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Abstract—The use of Reconfigurable Intelligent Surface (RIS)
technology to extend coverage and allow for better control
of the wireless environment has been proposed in several use
cases, including Ultra-Reliable Low-Latency Communications
(URLLC) communications. However, the extremely challenging
latency constraint makes explicit channel estimation difficult,
so positioning information is often used to configure the RIS
and illuminate the receiver device. In this work, we analyze
the effect of imperfections in the positioning information on the
reliability, deriving an upper bound to the outage probability.
We then use this bound to perform power control, efficiently
finding the minimum power that respects the URLLC constraints
under positioning uncertainty. The optimization is conservative,
so that all points respect the URLLC constraints, and the bound
is relatively tight, with an optimality gap between 1.5 and 4.5 dB.

Index Terms—Reconfigurable intelligent surfaces, URLLC,
power control, stochastic optimization

I. INTRODUCTION

A growing body of research has recognized the potential
of Reconfigurable Intelligent Surfaces (RISs) to provide im-
provements in wireless communications by imposing low-
power real-time control on the propagated wireless signals [1].
As such, it can result in various performance benefits, such
as improved coverage, increased data rate, and mitigation of
multi-user interference [1], [2].

Intuitively, a RIS is a good match for Ultra-Reliable Low-
Latency Communications (URLLC), since it can act as a full-
duplex relay. It can thus support two-way exchanges without
incurring additional latency, as there is no need to change the
configuration when the communication direction is changed.
Nevertheless, the RIS configuration needs to be optimized in
order to create a favorable wireless channel between the nodes
of interest [2]. The potential of RIS in the context of URLLC
has been analyzed in [3], where the authors prove that the
reliability of the system is improved by adding an RIS. Other
works on the topic focus on the optimization of the system:
in [4], the authors design a low-complexity joint beamforming
and phase shift optimization algorithm; in [5], the authors
propose a grant-free uplink access paradigm based on a mix
of resource allocation schemes and receiver design. However,
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Fig. 1. Scenario of interest.

the above literature is conditioned on the knowledge of the
Channel State Information (CSI). In real systems, RIS channel
estimation procedures have a complexity proportional to the
number of RIS elements [6], [7], and are not practical for
URLLC traffic, as the procedure can add a significant delay.

A possible alternative, especially in cases where a strong
Line of Sight (LoS) component dominates the propagation, is
to use the positioning information of the terminals to configure
the RIS beamformer to illuminate the receiver [8]. However,
available position information is subject to uncertainty, and,
hence, robust optimizations accounting for such error are
needed. A formal analysis on the statistical relation between
reliability and uncertainty for a generic communication system
is carried out in [9]. A design of RIS phase shift optimization
taking into account such uncertainty to maximize the average
spectral efficiency with no reliability constraint (which makes
it unsuitable for URLLC) is presented in [10].

This paper addresses the problem of URLLC communica-
tion when the RIS is configured to beam energy towards a
User Equipment (UE) based on the tracking of its position
at the Base Station (BS). The setup is depicted in Fig. 1, in
which the BS transmits in the downlink. For the depicted UE,
the dominant portion of the wireless signal arrives through a
controllable path, which the RIS can affect by changing its
configuration. The uncertainty of the UE’s position is due to
the noisy tracking process, which is often based on Kalman or
particle filters. We propose a method that embeds the position
uncertainty into the overall URLLC reliability requirement,
determines the RIS configuration and sets the BS transmit
power to meet the reliability constraint.1

1The simulation code for the paper is available at https://github.com/
AAU-CNT/efficient-ris-aided-urllc



The rest of the paper is divided as follows: first, Sec. II
presents the system model. The reliability bound and power
optimization are derived in Sec. III, and numerical perfor-
mance results are described in Sec. IV. Finally, Sec. V
concludes the paper and presents some possible avenues of
future work.

