence of outlier values and 
ease visualization (correlation results for the full sample are reported in “Materials and methods”).
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both in the full sample and in the single country cases with the stronger relation found in France (P–R: P ∼ 0 
R = 0.63 ; S–R: P ∼ 0 R = 0.78 ; K–T: P ∼ 0 R = 0.60 ). We can conclude that node persistence is higher in heavily 
populated provinces of France while in Italy and the UK the relation is less clear.

We repeat the analysis by using two different types of variables: Value Added per Capita and Population 
Density for the year 2016. Results are reported in the right panel of Fig. 4. As with GDP per Capita, we find a 
positive and significant relation between Node Persistence and Value Added per Capita (P–R: P ∼ 0 R = 0.3 ; 
S–R: P ∼ 0 R = 0.4 ; K–T: P ∼ 0 R = 0.27 ), this time in both the full sample and in the single country analysis 
and with higher correlation coefficients. We find, on average, a very strong and significant relation with Popula-
tion Density in every case, as can be seen by the pattern of scatter points of greater size in the top part of the plot 
(P–R: P ∼ 0 R = 0.66 ; S–R: P ∼ 0 R = 0.80 ; K–T: P ∼ 0 R = 0.61).

We can conclude that Node Persistence is highly correlated with the wealth of provinces (either measured 
by Value Added Per Capita or, with a smaller effect, by GDP per Capita) and with the density and the size of the 
population on the territory. These effects are almost always stronger for Italy and France than for the UK. All 
in all, we can see how these features identify territories where urban areas and important cities create a strong 
modular structure with few central nodes and several peripheral zones, while in the case of the UK the territory 
is organized in a completely different manner. As a consequence, the economic effect of lockdown measures in 
these countries will certainly show a completely different spatial pattern which should be carefully analyzed.

Conclusions
The COVID-19 pandemic is stressing the structural robustness of our societies. Most national governments have 
reacted to the contagion by applying mobility restrictions to contain the disease outbreak. The resulting disrup-
tion is similar to that caused by a natural disaster, but the effect is on a global scale. In this work, we analyze the 
effects of the lockdown in Italy, France, and the UK leveraging data from Facebook accounting for the movements 
of more than 13M individuals. We provide a framework to assess the effective impact of mobility restrictions 
and to perform a comparative analysis of the national mobility networks. We find that lockdown mainly affects 
national smallworldness—i.e., mobility restrictions yield a strong reduction of long-range connections in favor 
of local paths. Our analysis confirms that the national resilience to massive stress differs and depends upon the 
inner connectivity structure. Indeed, the three countries show very different mobility patterns that reflect the 
diversity of their underlying infrastructure, more concentrated in the case of France and UK, and more dis-
tributed in the case of Italy. Our analysis provides further insights into the interplay between human mobility, 
disease spreading and economic variables. Understanding the resilience of mobility networks can contribute to 
enhance the preparedness to future systemic crises and to improve our predictive capabilities on the economic 
and social impact of mobility restriction policies.

Materials and methods
Mobility data and networks.  We analyzed human mobility leveraging data provided by Facebook 
through its “Data for Good” program31. The platform provides movement maps that are based on de-identified 
and aggregated information of Facebook users who enabled their geo-positioning.

Table 1.   Correlation among node persistence and economic and demographic indicators calculated for all 
countries together and separately on each country subset. Calculation performed on the full sample (columns 
on the left) and on the sample without the top percentile to avoid the influence of outliers. First row reports 
correlation coefficients, second row reports in italic p values only for values greater than 0.001.

