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1. Introduction

Let us consider a general, finite-dimensional, deterministic, Discrete-time, Linear 
Time-Invariant (DLTI) dynamical system, in the so-called state-space form:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

(1)

where x(k) ∈ Rnx is the state vector, u(k) ∈ Rm the input vector, y(k) ∈ Rp the 
output vector and A ∈ Rnx×nx , B ∈ Rnx×m, C ∈ Rp×nx and D ∈ Rp×m are the model 
matrices.

Then, the minimal (state-space) realization problem for DLTI systems, can be formu-
lated as follows [1]: “Given some input-output data u(k), y(k) , k = 0, . . . , N about the 
system (1), find a state-space description of minimal size nx that is capable of reproduc-
ing the given data”. The data are typically the impulse response of the system or the 
step response, or input–output measurements, etc.

The first algorithm for this problem has been developed by Ho and Kalman [2] [3]
in 1966, for single-input-single-output (SISO) state-space models. Nowadays, for general 
multi-input-multi-output (MIMO) state-space models, the solution algorithms for the 
minimal realization problem have evolved into the so-called “subspace methods” [4] [5]
[6]. These algorithms are designed to face also with the presence of noise in the data, 
which is a core problem in system identification, but the minimal realization problem 
focuses on algebraic issues, in an ideal, noiseless, settings, like we will use here.

The minimal realization is not unique: given an invertible basis-change matrix T , 
the system (1) transformed in the new coordinates x̃ = T−1x maintains the same input-
output behavior. Since there are infinite invertible matrices T that can be used to change 
the basis in which to express the state vector, there are also infinite systems that can 
describe as well the input-output data.

In this paper we deal with the minimal realization problem of systems that are the 
discretization of a physical-mathematical model; in these systems the state variables have 
a physical meaning (temperatures, displacements, velocities, etc). Here, then, we try to 
solve a harder problem: to find a minimal realization whose state vector is expressed in 
the physical base, that is true when each of its state variables has a twin variable in the 
physical-mathematical model from which the input-output data are supposed to come.

This is an open problem, unless all the state variables have an invertible linear relation 
with the system’s outputs, i.e. the output matrix C is square and invertible. This is sel-
dom the case in practice, and here we consider a more common situation where the model 
has a rectangular output matrix C ∈ Rp×nx , p � nx, i.e. the number of state variables is 
bigger than the number of the outputs. The difficulty to get a minimal realization in the 
physical base is intrinsic to subspace methods. Indeed, they work with linear algebraic 
operations on the input-output data to produce the minimal realization model matrices 
{A, B, C, D}, that are computed with respect to a data-driven base. Hence, our prob-
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lem becomes that of finding a basis-change matrix T that transforms the state vector 
of the minimal realization found by subspace methods in the physical base, among the 
infinite possible T . In this general formulation, the problem is underdetermined and at 
our knowledge nobody has found a solution. In this paper we propose a linear algorithm 
to compute a minimal realization whose state vector is at least partially expressed in the 
physical base, in a sense that will be precised later in sec. 3.1. The proposed algorithm 
starts from the minimal realization found by a subspace method and uses linear algebra 
and also the (nonlinear) discretization map applied to the continuous-time model, to get 
an estimate of at least some of its (physical) parameters. It turns out to be of general 
applicability for DLTI systems, like subspace methods are.

Modeling a system with a state-vector expressed in the physical base is of fundamen-
tal importance e.g. when the estimation of the physical parameters of the real system 
is of interest, as will be shown in sec. 3.3. There is a huge literature and interest in 
physical (grey-box) modeling, in applied sciences, in engineering applications, often in-
volving complex mathematical problems like e.g. computational inverse problems [7] [8]. 
A well known approach for computing physical parameter estimates is to adopt nonlinear 
estimation procedures [9]; these, anyway, suffer from convergence problems, depending 
much from the initialization of the estimates [10] and from the ill-conditioning of the 
problem to be numerically solved. There is also a wide bibliography on the estimation of 
physical parameters with subspace methods which aims at estimating all the parameters 
together: [11] imposes constraints on the impulse response; [12] imposes constraints on 
the coefficients of the transfer function of the discrete model, [6] imposes constraints on 
the unknown matrices in the data-equation characterizing subspace identification meth-
ods, such as the lower triangular block-Toeplitz of weighting matrices constructed from 
the Markov parameters of the unknown observer, [13] [14] solve a null-space-based prob-
lem. There is also a huge literature on more physical approaches, tailored on a specific 
application, e.g. in vibration mechanics it well known the so-called “inverse vibration 
problem”, see e.g. [15], [16]. In the literature there are also methods that exploit the 
structure of the matrices in the continuum-time model, because of their physical mean-
ing, to compute directly a matrix T which should transform in physical coordinates the 
estimated model, see [13] or [14] for recent results and further references; to obtain this 
it is necessary to reformulate the abstract model equations into a null-space-based prob-
lem, that brings to a quite involved solution and has in general an high computational 
cost or it is restricted to a small number of model structures. In this paper, instead, we 
deal with the problem of estimating only the parameters more tied to the measurable 
state variables. As we will see, this brings to a considerable simplification of the solu-
tion, thus obtaining a linear method, that can be used e.g. also in embedded computing 
applications, where real-time requirements and tight computing resources demand for 
efficient numerical methods.

The paper organization is as follows: in sec. 2 we setup the problem and the known 
methods relevant for this work. In sec. 3 we present a novel strategy to transform a 
model, obtained from subspace methods, at least partially in the physical base. In sec. 4
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we extend this strategy to non-diagonalizable matrices. In sec. 5 we will show the results 
of a bunch of random tests and then it follows the conclusions.

2. Problem settings

Let us suppose that the real system can be adequately modeled by an analytical 
mathematical model, expressed as a system of first-order, ordinary differential equations 
and linear output relations, i.e. an LTI system in state-space form:

ẋ(t) = Acx(t) + Bcu(t)
y(t) = Ccx(t) + Dcu(t)

, (2)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rm the input vector, y(t) ∈ Rp the output 
vector and Ac ∈ Rnx×nx , Bc ∈ Rnx×m, Cc ∈ Rp×nx and Dc ∈ Rp×m are the model 
matrices. Often Dc = 0. As it is well known, this model class is adequate for a large 
number of real situations.

