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Abstract: Connexin hemichannels (HCs) expressed at the plasma membrane of mammalian cells
are of paramount importance for intercellular communication. In physiological conditions, HCs can
form gap junction (GJ) channels, providing a direct diffusive path between neighbouring cells. In
addition, unpaired HCs provide conduits for the exchange of solutes between the cytoplasm and the
extracellular milieu, including messenger molecules involved in paracrine signalling. The synergistic
action of membrane potential and Ca2+ ions controls the gating of the large and relatively unselective
pore of connexin HCs. The four orders of magnitude difference in gating sensitivity to the extracellular
([Ca2+]e) and the cytosolic ([Ca2+]c) Ca2+ concentrations suggests that at least two different Ca2+

sensors may exist. While [Ca2+]e acts as a spatial modulator of the HC opening, which is most
likely dependent on the cell layer, compartment, and organ, [Ca2+]c triggers HC opening and the
release of extracellular bursts of messenger molecules. Such molecules include ATP, cAMP, glutamate,
NAD+, glutathione, D-serine, and prostaglandins. Lost or abnormal HC regulation by Ca2+ has been
associated with several diseases, including deafness, keratitis ichthyosis, palmoplantar keratoderma,
Charcot–Marie–Tooth neuropathy, oculodentodigital dysplasia, and congenital cataracts. The fact
that both an increased and a decreased Ca2+ sensitivity has been linked to pathological conditions
suggests that Ca2+ in healthy cells finely tunes the normal HC function. Overall, further investigation
is needed to clarify the structural and chemical modifications of connexin HCs during [Ca2+]e and
[Ca2+]c variations. A molecular model that accounts for changes in both Ca2+ and the transmembrane
voltage will undoubtedly enhance our interpretation of the experimental results and pave the way
for developing therapeutic compounds targeting specific HC dysfunctions.

Keywords: connexin; connexon; hemichannel; gap junction; calcium; sensitivity to Ca2+; voltage;
extracellular and intracellular gating; ATP release; paracrine signalling; HC dysfunction; pathological
mutations

1. Introduction

Connexins are a family of tetraspan membrane proteins encoded by 21 genes in hu-
mans [1]. The oligomerization of different connexin isoforms into hexameric structures,
called connexons or hemichannels (HCs), usually occurs during the transition from the
rough endoplasmic reticulum to the Golgi apparatus [2]. Only a fraction of the total
connexin expressed by the cell reaches the plasma membrane [3,4], where two HCs be-
longing to adjacent membranes can dock end–to–end to form a junctional channel. Tens
to thousands of junctional channels can line up in a dense hexagonal pattern called a
gap junction (GJ) [5]. Various compounds with a molecular mass of up to approximately
1 kDa, including water molecules, ions, second messengers, amino acids, nucleotides, and
glucose, can be exchanged by passive diffusion through GJ channels that connect the cyto-
plasms of neighbouring cells or even different regions of the same cell, as in the case of the
myelin sheath [6]. While connexin HCs are normally closed at rest, they can open under
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physiological conditions, thus allowing sustained ion fluxes and permeation of messenger
molecules [7].

Adenosine triphosphate (ATP) is a fundamental signalling molecule that can be released
from the cytosol by connexin HCs, including those formed by connexin 26 (Cx26) [8,9],
Cx30 [10,11], Cx30.2/Cx31.3 [12], Cx32 [13], Cx36 [14], Cx38 [15], Cx40 [16], and Cx43 [17,18].
The ATP released through connexin HCs may promote cytosolic Ca2+ oscillations and in-
tercellular Ca2+ wave propagation by the activation of purinergic receptors [16,17,19–22]
(Figure 1). Other key messenger molecules released by connexin HCs include cyclic adeno-
sine monophosphate (cAMP) [23], glutamate [24,25], oxidized nicotinamide adenine dinu-
cleotide (NAD+) [26,27], glutathione [28], D-serine [29], and prostaglandins [30,31]. These
molecules can mediate autocrine and paracrine processes that regulate the development,
homeostasis, function, and regeneration of several organs.
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Figure 1. ATP signalling mediated by connexin HCs. Typically, a local submicromolar increase in
the cytosolic Ca2+ concentration ([Ca2+]c) triggers ATP release by connexin HCs of the same cell.
The ATP molecules diffuse extracellularly and can activate ATP-gated P2X ionotropic receptors and
G-protein-coupled P2Y receptors. The latter trigger a canonical transduction cascade mediated by
the second messenger inositol 1,4,5-trisphosphate (InsP3). InsP3 binds to and opens its receptor
(InsP3R) that in turn releases Ca2+ from the endoplasmic reticulum (ER) or the Golgi apparatus. The
ensuing increase in [Ca2+]c promotes further HC openings, resulting in the propagation of a Ca2+

wave sustained by an ATP-induced ATP release mechanism. InsP3 can also diffuse through GJs,
supporting the Ca2+ wave propagation.

Connexin HCs have been found to be involved in cell proliferation [32], cell–cell
adhesion [33], light processing by the retina [34], metabolic homeostasis, and transparency
of the lens [35,36]. They are also involved in hearing maturation and function [37,38], bone
growth, remodelling and protection against oxidative stress [39–42], isosmotic regulation
of cell volume [43], salt and water reabsorption in the renal tubule [11], blood–brain
barrier permeability [44], and the development and functionality of the peripheral and
central nervous system [29,45–50]. Connexin HCs also play a role in autophagy [51],
tumour growth [52], mitochondrial permeability in cardiac cells [53,54], atrioventricular
conduction [55,56], vessel contractility [57], and epidermal barrier homeostasis [58].