Country

All observations

Obs

Without top 1%

ObsPearson Spearman Kendall Pearson Spearman Kendall

Gdp Per Capita (2016)

All 0.3046 0.4154 0.2894 328 0.3732 0.3962 0.2745 324

ITA 0.4305 0.5374 0.3866 110 0.4305 0.5374 0.3866 110

FR 0.7751 0.5409 0.3836 93 0.5655 0.5101 0.3574 91

UK 0.2294 0.2148 0.1529 125 0.1795 0.1964 0.1406 123

0.0101 0.0162 0.0122 0.0469 0.0295 0.0224

Total population (2019)

All 0.2766 0.3344 0.2273 329 0.2234 0.3179 0.2152 325

ITA 0.6543 0.4939 0.3581 110 0.3706 0.4507 0.3235 107

FR 0.6035 0.7921 0.605 94 0.6358 0.7862 0.6001 93

UK 0.4544 0.5095 0.3603 125 0.4544 0.5095 0.3603 125

Value added per capita (2016)

All 0.398 0.4215 0.2917 328 0.3059 0.402 0.2762 324

ITA 0.639 0.5987 0.4369 110 0.5433 0.5764 0.4171 108

FR 0.794 0.7801 0.5954 93 0.6012 0.7655 0.5783 91

UK 0.4214 0.5203 0.3744 125 0.4214 0.5203 0.3744 125

Population density (2016)

All 0.5966 0.813 0.622 329 0.6594 0.806 0.6128 325

ITA 0.8303 0.6612 0.4863 110 0.8303 0.6612 0.4863 110

FR 0.8292 0.8542 0.6794 94 0.9265 0.8394 0.6588 91

UK 0.5311 0.6985 0.5079 125 0.517 0.6911 0.4998 124
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Movements across administrative regions (i.e. municipalities in our case) are aggregated with a 8-h frequency, 
and describe the amount of traffic flowing between two municipalities in a given time window. Similar to data 
analyzed in recent research on mobility restrictions applied in China6,7, Facebook does not really provide the 
number of people moving between two locations but rather an index, constructed with a proprietary method to 
ensure privacy and anonymization, that highly correlates with real movements31.

We collected data relative to mobility in Italy, France and United Kingdom until April 15th, with different 
starting times depending on the availability of Facebook maps (respectively February 23th, March 10th and 
March 4th). The average number of daily users with their location enabled during the period of interest is 
13,669,145 (France: 4,110,226; UK: 5,801,979; Italy: 3,786,940).

For the sake of our analysis we represent mobility flows using a weighted directed graph where nodes are 
municipalities and edges are weighted based on the amount of traffic flowing between two locations. To represent 
mobility networks before/during lockdown we aggregate daily traffic on windows of 12–13–14 days (respectively 
for France, UK and Italy) before/after the day of intervention depending on the availability of data. From these 
data, we build several graphs for each country. We consider a directed daily graph at municipality levels, where 
there can be only one edge per day from municipality A to municipality B, whose weight is the daily sum of all 
edges from A to B. The same procedure is applied for building aggregate networks at different time scales such 
as weekly graphs of pre/post lockdown graphs.

Network efficiency.  The efficiency is a global network measure that combines the information deriving 
from the network cohesiveness and the distance among the nodes. It measures how efficiently information is 
exchanged over the network33 and it can be defined as the average of nodal efficiencies eij among couples of ver-
tices of the network. Given a weighted network G(V, E) with n = |V | nodes and m = |E| edges, the connections 
of G are represented by the weighted adjacency matrix W with elements {wij} where wij ≥ 0 ∀ i, j. The global 
efficiency can be written by means of the following expression:

where dij is the distance between two generic nodes i and j, defined as the length of the shortest path among such 
nodes. The shortest path length dij is the smallest sum of the weights wij throughout all the possible paths in the 
network from i to j. When node i and j cannot be connected by any path then dij = +∞ and eij = 0 . Following 
the methodology of33, the global efficiency Eglob(G) is normalized in order to assume maximum value E(G) = 1 
in the case of perfect efficiency. In such a setting the nodal efficiency, i.e. the contribution of each node to the 
global efficiency, can be simply written as:

Beside the geographical distance between two nodes of the graphs, proximity can also be defined consider-
ing that two locations are closer if many movements happen between them. To compute network efficiency in 
our case we use the reciprocal of weights on links to obtain the shortest path distance among couples of nodes.