Notation: mod(a,M) is the a modulo M operation;
bac represent the nearest lower integer of a. Lower and
upper case boldface letters denote vectors x and matrices
X, respectively; the Euclidean norm of x is ‖x‖. P(e) is
the probability that event e occurs; CN (µ,R) is the complex
Gaussian distribution with mean µ and covariance matrix R;
R(K,Ω) is the Rice distribution with shape parameter K and
scale parameter Ω; E[·] is the expected value operation.

II. SYSTEM MODEL

We consider an industrial Downlink (DL) URLLC com-
munication scenario in which a single-antenna BS has to
communicate to a single-antenna mobile UE. To ensure full
coverage, a N -element RIS is deployed on the ceiling of the
factory. We define the three-dimensional coordinate system
O1, whose origin lies in the center of the RIS xr = (0, 0, 0)ᵀ.
The x and y axes are parallel to the horizontal dimensions of
the RIS, and the z axis points towards the floor of the factory.
A depiction of coordinate system O1 is given in Fig. 2.

It is assumed that there is a known one-to-one mapping
between the locations of the UE and the RIS configurations.
For the propagation scenario in this paper, the mapping is
explicitly available as analytical expressions. In the consid-
ered industrial scenario with more complicated propagation
characteristics, the availability of the mapping implies that a
suitable calibration process has taken place, which can map
the regions of the floor in which the RIS provides a significant
benefit, as the direct path between BS and UE is blocked or
weak.

A. Communication System Model

The available space for the UE is delimited by a square
floor of area D2 m2 and the ceiling is at a height of h m. The
position of the BS is xb = (xb, yb, zb)

ᵀ, and a LoS path with
the RIS exists. The UE moves around the factory floor, so
that its coordinates at time t are xu(t) = (xu(t), yu(t), h)ᵀ.
Assuming a square RIS for simplicity of presentation, each
element has position on O1 given by rn = d(mod(n −
1,
√
N) −

√
N−1
2 , bn−1√

N
c −

√
N−1
2 , 0)ᵀ where d < λ is the

spacing between the center of neighboring elements and λ is
the carrier wavelength. We assume h ≥ 2

λd
2N2 in order to

assure far-field propagation regardless the position of the UE.
Each RIS element influences the incoming signal by inducing
a phase shift φn, and we assume that the attenuation imposed
by each element of the RIS is strictly equal to 1. The vector
containing the phase shifts of each RIS element is denoted as
φ = [ejφ1 , . . . , ejφN ]ᵀ, and it is referred as phase profile or
configuration in the remainder of the paper. The RIS phase
profile is controlled by the BS, which receives information
about UEs positioning through an out-of-band control channel.
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Fig. 2. Coordinate system O1 of the scenario.

The aim of the BS is then to optimize its own transmitting
power and the RIS phase profile to communicate efficiently
to the UE while respecting the URLLC constraints.

We assume that the BS tracks the UE’s movements through
a Kalman-like filter [11], which is a common assumption
in indoor and outdoor tracking applications [12], so that the
Probability Density Function (PDF) of the estimated position
of the UE at time t is a bivariate Gaussian random variable:

pxu(t)(x) =
1

2π|Σ(t)|
e−

1
2 (x−x̂u(t))ᵀΣ(t)(x−x̂u(t)), (1)

where x̂u(t) is the estimated position at time t and Σ(t) is
the covariance matrix of the Kalman filter.

We can convert the UE’s and BS’ positions from Cartesian
to spherical coordinates zu(t) = (ru(t), θu(t), ϕu(t))ᵀ, and
zb(t) = (rb(t), θb(t), ϕb(t))

ᵀ using the RIS’s center as the
center of the sphere. The three coordinates represent the radius
ri ∈ [0,

√
D2/2 + h2] from the center to the RIS to the user

(BS), the elevation angle θi ∈ [−π/2, π/2] computed from the
z axis to the UE’s (BS’) position, and the azimuth angle ϕi ∈
[0, 2π] identifying the point on the x− y plane, respectively,
with i ∈ {b, u}. In the following, we omit the time index t
for brevity.

