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Abstract: In this paper, we investigate a certain class of mutations in genomic sequences by studying
the evolution of the entropy and relative entropy associated with the base frequencies of a given
genomic sequence. Even if the method is, in principle, applicable to every sequence which varies
randomly, the case of SARS-CoV-2 RNA genome is particularly interesting to analyze, due to the
richness of the available sequence database containing more than a million sequences. Our model is
able to track known features of the mutation dynamics like the Cytosine–Thymine bias, but also to
reveal new features of the virus mutation dynamics. We show that these new findings can be studied
using an approach that combines the mean field approximation of a Markov dynamics within a
stochastic thermodynamics framework.
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1. Introduction

The sudden outburst in 2019 of the COVID-19 pandemic has generated a prompt and
powerful reaction in the scientific and political community to fight against the worldwide
menace represented by the virus ([1]). One of the first actions undertaken was the de-
ployment of a large genome sequencing effort, which has generated a very large database
(about 106 sequence as of September 2023) of SARS-CoV-2 sequences in a short times-
pan. This unprecedented data richness, along with the certain identification of the ancestral
virus sequence, has allowed scientists to undertake a detailed scrutiny of the virus evolution
in the human host population. The main effort in the genetic research has been axed on
functional domain analysis to identify regions in the sequence which are related to protein
formation and thus responsible of key virus characteristics such as spreading speed or
sensitivity to vaccine or drug treatments.

In this paper, we take a different approach, which can offer a complementary viewpoint
on the dynamic of the virus mutation mechanism. In this study, we use the National Center
for Biotechnology Information (NCBI, www.ncbi.nlm.nih.gov) database. We downloaded
all of the complete RNA sequences with no unknown characters and with the same length
(29,903 characters) of the Wuhan reference sequence classified as NC045512.2 in NCBI
database. There were about 5600 sequences meeting the above criteria at the retrieval date
of February 2023. These constitute the dataset for this study. Moreover, we reduce the
high complexity of the nearly 30,000-base-long genomic viral sequences to the study of the
four-dimensional probability vector p = (pA, pC, pG, pT) of the A, C, G, T base frequencies.

In the following, we speak of entropy of a sequence, intending the Shannon entropy
of the associated base frequency vector (p or q) for the sake of simplicity. We can then
compute the entropy of the most ancient known virus sequence (the one found in Wuhan,
China), which we denote with h(q); the entropy h(p) of (any of) the mutated sequences;
and the relative entropy D(p|q) between the reference sequence and a mutated one. See,
e.g., [2] for a gentle introduction to these notions of Information Theory.
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The choice of the Shannon entropy as a statistical indicator of a sequence implies
that two sequences that differ in a simple permutation in the bases are indistinguishable;
moreover, their relative entropy is zero. Therefore, with the approach chosen in this study,
only an accumulation of mutations that changes the base frequency is appreciable. We are
aware that this is a drastic simplification of the actual mutation mechanism; nevertheless,
we find that such a simple model of mutations is capable to reveal new and unexpected
features of the mutation dynamics. Here is the plan of the paper.

In Section 2, we show that the accumulation of mutations in the sequence decreases the
entropy of the sequence with respect to the ancestral one. This means that the mutations
necessarily further increase the original unbalance of the proportions between the bases
of the reference sequence (qC < qG < qA < qT), enhancing the unbalance pT > pC and
pA > pG, a phenomenon already reported in the literature (see, e.g., [3–5]), the so-called
C → T bias. We find that the decrease in entropy has a analytically computable lower bound,
called the minimal entropy curve, which is tight for many of the sequences in the dataset.

In Section 3, we investigate the dynamic of mutations introducing a simple Markovian
model, which is used in population dynamic studies and which is akin to the classical
Eherenfest urn model in statistical thermodynamics. We compute the mean field approxi-
mation of the Markovian dynamics, which gives a master equation type equation. We then
compare the evolution of the entropy along the mean field solution with the minimal en-
tropy curve. Note that, unlike the theoretical minimum entropy curve, which is based only
on the knowledge of q, the Markovian model of mutation dynamic requires the knowledge
of the Markov matrix P of transitions and trasversions, which is computed from the dataset
in Section 5. This additional piece of information allows us to track the entropy evolution
more closely.

In Section 4, we look at our Markovian dynamic model using the stochastic thermo-
dynamics framework. This allows to describe the mutation bias—which acts as a drift
term in the evolution of the base frequency—as the effect of the interaction of a small
thermodynamic system with a thermal bath. We can, thus, compute the entropy flow and
entropy production term related to the stochastic evolution (see [6–8]). Even if we can think
of our set of sequences as a thermodynamic system only by analogy, this identification is
useful to quantitatively describe the system’s entropy evolution.

