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Abstract. — We investigate properties of some extensions of a class of Fourier-based probability

metrics, originally introduced to study convergence to equilibrium for the solution to the spatially
homogeneous Boltzmann equation. At di¤erence with the original one, the new Fourier-based met-

rics are well-defined also for probability distributions with di¤erent centers of mass, and for discrete
probability measures supported over a regular grid. Among other properties, it is shown that, in the

discrete setting, these new Fourier-based metrics are equivalent either to the Euclidean–Wasserstein
distance W2, or to the Kantorovich–Wasserstein distance W1, with explicit constants of equivalence.

Numerical results then show that in benchmark problems of image processing, Fourier metrics pro-
vide a better runtime with respect to Wasserstein ones.
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1. Introduction

In computational applied mathematics, numerical methods based on Wasserstein
distances achieved a leading role over the last years. Examples include the com-
parison of histograms in higher dimensions [6, 9, 22], image retrieval [21], image
registration [4, 11], or, more recently, the computations of barycenters among im-
ages [7, 15]. Surprisingly, the possibility to identify the cost function in a Wasser-
stein distance, together with the possibility of representing images as histograms,
led to the definition of classifiers able to mimic the human eye [16, 21, 24].

More recently, metrics which are able to compare at best probability distri-
butions were introduced and studied in connection with machine learning, where
testing the e‰ciency of new classes of loss functions for neural networks train-
ing has become increasingly important. In this area, the Wasserstein distance
often turns out to be the appropriate tool [1, 5, 18]. Its main drawback, though,
is that it su¤ers from high computational complexity. For this reason, attempts
to use other metrics, which require a lower computational cost while maintain-
ing a good approximation, have been object of recent research [28]. There, the
theory of approximation in the space of wavelets was the main mathematical
tool.

Following the line of thought of [28], we consider here an alternative to the
approximation in terms of wavelets, which is furnished by metrics based on the



Fourier transform. In terms of computational complexity, the price to pay for a
dimension Ng 1 of the data changes from a time OðNÞ to the time OðN logNÞ
required to evaluate the fast Fourier transform.

While this represents a worsening, with respect to the use of wavelets, in terms
of computational complexity, there is an e¤ective improvement with respect to
the computational complexity required to evaluate Wasserstein-type metrics,
which is of the order OðN 3 logNÞ. Furthermore, from the point of view of the
important questions related to the comparison of these metrics with Wasserstein
metrics in problems motivated by real applications, we prove in this paper that
in the case of probability measures supported on a bounded domain, one has
a precise and explicit evaluation of the constants of equivalence among these
Fourier-based metrics and the Wassertein ones, a result which is not present in
[28].

The Fourier-based metrics considered in this paper were introduced in [19], in
connection with the study of the trend to equilibrium for solutions of the spatially
homogeneous Boltzmann equation for Maxwell molecules. Since then, many ap-
plications of these metrics have followed in both kinetic theory and probability
[10, 12–14, 20, 25, 30]. All these problems deal with functions supported on the
whole space Rd , with db 1, that exhibit a suitable decay at infinity which guar-
antees the existence of a suitable number of moments.

Given two probability measures m; n a PðRdÞ, db 1, and a real parameter
s > 0, the Fourier-based metrics ds considered in [19] are given by

dsðm; nÞ :¼ sup
k ARdnf0g

jm̂mðkÞ � n̂nðkÞj
jkjs ;ð1:1Þ

where m̂m and n̂n are the Fourier transforms of the measures m and n, respectively.
As usual, given a probability measure m a PðRdÞ, the Fourier transform of m is
defined by

m̂mðkÞ :¼
Z
Rd

e�ik�x dmðxÞ:

These metrics, for sb 1, are well-defined under the further assumption of
boundedness and equality of some moments of the probability measures. Indeed,
a necessary condition for ds to be finite, is that moments up to ½s� (the integer part
of s) are equal for both measures [19].

In dimension d ¼ 1, similar metrics were introduced a few years later by
Baringhaus and Grübel in connection with the characterization of convex com-
binations of random variables [8]. Given two probability measures m; n a PðRdÞ,
db 1, and two real parameters s > 0 and pb 1, the multi-dimensional version of
these Fourier-based metrics reads

Ds;pðm; nÞ :¼
�Z

Rd

jm̂mðkÞ � n̂nðkÞjp

jkjðpsþdÞ dk
�1=p

:ð1:2Þ
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The metrics defined by (1.1) and (1.2) belong to the set of ideal metrics [32], and
have been shown to be equivalent to other common probability distances [19, 30],
including the Wasserstein distance W2ðm; nÞ [14], given by

W2ðm; nÞ :¼ inf
p APðm; nÞ

Z
Rd�Rd

jx� yj2 dpðx; yÞ
� �1=2

;ð1:3Þ

where the infimum is taken on the set Pðm; nÞ of all probability measures on
Rd � Rd with marginal densities m and n. However, in dimension d > 1 the con-
stants of equivalence are not explicit [14], so that it is di‰cult to establish a com-
parison between these metrics’ e‰cacy in applications.

An unpleasant aspect related to the application of the previous Fourier-based
distances is related to its finiteness, that requires, for high values of s, a su‰-
ciently high number of equal moments for the underlying probability measures.
In the context of kinetic equations of Boltzmann type, where conservation of
momentum and energy of the solution is a consequence of the microscopic con-
servation laws of binary interactions among particles, this requirement on ds,
with 2 < s < 3, is clearly not restrictive. However, in order to apply the Fourier-
based metrics outside of the context of kinetic equations, this requirement ap-
pears unnatural. To clarify this point, let us consider the case in which we want
to compare the distance between two images. If we take two grey scale images
and model them as probability distributions, there is no reason why these distri-
butions possess the same expected value. The simplest example is furnished by
two images consisting of a black dot, each one centered in a di¤erent point of
the region, that can be modeled as two Dirac delta functions centered in two dif-
ferent points.