Assuming a transmission bandwidth well below the channel
coherence bandwidth, each transmitted symbol will experience
a channel which depends on the position of the UE and the
BS, the RIS configuration loaded in that moment, and the
frequency flat short term fading. Without loss of generality,
we assume that the BS transmits a single symbol x with power
P towards the UE; the received signal can be modeled as

y =
√
β(xu)Pgbgua

ᵀ
bdiag(φ)aux+ n, (2)

where |gb|, |gu| ∼ R(K, 1) are the short term fading realiza-
tions for the BS-RIS and RIS-UE paths, and n ∼ CN (0, σ2)
is the receiver noise. The path loss term is given by

β(xu) = β2
0GbGu

(
d2

0

‖xu‖ ‖xb‖

)ξ
, (3)

where β0 is the path loss at a reference distance d0, Gb and
Gu are the antenna gain of the BS and UE, respectively; ξ is
the path loss exponent. Note that β0 and d0 are squared due
to the double path BS-RIS and RIS-UE. The steering vectors
ab and au represent the angle of arrival from the BS to each



RIS element and the angle of departure from each element to
the UE, respectively. The steering vectors are:

[ai]n = e
j 2π
λ

x
ᵀ
i
rn

‖xi‖ = ej
2π
λ (rn,1 sin θi cosϕi+rn,2 sin θi sinϕi),

(4)
with i ∈ {b, u}. The Signal to Noise Ratio (SNR) is then:

γ =
P

σ2
β|gbgu|2N2|A(φ|x̂u,xu)|2, (5)

where A(φ|x̂u,xu) = 1
N aᵀ

bdiag(φ)au denotes the RIS array
factor (AF), while |A(φ|x̂u,xu)|2 denotes the AF gain.

B. Array Factor: Pointing and Beamwidth

We define two indexes spanning through the RIS elements
in the horizontal (x) and vertical (y) dimensions as ` =
mod(n − 1,

√
N) and k =

⌊
n−1√
N

⌋
, respectively, and rewrite

the AF as

A(φ|x̂u,xu) =
1

N

√
N−1∑
`=0

√
N−1∑
k=0

ejφ`,k

· ej
2π
λ d

(
`−
√
N−1
2

)
(sin θu cosϕu+sin θb cosϕb)

· ej
2π
λ d

(
k−
√
N−1
2

)
(sin θu sinϕu+sin θb sinϕb),

(6)

where φ`,k = φn using the appropriate index. Without loss
of generality, the phase shift impressed by each element can
be expressed as φ`,k = `φx + kφy . In this way, we can
compensate for the (known) position of the BS, while pointing
toward the direction given by θ̂ and φ̂, by setting

φx = −πd
λ

(
sin θ̂ cos ϕ̂+ sin θb cosϕb

)
,

φy = −πd
λ

(
sin θ̂ sin ϕ̂+ sin θb sinϕb

)
.

(7)

Inserting (7) into (6), the AF can be rewritten as [13]

A(φ|x̂u,xu) =
ej
√
N−1
2 (φx+φy)

N

sin(
√
Nfx)

sin(fx)

sin(
√
Nfy)

sin(fy)
,

(8)
with fx = πd

λ (sin θu cosϕu − sin θ̂ cos ϕ̂) and fy =
πd
λ (sin θu sinϕu − sin θ̂ sin ϕ̂). If perfect knowledge of the

UE’s position is available, a trivial solution to maximize the
AF is to set θ̂ = θu, ϕ̂ = ϕu; however, a positioning
error is always present. Therefore, we resort to evaluate the
illuminated region (on the floor) G(A0) in which the AF gain
is at least equal to A0 after setting θ̂ = θ̂u, ϕ̂ = ϕ̂u.