2. Computation of Minimal Entropy Curve

We consider the base frequency p of a sequence as a random variable, because the
initial RNA sequence is subject to the error-prone copying mechanism. We can then ask
ourselves if h(p) increases or decreases with time, or if it fluctuates around its initial value
h(q). Since mutations accumulate with time, it is natural to use the relative entropy D(p|q)
as a “time variable” and investigate how the entropy h(p) changes with D(p|q). In Figure 1a,
we plotted the entropy h(q) of the reference sequence q (red dot) and the entropy h(p) of the
mutated sequences in the dataset as a function of their relative entropy “distance” D(p|q).
A clear pattern emerges: the entropy is decreasing with the relative entropy. This is a clear
indication that the mutations are non-random, otherwise the mutations would more likely
affect the most abundant base and the resulting base frequency vector would be more
“uniform”, hence with higher entropy. If the entropy is to decrease, this means that the effect
of mutations has to further unbalance the initial base frequency vector q. In the sequel, we
will address quantitatively this aspect of the mutation dynamic mechanism.

To start with, we want to determine if the decrease in entropy has a computable
lower bound. This amounts to determine the probability p, which has minimal entropy
h(p) over the set of probability distributions that satisfy the constraint D(p|q) = d and
the normalization constraint. To this, we use the Lagrange multipliers method [9] for the
Lagrange function (here, the index i ∈ E = {A, C, G, T})

G(p, λ, µ) = h(p)− λ(D(p|q)− d)− µ(∑
i

pi − 1) (1)
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The necessary first order condition for the extremality ∂G/∂pi = 0 for all i gives pi =

C(µ)q
λ

λ+1
i . By setting β = λ/(λ + 1) and imposing the normalization constraint, we find

the solution

pi(β) =
qβ

i
Z(β)

=
qβ

i

∑i qβ
i

(2)

Note that for β = 1 we have pi(1) = qi. The value of the multiplier β = β(d) is
determined by the constraint D(p(β)|q) = d, which translates into the following equation:

D(p(β)|q) = −h(p(β))− ∑
i

pi(β) ln qi = (β − 1)∑
i

pi(β) ln qi − ln Z(β) := f (β) = d (3)

The function f has a minimum in β = 1 with f (1) = 0; so, for d > 0, the equation
f (β) = d has two solutions with β1(d) < 1 < β2(d).

To ascertain if they provide a local constrained minimum or maximum for h, we
invoke the second order sufficient conditions (see again [9]) on the hessian matrix of G:
p̂ is a local minimum (resp. maximum) if and only if HpG( p̂) is positive (resp. negative)
definite. In our case (here, δij is the Kronecker symbol),

(HpG)ij =
∂2G(p)
∂pi∂pj

= (
1

β − 1
)

δij

pi
(4)

hence the β2(d) > 1 solution of the equation f (β) = d yields a minimum, while the
other β1(d) < 1 a maximum. If we plot the value of the entropy h(p(β(d)) along the two
solutions β2(d) and β1(d) giving, respectively, the minimum and maximum possible value
of the entropy h(p) for a given value of D(p|q) = d, we obtain the two branches of the
violet curve in Figure 1b (upper branch has been cropped in the figure). We see that the
lower bound is tight in the first part of the descent, and that there are mutated sequences
that have minimal entropy.
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Figure 1. (a) Plot of the entropy vs. relative entropy of the sequences in the dataset (blue dots); red dots
represent the entropy of the reference (Wuhan) sequence. (b) same as in (a); purple curve represents the
minimum entropy curve.

In Figure 2, we computed the evolution of the base frequencies (pA, pC, pG, pT) with
D(p, q). We see that there is a strong mutation bias favoring the substitution of C → T
bases and perhaps a weak mutation bias G → A. A detailed study of the molecular nature
of the bias is beyond the scope of this study; however, we notice that the above Formula (2)
allows us to compute the evolution of the pi/pj ratio for sequences that are close to the
minimum entropy curve. Assuming that their base frequency vector is well described
by (2), one has

pi
pj

=
qβ

i /Z

qβ
j /Z

= (
qi
qj
)β(d) (5)
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since β(d) > 1, the initial unbalance qi/qj increases with d. While it is understandable that
the C–T mutation bias lowers the entropy of the mutate sequence, Figure 1b shows that the
mutation dynamics drives the decrease of the entropy to the minimum possible value. To
our knowledge, this is a new result.