The opening and closure of connexin HCs are regulated by several physiological pa-
rameters, such as transmembrane voltage [59,60], cell redox potential [61], phosphoryla-
tion [62,63], membrane mechanical stretch [64,65], amino sulfonates [66], CO2 [67], pH [68,69],
and cations [70,71], including extracellular [72,73] and intracellular Ca2+ [13,74,75].

The complex interaction of Ca2+ with connexin HCs is strictly interconnected with
many biological functions accomplished by this ion in the cell. This review focuses on HC
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regulation by Ca2+, one of the most important factors controlling molecular fluxes through
connexin HCs in health and disease.

2. Extracellular Ca2+ Regulation of Connexin HCs

In humans, the extracellular concentration of Ca2+ ([Ca2+]e) is found in a narrow
range of 1.1–1.4 mM in most organs [76], with the notable exception of the cochlear
endolymph [77]. A reduction in [Ca2+]e to hundreds or tens of micromolars typically
causes a marked increase in the amplitude of HC currents, thus shifting their activation
to more negative potentials and altering the activation and deactivation kinetics [73].
Low values of [Ca2+]e increase the activity of most, if not all, connexin HCs, includ-
ing Cx26 [78], Cx30 [60], Cx30.2/Cx31.3 [12], Cx32 [72], Cx37 [79], Cx39 [80], Cx40 [81],
Cx43 [63], Cx45 [82], Cx46 [83], and Cx50 [84] (Table 1). It is important to note that connexin
HCs cannot be considered as regulators of [Ca2+]e, since their opening does not activate
any feedback mechanism for [Ca2+]e adjustment. Instead, [Ca2+]e variations modulate the
HC opening probability, which is key for several downstream physiological mechanisms.

Table 1. HC activity regulation by [Ca2+]e and [Ca2+]c. When available, the half maximal effective
concentration (EC50) was reported. [Ca2+]e-free solution refers to an extracellular solution prepared
without Ca2+ or with Ca2+ buffered by EGTA.

Cx Isoform HC Regulation by [Ca2+]e HC Regulation by [Ca2+]c

Cx26 Current ranging from a maximum at 0.01 mM to a minimum
value at 10 mM [Ca2+]e, with an EC50 around 0.25 mM [78]. ATP release increases with [Ca2+]c around 500 nM [8].

Cx30 Current increases in [Ca2+]e-free solution [60]. ATP release and dye uptake increases with [Ca2+]c around
500 nM [8].

Cx30.2/31.3 ATP release increases in [Ca2+]e-free solution [12]. Information not available.

Cx32 Current ranging from a maximum at 0.5 mM to a minimum
value at 5 mM [Ca2+]e, with an EC50 around 1.3 mM [72].

Bell-shaped dependence of ATP release on [Ca2+]c, peaking
at 500 nM [Ca2+]c [13].

Cx37 Current ranging from a maximum at 0.02 mM to a minimum
value at 1 mM [Ca2+]e, with an EC50 around 0.1 mM [79]. Information not available.

Cx39 Dye uptake increases in [Ca2+]e-free solution [80]. Information not available.

Cx40 HC pore size increases at [Ca2+]e < 10 µM [81]. Information not available.

Cx43 Dye uptake ranging from a maximum at 0.01 mM [Ca2+]e to a
minimum value at 1 mM [Ca2+]e [63].

Bell-shaped dependence of ATP release on [Ca2+]c, peaking
at 500 nM [Ca2+]c [75].

Cx45 Bi-sigmoidal dependence of the current on [Ca2+]e, with EC50
around 1 µM [Ca2+]e [82]. Current increases with [Ca2+]c around 100 nM [82].

Cx46 Current ranging from a maximum at 0.01 mM to a minimum
value at 1 mM [Ca2+]e [71]. Dye uptake increases upon [Ca2+]c elevation [85].

Cx50 Dye leakage increases in [Ca2+]e-free solution [84]. Information not available.

In the intact central nervous system, [Ca2+]e can be reduced from 1.2–1.4 mM to less
than 0.7 mM during periods of intense neuronal activity, a phenomenon that activates
purinergic feedback signalling from astrocytes to interneurons mediated by Cx43 HCs [86].
In non-sensory cells of the cochlea, the low endolymphatic [Ca2+]e (20–30 µM [77]) biases
Cx26/Cx30 HCs towards the open state, thus altering the ATP-dependent intercellular Ca2+

signalling that is required for refinement of afferent innervations of outer hair cells [87].
In the mammalian epidermis, a characteristic [Ca2+]e gradient between lower and upper
layers plays a crucial role in the processes of keratinocyte differentiation and formation of
the epidermal permeability barrier [88].

Specific information about the dependency of the HC gating on [Ca2+]e is available
for several connexin isoforms, as detailed in the following.