In this paper we improve the existing results concerning the evaluation of the
constants in the equivalence relations between the Fourier-based metrics and the
Wasserstein one, in a relevant setting with respect to applications. This equiva-
lence is related to the comparison of two discrete measures and it is based on
the properties of the Fourier transform in the discrete setting. To this extent, we
consider a new version of these metrics, the periodic Fourier-based metrics, that
play the role of the metrics (1.1) and (1.2) in the discrete setting. With our results,
we show that the new family of Fourier-based metrics represents a fruitful alter-
native to the Wasserstein metrics, both from the theoretical and the computa-
tional points of view.

To weaken the restriction about moments, we further consider a variant of the
Fourier metric d2 that remains well-defined even for probability measures with
di¤erent mean values.

The content of this paper is as follows. In Section 2 we introduce the notations
and the basic concepts of measure theory and optimal transport. Furthermore,
we define the Fourier-based metrics, we recall their main properties, and we in-
troduce our extension. Then, in view of applications, in Section 3, we consider a
discrete setting and we define and study the properties of the new family of peri-
odic Fourier-based metrics, highlighting their explicit equivalence with the Was-
serstein distance in various cases. Section 4 presents numerical results obtained
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comparing our implementation of the periodic Fourier-based metrics with the
Wasserstein metrics as implemented in the POT library [17]. The concluding re-
marks are contained in Section 5.

2. An extension of Fourier-based metrics

In what follows, we briefly review some basic notions of optimal transport, to-
gether with the definition and some properties of Wassertein and Fourier-based
metrics. The final goal is to extend the definition of the metrics (1.1) and (1.2)
for the particular case s ¼ 2, which allows for a direct and fruitful comparison
between the Fourier-based metrics and the Wasserstein metric W2 defined in
(1.3). In what follows, we only present the notions that are necessary for our pur-
pose. For a deeper insight on optimal transport, we refer the reader to [2, 3, 26,
31]. Likewise, we address the interested reader to [14] for an exhaustive review
of the properties of the Fourier-based metrics and their connections with other
metrics used in probability theory.

We work on the Euclidean space Rd , endowed with the Borel s-algebra
BðRdÞ. We use bold letters to denote vectors of Rd . If x a Rd , then xi denotes
its i-th coordinate. Given x; y a Rd , 3x; y4 ¼

Pn
i¼1 xi yi is their scalar product

and jxj ¼ 3x; x41=2 is the Euclidean norm (or modulus) of x.
The set of probability measures on Rd is denoted by PðRdÞ. For all m a N

we denote by PmðRdÞ the set of probability measures with finite moments up to
order m

PmðRdÞ :¼ m a PðRdÞ :
Z
Rd

xb dmðxÞ < þl; Eb a Nd ; jbjam

� �
:

Given m a PðRdÞ and a Borel map f : Rd ! Rd , then the image measure (or
push-forward) of m by f is fam a PðRdÞ, given by famðAÞ ¼ mð f �1ðAÞÞ for all
A a BðRdÞ. Equivalently, for every continuous compactly supported function f
on Rd , it holds Z

Rd

fðyÞ dð famÞðyÞ ¼
Z
Rd

fð f ðxÞÞ dmðxÞ:

Our first goal is to define the Fourier-based metrics ds, in the range 1 < sa 2,
on PðRdÞ.

Definition 1. Given m a P1ðRdÞ, we say that

mm ¼
Z
Rd

x dmðxÞ

is the center of m.

The center of a measure m can be moved by resorting to a translation. Given
m a P1ðRdÞ and t a Rd , we define the translated measure mt a P1ðRdÞ by

mt ¼ S t
am; where S tðxÞ ¼ xþ t:
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Lemma 1. Given m; n a P1ðRdÞ, there exists a unique vector t a Rd such that

mm ¼ mnt :

Proof. Let t ¼ mm �mn, then

mnt ¼
Z
Rd

x dntðxÞ ¼
Z
Rd

ðxþ tÞ dnðxÞ ¼ mn þ t ¼ mm: r

Let us recall now the definition of transport plan, and the consequent defini-
tion of Wasserstein distance.

Definition 2 (Transport plan). Given two probability measures m; n a PðRdÞ,
a vector p a PðRd � RdÞ is called a transport plan between m and n if its mar-
ginals coincide with m, n, that is

pðA� RdÞ ¼ mðAÞ EA a BðRdÞ;ð2:4Þ
pðRd � BÞ ¼ nðBÞ EB a BðRdÞ:ð2:5Þ

We denote by Pðm; nÞ the set of all transport plans between m and n.

Definition 3 (Wasserstein distance). Given p a N and m; n a PpðRdÞ, the
Wasserstein distance of order p between m and n is defined as

Wpðm; nÞ :¼ inf
p APðm; nÞ

Z
Rd�Rd

jx� yjp dpðx; yÞ
� �1=p

;ð2:6Þ

where j � j is a norm defined in Rd .