From Figure 1b one sees that the minimum entropy curve represent a lower bound for
the sequence’ entropy, which is saturated in the first part of the curve and which is loosened
in the second part, giving evidence that there is some additional underlying mechanism in
the mutation dynamics. In the following Section 3, we present a simple stochastic model to
study this feature of the mutation dynamics.
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Figure 2. Left to right and top to bottom: plot of pA, pC, pG and pT base frequencies as a function of
relative entropy distance from q.

3. A Stochastic Model of Mutation Dynamics

This kind of model is used in the Ehrenfest model of equilibrium thermodynamics
(see, e.g., [10]) and in population dynamics [11] (see also [12] for the use of Markov models
in mutation dynamics). We consider four urns (named A, B, C, D), each containing ni
identical point particles with i ∈ E and ∑i ni = N. At each time step ∆t, only one particle is
randomly chosen from one urn and placed in one of the four urns. So, the change in the
number of particles in urn i at time t is

∆ni(t) = ni(t + ∆t)− ni(t) (6)

with ∆ni(t) ∈ {−1, 0, 1}. Let pi = ni/N be the probability that the chosen particle belongs
to urn i, and let

Pij = Prob(i → j|i), with ∑
j

Pij = 1 (7)

be the conditional probability that the particle in urn i at time t is moved to urn j at time
t + ∆t. Then, the average value of ∆ni(t) is

⟨∆ni(t)⟩ = ∑
j

pjPji − piPij = ∑
j

pjPji − pi = ((PT − I)p)i (8)

where PT is the transpose of P and I is the identity matrix. If the matrix P is independent
of time, this model is a (time-homogeneous) discrete time Markov chain that can be used
to describe the random variations in the base frequencies of the sequences. The following
heuristic argument can be made rigorous (see, e.g., [13] and Appendix A). If the number
of particles of the sequence N is sufficiently large, we can assume that the variance of the
random variable ni is vanishing with N, so that
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σi = ⟨(ni − ⟨ni⟩)2⟩ → 0 for N → ∞ (9)

Hence, ni ≈ ⟨ni⟩ for large N. So, by multiplying (6) by 1/N

1
N

∆ni(t) =
1
N
(ni(t + ∆t)− ni(t)) (10)

and taking the average, we obtain

1
N
⟨∆ni(t)⟩ = ⟨ 1

N
(ni(t + ∆t)− ni(t))⟩ ≈ pi(t + ∆t)− pi(t). (11)

If we take ∆t = 1/N as a time step (this means that a time T∼1 is the time required to
move all the particle of the system on average), then we can write (11) as

pi(t + ∆t)− pi(t)
∆t

≈ 1
∆tN

⟨∆ni(t)⟩ = ⟨∆ni(t)⟩. (12)

In the limit N → ∞, (12) becomes an equality and using (8), we obtain the following
ODE for the probability p:

ṗi = ⟨∆ni(t)⟩ = ((PT − I)p)i, i ∈ E. (13)

Note that a probability distribution p = (pA, . . . , pT) is stationary if PT p = p. In the
following, we set W = PT − I, ∑i Wij = 0, and we consider the Cauchy problem

ṗ = W p, p(0) = q. (14)

The above equation is called mean field approximation of the Markov chain [13]. In
statistical thermodynamics, it is known as a master equation-type dynamic [14]. Equilibria
W p = 0 of the master equation coincides with above-introduced stationary distributions
PT p = p. One can easily show that the above Equation (14) can be rewritten using the
matrix W as

ṗi = ∑
j

Wij pj − Wji pi = ∑
i

Jij (15)

where the quantity Jij = Wij pj − Wji pi is called probability current or thermodynamic flux
term.

A simple check on (15) shows that if the matrix W is symmetric (Wij = Wji), then the
uniform distribution is an equilibrium distribution, and if the matrix W is non degenerate,
then it is the only equilibrium; therefore, the entropy tends to its absolute maximum value
when the system approach the equilibrium. Therefore, if the system entropy is to decrease
as in our case, the matrix W (hence P) has to be non-symmetric.

If N is large, we can assume that the mean field dynamics is a good approximation of
the mutation dynamic mechanism. For our sequences, N∼3 × 104, which gives a pretty
good approximation. We can, therefore, compute h(p(t)) along a solution p(t) of the
Cauchy problem (14), and compare its evolution with the plot of Figure 1b; see Figure 3
below. Note that, unlike the theoretical minimum entropy curve, which requires only the
knowledge of q, the mean field model of mutation dynamic requires the knowledge of
the Markov matrix P. In Section 5, we show how to compute P from the sequences of the
dataset. Prior to this, in Section 4, we investigate this Markovian mutation dynamic model
using a stochastic thermodynamics framework.