Cx26: Atomic force microscopy (AFM) experiments performed in isolated membranes
of HeLa cells expressing rat Cx26 (rCx26) showed a reduction in the HC extracellular inner
diameter from 1.3 to 0.5 nm by adding 0.5 mM Ca2+ to the [Ca2+]e-free solution [89]. In
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Xenopus oocytes expressing human Cx26 (hCx26), the HC current dependent on [Ca2+]e
ranged from a maximum at 0.01 mM [Ca2+]e to a minimum value at 10 mM [Ca2+]e, with
an EC50 around 0.25 mM [78]. Additionally, lowering [Ca2+]e from 0.75 mM to 0.1 mM
increased the HC current by approximately 85% at +40 mV, while increasing [Ca2+]e from
0.75 mM to 3.5 mM induced a decrease of about 80% [90]. A close examination of the HC
structure revealed that the negatively charged residue at position 50 (D50) of hCx26 is
critical for HC gating and, together with the E47, might directly interact with Ca2+ ions
to induce occlusion of the pore [73,78,91]. The D50 and E47 residues were proposed to
play a role in stabilizing the HC open state in low-Ca2+ conditions, forming salt bridges
with the K61 and R75-R184 residues, respectively. Bridge disruption at high [Ca2+]e would
destabilize the open state, thus facilitating HC closure. The conserved glycine at position
45 of hCx26, hCx30, hCx32, and hCx43 HCs was also found to be an integral part of the
[Ca2+]e sensor [92].

Cx32: In Xenopus oocytes expressing hCx32 HCs, HC currents ranged from a maximum
at 0.5 mM [Ca2+]e to a minimum value at 5 mM [Ca2+]e, with an EC50 around 1.3 mM [72].
This very high EC50 value might be due to the application of a strong (+80 mV) voltage stim-
ulation that favoured the opening of Cx32 HCs during the current recording. The effect of
voltage on the HC current dependence on [Ca2+]e is well documented for another connexin
(Cx46), whose EC50 shifted from 0.08 mM [Ca2+]e at values ≤ −20 mV to 0.5 mM [Ca2+]e
at +20 mV [93]. Based on molecular dynamics simulations [94], this EC50 shift might be
simply explained by a change in the HC binding affinity to Ca2+. Two Asp residues, D169
and D178, were found to be implicated in the Ca2+-induced blockage and conductance
properties of hCx32 HCs [72]. The characteristic transitions attributable to the fast gate
between a main open state of high conductance (90 pS) and a residual open state (18 pS)
only occurred at low [Ca2+]e and upon hyperpolarization. Gomez-Hernandez et al. [72]
also found that substitution of Ca2+ in the external solution with other divalent cations
inhibited hCx32 HC activation. The potential of different divalent cations to induce such a
block followed the sequence: Cd2+ > Co2+ ≈ Ca2+ > Mg2+ > Ba2+.

Cx37: In Xenopus oocytes expressing hCx37 HCs, the HC current dependent on
[Ca2+]e ranged from a maximum at 0.02 mM [Ca2+]e to a minimum value at 1 mM [Ca2+]e,
with an EC50 of about 0.1 mM [79]. In rat brain endothelial cells (RBE4) expressing
endogenous Cx37, as well as in HeLa cells expressing exogenous hCx37, dye uptake
and release through Cx37 HCs were strongly inhibited by the GAP27 peptide, and single-
channel electrophysiological studies indicated that GAP27 inhibits unitary HC currents [44].

Cx43: In rat Novikoff hepatoma cells expressing endogenous Cx43, a reduction in
extracellular Ca2+ but not Mg2+ was a key factor for HC opening and dye uptake. An
increased uptake started at 1 mM [Ca2+]e, reaching a maximal level at 10 µM [Ca2+]e [63]. In
Xenopus oocytes expressing hCx43, lowering the external divalent cation concentration (Ca2+

and Mg2+ free) decreased the resting potential and the input resistance. Both parameters
recovered their initial values upon restoring the [Ca2+]e to normal millimolar values [95].
In HeLa cells expressing rCx43, HC opening increased only modestly at positive potentials
in zero Ca2+ or zero Ca2+-EGTA solutions [59].

Cx45: In HeLa cells expressing mouse Cx45 (mCx45), the HC current dependency on
[Ca2+]e was a combination of two Hill equations with different sensitivities (K1 = 0.66 µM and
K2 = 216 µM) and a very low EC50 (~1 µM) [82]. It may be argued that the dual sensitivity
reflects the coexistence of both the exogenous mCx45 and the endogenous hCx45 [96].

Cx46: In Xenopus oocytes, rCx46 HCs have a slightly lower apparent affinity for Ca2+

than hCx26 HCs (KD 0.6 mM vs. 0.33 mM) [73]. Regarding Ca2+ sensitivity, the E48 and D51
residues of Cx46 played a role like the analogous residues E47 and D50 in Cx26. In the same
cellular system [83], L35 also appeared as an important residue for HC closure by Ca2+, and
single HC recordings suggested that divalent cations act as stabilizers of the fully closed
conformation rather than as gating particles [97]. In Xenopus oocytes expressing hCx46,
lowering [Ca2+]e from 0.1 mM to 0.01 mM increased the HC current by approximately 150%
at +20 mV, whereas increasing [Ca2+]e from 0.1 mM to 1 mM induced a decrease of about
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80% [71]. Like other connexins, a high [Mg2+]e also acted as a blocker but to a much lower
extent. The experiments by Ebihara et al. [71] applying sequential combinations of different
[Ca2+]e and [Mg2+]e values suggested that there are at least two distinct binding sites for
divalent cations that have different relative affinities for Ca2+ and Mg2+ and modulate
different steps in the gating process.