Gini index.  The Gini index is a classic example of a synthetic indicator used for measuring inequality of 
social and economic conditions. The Gini index can be defined starting from the Gini absolute mean difference 
�39 of a generic vector y with n elements, that can be written as:

The relative mean difference is consequently defined as �/µy where µy = n−1
∑n

i=1 yi . Thus, the relative 
mean difference equals the absolute mean difference divided by the mean of the vector y. The Gini index g is 
one-half of the Gini relative mean difference.

Values of g ∼ 1 signal that the considered vector displays high inequality in the distribution of its entries, 
while values of g ∼ 0 signal a tendency towards equality.

Percolation process and node persistence.  To measure the extent to which a node resists to percolation 
process, we define the following quantity as node persistence. Consider a graph G with nodes V = {v1, . . . , vk} 
and edges E = {e1, . . . , eh} . Let S : E �→ R

+ be a function that assign a finite positive real number wl , l ∈ 1 . . . h 
to each edges e1, . . . , eh of the network. For instance, S can be the function that assigns each edge its weight or its 
position in the edge ranking for a certain metric, e.g edge betweenness. More simply, S can be seen as a function 
that assigns a removal order to the edges. Consider the finite set W = [w1, . . . ,wn+1] of the distinct values taken 
by wl , with w1 < w2 < · · · < wn+1 . Suppose that we run a percolation process that consists of sequentially delet-
ing edges according to the values assigned by S to each edge in increasing order, that is, in the first iteration we 

(1)Eglob(G) =
1

n(n− 1)

∑

i �=j∈V

eij =
1

n(n− 1)

∑

i �=j∈G

1

dij

(2)ei =
1

n− 1

∑

j �=i

1

dij
.

(3)� =
1

n2

n∑

i=1

n∑

j=1

|yi − yj|

(4)g =
�

2µy
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delete all the edges with wl less or equal than w1 , in the second iteration we delete all the edges with weights less 
or equal than w2 and so on until the last iteration, n+ 1 , where we delete all the edges in the network.

Notice that there is no loss of generality in considering only increasing order, since the S function can be 
arbitrarily defined.

Thus, at iteration i, we delete all the edges with wl less or equal than wi . Consider now a node vj ∈ V. At each 
step of the process, vj may or may not be part of the LWCC of the network G. Clearly, if vj does not belong to the 
LWCC of G at step i, it will not be in the LWCC of G at step i + 1, i + 2, . . . , n+ 1 . Defining Mvj as the maximum 
number of iterations i such that vj belongs to the LWCC of G, the persistence of node vj respect to the ordering 
induced by function S is defined as:

That is, if the whole process takes n+ 1 iterations to disconnect the whole network, the persistence of a node vj 
respect to the function S is defined as the maximum number of iterations for which vj is connected to the LWCC 
over the maximum number of iteration for which there are connected nodes in the network.

Notice that several instances of the function S and several edge removal strategies can be considered to model 
different percolation processes. We tried several removal strategies based on different edge features such as 
weight, geographical distance, and edge betweenness. Since our goal is to mimic the disruption of the countries’ 
mobility networks, we focus on the one that better approximates the networks’ connectedness over time, which 
turned out to be increasing edge weight (Supplementary Information 1).

Correlation of economic and demographic indicators with nodes persistence. 

Data availibility
For what concerns Facebook human mobility, all data are provided under an academic license agreement with 
Facebook through its “Data for Good” program (available at https://​dataf​orgood.​fb.​com/​tools/​disea​se-​preve​
ntion-​maps/). Facebook releases data upon request to nonprofit organization and academics. Economic data 
have been obtained from Eurostat and are available at https://​ec.​europa.​eu/​euros​tat/​data/​datab​ase.
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