The AF of a square Uniform Planar Array (UPA) when
pointing toward the direction given by θ̂ and ϕ̂, i.e.,
ŵ = (sin θ̂ cos ϕ̂, sin θ̂ sin ϕ̂, cos θ̂)ᵀ is given by (8). The 3D
beamwidth generating an AF gain of A0 ∈ (0, 1] can then be
approximated by the angles [13, Section 6.10]

∆θ(A0) =
∆Θ(A0)

cos θ̂
, ∆ϕ(A0) = ∆Θ(A0). (9)

Thus, the points in the 3D space with an AF gain of A0 lie
on the surface of an elliptic cone whose vertical axis is the
pointing direction ŵ, the major diameter (2a) is generated

by the angle ∆θ(A0) in the elevation plane is defined by
ϕ = ϕ̂, and the minor diameter (2b) is generated by the
angle ∆θ(A0) on the plane perpendicular to the elevation one
(see [13, Fig. 6.38]). In (9), ∆Θ(A0) is the beamwidth of the
Uniform Linear Array (ULA) spanning through the x (or y)
dimension providing an AF gain of A0, whose approximation
is given in the following proposition.

Proposition 1. The beamwidth of a ULA given an AF target
gain A0 can be approximated as

∆Θ(A0) ≈ arcsin

(
2
λx(A0)

πd
√
N

)
, (10)

where x(A0) = {x | sinc(x) = A0}.

Proof. In the main lobe, the ULA AF is ≈ sinc(
√
Nfx) [13],

where ϕ = ϕ̂ = 0 because the elements span the x axis.
Neglecting the pointing effect, i.e., θ̂ = π/2, and solving√
Nfx = x(A0) with respect to θ completes the proof.

The arguments x(A0) can be easily obtained by numerical
simulations for the desired values of A0.

III. POWER CONTROL FOR URLLC

While most URLLC packets are short, the finite blocklength
effects disappear when only statistical knowledge of the CSI
is available, as proven in [14]. Hence, we can use Shannon’s
capacity formula to derive the minimum required SNR to
reliably deliver the data, and perform power control for the
URLLC transmission. If we consider a packet of length L
bits, which has to be transmitted with a maximum latency T
over bandwidth B, the minimum required SNR γ0 is

γ0 = 2
L
BT − 1. (11)

The actual SNR in (5) includes two independent random
components: the first is the fading, which is given by the
product of the fading on the BS-RIS and RIS-UE channels,
while the second depends on the actual position of the UE.
If the UE’s coordinates are given by xu, the average SNR
γ̂(x̂u,xu) is given by:

γ̂(x̂u,xu) =
P

σ2
β(xu)E[|gmgb|2]N2|A(φ|x̂u,xu)|2, (12)

and we know that E[|gmgb|2] = 1. The two random terms
(the fading and the UE’s position) can be considered as
independent. The BS can then optimize the transmission
power P to minimize energy consumption while meeting the
URLLC requirements.

The intuition for our procedure is the following: first, we
find an upper bound to the outage probability by considering
either a deep fading event or a large positioning error as a
failure (without computing the intersection, or the possibility
that a lucky fading gain might compensate for a larger
positioning error). We then try to find the minimum gain that
allows the resulting beam to illuminate the region in which
the UE might be, and invert the resulting values to find a
transmission power that ensures URLLC constraints are met.



A. Reliability Bound

The overall problem is complex, as the distribution of the
instantaneous SNR is extremely difficult and must be obtained
numerically, making the computation difficult: as URLLC
requirements limit the computational effort that can be spent
in optimizing the system before transmission, this makes a
direct calculation infeasible. However, we can compute a
lower bound to reliability by separating the two components:

Theorem 1. Let G0 > 0 be a positive value. If P(|gugb|2 ≤
G0) = δ, we have:

P(γ < γ0) ≤ δ + P
(
γ̂ ≤ γ0

G0

)
. (13)

Proof. We can consider two cases:
1) In the first case, |gugb|2 > G0. We can then express the

following bound:

γ = γ̂|gugb|2 > γ̂G0. (14)

If γ̂G0 ≥ γ0, we then always have γ ≥ γ0, and in this
case we have:

P(γ < γ0|G0 < |gugb|2) ≤ P(γ̂G0 < γ0). (15)

2) In the second case, |gugb|2 ≤ G0, and P(γ < γ0|G0 ≥
|gugb|2) ≤ 1 (which is trivially true).

