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Abstract 

In this work, we blueprint a Dashboard which allows users to simulate bacterial community’s 
evolution through a intuitive GUI. The underlying Python-coded simulator implements an agent-
based model of bacterial species, nutrients and environment, allowing full customization and 
upgradability of the tool, due to its intrinsic modularity. Specifically, the model aims to represent 
discretized spaces, hosting certain number of bacteria for each species and a defined amount of 
nutrients characterizing the surrounding environment. Bacteria can migrate from a spatial unit into 
another, looking for different nutrients (i.e., metabolites) across the whole space path. Their growth 
and survival are governed by their metabolism, which is in turn function of the metabolites present 
in each specific spatial unit at a certain time point. Thus, the simulator shows how bacteria consume 
and produce metabolites, following species-specific metabolism rules, letting the system dynamically 
evolve through bacterial growth, death, spatial migration and continuous updates of the available 
metabolites pool. 

Introduction 

Human gut microbiota composition and behavior has been proved to be fundamental for our health; 
thus, proper modeling of microbial ecology is a hot topic in computational, systems and synthetic 
biology [1-3].  
Classical ecological models, such as Generalized Lotka Volterra models (GLVm), describe the 
absolute abundance of each community mainly as function of intrinsic growth rate and pairwise 
interactions with each community members; parameters need to be inferred by co-occurrence 
networks leveraging on bioinformatic approaches, i.e., obtained from metagenomic data and 
investigated via topological analysis [4]. The inherent biases associated with each experimental 
method adopted to retrieve data for training the models, motivates the need for standardization across 
different studies [5-8]. Additionally, these models usually rely on constant parameters to describe 
microbe-microbe interactions, which are however determined, for example, by the temporally 
changing biotic and abiotic environment, failing in capturing community-level behaviors when the 
environment changes significantly over time. Summarizing, those methods still lack in 
generalizability, poorly considering information on molecular mechanisms generating the observed 
scenarios as well as environmental-related variables. Nevertheless, spatial and temporal features are 
completely neglected [9-11].  
Another promising approach relies on flux balance analysis (FBA) methods; in this case, information 
on bacteria metabolisms is included in the analysis through genome-scale models (i.e., structured 
information of possible reactions happening in a bacteria species based on annotated transcriptomes 
through metabolic networks), which are used to implement an optimization problem with biomass 
production as objective function [12]. While several groups are adopting FBA-derived to develop 
predictive tools, the lack of sufficiently annotated metabolic models is still a major issue; additionally, 



similarly to GLVm, this approach need nesting in more complex models to provide spatial 
information.  
Microbe-effector models and, more specifically, agent-based modeling is an inspiring solution to 
implement efficient and robust methods to describe systems counting for billions of bacterial cells 
from hundreds of different species. This approach allows to develop mechanistic-level descriptions 
of simple agents, dynamically interacting with the surrounding environment that can be arbitrarily 
modeled; then, from agents decoupled behaviors, the complex microbial ecologies should emerge 
without the need of describing interaction network, which are hard to identify [13-16]. 
The technology to characterize bacterial metabolisms in a cheap, reliable and high-throughput fashion 
is still under development. However, we believe that the intrinsically modular and incremental 
structure of our simulator is generalizable enough to be already used for roughly defined 
communities, but also to be directly used in a near future, when all the required data for a full 
characterization of these types of models will be available. 

Methods 

The space is abstracted as a series of boxes called cells, each one containing a specific set of 
metabolites, connected with the closest neighborhood cells. This allows representing four different 
possible scenarios (currently, only the first two scenarios have been implemented): 

● single cell: a well-mixed space where bacteria and metabolites are equally distributed (e.g., a 
stirring bioreactor); 

● chain of cells: a linear tract where fluxes of metabolites and bacteria occur in 1 dimension (e.g., 
representing the intestinal tract with peristaltic movements); 

● plane of cells: a surface where movements occur in 2 dimensions (e.g., a Petri dish with 
chemotaxis-driven propagation); 

● 3D geometry of cells: a volume discretized in several cells (e.g., an organoid with random-walk 
expansion). 

