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New exact solutions to a class of coupled nonlinear PDEs
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Abstract

We decomposed a coupled system of nonlinear partial differential equations (NLPDEs) into a set of
algebraic equations as well as an ordinary differential equation (ODE) which is solved by using the Exp-
function method. This approach not only does not restrict us to a special ODE, but also provides us with
new and more general exact travelling wave solutions. The validity and reliability of that is tested by its
application to a class of coupled NLPDEs, where the corresponding ODEs are the generalized Riccati
equation or the auxiliary ordinary differential equation.

Keywords: Coupled NLPDEs, Exp-function method, exact travelling wave solutions, generalized Riccati
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1. Introduction

Coupled NLPDEs arise in a variety of
scientific fields, especially in fluid mechanics,
solid state physics, chemical physics, plasma
physics, plasma waves, capillary-gravity waves,
etc. Many powerful methods such as the tanh-
function method [1], the extended tanh-function
method [2-6], the modified extended tanh-
function method [13-15], the variational iteration
method [4], the Exp-function method [12], the
sine-cosine method [3, 16], the extended Fan's
sub-equation method [17], the homotopy
perturbation method [18], the homogeneous
balance method [19], the Adomian decomposition
method [20] and some algebraic methods by
using the Riccati equation, the generalized Riccati
equation and the general elliptic equation [21-27],
have been proposed to seek exact travelling wave
solutions of the coupled NLPDEs.

Recently, the Exp-function method proposed
by He [7] which is a straightforward and effective
method, has been successfully applied to find
generalized solitary solutions, compact-like
solutions and periodic solutions for nonlinear
wave equations. Some illustrative examples in
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Refs. [8-11] show that this method presents a
wide application for handling nonlinear wave
equations. Since, apparently, this method cannot
be readily applied to coupled NLPDEs in a direct
manner [12], we decompose a coupled system
into a set of algebraic equations and an ODE,
which is solved by using the Exp-function
method, in order to find generalized solitary
solutions of coupled NLPDEs.

In what follows, we first give the steps of the
proposed approach in the next section. In section
3, we solve the generalized Riccati equation by
using the Exp-function method, which enable us
to find new exact travelling wave solutions of
some coupled NLPDEs such as the coupled
Burgers equations in two different forms, the
quasi-nonlinear hyperbolic equations and the (2
+l)-dimensional Boiti-Leon-Pempinelle equation.
Section 4 is devoted to find exact solutions of the
auxiliary ordinary differential equation by using
the Exp-function method which provides us with
new exact travelling wave solutions of some
coupled NLPDEs such as the coupled equal width
wave equations, the coupled KdV equations and
two types of the generalized Hirota-Satsuma
coupled KdV equations. We solve the coupled
Burgers equations in the modified form in section
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5. Finally, a brief conclusion is given in the last
section of the paper.

2. The proposed method

The following system of NLPDEs

z/,v ,ut ,v, ,ux ,vx,i4y ,vy ,uxx ,v

F2(u,v ,u, ,vr ,ny ,

,...) = 0,

c ,...) = 0,

can be converted to the corresponding system of
ODEs

0)

(2)

by using the transformations
«=«(£),

and on the supposition that ξ is a linear
combination of / , χ and y . As far as possible,
Eqs. (1) and (2) are integrated as long as all terms
contain derivatives where usually integration
constants are considered zero. We use the
appropriate ansatz

M=a0+o,v,
or
ν =α0+α,Μ,

where a0 and a, are unknown constants, to
convert the system of ordinary differential
equations (1) and (2) into a system of algebraic
equations and an ODE. Having the parameters
a0 and a, through solving the system of algebraic
equations and exact solutions of the
corresponding ODE by using the Exp-function
method, we obtain generalized solitary solutions
of M andv in a closed form.

3. The generalized Riccati equation

Now, we intend to apply the method to a
class of coupled NLPDEs which lead to the
generalized Riccati equation (GRE) as the

corresponding ODE in the method. In Ref. [28],
Xie et al, introduced the ORE '

where p , q and /· are three constants and the
prime denotes differentiation with respect to ξ.
Since

by the new variables

p 4qr-p2
^,σ = -!-—^-
2q 4q2

...(4)

the solutions of Eq. (3) can be found through
the solutions of the Riccati equation

Recently, Dai et al. in Ref. [21] used the
Exp-function method to obtain exact solutions
of the Eq. (5), where σ is a constant. As a
special case, they found these three sets of
solutions

/-ι— (6)

, (7)

(8)

where

Π = -Λ
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/ / ο» /ι» /-ι. £o> £1» 8-\ are arbitrary
constants, but the solution (8) in [21] is not a
correct solution of the Eq. (5). We express the
correct form of it as:

"
(9)

In this section, we generate new exact
travelling solutions of some coupled NLPDEs
based on the given solutions of the Riccati
equation (5) by (6), (7) and (9).