Entropy 2024, 26, 163 6 of 11

1.×10-6 2.×10-6 3.×10-6 4.×10-6 5.×10-6
D (p, q)

1.3558

1.3560

1.3562

1.3564

h

(a)

1.×10-6 2.×10-6 3.×10-6 4.×10-6 5.×10-6 6.×10-6
D (p, q)

1.3558

1.3560

1.3562

1.3564

h

(b)
Figure 3. (a) Purple line: minimum entropy curve, blue line: entropy computed along the mean field
solution for W = W(1). The mean field solution gives a better lower bound for the system entropy in
the lower part of the curve. (b) The same as in (a) for W(40).

4. Stochastic Thermodynamic Interpretation of Entropy Decrease

Stochastic thermodynamics is a recent research field at the intersection of classical
statistical thermodynamics with information geometry (see, e.g., [6,7]). Some new and old
thermodynamic inequalities have been introduced and interpreted in terms of information
geometry [15], and then applied to the description of “small” thermodynamic systems
in the non stationary regime, like molecular motors. Stochastic thermodynamics seems
thus to be a promising tool to study the RNA chain of nucleic acid mutation mechanism.
We consider a probabilistic system, which has four states (A, C, G, T), and we suppose
that the sequence base frequency p = (pA, pC, pG, pT) evolves randomly due to its internal
dynamics and due to the interaction with an environment, which is responsible of the bias
or drift. We want to compute the time evolution of the entropy h(p(t)) along a solution of
the Cauchy problem (14). We thus have

Ṡ =
dh
dt

=
d
dt
(−∑

i
pi ln pi) = −∑

i
ṗi ln pi = −∑

i,j
Wij pj ln pi = −∑

i,j
Wij pj ln

pi
pj

= −1
2 ∑

i,j

(
Wij pj ln

pi
pj

+ Wji pi ln
pj

pi

)
=

1
2 ∑

i,j

(
Wij pj − Wji pi

)
ln

pj

pi

=
1
2 ∑

i,j
Jij ln

pj

pi
(16)

Now, write

ln
pj

pi
= ln

pjWijWji

piWijWji
= ln

pjWij

piWji
+ ln

Wji

Wij
= Xij + ln

Wji

Wij
(17)

where Xij = ln pjWij − ln piWji is the thermodynamic force. We can thus rewrite

Ṡ =
dh
dt

=
1
2 ∑

i,j
JijXij +

1
2 ∑

i,j
Jij ln

Wji

Wij
= Ṡi + Ṡe. (18)

The non-negative quantity

Ṡi =
1
2 ∑

i,j
JijXij =

1
2 ∑

i,j
Wij pj ln

Wij pj

Wji pi
≥ 0 (19)

is interpreted as the system’ entropy production therm. Note that Jij(p) = 0 for all i, j if p
is the stationary distribution; therefore, the entropy production term vanishes when the
system approaches the equilibrium distribution. The term with no definite sign
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Ṡe =
1
2 ∑

ij
Jij ln

Wji

Wij
(20)

is the entropy exchange (entropy flow) with the environment (heath bath). From Figure 1
we see that for our system we have Ṡ < 0 which from (18) necessarily implies that Ṡe < 0.
Within this stochastic thermodynamic interpretation, the mutation bias act like a cold
environment which lowers the entropy of the system. However, the necessarily non neg-
ative contribution Ṡi could induce a decrease of the entropy, which is slower that the one
prescribed by the absolute minimum entropy curve of Figure 1b. In fact, the difference
between the two curves in Figure 3 below is due to the positive contribution of the system
entropy production term Ṡi > 0.

4.1. Log-Sum Inequality and the Entropy Production Term

To make this work self-contained, we briefly recall here a derivation contained in [7],
which may be relevant for the interpretation of the entropy production term Ṡi. Suppose
that the master equation matrix Ŵ = ∑m

k=1 W(k) is the sum of m various contribution terms
W(k), which describe the interaction of the system with different environments. Then, one
can repeat verbatim the derivation in (16) for Ŵ and, subsequently, substitute definition (17)
with the following one:

ln
pj

pi
= ln

pj ∏m
k=1 Wij(k)Wji(k)

pi ∏m
k=1 Wij(k)Wji(k)

=
m

∑
k=1

ln
pjWij(k)
piWji(k)

+ ln
Wji(k)
Wij(k)

Hence, (18) becomes

Ṡ =
1
2 ∑

ijk
Jij(k)Xij(k) +

1
2 ∑

ijk
Jij(k) ln

Wji(k)
Wij(k)

= Ṡi + Ṡe.