Now, we discretize in time this model. The discretization can be made according to 
any of the existing good numerical methods (see e.g. [17] [18]). Let Tsc be the time-
discretization step, x(k) ≈ xc(k Tsc) be the state vector of the discrete-time model, and 
consider for simplicity the well-known θ-method [19]: it approximates the time-derivative 
with a difference quotient and substitutes the right-hand-side with a weighted average 
of its values at the time-instants k and k + 1, depending on the parameter 0 ≤ θ ≤ 1:

x(k + 1) − x(k)
Tsc

= (1 − θ)f(x(k), u(k)) + θf(x(k + 1), u(k + 1)) . (3)

In this way, the time derivatives of the state variables are explicitly approximated in the 
discrete model. Using (3) with e.g. θ = 1 (the Implicit Euler method) we obtain from 
(2) a state-space discrete model in physical coordinates:

x(k + 1) = Afx(k) + Bfu(k)
y(k) = Cfx(k)

(4)

with

Af = (I − TscAc)−1 , Bf = (I − TscAc)−1TscBc , Cf = Cc (5)

This is an example of a common nonlinear relation between the physical parameters 
of the continuous-time system matrices Ac, Bc and the discrete-time model matrices in 
physical coordinates Af , Bf , that will be relevant in the work here presented. It is easy 
to demonstrate that if Ac is diagonalizable, i.e. there exists an invertible matrix U such 
that U−1AcU = Λ, then Af is also diagonalizable and it holds:

U−1AfU = (I − TscΛ)−1 . (6)
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In this paper, we refer to the problem of finding the minimal realization in the physical 
base of the system model, i.e. (4), starting from the minimal realization found by subspace 
methods in a data-driven base. Note that, since both realizations describe the same input-
output data, they must be related by a change of basis. Indeed, as a general rule, let 
{A, B, C} the matrices of a DLTI system and let T a basis-change matrix, then the 
transformed system is

Ã = T−1AT, B̃ = T−1B, C̃ = CT, x̃ = T−1x (7)

and the inputs u(k) and the outputs y(k) remain unchanged, as is well known from sys-
tem’s theory (and can be easily verified). This transformation has many other invariants, 
see Appendix A, and especially the eigenvalues of the matrix A, as can be directly seen 
from (7).

Now, to be more precise, let us call {As, Bs, Cs} the matrices of the minimal realization 
found by subspace methods, and Tf the (unknown) basis-change matrix that transforms 
this data-driven minimal realization to the minimal realization in the physical base (4). 
We assume to know the true (physical) Cf matrix, because it can be easily built from the 
definition of the state-vector in the physical-mathematical model of the real system and 
the definition of the system outputs y. However, unfortunately, the matrix Tf ∈ Rnx×nx

cannot be computed by simply using (7), since the linear system with multiple right-
hand-side

CsTf = Cf (8)

is underdetermined when, as we suppose, the number nx of state variables is bigger than 
the number p of outputs, i.e. the output matrices Cf and Cs turn out to be rectangular, 
with dimensions p × nx.

The aim of this paper is to find a basis-change matrix T̂f that approximates Tf in the 
sense that it transforms the minimal realization found by subspace methods to a base 
which is at least partially physical. This will be done by adding equations to (8) to get 
a well determined system, as it will be described in sec. 3.1.

Then, we will able to estimate at least some of the parameters of the continuous-
time model (2), using the approximated minimal realization in the physical base and the 
inversion of the nonlinear map (5). Note that we are interested in a minimal realization 
in the physical base, since only in this basis it holds the relation (5) between the discrete 
model matrices and the physical parameters defined in the continuous model matrices.

3. Analysis and algorithm formulation

Let us start the analysis of the problem by assuming that Ac is diagonalizable and, by 
(6), it is also Af . In sec. 4 we will generalize to non-diagonalizable matrices. Moreover, 
we suppose that the eigenvalues of Af are well estimated by the eigenvalues of As, 
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where {As, Bs, Cs} are the matrices of the minimal realization found by the subspace 
methods. Hence, we assume that As is equal to a similarity transformation of Af (5)
with an unknown basis-change matrix Tf , that transforms A = As in Ā = Af , B = Bs

in B̄ = Bf and C = Cs in C̄ = Cf according to (7). Therefore As is itself diagonalizable:

As = VsΛAs
V −1
s (9)

where the components of the diagonal matrix ΛAs
approximate well the eigenvalues of 

Af , while the columns of Vs do not approximate well in general the eigenvectors of Af . 
To describe this error would involve all the steps in the subspace methods and in the 
literature there is not much help in this direction. We will follow another path, instead. 
In this section we will define an algorithm to build an approximation of the matrix Tf , in 
the sense precised in the previous section, starting from two fundamental observations.

The first one is that the ordering of the eigenvectors is not an invariant for the minimal 
realization in the physical base. This can be easily proved noting that a permutation of 
the eigenvectors of Af would consist in a basis-change which would change also the Cf

matrix, which instead is fixed by the definition of the state variables and of the output 
variables. From the other side, there is no way to guarantee that the subspace methods 
find a minimal realization in which the eigenvectors of As are in the same order as those 
of Af , since here Cs is completely arbitrary and data-driven.

This suggests us that there is an unknown, optimal permutation that should be applied 
to the eigenvectors of As, and we insert the search for this optimal permutation in 
our algorithm, as follows. First of all, by using Vs as a first basis change, we obtain a 
realization in modal coordinates

{ΛAs
, BVs

, CVs
} (10)

and get two advantages:

• ΛAs
is a good estimate of Af in modal coordinates, i.e. diagonalized. Indeed, only 

the diagonal elements of both matrices are different from zero and are equal to the 
eigenvalues, that we have supposed to be well estimated.

• the eigenspaces are now associated to single state variables and it is possible, with a 
row-column permutation, to associate them to specific measured variables, since the 
dynamics are decoupled, in this basis. To consider all the possible permutations for 
low-order models requires a modest effort and, as we will see, it turns out to be very 
effective on obtaining a good approximation of Tf among the infinite possible T .