Cx50: In HeLa cells pre-loaded with Lucifer Yellow (LY) dye and expressing hCx50,
removal of [Ca2+]e (2 mM) increased the rate of dye leakage and activated a voltage-
dependent outward transmembrane current [84]. Notably, Cx50 and Cx46 share very
similar amino acid sequences and HC sensitivity to [Ca2+]e. In Xenopus oocytes expressing
mCx50 or rCx46, [Ca2+]e shifted the I-V curve of Cx46 but not that of Cx50 HCs [98].
Cx50 HCs are also much more sensitive to external pH than Cx46 HCs. Interestingly, the
replacement of extracellular Na+ with K+ or other monovalent cations while maintaining
a constant high [Ca2+]e resulted in 10-fold potentiation of mCx50 HC currents, which
reversed upon restoring a normal Na+ concentration [70]. In contrast, rCx46 HCs exhibited
a modest increase upon substituting Na+ with K+. The primary effect of K+ appeared to be
a reduction in the ability of Ca2+, as well as other divalent cations, to close Cx50 HCs due
to the specific connexin sequence.

3. Cytosolic Ca2+ Regulation of Connexin HCs

The [Ca2+]c of most eukaryotic cells is maintained at ~100 nM in resting conditions,
a value 10,000-fold lower than the extracellular concentration [99]. Rapid variations in
[Ca2+]c in the nanomolar or micromolar range, triggered by different extracellular and
intracellular stimuli, are sufficient to activate and control several cellular mechanisms
alone, such as secretion, gene expression, muscle contraction, metabolism, and also con-
nexin channel gating [72,100,101]. The increase in [Ca2+]c typically results from either the
influx of extracellular Ca2+ via plasma membrane Ca2+ channels or the release of Ca2+

from internal stores via InsP3Rs and ryanodine receptors (RyRs). Connexin HCs that
show an increased open probability upon [Ca2+]c variation include Cx26 [102], Cx30 [60],
Cx32 [13], Cx43 [75], Cx45 [103], Cx46 [85] (Table 1), and most likely also Cx37 [44] and
Cx40 [16]. In the organ of Corti, ATP release through Cx26 and Cx30 HCs is triggered by
spontaneous [Ca2+]c oscillations in supporting cells and contributes to the propagation
of the intercellular Ca2+ signalling that is responsible for synaptic refinement [8,87]. In
astrocytes, a migratory phenotype is acquired under pro-inflammatory conditions by a
[Ca2+]c-dependent opening of Cx43 HCs, followed by release of ATP, activation of the
P2X7 receptor, and Ca2+ influx [104]. Retinal pigment epithelium (RPE) cells were found to
release ATP through Cx43 HCs that increased proliferation and stimulated DNA synthesis
in neural retinal progenitor cells [105]. Upon mechanical stress, an increased [Ca2+]c elicited
by the activation of Piezo1 channels opens Cx43 HCs through PI3K-Akt, which in turn
leads to bone anabolic function [42]. Furthermore, NAD+, prostaglandin E2, and ATP
release by Cx43 HCs in response to oxidative stress was shown to serve as a protective
mechanism for osteocytes, which may accumulate reactive oxygen species with skeletal
aging [39].

Specific information about the dependency of the HC gating on [Ca2+]c is available for
several connexin isoforms, as detailed in the following.

Cx26: In HeLa cells expressing rCx26, a [Ca2+]c increase mediated by linoleic acid (LA)
appeared to be essential to enhance Cx26 HC activity [102]. The synthetic Ca2+ chelator
BAPTA and PI3K/Akt inhibitors were found to reduce ethidium (Etd) bromide uptake
through Cx26 HCs, suggesting that the LA effect was mediated by the increase in [Ca2+]c
and activation of the PI3K/Akt-dependent pathway. Notably, an LA-mediated [Ca2+]c
increase stimulated Etd uptake also through mCx32, mCx43, and mCx45 HCs, while
drastically reducing rCx26 GJ-mediated dye coupling [102]. In mouse cochlear organotypic
cultures, focal InsP3 photoliberation elicited a [Ca2+]c response in the irradiated supporting
cells that peaked at around 500 nM and spread radially to several orders of unstimulated
cells [8]. mCx26 and mCx30 HCs contributed to the propagation of this intercellular Ca2+
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wave by releasing ATP, without the contribution of P2X7R or pannexin 1. ATP release
was not observed in Cx26 KO or Cx30 KO cultures upon a [Ca2+]c increase triggered by
InsP3 photoliberation.

Cx32: In bladder cancer epithelial cells (ECV304) and C6 glioma cells expressing
hCx32, Leybaert and co-workers [13] showed that (i) an InsP3-mediated increase in [Ca2+]c
is sufficient to trigger the opening of Cx32 HCs, promoting dye uptake and ATP release,
and (ii) the HC open probability has a bell-shaped dependency peaking at 500 nM [Ca2+]c.
Both small and large Ca2+ stimuli were ineffective in opening Cx32 HCs, and only [Ca2+]c
changes between 200 nM and 1000 nM were successful. Cytosolic photorelease of Ca2+ from
o-nitrophenyl EGTA (NP-EGTA) or activation of Ca2+ influx by the A23187 ionophore also
triggered ATP release in a dose-dependent manner, with ATP responses disappearing at
stronger stimulation [13]. In single HeLa cells expressing hCx32, a local puff of extracellular
ATP or histamine stimulated a [Ca2+]c increase that triggered the opening of Cx32 HCs held
at a −20 mV transmembrane potential [74]. The temporal dynamics of HC opening and
closure were quantified in terms of membrane conductance variations with an exponential
behaviour with rise (opening) and decay (closure) times of around 1 s.