3.1 The coupled Burgers equations
We examine the coupled Burgers system

of the form

= 0,

=0,

(10)

(Π)

derived by Esipov [30], where a and β are
constants. It is a simple model of sedimentation
or evolution of scaled volume concentrations of
two kinds of particles in fluid suspensions or
colloids, under the effect of gravity. Using
u(x,t)=u(£), ν(χ,ί)=ν(ξ) and the wave
variable ξ — χ —et , Eqs. (10) and (11) change
to
-cu' - u" + 2uu' + a(uv )' = 0,

-cv' -v * + 2vv' + (uv )' = 0.

(12)

(13)

Integrating Eqs. (12) and (13) once with respect
to ξ and setting the constants of integration to
zero, we obtain

-CM -u' +u2 + a(iw ) = 0,

-cv +v'+v2

Let

u=a0+alv,

(14)

(15)

(16)

where a0 and a, are unknown constants.
Substituting Eq. (16) into Eq. (15), we have the
GRE

v' = (1 + + (-c + aQ)v. (17)

Inserting Eqs. (16) and (17) into Eq. (14),
yields an equation in terms of powers of
v which equating the coefficients of them to
zero gets an algebraic system of equations.
Solving this system leads to

«0=0, a i = .

Then, Eq. (17) can be converted to

v =
-l

v -cv, (18)

which is a GRE with q- βα-\
β-\

r = 0. On account of the relations in (4), (5)
and the obtained solutions of Eq. (18), we get
the following sets of solutions

(i) The first set

/-!'

2Qg« -!)/_!
c08-l)

2Qgg-l) | cQS-1)

K0
2( a-l)>

a-\
Ui = X

-l

2Qgq-I) | cQg-1)

(ii) The second set
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v 2 = -
2Qg«-l)

. c c
F yi F

c 2(βα-\Υ

α-1
-exp(|£) + /jexp(-|<

g-ι 2" c( -Y)
exp(--

(iii) The third set
_-(<rg0

2+/o2)

v3=-
/o2

φ(-< S\
· + cQg-1)

2(y a-l) :

a-1
•/o-

/O -

+ /o2

exp(c^)

4o-g_i
^) + go+?iexp(ci)

209« -1)

where/o,/,/i, g0, gb g.\, c are arbitrary constants, σ =

3.2 The (2+l)-dimensionaI coupled Burgers
equations

Consider the following coupled Burgers
system of the form [31]

= 0,

= 0.

(19)

(20)

Detailed physical descriptions of these
coupled Burgers equations can be found in [32].
Using ι ι ( χ , ί ) = ι ι ( ξ ) , ν(χ,/)=ν(£) and the
wave variable ξ =x +ky +ct , Eqs. (19) and
(20)change to

cu'-2iiu'-ii"-k2u''-2kvu' = Q,

cv'-2uv'-v'-k\'n-2kvv' =
Let

(21)

(22)

(23)

and ξ = χ - et.

where α0
 and o, are unknown constants.

Substituting Eq. (23) into Eq. (22) and
integrating once with setting the constant of
integration to zero, we obtain the equation

c-2a

which is a ORE with

(24)

-GTj —k

c-
= 0. Inserting Eqs. (23) and

(24) into Eq. (21), yields an algebraic system of
equations in powers of ν which equating the
coefficients of them to zero gets an algebraic
system of equations that leads to the free values
for the parameters a0 and <2, . On account of
the relations in (4), (5) and the obtained
solutions of Eq. (24), we get the following sets
of solutions
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(i) The first set

V,=

•-2o0)go
k) . c-2a0

-exp

= a0 + a.

c-2a0 k2+\

(ii) The second set
-(c-2o0)g-i

v2=-
exPF

exP
F

c-2a

£-1 exp
2(A: c-2a0 \2(kI

c - 2aQ _
^rr^t

M2 = OQ + «i

exp
2(al+k) (2(k2+l)