The second fundamental observation regards the fact that we suppose to know the Cc

(= Cf ) matrix, as already said in the previous section. Now, we can use it to bring the 
system at least partially in physical coordinates, through another change of coordinates, 
as we will see in sec. 3.1
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Therefore, to build the algorithm we start from the observation that it exists a unique 
modal representation, except for a possible permutation of the eigenvalues on the di-
agonal. From each permutation we can bring the system at least partially in physical 
coordinates using our knowledge of the C matrix. Then, in sec. 3.2 we will see how to 
choose the optimal permutation.

All things considered, the proposed algorithm is the following Algorithm 1.

Algorithm 1 “Minimal realization in physical base”
1: given a set of I/O data, find a minimal realization {As, Bs, Cs} through a subspace algorithm;

2: diagonalize As and get the decomposition (9);
3: for each possible permutation of the eigenvalues/eigenvectors, use the permuted eigenvectors Vs to 

change the basis of the state vector in modal coordinates (10) and compute the basis-change matrix T̂f

defined in sec. 3.1;

4: find the optimal permutation as indicated in sec. 3.2 and compute the resulting minimal realization in 
partial physical coordinates.

3.1. Imposing the physical C matrix

Here we find a transformation T̂f that brings in physical coordinates the part of the 
model better observed by the measurements. Let us suppose for simplicity that the state 

variables are divided into two subsets x =
[
x[im]
x[iu]

]
, measured state variables first and 

then unmeasured ones, i.e. the matrix Cf is composed by the first p rows of the nx-
th order identity matrix, and that matrices Ac/Af/As and Bc/Bf/Bs be partitioned 
accordingly:

A =
[
A[im, :]
A[iu, :]

]
, B =

[
B[im, :]
B[iu, :]

]
. (11)

Note that some real systems will fit exactly in this subdivision of the state variables, 
some other will fit less and the distinction between “measured” and “unmeasured” state 
variables will be less sharp: “measured” variables are those that influence more the output 
variables than the “unmeasured” ones.

Now, we compute a basis-change matrix Tx, obtained as the solution of the following 
system with multiple right-hand-side:

MTx = G , M =
[
CVs

X

]
, G =

[
Cf

Y

]
(12)

where M, Tx, G ∈ Rnx×nx . The matrices X and Y can be chosen in different ways, 
each one representing a different method, whose choice will be left as an option to 
the proposed algorithm. Let us define H⊥

r the matrix whose rows form a basis for the 
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orthogonal complement of the row space of CVs
, and I[iu, :] the matrix formed by the 

rows of the identity matrix of indexes corresponding to the unmeasured state variables. 
We found a few reasonable choices/methods to choose X and Y :

1. X = Y = H⊥
r

2. X = Y = I[iu, :]
3. X = H⊥

r , Y = I[iu, :]
4. X = Y = H⊥

r VAs

5. X = H⊥
r VAs, Y = I[iu, :]

The system (12) must be interpreted in the following way: each row of M is trans-
formed by Tx in the corresponding row of G. The matrix Tx will transform in particular 
the rows of CV s to the a-priori known physical representation Cf . The overall transfor-
mation matrix,

T̂f = VsTx (13)

approximates Tf in the sense that it gives a basis change which is at least partially 
physical. Note that, in particular, both T̂f and Tf transform Cs in Cf , i.e.:

CsT̂f = CsTf = Cf (14)

3.1.1. Analysis of method 3: permutation invariance
Method 3 highlights the fact that there are choices of X and Y that give results that 

are invariant to permutations. Here we demonstrate this fact.

Lemma 1. Consider problem (12), with the choice X = H⊥
r and Y = I[iu, :]. If we change 

basis to the realization {ΛAs
, BVs

, CVs
} with T−1 = Mr a row-permutation matrix, the 

absolute entries of matrix Âf are invariant.

Proof. We consider the similarity transformation with T−1 = Mr, in this case the real-
ization becomes:

{MrΛAs
MT

r ,MrBVs
, CVs

MT
r } (15)

Let X = H⊥
r be a matrix whose rows form a basis for the orthogonal complement 

of the row space of CVs
MT

r , and let Y = I[iu, :]. Since Cf is composed by the first p
rows of the nx-th order identity matrix, the matrix G corresponds to the identity matrix, 

M =
[
CVs

MT
r

H⊥
r

]
and, so, the solution of problem (12) is Tx = M−1.

Following Algorithm 1,

Âf = MMrΛAs
(MMr)−1 (16)
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We note that if UΣV T is a SVD decomposition of CVs
, then CVs

MT
r = UΣV TMT

r . 
Hence, H⊥

r is equal to the last iu columns of V , transposed and permuted.
The matrix M can be rewritten as:

M =
[

CVs
MT

r

V [:, iu]TMT
r

]
=

[
CVs

V [:, iu]T

]
MT

r (17)

Therefore,

Âf =
[

CVs

V [:, iu]T

]
MT

r MrΛAs
MT

r Mr

[
CVs

V [:, iu]T

]−1

=
[

CVs

V [:, iu]T

]
ΛAs

[
CVs

V [:, iu]T

]−1

(18)
The permutation matrix disappears in the formula, then the absolute entries of the 

matrix Âf are invariant. �
3.1.2. Analysis of method 2: eigenvectors permutation

The choice X = Y = I[iu, :], instead, produces a result that depends significantly on 
the permutations. However, we can show that it is sufficient to take only the permutations 
referred to the measured variables im. In fact, as we will see in sec. 3.2, we will consider 
only the estimated Âc[im, im] submatrix to choose the optimal permutation.

Lemma 2. Consider problem (12), with the choice X = Y = I[iu, :]. If we change basis to 
the realization {ΛAs

, BVs
, CVs

} with T−1 = Mr a row-permutation matrix, we determine 
a specific selection of eigenvectors to form the matrix T̂−1

f . Moreover, the number of 
permutations to be considered is restricted to 

(
nx

p

)
.