In this paper, we consider only the Euclidean norm, and we focus on Wasser-
stein distances with exponents p ¼ 1 and p ¼ 2, namely

W1ðm; nÞ :¼ inf
p APðm; nÞ

Z
Rd�Rd

jx� yj dpðx; yÞ
� �

;ð2:7Þ

W2ðm; nÞ :¼ inf
p APðm; nÞ

Z
Rd�Rd

jx� yj2 dpðx; yÞ
� �1=2

:ð2:8Þ

The W2 metric satisfies an explicit translation property (Remark 2.19, [16]). We
give below a short proof of this property.

Lemma 2. Let m; n a P2ðRdÞ, with centers mm and mn, respectively. For any given
pair of vectors v;w a Rd we have

W2ðmv; nwÞ
2 ¼ W2ðm; nÞ2 þ jv� wj2 þ 23v� w;mm �mn4:ð2:9Þ

In addition, if we choose v ¼ �mm and w ¼ �mn it holds

W2ðm�mm
; n�mn

Þ2 ¼ W2ðm; nÞ2 � jmm �mnj2:ð2:10Þ
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Proof. Given a transport plan p a Pðm; nÞ, we consider the transport plan

~pp :¼ ðS v;SwÞap;

where S vðxÞ ¼ xþ v, SwðyÞ ¼ yþ w. ~pp is a transport plan between the translated
measures mv and nw. Then, by definition of push-forward, we getZ

Rd�Rd

jx� yj2 d~ppðx; yÞ

¼
Z
Rd�Rd

jðxþ vÞ � ðyþ wÞj2 dpðx; yÞ

¼
Z
Rd�Rd

ðjx� yj2 þ jv� wj2 þ 23x� y; v� w4Þ dpðx; yÞ

¼
Z
Rd�Rd

jx� yj2 dpðx; yÞ þ jv� wj2 þ 23mm �mn; v� w4:

If p is an optimal transport plan between m and n, we have

W2ðmv; nwÞ
2
a

Z
Rd�Rd

jx� yj2 d~ppðx; yÞ

¼ W2ðm; nÞ2 þ jv� wj2 þ 23v� w;mm �mn4:

By repeating the previous argument with an optimal transport plan between
mv, nw, we find

W2ðmv; nwÞ
2 ¼

Z
Rd�Rd

jx� yj2 dpðx; yÞ þ jv� wj2 þ 23v� w;mm �mn4

bW2ðm; nÞ2 þ jv� wj2 þ 23v� w;mm �mn4:

Hence, we can conclude

W2ðmv; nwÞ
2 ¼ W2ðm; nÞ2 þ jv� wj2 þ 23v� w;mm �mn4: r

The idea of using translation operators to compute the distance of probability
measures with di¤erent centers can be used to properly modify the Fourier-based
metrics ds and Ds;p defined in (1.1) and (1.2). Indeed, as briefly discussed in the
introduction, the case sb 1 requires the probability measures to satisfy the fur-
ther condition given below [19].

Proposition 1 (Proposition 2.6, [14]). Let bsc denote the integer part of s a R,
and assume that the densities m; n a PsðRdÞ possess equal moments up to bsc if
s B N, or equal moments up to s� 1 if s a N. Then the Fourier-based distance
dsðm; nÞ is well-defined. In particular, d2ðm; nÞ is well-defined for two densities with
the same center.
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The interest in the d2 metric is related to its equivalence to the Euclidean
Wasserstein distance W2. A detailed proof in dimension db 1 can be found in
the review paper [14].

Theorem 1 (Proposition 2.12 and Corollary 2.17, [14]). For any given pair of
probability densities m; n a P2ðRdÞ such that mm ¼ mn, the d2 metric is equivalent
to the Euclidean Wasserstein distance W2, that is, there exist two positive bounded
constants c < C such that

cW2ðm; nÞa d2ðm; nÞaCW2ðm; nÞ:ð2:11Þ

The proof in [14] does not provide in general the explicit expression of the
two constants c and C. The value of these constants is quite involved, and it is
strongly dependent on higher moments of the densities.

The equivalence result of Theorem 1 can easily be extended to cover the case
of probability measures with di¤erent centers of mass. To this aim it is necessary,
in analogy with the property of Wasserstein distance W2 stated in Lemma 2, to
modify the Fourier-based metrics d2 and D2;p in such a way to allow for proba-
bility measures with di¤erent centers of mass. We start by considering the case of
the metric d2.

Definition 4 (Translated Fourier-based metric). We define the function
D2 : P2ðRdÞ �P2ðRdÞ ! R as:

D2ðm; nÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðm; nmm�mn

Þ2 þ jmm �mnj2
q

:ð2:12Þ

Owing to Remark 1 and Proposition 1, D2ðm; nÞ is well-defined for each pair
of probability measures in P2ðRdÞ, independently of their centers. Note that
nmm�mn

, which is the translation of n by mm �mn, has the same center as m. One
could give an equivalent definition of D2 by translating m, instead of n, or by
translating both centers to 0.

Lemma 3. Given m; n a P2ðRdÞ and v;w a Rd , then

j bmvmvðkÞ � bnwnwðkÞj ¼ jm̂mðkÞ � dnw�vnw�vðkÞj ¼ j dmv�wmv�wðkÞ � n̂nðkÞj:

Therefore

d2ðmv; nwÞ ¼ d2ðm; nw�vÞ ¼ d2ðmv�w; nÞ:

In particular, the function ðm; nÞ ! d2ðm; nmm�mn
Þ is symmetric.