-/i exp

c -a 0

(iii) The third set

-exp
k2 +1

c-2a0

/o - 2fl

2 + 2

exp

!, go, gi, g-i, c are arbitrary constants, σ = ^—- and ξ =
4(0,+Λ)2

33 The system of nonlinear hyperbolic
equations

Consider the nonlinear hyperbolic
system [33]

Μ, +ΜΛ +auv =0,

V, -Vj +OMV =0,

(25)

(26)
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which represents interaction of the two waves
travelling in the opposite directions, where a is
a constant. Using tt(x, t) = κ(ξ), ν(χ,ί)-ν(ξ)
and the wave variable ξ — x — ct, Eqs. (25) and
(26)change to

-CM' + u + aw = 0,

-cv' — v' + auv = 0.

(27)

(28)

Let

u = a0 + a,v, (29)

unknown constants.
Substituting Eq. (29) into Eq. (28), we have the
ORE

where a and a, are

v - 2 aaO-V4 +—-v.
[ c + 1

(30)

Inserting Eqs. (29) and (30) into Eq. (27),
yields an equation in terms of powers of
ν which equating the coefficients of them to
zero gets an algebraic system of equations.
Solving this system leads to

a\ =
c+1
c-\

Then, Eq. (30) can be converted to the equation

v =- a
c-1

2 aaOv2 +—-v,
c + 1

which is a GRE with q = a
P =

(31)

aa0

c-1 c+1
r = 0. On account of the relations in (4), (5)
and the obtained solutions of Eq. (31), we get
the following sets of solutions

(i) The first set

•-
2(c

* l "̂  I Ο I/

c + 1
c-1

(ii) The second set

M2 =

2(c + q0(c-l)
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(iii) The third set

nexp . f+ / η exp

2 , r2<rgo+fo -αα0

flp(c-l)
2(c +1) '

"3 =00 + c-1
2(c- -ξ

+ /ο ·~ααο » aao^-exp —ξ + gn + gi exp — ξ
P

a0(c-l)
2(c + l)

where a0 ,fo,fi,f.\, go, g\, g.\, c are arbitrary constants, σ = — — — and = χ - c/.

3.4 The (2 + l)-dimensional Boiti-Leon-
Pempinelle equation

Now, we examine the (2 + l)-dimensional
Boiti-Leon-Pempinelle equation of the form
[34]

(32)

(33)v,-v r x -2wv j t=0.

Using w(x ,/)=«(£), v(x,0=v(£)
and the wave variable ξ^χ+y-ct, Eqs.
(32) and (33) change to

*- = 0, (34)

(35)
Integrating Eq. (34) twice with respect to

ξ and setting constants of integration to zero,
we obtain

(36)

(37)

(38)

-cv'-v"-2wv' = 0.
Let

ν =α0+α,Μ,

where a0 and a, are unknown constants.
Substituting Eq. (38) into Eq. (36), we have the
ORE

1
Μ =-

2a-l l-2a,
-M. (39)

Inserting Eqs. (38) and (39) into Eq. (37),
yields an equation in terms of powers of u
which equating the coefficients of them to zero
gets an algebraic system of equations. Solving
this system leads to

Then, Eq. (39) can be converted to the equation

u =-u —CM, (40)

which is aGRE with q=-\, p —-c , r = 0. On
account of the relations in (4), (5) and the
obtained solutions of Eq. (40), we get the
following sets of solutions

(i) The first set

«i=- ~r\>

c
2'
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(ii) The second set

-c 2/1
g-iexp(y£) + — _2

,-c

(iii) The third set

«3=·
ρ - V-crg0

) + g0 + ft exp(-ci)

c
T

-CTJ?_1 /o-V-
+ /ρ2

c
2 =

-c·4
where <30 ,f0,fi,f.i, go, g\, g.\, c are arbitrary constants, σ = — and ξ = χ + y - ct.

Remark. We only considered the one set of
solutions reported in [21] for brevity.