Cx43: In C6 glioma and HeLa cells stably transfected with Cx43, the application of
different concentrations of the Ca2+ ionophore 4-Br-A23187 (calcimycin) induced [Ca2+]c
transients and ATP release with a bell-shaped dependence on [Ca2+]c which was maximal
at ~500 nM [75]. Inhibition of ATP release was achieved in a concentration-dependent
way by both GAP26 and GAP27, two peptides that mimic a short sequence on the first
and second extracellular loops of Cx43, respectively. The peptide GAP19, which mimics
a short sequence of the Cx43 cytoplasmic loop (CL), also inhibited [Ca2+]c-triggered ATP
release in a concentration-dependent manner without affecting the GJ conductance and
dye exchange [106]. In HeLa cells, an elevation in [Ca2+]c from 50 to 200–500 nM in the
absence of an electrical trigger was ineffective in opening single Cx43 HCs, but lowered the
voltage threshold for HC opening by ~15 mV and potentiated the unitary HC current [107].
The HCs closed with a further elevation in [Ca2+]c to 1 µM, exhibiting a bell-shaped
dependence of the open probability on [Ca2+]c peaking at 500 nM and that was very similar
to the previous indirect measurement for Cx43 expressed in intact cells [75]. In isolated pig
ventricular cardiomyocytes, [Ca2+]c elevation to 500 nM potentiated the HC current, which
was inhibited by GAP26 and GAP27. A similar study was performed in astrocytes of the
prefrontal cortex of newborn mice, where mCx43 HC activity was found to be dependent
on [Ca2+]c and associated with D-serine release [50]. In rat brain endothelial cell lines
expressing rCx43, single-cell photoactivation of InsP3 triggered an intercellular purinergic
signalling which is [Ca2+]c-dependent and can be blocked by GAP26 [108]. The opening of
Cx43 HCs was evoked by spontaneous elevations in [Ca2+]c during Ca2+ waves in trigger
cells of the chick RPE and was blocked by GAP26 [105]. The concept of trigger cells was
demonstrated by luminometric extracellular ATP imaging, which showed that ATP is
released as a burst from a point source of the cell [109]. Interestingly, Cx43 HC opening
induced by oxidative stress in osteocytes was inhibited by the depletion in [Ca2+]c with
BAPTA-AM, suggesting that [Ca2+]c triggers the activity of mCx43 HCs [41]. Conversely,
blockade of HCs with a Cx43 antibody did not affect [Ca2+]c [39].

Cx45: In HeLa cells expressing mCx45, HC openings were triggered at 100 nM [Ca2+]c
in the patch pipette [82]. In the same expression system, a progressive [Ca2+]c rise stimu-
lated by the application of 2.5 µM calcimycin increased Etd uptake within the cell [103].
The non-specific HC blocker La3+ significantly reduced this uptake.

Cx46: In HeLa cells stably transfected with hCx46, a [Ca2+]c transient mediated by
2.5 µM of the Ca2+ ionophore ionomycin led to a dramatic increase in Etd uptake by Cx46
HCs [85]. Replacement of extracellular Na+ with K+ led to cell depolarization but reduced
Etd uptake.
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4. Pathological Alterations of HC Gating by Ca2+

Lost or abnormal HC activity at the plasma membrane has been associated with in-
flammatory conditions [110,111] and inherited diseases, like muscular dystrophy [112],
syndromic and non-syndromic deafness [113], keratitis and hystrix-like ichthyosis deaf-
ness (KID/HID) syndrome [114], the X-linked form of Charcot–Marie–Tooth neuropathy
(CMT1X) [115], oculodentodigital dysplasia (ODDD) [116], keratoderma–hypotrichosis–
leukonychia totalis syndrome (KHLS) [117], erythrokeratodermia variabilis (EKV) [118],
and congenital cataracts [119]. A single amino acid substitution in the connexin sequence
can severely affect the correct HC function, leading to uncontrolled ionic leakage and
release of molecules altering extracellular signalling pathways and potentially toxic for
neighboring cells [120–124]. The biophysical properties altered in mutant HCs expressed
at the plasma membrane may relate to their density, the pore selective permeability, or
the gating mechanisms, including Ca2+-dependent regulation [73]. Several pathological
mutations have been linked to altered sensitivity to extracellular and cytosolic Ca2+ ions, re-
sulting in changes in the normal HC activity (Table 2). As a general criterion, the sensitivity
to Ca2+ can be considered altered when an HC defect is present in normal [Ca2+]e, or there
is a rightward or leftward shift in the HC current dependence on [Ca2+]e. Some mutations
lack a clear link between HC dysfunction and Ca2+ deregulation. The mere observation
of an increased HC activity in zero [Ca2+]e solution, which shifts the HC to the fully open
state, can also be attributed to alteration of other HC properties, such as pore permeability
or voltage-dependent gating.

Mutations of the GJB2 gene, which encodes Cx26, were linked to sensorineural hearing
loss, keratitis, and severe skin lesions [125,126]. In particular, G11E, G12R, N14K, N14Y, I30N,
A40V, G45E, E47Q, D50N/Y/A, and A88V mutations were associated with a reduced HC
closure by [Ca2+]e or an increased permeability to Ca2+ ions, which resulted in leaky HCs and
compromised keratinocyte viability in vitro [78,123,127–134]. Instead, S17F, N54K, R75W, and
S183F pathological mutations were associated with a decreased HC activity [123,129,130,135].
Examination of the skin of KID transgenic mice showed alterations in the epidermal [Ca2+]e
gradient that were correlated with altered lipid secretion and defects in the epidermal water
barrier [133,136]. Negatively charged residues (D46, E47, Q48, D50, K61, R184) lining the
Cx26 HC pore are critical for the gating dependency on [Ca2+]e, but they do not form the
HC gate [73,137].

