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Introduction: 3D nonlinear MHD code SpeCyl [1] is a spectral tool, operating in zero-β

approximation and in cylindrical geometry to advance in time the magnetic field and the plasma

flow. The traditional formulation of its boundary conditions (BCs), here dubbed SpeCyl.1,

would see the plasma as if in direct contact with an ideal wall. However, a recent reformu-

lation [2] introduced a rigid thin shell at the outer plasma radius and a tunable-width vacuum

region between such shell and the ideal wall.

With a suitable choice of parameters, the resistive shell can be made transparent to the mag-

netic field, so to simulate a free-interface between plasma and vacuum. Numerical benchmark

performed in this regime against current-driven linear MHD instabilities found good agreement

concerning the internal modes, yet quantitatively poor for external MHD modes [3], motivating

a reformulation of fluid boundary conditions, as well.

In this paper, we present the resulting set of BCs, here referred to as SpeCyl.2, a general-

ization to finite flow at plasma edge of the already present thin shell-like modelling of magnetic

plasma-vacuum interface [2]. We include a mutual-benchmark between our new, self-consistent

formulation SpeCyl.2 and another MHD nonlinear simulations code, Pixie3D [4], with anal-

ogous physical assumptions at plasma edge. This extends the nonlinear benchmark, already

performed between the two codes [5] and verifies SpeCyl.2. We also provide numerical bench-

marks, mainly against some well known results of the theory of linear MHD instabilities [6, 7].

SpeCyl.2 BCs feature the interface as thin, resistive shell [2], also allowing finite radial

and tangent flow. On the top of an axisymmetric ohmic pinch equilibrium, as in [8], magnetic

radial field modes m,n ̸= 0 are assumed to be continuous across the shell. The cylindrical Pois-

son’s problem is solved analytically in the vacuum region between the outer ideal wall and the

resistive interface, to determine also azimuthal B(m,n)
θ ,vac and axial B(m,n)

z,vac magnetic components

at interface, r = a, in terms of modified Bessel’s functions. These values are used in the BCs



for their in-plasma counterparts, B(m,n)
θ

and B(m,n)
z , enforcing tangent electric field continuity

between the plasma and the shell, at r = a:
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where ηpl is plasma resistivity, R is the major radius, v and B are the flow and magnetic field,

respectively. In both equations, the lhs represents the plasma electric field at edge, via the resis-

tive Ohm’s law, and the rhs is the electric field on the rigid shell, sustaining azimuthal and axial

field jumps through eddy currents that plummet on the resistive timescale τw, given as an input.

Permeability to finite edge flow is given by the turbulent v×B terms in round brackets, which

are in fact convolutions over the full spectrum of the simulation.

The BCs for radial magnetic modes enforces Faraday’s law and divB = 0 and read
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the derivative jump at rhs being sustained by eddy currents, shrinking on the wall time τw.

Finally, the BCs for the radial flow enforce the ideal Ohm’s law, as an E×B drift, as in [8]:

v(m,n)
r from

(
|B|2 vr

)(m,n)
= (Eθ Bz −EzBθ )

(m,n) (4)

whereas SpeCyl.1 only considered axisymmetric radial flow v(0,0)r ̸= 0. Tangential compo-

nents can be either set to 0 (no-slip) or fixed with a von Neumann like constraint (no-stress).

Figure 1: Near-edge comparison of SpeCyl.1 (grey),

SpeCyl.2 (blue) and Pixie3D (red) in RFP geometry.

Mutual benchmark with Pixie3D

here extends what already successfully

done with SpeCyl.1, in [5], and serves to

verify SpeCyl.2.

Figure 1 complements fig. 10 of [5] by

comparing SpeCyl.2’s new outcomes to

SpeCyl.1’s and Pixie3D’s. This is a 2D

case study of externally near-axis res-

onating 1/8 kink in reversed-field pinch

(RFP) geometry, with an ideal wall at

r = a and no-slip conditions on v (only

the outermost 30% radial span is pictured). Ideal wall BCs coincide with setting the rhs of

eqs. 1-3 to null (no field-jumps), so that the tangent electric field modes vanish on its sur-

face (leftmost panel), whereas E(0,0)
z ̸= 0 to sustain equilibrium current density. In turn, this



generates a mostly axisymmetric inwards pinch radial flow, via eq. 4 (see central panel): non-

axisymmetric modes were completely missed by SpeCyl.1 and fall now in perfect agreement

with Pixie3D, when using SpeCyl.2. A significant effect is observed on Jz modes (see last

panel) since resistive Ohm’s law with E(m,n)
z = 0 sets them proportional to the v×B prod-

uct, whose convolution is incomplete in SpeCyl.1, yielding unphysical edge-current spykes.