Proof. By the translation property of the Fourier Transform, for all v a Rd we
have the identity

bmvmvðkÞ ¼ e�iv�km̂mðkÞ:

Therefore
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je�iv�km̂mðkÞ � e�iw�kn̂nðkÞj ¼ je�iw�kðe�iðv�wÞ�km̂mðkÞ � n̂nðkÞÞj
¼ je�iðv�wÞ�km̂mðkÞ � n̂nðkÞj:

This shows that

sup
k ARdnf0g

je�iv�km̂mðkÞ � e�iw�kn̂nðkÞj
jkj2

¼ sup
k ARdnf0g

je�iðv�wÞ�km̂mðkÞ � n̂nðkÞj
jkj2

: r

Lemma 3 implies the following theorem.

Theorem 2. The function D2 defined in (2.12) is a distance over P2ðRdÞ.

Proof. Clearly D2ðm; nÞb 0, Em; n a P2ðRdÞ, and D2ðm; nÞ ¼ 0 if and only if
m ¼ n. Symmetry follows from Lemma 3. Finally, both d2ðm; nÞ, in reason of the
fact that it is a distance, and jmm �mnj satisfy the triangular inequality. r

An analogous extension can be done for the metric D2;p defined in (1.2).

Definition 5. Given pb 1, we define D2;p : P2ðRdÞ �P2ðRdÞ ! R by

D2;pðm; nÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2;pðm; nmm�mn

Þ2 þ jmm �mnj2
q

:

D2;p is a metric on P2ðRdÞ.

It is remarkable that the result of Theorem 1 can be extended to the D2

metric.

Theorem 3. The function D2 defined in (2.12) is equivalent to the W2 distance.

Proof. Let m; n a P2ðRdÞ and let m�, n� denote the two corresponding trans-
lated measures centered in 0. By Lemma 2, we have

W 2
2 ðm; nÞ ¼ W 2

2 ðm�; n�Þ þ jmm �mnj2:ð2:13Þ

Owing to Theorem 1, there exist two constants c;C a ð0;lÞ such that

cd2ðm�; n�ÞaW2ðm�; n�ÞaCd2ðm�; n�Þ:ð2:14Þ

Using (2.13) in (2.14), we get

cd2ðm�; n�Þ2 þ jmm �mnj2 aW2ðm; nÞ2 aCd2ðm�; n�Þ2 þ jmm �mnj2;

which can be rewritten as

minfc; 1gðd2ðm�; n�Þ2 þ jmm �mnj2ÞaW2ðm; nÞ2

amaxf1;Cgðd2ðm�; n�Þ2 þ jmm �mnj2Þ:
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Finally

minfc; 1gD2
2ðm; nÞaW 2

2 ðm; nÞamaxf1;CgD2
2ðm; nÞ: r

3. The Periodic Fourier-based metrics

In this section, we introduce a family of (Discrete) Periodic Fourier-based metrics
suitable to measure the distance between discrete probability measures whose
support is restricted to a given set of points, and we discuss their equivalence
with the Wasserstein metrics. The main result is that in this case one obtains a
precise estimation of the constants of equivalence.

Definition 6 (Regular grid). For N a Nnf0g, we define the regular grid

GN :¼ fx a Rd : Nx a Zd B ½0;NÞdg:

Note that GN � ½0; 1Þd .

Definition 7 (Discrete measure over a grid). We say that m is a a discrete mea-
sure over GN if its support is contained in GN , that is, if m has the form

mðxÞ ¼
X
y AGN

mydðx� yÞ;ð3:15Þ

where my a R, my b 0 for all y a GN .

The Discrete Fourier transform of a discrete measure over GN is given by

m̂mðkÞ ¼
X
x AGN

mxe
�i3x;k4:ð3:16Þ

The periodicity of the complex exponential implies that m̂m is 2pN-periodic over all
directions, so that it is su‰cient to study m̂m over a strict subset of Rd , e.g., over
½0; 2pN�d . For instance, the value of the Fourier-based metric (1.1) is achieved

by searching for the ‘‘sup’’ operator on the bounded set ½0; 2pN�d . Since

1

jkj2
b

1

jk 0j2
; Ek a ð0; 2pN�d ; Ek 0 a Rd

þn½0; 2pN�d

and the function

k ! jm̂mðkÞ � n̂nðkÞj

is 2pN-periodic, for any given constant s > 0 the Discrete Fourier-based metric
can be defined as

dsðm; nÞ ¼ sup
k A ½0;2pN�dnf0g

jm̂mðkÞ � n̂nðkÞj
jkjs :ð3:17Þ
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Definition 8 (Dilated discrete measures). Given a discrete measure m over GN

and g a R such that g > 0, the g-dilated measure mg is

mgðxÞ ¼
X
y AGN

mydðgx� yÞ:

The Fourier transform of mg is

m̂mgðkÞ ¼
X
x AGN

mxe
�i

g3k;x4 ¼ m̂m
�k
g

�
:ð3:18Þ

Therefore, if m̂m is T-periodic, then m̂mg is gT -periodic. Like the original metrics (1.1)
[14], the metric (3.17) satisfies the dilation property

dsðmg; ngÞ ¼
1

gs
dsðm; nÞ:ð3:19Þ

In particular, if we consider m of the form (3.15), the Fourier transform of its
1
N
-dilation is 2p-periodic.

We recall the definition of the metrics (1.2):

Ds;pðm; nÞ :¼
�Z

Rd

jm̂mðkÞ � n̂nðkÞjp

jkjðspþdÞ dk
�1

p

;

where s > 0 and pb 1. As we did for the Fourier Based Metrics ds, thanks to the
periodicity of the Fourier transform, we can restrict the domain of integration to
½0;T �d . In this case, for any given choice of the parameters p and s, this distance
is well-defined any time the integrand is integrable in a neighbourhood of the
origin. This corresponds to requiring that 1

jkj g is integrable on the d-dimensional
ball B1ð0Þ ¼ fk a Rd : jkja 1g, that is, if and only if g < d. This consideration
suggests the following definition.