Table 2. Impact of connexin mutations on the HC functionality under different [Ca2+]e and [Ca2+]c

conditions. Normal [Ca2+]e solution refers to an extracellular solution with a Ca2+ concentration in
the mM range (typically 2–5 mM), whereas a [Ca2+]e-free solution is prepared without Ca2+ or with
Ca2+ buffered by EGTA. Abbreviations: connexin (Cx), N-terminus (NT), transmembrane domain
(TM), extracellular loop (EL), cytoplasmic loop (CL), C-terminus (CT); erythrokeratodermia variabilis
(EKV), keratitis ichthyosis deafness (KID) syndrome, keratoderma–hypotrichosis–leukonychia totalis
syndrome (KHLS), oculodentodigital dysplasia (ODDD).

Cx Isoform Mutation Cx Domain Mutant HC Defective Properties Linked Disease

Cx26

G11E NT Increased Ca2+ leakage in normal [Ca2+]e [127]. KID syndrome

G12R NT
Increased dye uptake in both normal and [Ca2+]e-free solutions,
halted [Ca2+]e-dependent deactivation kinetics, increased Ca2+

leakage [123,128,129].
Syndromic deafness

G12V NT Increased dye uptake in [Ca2+]e-free solution [129]. Non-syndromic deafness

N14K NT
Reduced [Ca2+]e sensitivity leading to increased HC currents
and slowed deactivation kinetics, increased Ca2+

leakage [123,130,131].

Clouston
syndrome/KID syndrome

N14Y NT Increased dye uptake and HC currents in both normal and
[Ca2+]e-free solutions, increased Ca2+ leakage [129]. Syndromic deafness

S17F NT Decreased dye uptake in both normal and [Ca2+]e-free solutions,
leaky HCs when co-expressed with Cx30 [123,129,138].

KID syndrome
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Table 2. Cont.

Cx Isoform Mutation Cx Domain Mutant HC Defective Properties Linked Disease

Cx26

I30N TM1 Increased dye uptake in both normal and [Ca2+]e-free solutions,
increased Ca2+ leakage [132].

KID syndrome

V37I TM1 Abolished dye uptake in [Ca2+]e-free solution [139]. Deafness

A40G TM1 Abolished dye uptake in [Ca2+]e-free solution [139]. Deafness

A40V TM1 Reduced [Ca2+]e sensitivity leading to increased HC
currents [133].

KID syndrome

G45E EL1
Increased dye uptake at a normal [Ca2+]e and a reduced [Ca2+]e
sensitivity, leading to increased HC currents and Ca2+

leakage [133,140].
KID syndrome

D46C EL1 Halted [Ca2+]e-dependent deactivation kinetics [73]. No association

E47K EL1 Halted dye uptake in [Ca2+]e-free solution [140]. Deafness

E47Q EL1 Reduced [Ca2+]e sensitivity, leading to increased HC currents
and halted deactivation kinetics [73].

No association

Q48A EL1 Increased [Ca2+]e sensitivity, leading to decreased HC currents
and reduced deactivation kinetics [137].

No association

D50A EL1 Reduced [Ca2+]e sensitivity, leading to increased HC currents
and halted deactivation kinetics [134,137].

KID syndrome

D50N EL1 Reduced [Ca2+]e sensitivity, leading to increased HC currents
and halted deactivation kinetics [73,78,123,127,130].

KID syndrome

D50Y EL1
Increased dye uptake in both normal and [Ca2+]e-free solutions,
halted [Ca2+]e-dependent deactivation kinetics, increased Ca2+

leakage [78,132].
KID syndrome

N54K EL1 Decreased dye uptake in [Ca2+]e-free solution [130]. Bart–Pumphrey syndrome

R75W TM2 Decreased HC currents in both normal and [Ca2+]e-free
solutions [135].

Deafness

A88V TM2 Increased HC currents in [Ca2+]e-free solution [134]. KID syndrome

S183F EL2 Halted dye uptake in [Ca2+]e-free solution [130].
Palmoplantar keratoderma
and hearing loss

R184K EL2 Reduced [Ca2+]e sensitivity leading to both increased HC
currents and increased deactivation kinetics [73].

No association

Cx30

G11R NT Increased ATP release in normal [Ca2+]e solution [141]. Clouston syndrome

G45E EL1 Reduced [Ca2+]e sensitivity, leading to dye uptake in both
normal and [Ca2+]e-free solutions [92].

No association

A88V TM2 Increased ATP release in both normal and [Ca2+]e-free solutions,
increased leakage of Ca2+ and other ions [58,141].

Clouston syndrome

Cx30.3

G12D NT Increased dye uptake in [Ca2+]e-free solution [118]. EKV

T85P TM2 Increased dye uptake in [Ca2+]e-free solution [118]. EKV

F189Y TM4 Increased dye uptake in both normal and [Ca2+]e-free
solutions [118].

EKV

Cx32

G45E EL1 Increased dye uptake in [Ca2+]e-free solution [92]. No association

S85C TM2 Increased HC current in normal [Ca2+]e solution [142]. CMT1X

D169N EL2 Reduced [Ca2+]e sensitivity, leading to increased HC
currents [72].