Proof. The realization, with the similarity transformation T−1 = Mr, becomes:

{MrΛAs
MT

r ,MrBVs
, CVs

MT
r } (19)

With the choice X = Y = I[iu, :], since Cf is composed by the first p rows of the nx-th 

order identity matrix, the matrix G corresponds to the identity matrix, M =
[
CVs

MT
r

I[iu, :]

]

and, so, the solution of problem (12) is Tx = M−1.
Following Algorithm 1,

Âf = MMrΛAs
MT

r M−1

then

Âc = 1 (Inx
− Â−1

f ) = 1 (Inx
− T−1

x MrΛ−1
As

MT
r Tx) (20)
Tsc Tsc
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where Inx
is the identity matrix of dimension nx × nx. We partition the matrices T−1

x

and MrΛ−1
As

MT
r in the following way:

T−1
x =

[
Cmeas ∗

0 I

]
Tx =

[
C−1

meas ∗
0 I

]
MrΛ−1

As
MT

r =
[
Λ−1
meas 0
0 ∗

]

where the matrix Cmeas corresponds to the block [im] × [im] of the matrix CVs
MT

r , 
Λ−1
meas is the [im] × [im] block of the matrix MrΛ−1

As
MT

r , and I is the identity matrix of 
dimension (nx − p) × (nx − p). Hence, (20) becomes:

Âc = 1
Tsc

(
Inx

−
[
CmeasΛ−1

measC
−1
meas ∗

0 ∗

])

Since we consider only the submatrix [im] × [im] of Âc, we can only take the permu-
tations Mr referred to the p measured state variables x[im]. In this way, the number of 
permutations is nx!

(nx−p)! .

Âf = MMrΛAs
MT

r M−1 = MMrV
−1
As

AsVAs
MT

r M−1

=
[
CsVAs

MT
r

I[iu, :]

]
MrV

−1
As

AsVAs
MT

r

[
CsVAs

MT
r

I[iu, :]

]−1

=
[

Cs

I[iu, :]MrV
−1
As

]
As

[
Cs

I[iu, :]MrV
−1
As

]−1

(21)

So, the matrix T̂−1
f =

[
Cs

I[iu, :]MrV
−1
As

]
depends on a specific selection of eigenvectors.

From the structure of the matrix T̂−1
f , we notice that the permutations refer to the 

last iu rows of matrix V −1
As

. In this way, the number of permutations to be considered is 
restricted to nx!

(nx−p)!p! =
(
nx

p

)
. �

Note that, if VAs
is orthogonal, the matrix Mr exchanges the eigenvectors, so the last 

nx − p components of the diagonal of the matrix Âf are the corresponding eigenvalues.

3.2. Choice of the optimal permutation

By restricting our search to a few permutations, from potentially infinite basis change 
candidates, we got the possibility to build a viable algorithm. Now we should choose a 
unique, optimal permutation. Here a fundamental problem is that the algorithm cannot 
directly measure the efficacy of a given permutation in the estimation of parameters, 
since they are unknown and there is no evident algebraic characterization of the physical 
basis in the discrete model.
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Therefore, let us introduce an additional information that can help us at distinguish 
the representation in the physical base from the others, non physical. Let us see two 
possible approaches, reasonable for applications.

In the first approach we suppose to know a coarse estimate of (at least) a few parame-
ters of the continuous model, that we want to estimate more precisely with the algorithm 
proposed. With this novel piece of information we apply then an heuristic method, which 
we will validate with the numerical experiments of sec. 5. An example of a reasonable 
heuristic method may be e.g. the following:

1. from the coarse initial estimate of the parameters of the continuous model, compute 
the matrix Ãc;

2. from T̂f obtain Âf and compute Âc from (5); choose the permutation where the 
submatrix Âc[im, im] is closer, in a chosen norm, to Ãc[im, im].

Indeed, the row/column permutations of ΛAs
and the corresponding transformations in 

partial physical coordinates, produce nonlinear variations of high magnitude to the Âc

matrix entries, as we have seen in the experiments. This helps a lot to distinguish the 
optimal permutation even starting from a matrix discretized with a coarse estimate of 
the physical parameters, as confirmed in the experiments of sec. 5.

In the second approach, that for brevity we don’t test in the numerical experiments, 
we suppose to know some performance indexes of the unmeasured state variables (e.g. the 
maximum value, the range of variation, etc.), and we choose the permutation that gives 
an estimated system whose unmeasured state variables fit at best these indexes. There 
are many possible indexes and this approach becomes too much application dependent, 
so its performances; for this reason it is not tested here at this level of generality.

3.3. Parameters estimation in the continuum model

We have seen that, from the obtained minimal realization {Âf , B̂f , Ĉf} we can recon-
struct, at least partially, the matrices Ac and Bc from (5) and therefore some physical 
parameters of the continuous-time model. The main problem with this operation is that 
it involves an inversion of the matrix Âf and this blends the values of its p-order sub-
matrix, that likely well approximates the corresponding submatrix of Af , with its other 
values that may be very far from the corresponding values of Af .

Let us concentrate on the sub-matrices of Ac and Bc relative to the measured variables. 
From (5) and the definition of Tf , we have:

Bc = 1
Tsc

(I − I + Af
−1)Bf = 1

Tsc
(Tf

−1As
−1Tf )Tf

−1Bs

and, therefore:

CfBc = 1
CsAs

−1Bs (22)

Tsc
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which is computable exactly from the matrices estimated by the subspace methods. 
Similarly, for the components of the matrix Ac, we have:

CfAc = 1
Tsc

(Cf − CfTf
−1As

−1Tf ) = 1
Tsc

(Cf − CsAs
−1Tf ) (23)

and:

CfAcCf
T = 1

Tsc
(CfCf

T − CsAs
−1TfCf

T ) (24)

which is not directly computable, since Tf is unknown, but can be approximated by 
substituting T̂f (13) to Tf .

Therefore, the submatrix of Ac related to the measured variables cannot be computed 
exactly, but only estimated. In the numerical experiments we will see that the particular 
structure of Ac and Bc, that can vary substantially through applications, can influence 
considerably the estimation accuracy of the parameters in the continuum model.