Definition 9 (The Periodic Fourier-based Metric). Let m and n be two prob-
ability measures over GN . The ðs; p; aÞ-Periodic Fourier-based Metric (or PFM)
between m and n is defined as

f ðaÞs;p ðm; nÞ :¼
� 1

jT jd
Z
½0;T �d

jm̂mðkÞ � n̂nðkÞjp

jkjspþa dk
�1

p

;ð3:20Þ

where p; s; a a R and T is the period of m̂m and n̂n. When a ¼ 0 and s a N we say
that fs;p :¼ f

ð0Þ
s;p is pure.

As discussed in the introduction, in dimension d ¼ 1 the continuous version of
the metrics (3.20) has been considered in [8]. Recently, these metrics have been
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considered in relation with the problem of convergence toward equilibrium of a
Fokker–Planck type equation modeling wealth distribution [29], where various
properties of these metrics have been studied. As pointed out in [29], if m and n

have equal r-moments, the function jm̂mðkÞ � n̂nðkÞj behaves like jkjrþ1 as k ! 0. As
a consequence, the value of f

ðaÞ
s;p ðm; nÞ is finite only if the following condition is

verified

pðs� r� 1Þ þ a < d:ð3:21Þ

If s, p and a satisfy (3.21), and thus f
ðaÞ
s;p < þl, we say that f

ðaÞ
s;p is feasible.

Proposition 2. Let m and n be two probability measures over GN. For any given
constant g > 0, the following dilation property holds

f ðaÞs;p ðmg; ngÞ ¼
1

jgjsþ
a
p

f ðaÞs;p ðm; nÞ:

Proof. Using relation (3.18) and the change of variables k ¼ gk 0, we get

f ðaÞs;p ðmg; ngÞ ¼
� 1

jgT jd
Z
½0; gT �d

jm̂mgðkÞ � n̂ngðkÞjp

jkjspþa dk
�1

p

¼
� 1

jgT jd
Z
½0; gT �d

m̂m
�
k
g

�
� n̂n

�
k
g

���� ���p
jkjspþa dk

�1
p

¼
� 1

jgjd
1

jT jd
Z
½0;T �d

jm̂mðk 0Þ � n̂nðk 0Þjp

jgjspþajk 0jspþa jgjd dk 0
�1

p

¼ 1

jgjsþ
a
p

� 1

jT jd
Z
½0;T �d

jm̂mðk 0Þ � n̂nðk 0Þjp

jk 0jspþa dk 0
�1

p

¼ 1

jgjsþ
a
p

f ðaÞs;p ðm; nÞ: r

It is important to remark that, at di¤erence with the metrics (1.2), the analo-
gous of the dilation property (3.19) is true only for a ¼ 0, that is only for pure

metrics. We show next that the f
ðaÞ
s;p metrics satisfy various monotonicity proper-

ties with respect to the parameters p and s.

Proposition 3. Let m and n be two probability measures over GN, with moments
equal up to r. If ta s, then

f
ðaÞ
t;p ðm; nÞa ð

ffiffiffi
d

p
jT jÞðs�tÞ

f ðaÞs;p ðm; nÞ;

for any p and a for which the metric is feasible, i.e., for pðs� r� 1Þ þ a < d.
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Proof. We compute

f
ðaÞ
t;p ðm; nÞ ¼

� 1

jT jd
Z
½0;T �d

jm̂mðkÞ � n̂nðkÞjp

jkj tpþa dk
�1

p

¼
� 1

jT jd
Z
½0;T �d

jkjpðs�tÞ

jkjpðs�tÞ
jm̂mðkÞ � n̂nðkÞjp

jkj tpþa dk
�1

p

¼
� 1

jT jd
Z
½0;T �d

jkjpðs�tÞ jm̂mðkÞ � n̂nðkÞjp

jkjspþa dk
�1

p

a ð
ffiffiffi
d

p
jT jÞðs�tÞ

f ðaÞs;p ðm; nÞ:

The last inequality is obtained resorting to the bound jkja
ffiffiffi
d

p
jT j. r

Proposition 4. Let m and n be two probability measures over GN. If a ¼ 0 and
pa q, then

fs;pðm; nÞa fs;qðm; nÞ:

Proof. We have

fs;pðm; nÞ ¼
� 1

jT jd
Z
½0;T �d

jm̂mðkÞ � n̂nðkÞjp

jkjsp dk
�1

p

¼
�� 1

jT jd
Z
½0;T � d

jm̂mðkÞ � n̂nðkÞjp

jkjsp dk
�q

p
�1

q

a

� 1

jT jd
Z
½0;T �d

�jm̂mðkÞ � n̂nðkÞjp

jkjsp
�q

p

dk
�1

q

¼ fs;qðm; nÞ:

The last inequality follows from Jensen’s inequality. r

Remark 1. By letting p ! þl, we get

lim
p!l

fs;pðm; nÞ ¼ fs;lðm; nÞ :¼ dsðm; nÞ:

Thanks to Hölder inequality, for all p < þl we have the bound

fs;pðm; nÞa dsðm; nÞ:ð3:22Þ

The results of this Section are preliminary to our main result, which deals with
the equivalence of the pure metrics, for p ¼ 2, with the Wasserstein metrics. For
the sake of simplicity, and without loss of generality, in the next subsection we
consider measures in dimension d ¼ 2.
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3.1. Equivalence with the Wasserstein metric W1

We consider the two cases s ¼ 1 and s ¼ 2, in dimension d ¼ 2, and we show that
f1;2 and f2;2 are equivalent to W1 and W2, respectively.