No association

D178N EL2 Reduced [Ca2+]e sensitivity, leading to increased HC
currents [72].

No association

D178Y EL2 Reduced [Ca2+]e sensitivity, leading to increased HC
currents [72].

CMT1X

R220X CT Reduced [Ca2+]c sensitivity, leading to halted HC current [74]. CMT1X
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Table 2. Cont.

Cx Isoform Mutation Cx Domain Mutant HC Defective Properties Linked Disease

Cx43

L7V NT Increased ATP release in normal [Ca2+]e solution [116]. ODDD

G8V NT Increased HC current in [Ca2+]e-free solution [143]. KHLS

Y17S NT Decreased dye uptake in [Ca2+]e-free solution [144]. ODDD

G21R TM1 Decreased dye uptake in [Ca2+]e-free solution [144]. ODDD

I31M TM1 Increased ATP release in [Ca2+]e-free solution [122]. ODDD

A40V TM1 Decreased dye uptake in [Ca2+]e-free solution [144]. ODDD

A44V TM1 Increased HC current in [Ca2+]e-free solution [143]. EKV

G45E EL1 Increased dye uptake in [Ca2+]e-free solution [92]. No association

F52dup EL1 Decreased dye uptake in [Ca2+]e-free solution [144]. ODDD

L90V TM2 Decreased dye uptake in [Ca2+]e-free solution [144]. ODDD

I130T CL Decreased dye uptake in [Ca2+]e-free solution [144]. ODDD

G138R CL Increased ATP release in [Ca2+]e-free solution [122]. ODDD

G143S CL Increased ATP release in [Ca2+]e-free solution [122]. ODDD

E227D CT Increased HC current in [Ca2+]e-free solution [143]. EKV

M239X CT Abolished ATP release in [Ca2+]e-free solution and upon
increased [Ca2+]c [145].

No association

Cx46

D47N EL1 Increased [Ca2+]e sensitivity, leading to decreased HC
currents [73].

No association

E48Q EL1 Reduced [Ca2+]e sensitivity, leading to increased HC
currents [73].

No association

D51N EL1 Reduced [Ca2+]e sensitivity, leading to increased HC
currents [73].

No association

N63S EL1 Abolished HC currents that were restored in [Ca2+]e-free
solution [146].

Congenital cataracts

G143R CL Increased dye uptake in both normal and [Ca2+]e-free solutions,
decreased dye uptake upon increased [Ca2+]c [85,147].

Congenital cataracts

Since mutations in the GJB1 gene that encodes Cx32 were first reported in 1993 [148],
more than 450 different mutations associated with the X-linked dominant form of CMT
(CMT1X) neuropathy have been discovered [115]. In the PNS, Cx32 was found to selectively
be expressed in non-compact myelin of Schwann cells, but its physiological role is still up
for debate. The D178Y mutation in the second extracellular loop of Cx32 affects an Asp-178
residue that induces a complete [Ca2+]e deregulation of the HC activity [72]. Cx32 HCs
carrying a pathological CT domain truncation (R220X) fail to open in response to a canonical
InsP3-mediated signal transduction cascade that elevates the [Ca2+]c [74]. Interestingly, the
gating function of Cx32-R220X HCs was restored by both the intracellular and extracellular
application of the peptide GAP24 that mimics the Cx32 CL.

More than 70 dominant mutations, mostly autosomal, of the GJA1 gene that encodes
Cx43, were linked to ODDD, a development disorder characterized by craniofacial and
limb disorders [149]. Over one-third of the mutations are localized in the CL of Cx43. In
stable cell lines expressing enhanced yellow fluorescent protein (eYFP)-tagged hCx43 [144],
propidium iodide uptake experiments at a low [Ca2+]e, demonstrated that Y17S, G21R,
A40V, F52dup, L90V, and I130T mutations are associated with a reduced HC function
compared with the wild-type Cx43. Instead, HeLa cells expressing Cx43 carrying ODDD
mutations I31M, G138R, and G143S displayed an altered HC function with increased ATP
release under zero-[Ca2+]e conditions [122]. In patient-derived fibroblasts, the ATP defect
of G138R and G143S HCs was not significant, whereas the L7V mutation was found to be
leaky at normal [Ca2+]e values [116]. The downregulation of L7V HCs found in patients’
fibroblasts was proposed as a protective mechanism against cytotoxicity.
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Mutations in the GJA3 and GJA8 genes coding for Cx46 and Cx50, respectively, are
a major cause of congenital cataracts [150]. More than 40 cataract-associated mutations
are located in transmembrane and extracellular loops of Cx46. Instead, the pathological
mutation G143R is located in the CL of Cx46, increasing HC leakage in resting conditions
and reducing HC opening upon [Ca2+]c stimulation by ionomycin [85,147]. E47 and D50
residues in Cx26 correspond to residues E48 and D51 in Cx46. In particular, mutations
E47Q and D50N/Y/A in Cx26 and E48Q and D51N in Cx46 decrease the [Ca2+]e sensitivity
(i.e., leaky HCs), while Q48A and D47N mutations increase the sensitivity in Cx26 and
Cx46, respectively [73,78,137].