As for the magnetic part of the BCs, fig. 2 shows the matching between SpeCyl’s simulation

radial field and the analytical solution of Poisson’s problem in vacuum region, for the same

RFP set-up, but with a second ideal conductor at r/a = 10. As long as the wall time τw is much

longer than the simulation duration, almost no diffusion takes place. Instead, as time-scales get

comparable, the slope imbalance flattens, according to eq. 3. As expected, SpeCyl.1 corresponds

to the limit case for τw → ∞.

Figure 2: SpeCyl.2 B(1,−8)
r and analytical

vacuum field, with ideal wall at r = 10a.

SpeCyl.1 is recovered as τW → ∞.

Benchmark against linear MHD in tokamak ge-

ometry has been performed extensively, especially

against the external kink instability, where the edge

flow plays a key role. We focus here on the specific

case of m = 2 mode in large aspect-ratio (where zero-

β approximation holds) and on a flat axial-current

"Shafranov equilibrium" [7].

Linear model predictions can be achieved via the en-

ergy principle, that sets a variational problem to find the most favourable plasma-shape relax-

ation displacement ξ = ∑m,n ξ (m,n)(r) · exp [imθ + inz/R+ iω t], with

ω
2 =− W [ξ ]∫

V
ρ

2 |ξ |2 dV
; W [ξ ] =−1

2

∫
V

J×B ·ξ dV (5)

the functional W [ξ ] being the (pressureless) work done by the plasma relaxation and V =Vpl +

Vvac the volume of the entire system. The variational principle reads δW ≡W [ξ +δξ ]−W [ξ ] =

0 for small δξ , yielding an Euler’s differential equation for ξ that solely depends on equilibrium

current distribution and can be solved numerically. Substitution in eq 5 yields the growth-rate

γ = Im{ω}, either positive (if unstable) or null.

Figure 3 illustrates SpeCyl.2 benchmark against Shafranov’s model: we run 2D simulations

with modes m/n = 2/1 and 4/2 plus equilibrium, inverse aspect-ratio ε = 0.05, τw ∼ τA, with

uniform viscosity ν = 10−8 and no-stress BCs on v∥. Resistivity profile keeps almost flat onto

η(0) = 10−5, up to rplasma = 0.9 ·a, where it rapidly inflates to 100×η(0). Accordingly, plasma

density ρ keeps uniform inside rplasma, shrinking by a factor 104 outside it. Hence, we get a[
ρ, J(0,0)z

]
≈ const plasma region in 0 ≤ r ≤ rplasma and a narrow pseudo-vacuum layer. This



Figure 3: Growth-rates and profiles of mode (2,−1) external kink in the tokamak.

approach is followed in several numeric codes, e.g. JOREK [9].

The first panel shows the growth rate dependence on the safety factor at edge: SpeCyl.2 under-

estimates its absolute value, but reliably predicts the instability margins, 1 < q0 < 2. Negative

growth-rates outside this domain seemingly indicate coalescence of a stable ideal kink and a

(numeric or visco-resistive) dissipative process. The central panel highlights the stabilizing ef-

fect of a closely-fitting superconductor: once more, the qualitative behaviour seems correct, with

optimal matching of the critical wall distance at which the mode quenches. Quantitative results

well agree with the analogous benchmark performed with JOREK [9]. Finally, very good agree-

ment is found on profiles of both v(m,n)
r and B(m,n)

r in the meaningful plasma region, r ≤ 0.9 ·a.

Conclusions SpeCyl.2 allows now a fully self-consistent resistive shell like interface and

finite edge flow. Preliminary agreement on RFP geometry has been found with an independent

simulations tool as Pixie3D, extending previous results and verifying both implementations.

Also, qualitative and quantitative agreement with the theory of external kinks in tokamak ge-

ometry motivates further testing and research. Further verification is currently being sought via

a benchmark against Pixie3D on m = 1 fundamental Kruskal-Shafranov limit.
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