By definition, the first and second case are mutually exclusive,
and occur with probability 1 − δ and δ, respectively. By
applying the law of total probability, the overall probability
P(γ < γ0) is upper bounded by δ+ (1− δ)P(G0γ̂ < γ0). As
δ ≤ 1, the theorem is proven.

We can then consider power control, applying the bound in
the first theorem to find the power requirement.

Theorem 2. Let G(A0) : {x ∈ R2 : |A(φ|x̂u,x)|2 ≥ A0}
be the set of points for which the AF gain is larger than A0,
and let ε = P(xu ∈ G(A0)|x̂u,Σu) be the probability that
the UE is inside the set. As above, let G0 > 0 be a positive
value so that P(|gugb|2 ≤ G0) = δ. We then have:

P(γ < γ0) ≤ δ + ε, ∀P ≥ σ2γ0

N2G0A0 min
x∈G(A0)

β(x)
. (16)

Proof. We know that the average SNR in a certain position is
given by (12). If we consider a point in G(A0), the average
SNR is lower bounded by:

γ̂(x̂u,xu) ≥ P

σ2
N2A0 min

x∈G(A0)
β(x), ∀xu ∈ G(A0). (17)

Since the result above is a lower bound, we can divide the
two cases:

1) If xu ∈ G(A0), we can set a value P that ensures G0γ̂ >
γ0 by applying the lower bound:

P ≥ σ2γ0

N2G0A0 minx∈G(A0) β(x)
. (18)

We then have P(G0γ̂ < γ0|xu ∈ G(A0)) = 0 for all
power levels that satisfy the condition.

2) If xu /∈ G(A0), we consider the packet as lost, i.e., we
use the trivial bound P(G0γ̂ < γ0|xu /∈ G(A0)) ≤ 1.
By definition, this case occurs with probability ε.

We then apply Theorem 1 and the law of total probability:

P(γ < γ0) ≤δ + P
(
γ̂ ≤ γ0

G0

)
=δ + εP

(
γ̂ ≤ γ0

G0

∣∣∣xu /∈ G(A0)

)
+ (1− ε)P

(
γ̂ ≤ γ0

G0

∣∣∣xu /∈ G(A0)

)
≤ δ + ε,

(19)
completing the proof.

B. Beam Projection

We now find a closed-form expression for region G(A0).
The region in 3D space that has an AF gain larger than A0 is
an elliptic cone, whose axis is the line between the RIS and
x̂u and whose base is an ellipse whose axes are defined by
the two beamwidth parameters from (9). The projection of this
elliptic cone on the plane defined by the floor defines G(A0).

We can write the equation of the cone in a standard form
employing a new coordinate system O2. O2 is such that the w
axis is the cone’s vertical axis, and u and v axes are parallel
to the major and minor axis of the ellipse, respectively. The
rotation matrix of the transformation from O1 to O2 is

R =

− cos θ̂ cos ϕ̂ − cos θ̂ sin ϕ̂ sin θ̂ cos ϕ̂
sin ϕ̂ − cos ϕ̂ 0

sin θ̂ cos ϕ̂ sin θ̂ sin ϕ̂ cos θ̂

 . (20)

Hence, the point on the floor (i.e., z = h) in O1 can be
represented in O2 following the relation(

u v w
)T

= R
(
x y z

)T
. (21)