4. The auxiliary ordinary differential
equation

In the sequel, we would like to apply the
method to a class of coupled NLPDEs which
lead to the auxiliary ordinary differential
equation (AODE) [29]

(<PW)2 =Η2φ2(ξ) + Η3φί(ξ) + Η4φ4(ξ), (41)

as the corresponding ODE in the proposed
method, where h2, h3 and A4 are arbitrary
constants and the prime denotes differentiation
with respect to ξ. Hence, we use the Exp-
function method to obtain exact solutions of the
AODE which is a special case of the general

elliptic equation. By introducing the variable η
as

η = kξ, (42)

where A: is a constant to be determined later, the
Eq. (41) becomes

k V2 - = Ο, (43)

where prime denotes the derivative with respect
to 77. According to the Exp-function method, we
assume that the solution of Eq. (43) can be
expressed in the following form

(44)
n=-p*

where f„ and gm are unknown constants to be
determined, p, q, e amd d are positive integers
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which are given by the homogeneous balance

principle. To determine the values of q and e ,
we balance the linear term of highest order with
the highest order nonlinear term in Eq. (43) to
have

=

and

^
exp(4e7/)

(45)

(46)

where ft,· are coefficients for simplicity.
Balancing highest order of Exp-function in Eqs.
(45) and (46), we have e = q. In the same
manner as illustrated above, we find d = ρ . For
simplicity, we set e = q = 1 and d = ρ = 1, then
Eq. (44)reduces to

/o + /-i exp(-?/)
expfa) + g0 + g_, exp(-7/)

„_

Substituting Eq. (47) into Eq. (43), and
equating to zero the coefficients of all powers
of exp(;;) yields a set of algebraic equations
for /o, /i, /i, go, gi, g-i, c and k. Solving this
system gets this set of solution

/ι=/-ι=0, /β=-

Sl=-~- k =

where g„ and g_, are arbitrary constants. In
ΐ . ι

view of the above set, we have the following
exact solution of the AODE (41)

-. (48)

+ g-,

4.1 The coupled equal width wave equations
Now, we examine the coupled equal width

wave system, in the normalized form [16]

+vv,=0,

=0,

(49)

(50)

where the boundary conditions u, u', u* -> J
and ν, v', v" -» 62 as * -> +°° sucn that fej,
62 are arbitrary constants. Using u(x,t) = υ(ξ),
v(x,i) - v(^) and the wave variable ξ = χ - et,
Eqs. (49) and (50) change to

-CM' + MM' + cum + w' = 0,

-cv' + w' + cv" - 0.

(51)

(52)

Integrating Eqs. (51) and (52) once with
respect to ξ and setting the constants of
integration to zero, we obtain

- η-CM + + CM + = 0,
2 2

v2
-cv + — + cv" = 0.

2
Let

ν =α0+α,Μ,

(53)

(54)

(55)

where a0 and a, are unknown constants.
Substituting Eq. (55) into Eq. (54), we have

ir _ "1 2 . /i "0 \ /"O "0 ·> ect\

2c C flj

or

3c
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Inserting Eqs. (56) and (55) into Eq. (53)
yields an equation in terms of powers of u
which, equating the coefficients of them to
zero, gets an algebraic system of equations.
Solving this system leads to

Then, Eq. (57) can be converted to

(02=«2-^«3,6c

which is an AODE with A2 = 1, A3 = —

(58)

ΪΛ/3
6c

and A4 = 0. On account of the obtained
solutions of Eq. (58) based on Eq. (48), we get
the following sets of solutions

v =

where go, g.i c are arbitrary constants and

4.2 The coupled KdV equations
Consider the coupled KdV system of the

form [35]

u, +6auux - =0, (59)

(60)

derived by Hirota and Satsuma to model the
interaction of two long water waves with
different dispersion relation, where α, β and b
are constants. Using u(x,t) = n(£),
ν(χ,ί) = ν(ξ) and the wave variable ξ = χ - et,
Eqs. (59) and (60) change to

= 0, (61)

(62)

Integrating Eq. (61) once with respect to
ξ, we obtain

-CM + 3or«2 - bv2 + au" = /,, (63)

-cv' + 3 uv' + v" = 0, (64)

where /, is an integration constant. Let

u = aQ+alv, (65)

where a0 and of, are unknown constants.
Substituting Eq. (65) into Eq. (64) and
integrating once with respect to ξ, where /2 is
an integration constant, we have

v =-
β

or

(v')2 = 2/2v +
(c-3 a0) ,

β
v -

(66)

(67)

Inserting Eqs. (66) and (65) into Eq. (63)
and on the supposition that /2 - 0, yields an
equation in terms of powers of v which,
equating the coefficients of them to zero, gets
an algebraic system of equations. Solving this
system leads to

- '(/*-«) .