4. Extension to non-diagonalizable matrices

Let Ac be the model matrix, and we suppose now that it is not diagonalizable. In 
this case, in principle we could use the Jordan canonical form and repeat the same 
arguments of sec. 3 with a block-diagonal matrix instead of a diagonal matrix ΛAs

, with 
little modifications. Alternatively, we can use the real Schur decomposition, where we 
get a triangular matrix, more difficult to treat, as we will see, but much more safe to 
obtain numerically.

Then, we apply the real Schur decomposition Ac = QUQT , where Q is a real unitary 
matrix and U is a real upper triangular matrix with blocks of order 1 and 2 on its 
diagonal. The eigenvalues of Ac are the elements of the diagonal blocks of U of order 1 
and the eigenvalues of the diagonal blocks of U of order 2.

As before, we assume that the eigenvalues of Af are well estimated by the eigenvalues 
of As, where {As; Bs; Cs} are the matrices of the minimal realization found by the 
subspace methods. We compute the Schur decomposition As = QsUsQ

T
s , and, by using 

Qs as a first basis change, we obtain the realization

{Us;BQs
;CQs

}

It can be easily proved that Lemma 1 continues to hold, by substituting ΛAs
with the 

real upper triangular matrix Us. In the context of Lemma 2, we partition the matrices 
T−1
x and MrU

−1
s MT

r in the following way:

T−1
x =

[
Cmeas Cnonmeas

0 I

]
Tx =

[
C−1

meas −C−1
measCnonmeas

0 I

]

MrU
−1
s MT

r =
[
U1 U2
U U

]

3 4
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where the matrix Cmeas corresponds to the block [im] × [im] of CQs
MT

r and Cnomeas

corresponds to the block [im] ×[iu] of CQs
MT

r again. We note that, in general, the matrix 
MrU

−1
s MT

r may not be upper triangular, i.e. U3 �= 0. Hence, (20) becomes:

Âc = 1
Tsc

(Inx
− T−1

x MrU
−1
s MT

r Tx)

= 1
Tsc

(
Inx

−
[
CmeasU1C

−1
meas + CnomeasU3C

−1
meas ∗

∗ ∗

])
(25)

thus showing a dependence of Ac[im, im] from Cnomeas and, therefore, from the unmea-
sured state variables x[iu] and their permutations. Therefore, in principle we can not con-
sider only the permutations referred to the measured variables. Actually, U3 can contain 
only some off-diagonal terms of U−1

s [im, im] (U3 = Mr[iu, im]U−1
s [im, im]Mr[im, im]T+

other terms) and therefore the contribution of CnomeasU3C
−1
meas to the entries of Âc is 

much lower than that of CmeasU1C
−1
meas (U1 = Mr[im, im]U−1

s [im, im]Mr[im, im]T+ other 
terms). It means that neglecting this dependence on the permutations of unmeasured 
state variables may be often acceptable, as confirmed by the numerical experiments of 
sec. 5.

However, using exact arguments, we have:

Âf = MMrUsM
T
r M−1 =

[
Cs

I[iu, :]MrQ
−1
s

]
As

[
Cs

I[iu, :]MrQ
−1
s

]−1

(26)

where the permutations refer to the last iu rows of matrix Q−1
s and then the number of 

permutations to be considered is restricted anyway to nx!
p! .

5. Results

In this section we show the results of some relevant numerical experiments to assess 
the ability of Algorithm 1, and in particular of the basis change T̂f (13) with an optimal 
permutation (see sec. 3.2), at estimating a reasonable approximation of the minimal 
realization in the physical base. More precisely, we will measure the relative estimation 
error for the parameters Ac[im, im] of the continuous model (2), i.e. the components of 
Ac corresponding to the measured state variables x[im]. We will concentrate on diagonal 
entries of Ac, since in this general settings are the most indicative. Therefore, let us 
define the (vector) parameter estimation error indicator for the i-th experiment:

Ei = |diag(Âc[im, im] −Ac[im, im]/Ac[im, im])| (27)

where the division “/” and the modulus “| · |” operators are meant componentwise.
Several subspace methods can be used to find a minimal realization, for example, 

MOESP [20], N4SID [21], CVA [22] and the algorithm here presented is independent from 
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the subspace method adopted. In our experiments, we apply the simplest variant of the 
subspace methods, where a straightforward singular values decomposition of the input-
output data-matrix G(y) is used to estimate the observability matrix (see Appendix B).

The algorithm has been tested with input-output data coming from two distinct model 
classes:

1. a sequence of models obtained from random change of basis, starting from a determin-
istic diagonal matrix ΛAc

, i.e. the matrix Ac is obtained as Ac = T−1ΛAc
T . Various 

choices for T are considered (see the following subsections). In this way we can mea-
sure the ability of the estimation algorithm to tackle with an arbitrary realization, un-
der the same dynamics. We tested systems of order nx, varying from 3 to 12. For each 
nx value in this range, the entries of ΛAc

(the eigenvalues) are nx entries of this vec-
tor: [−0.9, −0.8, −0.7, −0.6, −0.5, −0.4, −0.3, −0.2, −0.15, −0.1, −0.05, −0.01], taken 
at random positions. When we want a model with a non-diagonalizable matrix Ac, 
we add to ΛAc

an upper-triangular matrix Aoffdiag, with zeros on the main diagonal 
and uniformly random numbers in the upper off-diagonal entries, multiplied by a 
constant coffdiag, i.e.

Ac = T−1 (ΛAc
+ coffdiag Aoffdiag)T (28)

2. a sequence of mass-spring-damper systems, i.e. a linear elasto-dynamical model of 
the kind:

Md̈(t) + Gḋ(t) + Kd(t) = f(t)
(29)

with a variable nx and matrices of physical parameters M , C and K taken as random 
perturbations from a fixed configuration of masses mi = 27.0, dampers ci = 1.0e4
and springs ki = 1.0e5. Here, M , C and K are respectively the mass, damping and 
stiffness matrices, and f(t) is the applied force. As is well known, defining the state 

vector x(t) =
[
ḋ(t)
d(t)

]
and discretizing in time one obtains a state-space system in 

the form (1). In these experiments, the outputs are supposed to be the measurements 
of the first p state variables. We tested systems of order nx, varying from 4 to 100.