Bacterial agents (i.e., bacteria of different species) can process the metabolites in a cell, grow and 
move into a connected cell, if existent. This is implemented in Python through two classes: 

The class Cell, whose instances implement the spatial unity, is defined by: 

● an array of metabolites available at the current iteration  
● a matrix of metabolites produced by the bacteria at the current iteration  
● a dictionary of the bacteria in the cell, with the number of bacterial agents for each Bact instance  

The class Bact, whose instances implement bacteria species with specific metabolism, is defined by: 

● a string with the species names 
● a vector with the metabolisms, indicating for each metabolite if it is consumed or produced  
● a vector indicating which metabolites lead to toxic effects 
● two integers describing the maximum growth rate and the toxicity level, to be adopted in the Hill 

equations (Equation 1) for the population growth and death.  
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It is worth to note that, while the adoption of a Hill’s equation to model bacterial growth as a function 
of the processed metabolites is purely empirical, the modularity of the class allows to easily change 
this function into an alternative one. 

Equation 1: Bacteria growth rate with: 
𝒇୨: 𝑗

௧௛-cell nutrients; 𝒎௜: 𝑖௧௛-bacterial species metabolism; 𝑓௜,௝
௧௢௧: consumed metabolites; 

𝑛௜,௝
௕௔௖: number of bacteria; 𝜇௜ 

௠௔௫ , 𝑘௜, 𝜂௜: Hill parameters. 



For example, considering a linear tract representing an 
intestine tract: at each iteration, bacteria can migrate 
from the ith to the (i+1)th cell (to mimic the direction of 
chime), grow, die, metabolize the available 
metabolites, and produce a new set of metabolites for 
the next iteration (Figure 1). In addition to the accessor 
and set methods – which are fundamental for the 
interface between the simulator model and the GUI – 
the Cell class includes methods to update the 
concentration of metabolites and the number of 
bacteria in each cell at each iteration. Analogously, 
methods for the class Bact include methods to compute 
the variation in each species’ abundance, depending on 
the nutrients available in a certain cell and the presence 
of toxic metabolites. The food update involves the 
sampling of the nutrients from a multivariate 
hypergeometric distribution so to model the propensity 
of remaining nutrients to be consumed by the most 
abundant and highly metabolizing species. Lastly, for 
what concern the chain of cell implementation, a 
method describing the flux of microbes at each 
interaction from one cell to the next one is 
implemented by fixing the number of bacteria flowing 
as proportional to the species abundance and used to 
realize the system evolution. Again, thanks to the 
modularity of the implementation, this method can be 
easily adapted to realize different spatial driving forces 
or constraints, such as chemotaxis or random walk. 

Results  

The GUI allows simple visualization of the running simulation parameters, and both nutrients and 
bacterial composition evolution over time can be observed on the Dashboard (Figure 2) 

Figure 1: Example of the simulation framework for a 
chain of cells representing an intestine tract with 
monodirectional migration due to peristalsis. 

Figure 2: Example of a toy-simulation implementing a chain of cells representing and intestine tract. 



Starting from randomly generated data (metabolites concentration and bacterial abundance), the 
model was able to simulate a number of different conditions (Figure 3) such as: 

● Perfect fitness: most of the nutrients in a cell are highly metabolized by a specific species due to a 
favorable environment. 

● Bad fitness: no nutrient in a cell is metabolized by any of the species causing a particularly hostile 
environment. 

● Commensalism: most of the metabolites produced by a certain species are metabolized by another specific 
one and vice versa. 

Conclusion 

Despite the simplicity of the current implementation, which is still undergoing significant 
enrichments and refinements, the simulator is already able to provide meaningful results; indeed, 
biologically sound characteristic community behaviors emerge from random metabolic patterns and 
nutrient distribution, mimicking a natural evolution. 
In addition to spatial evolution refinements, ongoing activities are focused to integrate information 
on specific nutrient lists and presets of known media composition from curated databases [17-19]. 
Moreover, information on actual bacterial species and related metabolisms are being added on the 
basis of data contained in the genome-scale metabolic reconstruction of human gut microbe’s dataset 
[20]. In this way, starting from stoichiometric matrices and filtering on the above-mentioned nutrient 
lists, it is possible to parametrize nutrient consumption and production. 
Finally, further information integration will be easily manageable by users via ad-hoc plugins that 
will be added to the GUI. Indeed, we expect that as soon as further -omics data will be available for 
species beyond the human-associated ones (e.g., soil and water communities as well as veterinary and 
agricultural relevant microbiotas), our simulator will allow boosting bacterial community studies, 
especially for those fields where the complexity of bacterial co-culture methods and media 
composition variability severely hamper the advance of the research. 
Our model allows the description of bacterial communities growing on linear space (e.g., a gut 
section) Future developments will   include the occurrence of mutations (i.e., biologically acceptable 
small alterations in the metabolisms). 

Figure 3: Results for three biologically relevant community behaviors 
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