Then, Eq. (67) can be converted to

2 =

a
- —v3

\3α '

which is an AODE with A2 =

(68)

c(2a- )
a '

- -.— and A4 = 0. On account of the
V3or

obtained solutions of Eq. (68) based on Eq.
(48), we get the following sets of solutions
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v = -

4 g_,
„a -i) + go+g-iexp(-.

c^a- ),
a

u = C-W^l +la
2c(2a -

-i exp(-

where _ j , c are arbitrary constants and ξ = χ-οΐ.

4.3 The generalized Hirota-Satsuma coupled
KdV equations I

Consider the generalized Hirota-Satsuma
coupled KdV system [26]

- « + - 3(νιιΟ, =0, (69)

0, (70)

= 0, (71)

given by Wu et al. This system reduces to
complex coupled KdV system and Hirota-
Satsuma equation with w = v*and >v = v,
respectively. Using ιι(χ,ί) = υ(ξ), v(x,t)-
ν(ξ) and the wave variable ξ = χ-οί, Eqs.
(69), (70) and (71) change to

-cu1 --ua + luu'- 3(vw)' = 0, (72)

D, (73)

= 0. (74)

Integrating Eq. (72) once with respect to ξ
and setting the constant of integration to zero,
we obtain

-CM—u" +—M2 -3vw =
2 2

(75)

(76)

(77)

Let

and

= aQ+alu, (78)

(79)

where a0, a\, bo and b\ are unknown constants.
Substituting Eq. (78) into Eq. (76) or Eq.

(79) into Eq. (77), we have

or

2̂

(u')2=cu2+u3,

(80)

(81)

which is an AODE with A2 = c, A3 = 1 and
A4 = 0. Inserting Eqs. (80), (79) and (78) into
Eq. (75) yields an equation in terms of powers
of Μ which equating the coefficients of them to
zero gets an algebraic system of equations.
Solving this system leads to

and
4α,

1
;4a,

On account of the obtained solutions of Eq.
(81) based on Eq. (48), we get the following
sets of solutions
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(i) The first set

4g_,
g0

v, =-

4g-i
g0

201
go

(ii) The second set

1/2 =T^

,Λ/.v2 = -2o,c -

-2cg0

- - exp + g0
4g-i

4g-i
+ g0 + g_, exp(-Vc^)

2α, + g0

where g0 , g_, , c are arbitrary constants and ξ = χ - ct.

4.4 The generalized Hirota-Satsuma coupled
KdV equations II

Now, consider the following generalized
Hirota-Satsuma coupled KdV system [26]

4

-
2

=0, (82)

(83)

(84)

proposed by Satsuma and Hirota. They found
its three-soliton solutions and showed that the

with w = 0 and scaling transformation
Χ->^2χ, t^Jlt. Using «(*,/) = «(£),, . ....v(x,/) = v(£) and the wave variable ^ = ̂ -c/5

Eqs. (82), (83) and (84) change to

(85)

(86)

(87)

Integrating Eq. (85) once with respect to ξ and

, . , , A-cv' + - v" + 3in'' = 0,

Hirota-Satsuma equation is a special case of it setting the constant of integration to zero, we obtain
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1 .

4

cv'+lv"
2

•j

2

' + 3«v' = 0,

(88) U" = -3«2+2cU,
or

(89) (M ')2=2cM
2-2M3,

(93)

(94)

-civ' + — wm + 3tnv' = 0.
2

Let

and

(90)

(91)

(92)

where a0,a}, bo and 2>i are unknown constants.
Substituting Eq. (91) into Eq. (89) or Eq.

(92) into Eq. (90), we have

which is an AODE with h2-2c, A3 = -2 and
A4 =0. Inserting Eqs. (93), (92) and (91) into
Eq. (88), yields an equation in terms of powers
of M which equating the coefficients of them to
zero gets an algebraic system of equations.
Solving this system leads to

=-»>/3. b0=a0
2, bi=--

On account of the obtained solutions of Eq.
(94) based on Eq. (48), we get the following set
of solutions

2cg0

4 S-i

where g„, g_,, c are arbitrary constants and ξ = χ-αί.