These two model classes have been chosen by following this consideration: the first one is 
sensibly random, i.e. where Ac has non-smooth eigenvectors. The second one is instead 
the discretization of a smooth operator (linear elastodynamics). See in Fig. 1 a snapshot 
of one sample eigenvector for each of the two cases. Many other benchmark examples 
can be found in the well known library SLICOT, see [23].

Each experiment consists of N = 100 estimation runs. In each run, there is one 
piecewise-constant input acting on a random Bc matrix. The number of outputs p varies 
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Fig. 1. Left: a sample eigenvector for model class 1 with nx = 12 and (right) a sample eigenvector for model 
class 2 with nx = 24. In the x axis there are the adimensional vector components indexes, in the y the 
vector components values.

Fig. 2. Comparison of some state variables as a response to a piecewise constant input, of the “true” system, 
of the “subspace” system estimated by a standard subspace method and of the “estimated” system by 
Algorithm 1. Left: the time-behavior of state variable 0 (measured). Center: the time-behavior of state 
variable 1 (measured). Right: the time-behavior of state variable 2 (not measured). In the x axis there is 
the discrete time index.

from 1 to nx and the matrix Cc ∈ Rp×nx is simply the first p rows of the identity 
matrix of order nx. To give an idea, in Fig. 2 we see a typical state-trajectory resulting 
from a piecewise-constant input; here p = 2 and state variables 0 and 1 are measured. 
Note that the “estimated” variables 0 and 1, i.e. obtained from the system estimated by 
Algorithm 1, are almost overlapping to the “true” ones, while the state-variables of the 
system “subspace”, estimated by a standard subspace method, are quite far from the 
true ones. Note also that unmeasured state variables are not recovered to the physical 
base.

The results shown have been obtained by Algorithm 1 with the choice 2 of matrices 
X and Y , see section 3.1, since this is the choice we suggest.

These results have been obtained with a Python code developed by the authors, using 
NumPy for linear algebra computations. The code is available at the URL: https://
github .com /NLALDlab /subspace -methods -in -physical -base.

5.1. Model class 1: case of diagonal Ac

First of all, let us consider the idealized case T = I, where we can measure some state 
variables from a minimal system with a diagonal A matrix (i.e. the system is expressed 
in modal coordinates). In this case, it is observed that this method reconstructs the 

https://github.com/NLALDlab/subspace-methods-in-physical-base
https://github.com/NLALDlab/subspace-methods-in-physical-base
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Fig. 3. Above left: histogram of min(Ei), i = 0 . . . N − 1, with “standard ss”; above right: histogram of 
min(Ei), i = 0 . . . N−1 with “opt perm”; below left: histogram of max(Ei), i = 0 . . . N−1 with “standard 
ss”; below right: histogram of max(Ei), i = 0 . . . N − 1 with “opt perm”.

coefficients of Ac[im, im] with a relative error close to the eigenvalues approximation 
error made by subspace methods, that is often very small.

5.2. Model class 1: case of diagonalizable Ac

In this case we suppose to collect data from a system where Ac is obtained by applying 
a generic orthogonal basis change T to the diagonal matrix ΛAc

. The results are shown 
in Table 1. Note that the results with Algorithm 1 in ideal conditions (“opt_perm”), i.e. 
when the permutation is chosen by comparing with an initial estimate which is exact 
(Ãc = Ac), show a substantial potential effectiveness of the approach, with respect to the 
plain subspace method (“standard ss”) and also with respect to a mere imposition of the 
physical matrix C without permutations (“no perm”). An analogous effectiveness of the 
permutations has been revealed along all the experiments and, for brevity, the “no perm” 
results will not be reported in the following tables. In Table 1 are reported “mean” values 
of the estimation error Ei across N experiments, where the matrix T is varying randomly 
from experiment to experiment. There is a nontrivial dispersion around these “mean” 
values, i.e. for some T the results may be far from the mean accuracy attained. For this 
reason we showed here the median instead of the mean, which would be misleading. In 
Fig. 3 we see an example of the distribution of the results across N experiments. By 
analyzing the experiments individually, this dispersion cannot be described with general 
algebraic properties of T or the other matrices involved, like e.g. M of (12) and, therefore, 
should be ascribed to the nonlinear process of eigenvectors approximation made by the 
subspace method. This is outside the scope of this work and should be the subject of a 
further investigation involving subspace methods.
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Table 1
The Table shows the results on the estimation error Ei (27), for various nx

and various estimation methods, from left to right: a standard subspace method 
(“standard ss”), T̂f with no permutations (“no perm”), T̂f with the best permu-
tation obtainable by Algorithm 1 (“opt_perm”). Each cell contains two results: 
the median minimum relative error median{min(Ei)}i=0...N−1 and the median 
maximum relative error median{min(Ei)}i=0...N−1 through N experiments.

p = 2
nx

median{min(Ei)}i=0...N−1,median{max(Ei)}i=0...N−1

standard ss T̂f no perm T̂f opt perm
3 0.34, 0.90 0.62, 1.01 0.07, 0.24
4 0.35, 0.96 0.50, 1.80 0.11, 0.25
5 0.40, 1.08 0.61, 2.02 0.14, 0.28
6 0.42, 1.15 0.57, 1.77 0.10, 0.22
9 0.46, 1.10 0.73, 1.91 0.11, 0.21
12 0.44, 1.17 1.11, 1.79 0.12, 0.26

Table 2
The Table shows the results on the estimation error Ei (27), for various σini

and various estimation methods, from left to right: a standard subspace method 
(“standard ss”) and with Algorithm 1 (“algo perm”). Each cell contains two re-
sults: the median minimum relative error median{min(Ei)}i=0...N−1 and the 
median maximum relative error median{min(Ei)}i=0...N−1 through N exper-
iments.

nx = 6, p = 2
σini

median{min(Ei)}i=0...N−1,median{max(Ei)}i=0...N−1

standard ss T̂f algo perm
0.0 0.33, 0.78 0.08, 0.19
0.1 0.37, 0.77 0.09, 0.21
0.2 0.33, 0.76 0.10, 0.26
0.3 0.36, 0.76 0.11, 0.29
0.4 0.39, 0.75 0.13, 0.33
0.5 0.30, 0.77 0.14, 0.34

The results of Table 1 are referred to the optimal permutation, that is obtained when 
the initial estimate is very close to the true parameter values, and in Table 2 we show 
how the results change with an increasing distance of the initial estimates from the true 
parameter values. This distance is characterized by the quantity σini according to the 
following formula:

Ãc = (1 + g)Ac (30)

where g ∈ N (0, σ2
ini), i.e. is a gaussian random variable with zero mean and variance 

σ2
ini. In the following, we distinguish this case with the label “algo perm”, while the case 

σini = 0 is labeled with “opt_perm”. Note that the values in the column “standard ss” 
oscillate around a constant value; indeed, the standard subspace method does not depend 
from an initial estimate of the true parameters. The column “algo perm”, instead, show 
a moderate increase.