Using coordinate system O2, the equation for the cone is

u2

a2
+
v2

b2
= w2, (22)

where a and b can be computed from the definition of the 3D
beamwidth angles given in (9) at reference distance w = 1:

a = tan (∆θ(A0)/2) , b = tan (∆ϕ(A0)/2) . (23)

Therefore, we can substitute (21) into (22) and compute the
equation of the intersection of the cone with the floor, i.e.,{

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0;

z = h.
(24)

where the parameters indicated by capital letters are given by:

A = cos2 ϕ̂
(
a−2 cos2 θ̂ − sin2 θ̂

)
+ b−2 sin2 ϕ̂

B = 2 cos ϕ̂ sin ϕ̂
(
a−2 cos2 θ̂ − b−2 − sin2 θ̂

)
C = sin2 ϕ̂

(
a−2 cos2 θ̂ − sin2 θ̂

)
+ b−2 cos2 ϕ̂

D = −2h cos θ̂ sin θ̂ cos ϕ̂
(
a−2 cos ϕ̂+ 1

)
E = −2h cos θ̂ sin θ̂ sin ϕ̂

(
a−2 cos ϕ̂+ 1

)
F = h2

(
a−2 sin2 ϕ̂ cos2 ϕ̂+ cos2 θ̂

)
.

(25)
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Fig. 3. G(A0) for different A0 using the ellipse approximation with h = 25 m, ϕ̂ = π/4, θ̂ = π/6.

Algorithm 1: Power control optimization.
1 PowerControl(B,L, T,N, σ, x̂u,Σu, Amin, δ, ε, ν)

2 γ0 ← 2
L
BT − 1;

3 G0 ←FADINGICDF(δ);
4 A0 ←ARRAYFACTOR(x̂u,Σu, Amin, ε, ν);
5 if A0 > 0 then
6 xc, a′, b′ ←ELLIPSEPARAMETERS(x̂u, A0);
7 β̂ ←PATHLOSS(xc + a′(cos ϕ̂, sin ϕ̂, 0)ᵀ);

8 P ← σ2γ0
N2G0A0β̂

;
9 return A`;

10 else
11 return −1;

The center and semi-axes of the projected ellipse are
denoted as xc, a′ and b′, respectively, and can be easily derived
from (24). The ellipse’s major semi-axis a′ is rotated by an
angle ϕ̂ from the x axis. Fig. 3a shows the heatmap of the
AF gain and the projected ellipses obtained with different
values of A0: the heatmap shows the real AF gain, while the
ellipses drawn on it represent the approximation given above.
The approximation is generally good, if slightly pessimistic,
guaranteeing that points inside the ellipse will respect the
condition on the AF gain.

C. Iterative Optimization

By using beam projection, we can then compute the region
G(A0), which corresponds to an ellipse, and find the minimum
power required in that region. If our goal is to find the
minimum power P that ensures a reliability level ps, we can
set δ and ε such that δ + ε = 1− ps and run Algorithm 1.

First, the value of γ0 is computed by applying (11), while
G0 is computed in line 3: as the overall fading distribution
is determined by the product of two independent Rice fading
gains, |gugb|2, the inverse Cumulative Density Function (CDF)
cannot be computed analytically. However, fading parameters
are relatively stable, and can be computed in advance by
numerical methods and tabulated, so that the calculation just
requires the retrieval of the correct value from a table. Finding
the value of A0 that ensures that P(xu /∈ G(A0)) < ε
requires an iterative optimization, which can be performed
by binary search. The precision parameter ν determines the
number of iterations that the search will use, but since A0 is

Algorithm 2: Reliable AF gain binary search.
1 ArrayFactor(x̂u,Σu, Amin, N, ε, ν)
2 Ah ← 1− ν;
3 A` ← Amin;
4 if ELLIPSEPROBABILITY(x̂u,Σu, A`, N )< 1− ε then
5 return −1;

6 if ELLIPSEPROBABILITY(x̂u,Σu, Ah, N )≥ 1− ε then
7 return 1− ν;