We start with the case s ¼ 1. For any m; n a PðGNÞ, the PFM is

f1;2ðm; nÞ ¼
� 1

jT j2
Z
½0;T �2

jm̂mðkÞ � n̂nðkÞj2

jkj2
dk

�1
2

:ð3:23Þ

We have the following

Theorem 4. For any pair of measures m; n a PðGNÞ, we have the inequality

f1;2ðm; nÞaW1ðm; nÞ:

Proof. Let p be a transport plan between m and n. It holds

jm̂mðkÞ � n̂nðkÞj ¼
X

x;y AGN

e�ik�xpðx; yÞ �
X

x;y AGN

e�ik�ypðx; yÞ
�����

�����
¼

X
x;y AGN

ðe�ik�x � e�ik�yÞpðx; yÞ
�����

�����
a

X
x;y AGN

je�ik�x � e�ik�yjpðx; yÞ

¼
X

x;y AGN

j1� eik�ðx�yÞjpðx; yÞ

a
X

x;y AGN

jk � ðx� yÞjpðx; yÞ

a jkj
X

x;y AGN

jx� yjpðx; yÞ:

Hence, if p is the optimal transport plan, we conclude with the inequality

jm̂mðkÞ � n̂nðkÞja jkjW1ðm; nÞ:ð3:24Þ

Using inequality (3.24) into definition (3.23), we finally obtain the bound

f1;2ðm; nÞa
� 1

jT j2
Z
½0;T �2

ðjkjW1ðm; nÞÞ2

jkj2
dk

�1
2 ¼ W1ðm; nÞ:ð3:25Þ r

Since W1ðm; nÞ < þl for every m; n a PðGNÞ, inequality (3.25) implies that
f1;2 is bounded in correspondence to any pair of probability measures over the
grid GN .
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We now show that f1;2 and W1 satisfy a reverse inequality, thus concluding
that the two metrics are equivalent.

Theorem 5. For any pair of measures m; n a PðGNÞ it holds

W1ðm; nÞa
T 2

2p
f1;2ðm; nÞ:ð3:26Þ

Proof. Owing to the dual characterization of the W1 distance (see [31], Chapter
5), there exists a 1-Lipschitz function f such that

W1ðm; nÞ ¼
Z
R2

fðxÞ dmðxÞ �
Z
R2

fðxÞ dnðxÞ:

Since m and n are discrete and supported on a subset of ½0; 1�2, we can write

W1ðm; nÞ ¼
X
x AGN

fðxÞðmx � nxÞ:

Therefore, resorting to the fact that both the measures have the same mass, for
any given constant c a R we have

W1ðm; nÞ ¼
X
x AGN

ðfðxÞ þ cÞðmx � nxÞ:

The last identity permits to choose f such that f
�
N
2 ;

N
2

�
¼ 0. Since f is 1-Lipschitz,

we conclude that

jfðxÞja
ffiffiffi
2

p

2
; Ex a GN :ð3:27Þ

By Hölder inequality we obtain

W1ðm; nÞa
�X
x AGN

jfðxÞj2
�1

2
� X
x AGN

jmx � nxj2
�1

2

:

Since X
x AGN

jmx � nxj2 ¼
1

jT j2
Z
½0;T �2

AðkÞBðkÞ dk

where

AðkÞ ¼
X
x AGN

ðmx � nxÞe�i3x;k4

BðkÞ ¼
X
y AGN

ðmy � nyÞeþi3y;k4
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we have X
x AGN

jmx � nxj2 ¼
1

jT j2
Z
½0;T �2

jm̂mðkÞ � n̂nðkÞj2 dk:

Now using (3.27) we obtain

W1ðm; nÞa
ffiffiffi
2

p
N

2

� 1

jT j2
Z
½0;T �2

jm̂mðkÞ � n̂nðkÞj2 dk
�1

2

¼
ffiffiffi
2

p
N

2

� 1

jT j2
Z
½0;T �2

jkj2 jm̂mðkÞ � n̂nðkÞj2

jkj2
dk

�1
2

:

Since jkj2 a 2T 2 and T ¼ 2pN, we can finally conclude that

W1ðm; nÞa
T 2

2p

� 1

jT j2
Z
½0;T �2

jm̂mðkÞ � n̂nðkÞj2

jkj2
dk

�1
2 ¼ T 2

2p
f1;2ðm; nÞ: r

In consequence of the previous estimates, it is immediate to show that the met-
rics ds and W1 are equivalent. This is proven in the following

Corollary 1. For any pair of measures m; n a PðGNÞ

d1ðm; nÞaW1ðm; nÞa
T 2

2p
d1ðm; nÞ:

Proof. The first inequality is a consequence of bound (3.24). The second one
follows from inequality (3.22). r

3.2. Equivalence with the Wasserstein metric W2

The aim of this Section is to show the equivalence of the Fourier-based metric
f2;2 and the Wasserstein metric W2. Let s ¼ 2. In this case, the PFM takes the
form

f2;2ðm; nÞ ¼
� 1

jT j2
Z
½0;T �2

jm̂mðkÞ � n̂nðkÞj2

jkj4
dk

�1
2

:

Clearly, the distance between the two probability measures is well-defined only
when m and n possess the same expected value. Since, in general this is not the
case, we start by translating the measures, as done in Section 2, in order to satisfy
this condition. The following proposition shows that, for probability measures
with the same center, the topology induced by f2;2 is not stronger than the topol-
ogy induced by W2.
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Theorem 6. For any pair of measures m; n a PðGNÞ such that mm ¼ mn, it holds

f2;2ðm; nÞa 2
ffiffiffi
2

p
W2ðm; nÞ:ð3:28Þ

In particular, f2;2ðm; nÞ < l:

Proof. For any given pair of probability measures m and n in PðGNÞ, with
centers mm ¼ mn, we have

ik
X
x AGN

xmx ¼ ik
X
y AGN

yny:

For any transport plan p between m and n, we can rewrite the previous relations
in the form

ik
X

x;y AGN

ðx� yÞpx;y ¼ 0:ð3:29Þ

Using identity (3.29) we obtain

m̂mðkÞ � n̂nðkÞ ¼
X
x AGN

mxe
�ik�x �

X
y AGN

nye
�ik�y

¼
X

x;y AGN

ðe�ik�x � e�ik�y � ik � ðx� yÞÞpx;y

¼
X

x;y AGN

e�ik�yðe�ik�ðx�yÞ � 1� ik � ðx� yÞÞpx;y

þ
X

x;y AGN

ik � ðx� yÞðe�ik�y � 1Þpx;y:

Using that for all y a R

jeiy � 1ja jyj;

jeiy � 1� iyja y2

2

we obtain

jm̂mðkÞ � n̂nðkÞja jkj2

2

X
x;y AGN

jx� yj2px;y þ jkj2
X

x;y AGN

jx� yj jyjpx;y

a
jkj2

2

X
x;y AGN

jx� yj2px;y

þ jkj2
� X
x;y AGN

jyj2px;y
�1

2
� X
x;y AGN

jx� yj2px;y
�1

2

:
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In particular, if we take p as the optimal transportation plan between m and n for
the cost jx� yj2 we get

jm̂mðkÞ � n̂nðkÞj
jkj2

a
W 2

2 ðm; nÞ
2

þ
�X
y AGN

jyj2ny
�1

2

W2ðm; nÞ

¼ W2ðm; nÞ
�W2ðm; nÞ

2
þ
�X
y AGN

jyj2ny
�1

2
�
:

Since

W2ðm; nÞaW2ðm; dÞ þW2ðd; nÞa
�X
x AGN

jxj2mx
�1

2 þ
�X
y AGN

jyj2ny
�1

2

;

and, as m and n are supported in ½0; 1�2,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x AGN

jxj2mx
s

a
ffiffiffi
2

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
y AGN

jyj2ny
s

a
ffiffiffi
2

p
;

we obtain (3.28):

jm̂mðkÞ � n̂nðkÞj
jkj2

a 2
ffiffiffi
2

p
W2ðm; nÞ: r

We conclude by showing the validity of a reverse inequality, thus proving the
equivalence between f2;2 and W2.

Theorem 7. For any pair of measures m; n a PðGNÞ, we have the inequality

W 2
2 ðm; nÞa

T 3

p
f2;2ðm; nÞ:

Proof. Let p be the optimal transportation plan between m and n for the cost
jx� yj, since jx� yja

ffiffiffi
2

p
for all x; y a GN � ½0; 1�2, it holds

W 2
2 ðm; nÞa

X
x;y AGN

jx� yj2px;y a
X

x;y AGN

ffiffiffi
2

p
jx� yjpx;y ¼

ffiffiffi
2

p
W1ðm; nÞ:

Then, by Theorem 5 and Proposition 3 with t ¼ 1 and p ¼ s ¼ 2, we get

ffiffiffi
2

p
W1ðm; nÞa

ffiffiffi
2

p
T 2

2p
f1;2ðm; nÞa

T 3

p
f2;2ðm; nÞ;

which, together with the last inequality, concludes the proof. r
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The previous bounds hold provided that m and n are centered in the same
point. However, when mm �mnA 0, we can resort, as in Section 2, to the new
metric

F2;2ðm; nÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð f2;2ðm; nmm�mn

Þ2 þ jmm �mnj2Þ
q

;

which is well-defined also for probability measures having di¤erent centers. This
shows that we can generalize, similarly to Theorem 2 and Theorem 3, the equiv-
alence of F2;2 and W2 to measures which are not centered in the same point.

3.3. Connections with other distances

As discussed in [29], the case in which sa 0 leads to stronger metrics. In this case,
we clearly loose relations like (3.28), that link from above the Wasserstein metric
with the Fourier-based metric. An interesting case is furnished by choosing both
s ¼ 0 and a ¼ 0 into (3.20). The metric in this case is defined by

f0;2ðm; nÞ ¼
� 1

jT jd
Z
½0;T �d

jm̂mðkÞ � n̂nðkÞj2 dk
�1

2

¼
�X
x AG

jmðxÞ � nðxÞj2
�1

2

;

which is the Total Variation distance between the probability measures m and n.
We remark that the distance above does not require the measures to possess

the same mass. By fixing in definition (3.20) s ¼ 0 and a a ½0; 2Þ, one obtains a
sequence of metrics that interpolate between the Total Variation distance and
the W1 distance, namely a family of measures that move from a strong metric to
a weaker one. However, if a > 0, the measures must have the same mass.

In the case s < 0 and a ¼ 0, the Fourier-based metric (3.20) becomes

fs;2ðm; nÞ ¼
� 1

jT jd
Z
½0;T �d

jkj2jsjjm̂mðkÞ � n̂nðkÞj2 dk
�1

2

:

In particular, when �s ¼ n a Nþ, we find that

f�n;2ðm; nÞ ¼
� 1

jT jd
Z
½0;T �d

jkj2njm̂mðkÞ � n̂nðkÞj2 dk
�1

2

:

This metric, by Fourier identity, controls the n-th derivative of the measures m
and n, and does not require the measures to have the same mass.