Note that, if we consider a basis change matrix T non orthogonal, we get slightly 
worse results, as reported in Table 3.

Last, in Table 4 we see the accuracy of the estimates as a function of the number of 
measured state variables.
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Table 3
The Table shows the results on the estimation error Ei (27), for various com-
binations of nx and various estimation methods, from left to right: a standard 
subspace method (“standard ss”), T̂f with the best permutation obtainable by 
Algorithm 1 (“opt_perm”). Each cell contains two results: the median minimum 
relative error median{min(Ei)}i=0...N−1 and the median maximum relative er-
ror median{min(Ei)}i=0...N−1 through N experiments.

p = 2
nx

median{min(Ei)}i=0...N−1,median{max(Ei)}i=0...N−1

standard ss T̂f opt perm
3 0.49, 2.18 0.19, 0.54
5 0.68, 3.28 0.29, 0.62
7 0.68, 3.19 0.28, 0.63

Table 4
The Table shows the results on the estimation error Ei (27), for various com-
binations of p and various estimation methods, from left to right: a standard 
subspace method (“standard ss”) and the best permutation obtainable by Al-
gorithm 1 (“opt_perm”). Each cell contains two results: the median minimum 
relative error median{min(Ei)}i=0...N−1 and the median maximum relative 
error median{min(Ei)}i=0...N−1 through N experiments.

nx = 6
p

median{min(Ei)}i=0...N−1,median{max(Ei)}i=0...N−1

standard ss T̂f opt perm
1 0.63, 0.63 0.11, 0.11
2 0.42, 0.84 0.08, 0.20
4 0.11, 1.17 0.03 , 0.25
5 0.14, 1.07 0.01 , 0.34
6 0.05, 1.04 1.e−12, 1.e−10

Table 5
The Table shows the results on the estimation error Ei (27), for various combi-
nations of coffdiag and various estimation methods, from left to right: a standard 
subspace method (“standard ss”), the best permutation obtainable by Algorithm 1
(“opt_perm”) and the best permutation obtainable by Algorithm 1 with nx! per-
mutations (“opt_all-perm”). Each cell contains two results: the median minimum 
relative error median{min(Ei)}i=0...N−1 and the median maximum relative error 
median{min(Ei)}i=0...N−1 through N experiments.

nx = 6, p = 2
coffdiag

median{min(Ei)}i=0...N−1,median{max(Ei)}i=0...N−1

standard ss T̂f opt perm T̂f opt all-perm
0.0 0.36, 0.83 0.13, 0.31 0.15, 0.32
0.1 0.35, 0.81 0.17, 0.38 0.11, 0.29
0.2 0.42, 0.87 0.14, 0.39 0.16, 0.39
0.3 0.32, 0.80 0.13, 0.34 0.15, 0.35
0.5 0.53, 1.19 0.21, 0.50 0.23, 0.48

5.3. Model class 1: case of non diagonalizable Ac

In this case we build Ac from a randomly generated real Schur decomposition (28). 
In Table 5 we see that the results are the same if consider only the nx!

(nx−p)!p! permuta-
tions on the measured state-variables indexes im (“opt_perm”), that in this case are 15
permutations, and if we consider all nx! possible permutations (“opt_all-perm”), that 
in this case are 720 permutations, as was realized in sec. 4.
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Table 6
The Table shows the results on the estimation error Ei (27), for vari-
ous nx and various estimation methods, from left to right: a standard 
subspace method (“standard ss”) and T̂f with the best permutation ob-
tainable by Algorithm 1 (“opt_perm”). Each cell contains two results: 
the median minimum relative error median{min(Ei)}i=0...N−1 and the 
median maximum relative error median{min(Ei)}i=0...N−1 through N
experiments.

p = 2
nx

median{min(Ei)}i=0...N−1,median{max(Ei)}i=0...N−1

standard ss T̂f opt perm
4 0.86, 1.12 0.01, 0.03
6 0.94, 1.21 0.06, 0.13
10 0.87, 1.52 0.03, 0.09
20 0.97, 1.17 0.17, 0.45
30 1.00, 1.38 0.52, 0.80

5.4. Model class 2

In this case we suppose to collect data from a system where Ac represents the linear 
elasto-dynamical model (29). The results are shown in Table 6. Note that the results with 
Algorithm 1 are better than the model case 1, and are quite good up to nx ≤ 20. Note also 
that when increasing nx the estimation error grows considerably. This opens up a certain 
amount of subtopics to be investigated, mainly related to eigenvectors approximation by 
subspace methods.

6. Conclusions

In this paper we have shown that, even when not all the state variables are measured, 
the model estimated by subspace methods can be partially transformed in physical co-
ordinates and, therefore, useful to measure at least some of its physical parameters. The 
remaining part of the model, expressed in abstract, not physical coordinates, is actu-
ally black-box. Ultimately, this approach to physical parameters estimation produces in 
general a partial grey-box model.

The proposed algorithm allows a user choice, i.e. matrices X and Y of section 3.1. 
We suggest choice 2 mainly because it gives good results for all combinations of nx and 
p (see sec. 5 for some examples) and it allows to substantially reduce the number of 
permutations to be considered, as stated in Lemma 2.

This algorithm can be used to estimate the physical parameters of a continuous-time 
model, with an arbitrary discretization method. Obviously, it means that these estimates 
are affected also by the space/time model discretization error and this should be in some 
way accounted for [24].