5. Discussion

Ca2+ ions are key regulators of connexin HC functionality in health and disease. The
four orders of magnitude difference in gating sensitivity to Ca2+ between the extracellular
and intracellular HC domains suggests the existence of at least two different Ca2+ sensors.
Under cell resting conditions, the synergistic action of the two gates, in combination with
the transmembrane voltage, keeps this relatively large and unselective pore fully closed,
thus preventing cytotoxic ionic leakage. The fact that both an increased and a decreased
HC Ca2+ sensitivity is linked to disease suggests that Ca2+ in healthy cells finely regulates
normal HC function. While [Ca2+]e is a relatively stable physiological parameter dependent
only on the cell layer, compartment, and organ, [Ca2+]c can change rapidly, thus triggering
sudden HC opening and release of extracellular bursts of messenger molecules involved in
paracrine signalling.

There is a general consensus on the gating by [Ca2+]e through the direct binding
of Ca2+ ions to specific extracellular residues of the six connexins forming the HC. This
Ca2+ ring was proposed to act as an electrostatic occlusion and a stabilizer of the closed
HC conformation [93,94]. Accessibility studies and numerical simulations suggest that
the electrostatic effect does not hinder the access of ions or small molecules to positions
deeper into the pore [78,97,151], whereas this conclusion is not generally shared [94,152].
Fitting electrophysiological experiments with Cx46 HCs by a model allosterically coupling
Ca2+ binding and voltage sensing indicates that Ca2+ ions act like stabilizers of the closed
HC conformation [93]. Coarse-grained molecular dynamics simulations of the Cx26 HC
confirmed that Ca2+ coordination within the extracellular vestibule inhibits the transition
to a wider pore state that would favour permeation [153]. This transition was not found in
the Cx31.3 HC structure, which did not significantly change in the presence or absence of
Ca2+ ions [154]. In single Cx32 HCs, a high [Ca2+]e inhibited transitions from the closed to
the fully open state in both depolarization and hyperpolarization conditions, thus allowing
only transitions to a residual substate [72].

The model by Pinto et al. [93] considers only [Ca2+]e and voltage as key variables of
HC opening, without including the gating by [Ca2+]c or other cytosolic chemical gating
mechanisms. Indeed, in connexin isoforms such as Cx32 and Cx43, the voltage alone can
trigger HC opening only at unphysiological values ≥ +40 mV [59,72,74,107]. Instead, a
physiological [Ca2+]c rise alone triggered by InsP3 can stimulate HC opening [74,155] while
dramatically increasing the voltage sensitivity [107].

The molecular mechanisms underlying the exquisite regulation of connexin HCs by
nanomolar variations in [Ca2+]c are still under debate. The interaction of the CL with the CT
domain and calmodulin (CaM) was found to control the gating of both connexin GJs [156–159]
and HCs [13,74,145,160]. In the pathological G143R mutation of Cx46, HC dysfunction was
attributed to an increased interaction of the CL with the CT domain and CaM, possibly
caused by the loss of the CL α-helical structure [85]. Lack of the CT domain in Cx32 [74]
and Cx43 [145] caused the HC to fail to open in response to a [Ca2+]c increase. The opening
was restored upon application of peptides (GAP24 and TAT–Cx43CT10, respectively) that
are able to interact with the CL domain. Leybaert and coworkers [161] proposed that loss of
the CL-CT domain interaction by a Ca2+-dependent activation of the actomyosin contractile
system underlies the Cx43 HC closure mechanism upon [Ca2+]c overload (above 500 nM).
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Peracchia et al. [159] have proposed that CaM acts both as a Ca2+ sensor and a cork at
the cytoplasmic mouth of the connexon. This hypothesis is supported by the findings
that CaM co-localizes with GJs [85,162] and has a highly Ca2+-dependent affinity to all
three intracellular connexin domains [163,164]. Furthermore, HC oligomerization and its
opening can be prevented by the W7 CaM inhibitor [13,75,84,165] (Figure 2).
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Figure 2. Ca2+ regulation of connexin HCs. Extracellular and cytosolic Ca2+ ions, in combination with
the transmembrane voltage (Vm), finely regulate the molecular fluxes across the connexon pore. In
healthy cells, this synergistic action allows the release of extracellular bursts of messenger molecules
while preventing cytotoxic ionic leakage. An extracellular ring of Ca2+ ions stabilizes the HC closed
conformation, while CaM and the actomyosin contractile system modulate the HC opening and
closure mechanisms, respectively.

It is noteworthy to mention that the pathological G12R and N14K mutations of Cx26
both reduce the affinity of the NT to CaM [128,131]. In human and murine fibroblasts
carrying the pathological G12S and S26L mutations of Cx32, an increased CaM-dependent
protein kinase II (CaMKII) activity was linked to the CMT1X motor phenotype, mitotic
instability, and HC dysfunction [166]. The defects were partially recovered by a CaMKII
inhibitor (KN93), supporting the notion that a CaM-dependent pathway controls the HC
gating by [Ca2+]c [13,75,167].

Overall, further investigation is needed to clarify the structural and chemical modifica-
tions of connexin HCs during opening by [Ca2+]e and [Ca2+]c variations. A more complete
model accounting for Ca2+ and transmembrane voltage changes will undoubtedly improve
our interpretation of the experimental results performed under physiological conditions. A
model of this kind could open unprecedented opportunities for the development of thera-
peutic compounds that target specific HC dysfunctions. Recently, novel classes of molecules
have been developed that directly interact with connexin HCs, including connexin mimetic
peptides [168], anti-connexin antibodies [169], and aminoglycosides without antibiotic
activity [170]. Although the mechanism of action for some of these molecules is not yet
fully understood, their increased selectivity for specific connexin isoforms, combined with
their reduced toxicity, makes them promising candidates for clinical application.
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