/* Binary search */
8 while Ah −A` > ν do
9 A0 ← (Ah +A`)/2;

10 e←ELLIPSEPROBABILITY(x̂u,Σu, A0, N );
11 if e < 1− ε then
12 Ah ← A0;

13 else
14 A` ← A0;

15 return A`;

directly proportional to the required power, we do not need a
large number of iterations. Considering a minimum AF gain
Amin = 0.1, which ensures that the illuminated points are
still within the main lobe, just 5 iterations allow us to reach
a maximum error of 2% on the value of the array factor. If
the positioning uncertainty is too large, and even G(Amin) is
too small for ε, the URLLC transmission is impossible, and
the BS reports this to the application. Taking a pessimistic
approach, we consider the minimum viable array factor within
this precision, giving us a worst case increase of transmit
power of 2%. The full binary search procedure is reported in
Algorithm 2: the ELLIPSEPROBABILITY function, first used
in line 4 of the algorithm, simply computes the probability
that the UE will be inside the ellipse by computing the CDF
of the position distribution (see Fig. 3b for a visualization of
the position realizations and G(A0)). While the integral of a
bivariate Gaussian random variable over an arbitrary ellipse
–which is required to get P(xu ∈ G(A0))– does not have a
closed-form solution, it is a well-known numerical problems
with several efficient and tabulated solutions [15], [16].

Finally, since G(A0) is approximated by the ellipse com-
puted in the previous section, the maximum attenuation given
by the path loss in the region is

min
x∈G(A0)

β(x) = β(xc + a′(cos ϕ̂, sin ϕ̂, 0)ᵀ). (26)
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Fig. 4. Power consumption in the first quadrant of the area.

As all numerical steps in the optimization can be tabulated
and computed efficiently, and the number of iterations of the
binary search is extremely limited; the procedure for power
control based on the upper bound can be computed within
the URLLC time constraints, even considering the limits of
embedded processors installed in BSs.

IV. NUMERICAL RESULTS

In this section, we present our numerical results. The
parameters we used are listed in Table I, and may refer to
a typical URLLC scenario [3], [14]. The values of δ and ε
have been found empirically. We highlight that the deadline to
transmit the packet is 0.5 ms, which is stricter than the typical
URLLC deadline to allow some time for RIS configuration
and power optimization: however, this is still not enough to
perform the extensive Monte Carlo simulations that would be
required to compute the optimal power. The covariance matrix
of the UE’s position uncertainty is

Σ = σ2
u

[
1

cos2 Ψ sin Ψ
sin Ψ 1

cos2 Ψ

]
(27)

where σu = 0.3 m and Ψ ∈ {0, π/4,−π/4}. Eq. (27) is used
to capture three different user behaviors: when Ψ = 0, the
uncertainty is a circularly symmetric Gaussian representing
the error when the user is static; when Ψ = π/4 or −π/4, the
major axis of the equi-probability ellipse is oriented toward Ψ,
emulating the output error of common tracking filters when the
UE is moving in direction Ψ [17]. The worst-case scenario is
when Ψ = π/2− ϕ̂, as the highest positioning error is aligned
with the minor axis of the projected beam ellipse.

Fig. 4 shows a heatmap of power consumption for the three
values of Ψ: we can easily notice that power consumption is
generally lower for Ψ = 0, and that the path loss is still
the most important component: points farther away from the
origin generally require a higher power. However, the increase
is slower than the path loss, as the effect of the positioning
error decreases: as θ̂ increases, the projection of the beam
on the floor becomes larger, so the same positioning error
distribution is covered by an ellipse associated to a higher AF
gain. In the asymmetric error cases, shown in Fig. 4b-c, the
effect of ϕ̂ is significant: if Ψ = π/4, the required power is
minimal when ϕ̂ = Ψ, i.e., when the projected beam and the

TABLE I
SIMULATION PARAMETERS.