Note that when applying this method in practice, there are usually a-priori informa-
tions about the specific application, that can be exploited to obtain improved results 
than those here shown in this complete general settings. The estimates produced by this 
algorithm may be also the starting point for nonlinear estimation procedures, thus giving 
them a better chance to converge.
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There are some lines of future investigation: the existence of an analytic criterion to 
choose the optimal permutation and to study the estimation error.
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Appendix A. Invariants along a basis change

The invariants of transformation (7) are:

• the eigenvalues of the matrix A, in fact two similar matrices have the same charac-
teristic polynomial, and so the same eigenvalues. Let Ã = T−1AT , then

pλ(Ã) = det(λI − Ã) = det(λI − T−1AT ) = det(T−1(λI −A)T )

= det(T−1)det(λI −A)det(T ) = pλ(A);
(A.1)

• the Markov coefficients Gk = CAk−1B, in fact

Gk = CAk−1B = C̃T−1TÃT−1 . . . T ÃT−1TB̃ = C̃Ãk−1B̃ = G̃k; (A.2)

• the stability of the system, in fact the eigenvalues are the same;
• the index of observability, indeed the system is observable if rank(On) =

rank(

⎡
⎢⎣

C

CA
...

⎤
⎥⎦) = n, then

On =

⎡
⎢⎣

C̃T−1

C̃T−1TÃT−1

...

⎤
⎥⎦ =

⎡
⎢⎣

C̃

C̃Ã
...

⎤
⎥⎦T−1 = ÕnT

−1 (A.3)

Then rank(Õn) = rank(OnT ) = rank(T ) = n, because T is a non-singular matrix;
• the index of reachability, proof similar to the previous one;
• the energy of the system. Let W∞ = R∞RT

∞ the reachability gramian, where R∞ =
[B AB A2B . . . ], so the energy is defined by

||u||22 = xTW−1
∞ x (A.4)
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Under similarity transformation the gramian becomes:

R∞ = [B AB . . . ] = [TB̃ T ÃT−1TB̃ . . . ] = T [B̃ ÃB̃ . . . ] (A.5)

So R∞ = TR̃∞ → R̃∞ = T−1R∞ → W̃∞ = R̃∞R̃T
∞ = T−1W∞(T−1)T

Hence: W∞ = TW̃∞TT → W−1
∞ = (TT )−1W̃∞

−1
T−1

In this way, the energy is

||u||22 = xTW−1
∞ x = x̃TTT (TT )−1W̃∞

−1
T−1T x̃ = x̃T W̃∞

−1
x̃ (A.6)

• the property of being diagonalizable, in fact if A is diagonalizable, then there exists an 
invertible matrix U such that U−1AU = Λ. Now Ã = T−1AT , so U−1TÃT−1U = Λ. 
In this way Ã is diagonalizable because the matrix T−1U is invertible.

Appendix B. Subspace system identification

Let us consider a general discrete, linear, time-invariant state-space model [4]:

x(k + 1) = Ax(k) + Bu(k) + v(k)

y(k) = Cx(k) + Du(k) + w(k)
(B.1)

where v(k) and w(k) represent mutually and serially uncorrelated zero-mean error pro-
cesses with covariance matrices R and Q, respectively. The model assumes a prior 
distribution for x(0) with E{x(0)} = μ and cov(x0) = Σ. It is a standard assump-
tion that the state x(0) is taken to be uncorrelated with v(k) and w(k) for all k. We 
assume normality of both error processes as well as for x(0). Given a sequence of mea-
sured inputs and outputs, subspace methods estimate the system matrices (A, B, C, D), 
the initial state vector x(0) and the statistical description of the error processes, i.e. 
the covariance matrices R and Q or the Kalman gain K if model (B.1) is rewritten in 
innovation form [4].

Let us give an outline of these methods, for simplicity in the deterministic case v(k) =
w(k) = 0. Let’s start by considering the state at time instant k as a function of the initial 
state vector x(0) and the input sequence u(k):

x(k) = Akx(0) +
k−1∑
i=0

Ak−i−1Bu(i)

from which, iteratively, one easily obtains:

⎡
⎣ y(0)

...
y(r − 1)

⎤
⎦ =

⎡
⎢⎣

C
...

CAr−1

⎤
⎥⎦x(0) +

⎡
⎢⎢⎣

D 0 . . . . . . 0
CB D 0 . . . 0
...

. . .
r−2

⎤
⎥⎥⎦
⎡
⎣ u(0)

...
u(r − 1)

⎤
⎦

CA B . . . . . . CB D
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� Or x(0) + Sr

⎡
⎣ u(0)

...
u(r − 1)

⎤
⎦ (B.2)

where r is some arbitrary positive integer: nx < r � N , with nx the model order of the 
system and N is the maximum system order conceivable, in the considered application. 
Usually it is assumed that the integer N can be chosen such that the matrix U0,r,NUT

0,r,N
has full row rank, where U0,r,N is r × N block Hankel matrix built from the sequence 
u = {u(k)}, where the index of the first block element is 0. The starting point of subspace 
methods is the matrix equation

Y0,r,N = OrX0,1,N + SrU0,r,N (B.3)

where Y0,r,N is r × N block Hankel matrix constructed from the sequence y = {y(k)}, 
where the index of the first block element is 0, the matrix X0,1,N has as its columns 
the states x(k), k = 0, .., N − 1 and the matrices Or, called the extended observability 
matrix, and Sr contain all model parameters (A, B, C, D). Subspace methods first form 
the matrix

G(y) = Y0,r,NΠ⊥
U = OrX0,1,NΠ⊥

U (B.4)

from (B.3), where Π⊥
U = I − UT (UUT )−1U is the orthogonal projection matrix on the 

nullspace of U := U0,r,N . Once the model order nx is determined, a truncated SVD 
of G is used to estimate the matrix Or,nx

, i.e. the matrix Or with nx columns; this 
decomposition is then used to compute a system realization and the initial state estimate. 
However, if the measured data are affected by noise, the equation (B.4) can be rewritten 
as G(y) = Y0,r,NΠ⊥

U = OrX0,1,NΠ⊥
U + EΠ⊥

U , where E contains the contribution of the 
noise.
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