4. Numerical results

We run extensive numerical tests to compare the Wasserstein metrics W1 and W2

with the corresponding Periodic Fourier-based Metrics f 01;2 and f 02;2.
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The goal of our tests is to compare empirically the distance values obtained
with the di¤erent metrics, and to measure the runtime gain that we can achieve
using the Fourier-based metrics. In the following paragraphs, we report the main
conclusions of our tests.

Implementation details. We implemented our algorithms in Python 3.7, using the
Fast Fourier Transform implemented in the Numpy library [23]. To compute the
Wasserstein distances, we use the Python Optimal Transport (POT) library [17].
All the tests are executed on a MacBook Pro 13 equipped with a 2.5 GHz Intel
Core i7 dual-core and 16 GB of Ram.

Dataset. As problem instances, we use the DOTmark benchmark [27], which
contains 10 classes of gray scale images, each containing 10 di¤erent images.
Every image is given in the data set at the following pixel resolutions: 32� 32,
64� 64, 128� 128, 256� 256, and 512� 512. Figure 1 shows the Classic,
Microscopy, and Shapes images, respectively, at the highest pixel resolution (one
class for each row).

Results. For each pair of images of the DOTmark dataset, the reciprocal dis-
tance values using the W1, W2, f

0
1;2 and f 02;2 metrics has been computed, and the

corresponding runtime in seconds has been recorded.
The scatter plot in Figure 2 shows the relation between the W2 and the f 02;2

distances for each pair of images at pixel resolution 32� 32. The plot shows
that not only the two metrics are theoretically equivalent, as proved in Theorem
6 and 7, but also that they yield very similar values. A partial exception is present
in the Shape class, which, however, contains artificial shape images. On the much
more (application-wise) interesting Classic images, the two metrics return very
close values.

Table 1 reports the averages and the standard deviations of the runtime, mea-
sured in seconds, at di¤erent image size. For each row and each metric, the aver-
ages are computed over 450 instances. The numerical results clearly show that the
PFM metrics are orders of magnitude faster, and permit to compute the distance
even for the largest 512� 512 images in around 10 seconds. Note that using the

Figure 1. DOTmark benchmark: Classic, Microscopy, and Shapes images.
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POT library, we were unable to compute the W1 and W2 distances for images of
size 256� 256 and 512� 512, due to memory issues.

5. Conclusions

In this paper we showed that the class of Fourier-based metrics introduced in [19]
and [8] are useful tools to measure the distance between pairs of probability dis-
tributions, which, in reason of their equivalence, represent an interesting alterna-
tive in problems where Wasserstein distances were already successfully employed.

The main result of this paper is that the constants in the equivalence relation
can be precisely quantified if discrete probability measures are considered. In
addition, preliminary computational results have shown that in image processing,
at di¤erence with Wasserstein metrics, Fourier metrics provide a noticeable per-
formance with respect to time, even when dealing with very large images. Starting
from these results, we believe it will be possible to design new numerical methods

Figure 2. Wasserstein metric W2 versus Periodic Fourier-based metric f 0
2;2: Comparison

of distance values for 450 pair of images of size 32� 32.

Table 1. Runtime vs. image size for di¤erent metrics: The runtime is measured in seconds
and reported as ‘‘Mean (StdDev)’’. Each row gives the averages over 450 instances of pair-
wise distances.

Averages runtime in seconds

Dimension W1 W2 f 01;2 f 0
2;2

32� 32 0:84 ð0:30Þ 1:06 ð0:32Þ 0:002 ð10�4Þ 0:006 ð10�4Þ
64� 64 21:9 ð7:96Þ 23:4 ð8:49Þ 0:01 ð10�3Þ 0:02 ð10�3Þ
128� 128 205:0 ð45:9Þ 199:0 ð45:0Þ 0:28 ð0:07Þ 0:63 ð0:16Þ
256� 256 1:21 ð0:40Þ 2:96 ð0:94Þ
512� 512 4:74 ð1:32Þ 11:55 ð2:84Þ
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in computer imaging, which combine theoretical convergence results with a low
computational cost, at di¤erence with Wasserstein metric, which, nowadays, has
still a heavy computational load.
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[3] L. Ambrosio - N. Gigli - G. Savaré, Gradient flows: in metric spaces and in the

space of probability measures. Springer Science & Business Media, (2008).

[4] S. Angenent - S. Haker - A. Tannenbaum - L. Zhu, Optimal mass transport
for registration and warping. International Journal of Computer Vision, 60(3):225–240,
(2004).

[5] M. Arjovsky - L. Bottou - S. Chintala, Wasserstein Generative Adversarial Net-
works. Proceedings of the 34th International Conference on Machine Learning, PMLR,
70:214–223, (2017).

[6] G. Auricchio - F. Bassetti - S. Gualandi - M. Veneroni, Computing
Kantorovich-Wasserstein distances on d-dimensional histograms using ðd þ 1Þ-partite
graphs. In Advances in Neural Information Processing Systems, pages 5793–5803,
(2018).

[7] G. Auricchio - F. Bassetti - S. Gualandi - M. Veneroni, Computing Wasser-
stein Barycenters via Linear Programming. In International Conference on Integration

of Constraint Programming, Artificial Intelligence, and Operations Research, pages
355–363. Springer, (2019).
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