Parameter Symbol Value

Scenario

Room side D 15 m
Ceiling height h 25 m
BS position xb (−5,−5, 5)ᵀ m
RIS element spacing d λ/2
Number of RIS elements N 100
Positioning error deviation σu 0.3 m

Communication system

Packet length L 32 bytes
Wavelength λ 0.333 m
Bandwidth B 360 kHz
Latency constraint T 0.5 ms
Reliability ps 99.999%
Fading shape parameter K 6 dB
UE and BS antenna gains Gb ·Gu 12.85 dB
Reference distance d0 1 m
Path loss exponent ξ 2
Reference path gain β0 −31.53 dB
UE noise power σ2 −94 dBm
Algorithm parameters [δ, ε] [0.9, 0.1] · (1− ps)

positioning error are aligned, and increases as the two ellipses
rotate relative to each other. The opposite happens if Ψ =
−π/4, as required power is maximal when the highest position
error is orthogonal to the projected beam. Interestingly, the
case with Ψ = π/4 also requires less power when the UE is
farther away: if ϕ is close to Ψ, the increased eccentricity of
the projection beam better matches the shape of the position
distribution, improving the reliable AF gain A0 enough to
offset the increased path loss. Naturally, the opposite happens
if Ψ = −π/4.

In order to provide a meaningful comparison, we consider
a fixed azimuth angle ϕ̂ = π/4 and consider performance as a
function of θ̂ ∈ [0, 40◦], evaluating both the outage probability
and power consumption. As a term of comparison, we show
the results of an ideal oracle approach obtained by Monte
Carlo simulations, referred as OPT in the following. For this
solution, the empirical CDF of γ/P is estimated over 107

realizations of the UE’s position and fading, and inverted to
find the power that gives exactly P(γ ≤ γ0) = 1− ps. Fig. 5
shows the comparison, where the proposed practical power
control solution is denoted as PC.
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Fig. 5. Performance as a function of θ̂ with ϕ̂ = π/4.

Fig. 5a shows that the proposed solution slightly over-
estimates the required power, particularly in the cases with
Ψ = ±π/4: the optimality gap is between 1.5 and 4.5 dB, as
the upper bound to the outage probability is relatively tight,
but still leaves some slack. Fig. 5b confirms the conservative
nature of the proposed solution: the outage probability, which
should be close to 10−5, is between 25 and 60% lower. It
is worth noting that OPT always has an outage probability
exactly equal to 10−5, as it obtained by the straightforward
inversion of the empirical CDF of γ/P , while, as we remarked
above, PC provides the closest performance when the UE
is static, (Ψ = 0), and the worst performance when the
direction of movement is perpendicular to ϕ̂ (Ψ = −π/4).
As we noted above, the increased eccentricity of G(A0) as
the elevation angle grows has a positive effect if Ψ = ϕ̂,
and a negative effect in the other two cases. When θ̂ ' 0,
G(A0) is almost circular: asymmetric uncertainty distributions
are likelier to generate positions outside the illuminated area.
When pointing toward the sides, G(A0) is eccentric in the ϕ̂
direction, and an asymmetric positioning error in the same
direction is beneficial (see also Fig. 3b for the Ψ = −π/4
case).

V. CONCLUSION AND DISCUSSION

In this work, we present a method for computationally
efficient power control in RIS-assisted URLLC, based on
an upper bound to the outage probability which includes
position uncertainty. The results show that the optimality
gap is relatively small, as the method always meets URLLC
requirements with a slightly higher power than the optimum.

Future work can focus on further refining the bounds,
as well as considering different localization methods, which
may even rely on the RIS itself. Furthermore, an analysis
of the calibration process, which the BS uses to learn the
locations in which the controllable path is dominating the
uncontrollable paths, could be another extension of the paper.
The optimization of the sweeping process that gauges the
impact of the controllable path in each position in a dynamic
environment is an interesting development.
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