4.4 The modified coupled Burgers equations
Now, we consider the coupled Burgers

equations in the modified form
u ~ = 0, (95)

(96)

where a and β are constants. Using
ιι(χ,ί) = ιι(ξ), ν(χ,ΐ) = ν(ξ) and the wave
variable ξ = χ - et, Eqs. (95) and (96) change
to

-cu'-u" + 3u2u' + a(uv)' = Q, (97)

-cv'-v" + 3v2v' + /?(wv)' = 0. (98)

Integrating Eqs. (97) and (98) once with
respect to ξ, we obtain

-en -u' +1/3 + a(uv) - /!,

-cv - v' + v3 + (uv) = 72,

(99)

(100)
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where
let

where a and

and 12 are integration constants. Now,

(101)

at are unknown constants.
Substituting Eq. (101) into Eq. (100) yields the
following equation

v' = v3 + aiv2 + (-c + a0)v-l2. (102)

Inserting Eqs. (101) and (102) into Eq.
(99), and on the supposition that /( - 0 , we get
an equation in terms of powers of v which,
equating the coefficients of them to zero, gets
an algebraic system of equations. Solving this
system leads to

a
— +—,
ca c

|_ ~

3 3
α3 a2 a 2
. ___ L_ _i_ "

27 9 9

3
£_—_

27

Then, Eq. (102) can be converted to the
equation

( - c - - + -)v-/2. (103)

Now, suppose

get

v =w +A. (104)

Substituting Eq. (104) into Eq. (103), we

(105)
^ '

Now, setting the coefficients of w2 and
ιι·3 to zero in Eq. (105) yields

A— I c-Ξΐ
3' °~ 3 ·

Therefore, Eq. (105) changes to

/ 3w =w -.
3

27
(106)

In order to find the solutions of Eq. (106), we
seek the solutions of the following equation

w = (107)

where cr is a constant and the prime denotes
differentiation with respect to ξ. By
introducing the variable η as

η = kξ, (108)

where k is a constant to be determined later,
the Eq. (107) becomes

*ιν'-ιν3-σ = 0, (109)

where prime denotes the derivative with respect
to η. According to the Exp-function method, we
assume that the solution of Eq. (109) can be
expressed in the following form

(110)

where fn and gm are unknown constants to be
determined, p, q, e and d are positive integers
which are given by the homogeneous balance
principle. To determine the values of q and e ,
we balance the linear term of highest order with
the highest order nonlinear term in Eq. (109) to
have

and

62 exp(3g»7)

b 3 exp(3g/?) + ·
b 4 exp(3tf/7) + ·

(111)

(112)

where bt are coefficients for simplicity.
Balancing highest order of Exp-function in Eqs.
(I l l) and (112), we have e = q. In the same
manner as illustrated above, we find d = ρ .
For simplicity, we set e =q =\ and
d =ρ = 1,then Eq. (110)reduces to
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\ _ f\ exP(/7) + /o +/-1 expi"7/) n nx of exp(/7) yields a set of algebraic equations
gl exp(//) + go + g_, exp(-/7)" for /„, /,, /_,, g0, g}, g_}, and k . Solving

Substituting Eq. (113) into Eq. (109), and this system' 8ets four sets of solutions
equating to zero the coefficients of all powers

/· V *-* V» » -v -t Jfy\

-(l + ΪΛ/3 )2 /_, , 3(1 + ΪΛ/3 )2

and

_
8° ~

ΪΛ/3)/_ι , - 3 ( 1 + Κ/3)

and

/o = go = 0, /-i =

ft=d

2
-3x (̂1 + i^)2

8

and

/o - ^o - 0» /-i
\\f.

k =

On account of Eqs. (113), (106), (101) and solutions of n and v in the following closed
the above mentioned solutions, we get exact forms

(i) The first set

v, =
i>/3)2/og, ' J0<γσ

. ,where k =
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(ii) The second set

"2 =-τ+ ο3 3

. ,where k -
2

(iii) The third set

. .where Λ =
8

(iv) The fourth set

v4= —

g,
σ

_, exp(- r^)

where := . In all the given solutions, f o , f\, f-\, ξ§, gl, g_jare arbitrary constants,

-α3 aσ = ,c- and ς = χ—ct.
27 3 h
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6. Conclusion

We extract the generalized solitary
solutions of the coupled NLPDEs via
decomposing them into a system of algebraic
equations as well as an ordinary differential
equation and solving the corresponding ODE
through Exp-function method. We have found
some new exact travelling wave solutions for
the coupled Burgers equations in two different
forms, the system of nonlinear hyperbolic
equations, the (2 + l)-dimensional Boiti-Leon-
Pempinelle equation, the coupled equal width
wave equations, the coupled KdV equations,
two types of the generalized Hirota-Satsuma
coupled KdV equations and the coupled
Burgers equations in the modified form.
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