It is straightforward to rewrite the entropy production term Ṡi as

Ṡi =
1
2 ∑

ijk
Jij(k)Xij(k) =

1
2 ∑

ij

( m

∑
k=1

Wij(k)pj ln
Wij(k)pj

Wji(k)pi

)
(21)

Now, apply the log-sum inequality ([2], Cap.2)

m

∑
k=1

ak ln
ak
bk

≥ (
m

∑
k=1

ak) ln ∑k ak

∑k bk

which is valid for non-negative numbers a1, . . . am, and b1, . . . , bm. Then, (21) satisfies the
inequality

Ṡi =
m

∑
k=1

Ṡi(k) =
m

∑
k=1

1
2 ∑

ij

(
Wij(k)pj ln

Wij(k)pj

Wji(k)pi

)
≥ 1

2 ∑
ij

Ŵij pj ln
Ŵij pj

Ŵji pi
(22)

Therefore, failing to recognize that the master equation matrix W is the sum of differ-
ent contributions describing the interaction of the thermodynamic system with various
environments, one might underestimate the value of the system entropy production term
Ṡi. In Section 5, we show how to compute the different matrices W(k) from our dataset.

5. The Case of SARS-CoV-2 Sequence Dataset

In this section, we apply the theory developed before to the case of the SARS-CoV-2
RNA virus, using the sequences dataset downloaded from the National Center for Biotech-
nology Information (NCBI) public repository. We retrieved the SARS-CoV-2 reference
sequence classified as NC045512.2 (the one collected in Wuhan, China, in December 2019),
and all the sequences matching the following criteria: same length (29903 base pairs), com-
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plete, with no unknown characters, and from a human host. There are about 5600 sequences
which constitute the dataset under study in this work.

5.1. Computation of Markov Matrix P from Data

Let x = (x1, . . . , xN), N = 29903, be the reference sequence and let y = (y1, . . . , yN)
be a mutated sequence. We define for i, j ∈ E the (empirical) frequency vector associated
with x and y

qi =
ni(x)

N
, pi =

ni(y)
N

Therefore, the empirical matrix of conditional probabilities can be defined as

Pij(x, y) =
nij(x, y)

ni(x)
=

nij(x, y)
qi

where nij(x, y) is the number of times the base xα = i is mutated in the base yα = j for
α = 1, . . . , N. The quantity dH = 0, 1, 2, . . .

dH(x, y) = N − ∑
i∈E

nii(x, y)

is the number of errors in the copying of the x sequence into y, and is called the Hamming
distance [16] between the two sequences. Note that the Hamming distance is nonzero for
two sequences, which differ by a simple base order exchange, whereas the relative entropy
distance is zero in this case, since the base frequencies are unchanged. The Hamming
distance thus gives a finer measure of discrepancy between two sequences. We have
partitioned our dataset of about 5600 sequences in disjoined classes DH(0), DH(1), . . . of
sequences, having the same Hamming distance k = 0, 1, . . ., from the reference sequence x.
We obtained 48 classes, and we define the averaged matrix over class k as

P(k)ij =
1

|DH(k)| ∑
y∈DH(k)

nij(x, y)
qi

(23)

where |DH(k)| denotes the cardinality of DH(k). Correspondingly, we define W(k) =
P(k)− I. In Figure 4, we have plotted the value of the entries of matrix P(k) as a function of
the Hamming distance classes k/N. We see that the major contributions to P come from the
conditional probabilities C → T (i.e., PCT), G → T and G → A, giving another confirmation
of the above mentioned C–T bias.
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Figure 4. (a) Plot of the value of some of the entries of matrix P(k) as a function of the Hamming
distance classes k/N; (b) the same as in (a), showing the entries that gives the major contributions
(ten times higher than in (a)).

5.2. Mean Field Dynamics and Entropy Rate

In this section, we study the entropy evolution by comparing the minimal entropy
curve with the mean field dynamics (14) for W = W(k) (see Figure 3a). We see that in
the upper part of the curve, the two curves are close to each other, due to the fact that
the high sequence length N ≈ 30,000 guarantees that the mean field dynamics is a good
approximation of the Markovian dynamics. In the lower part of the curve, we see that
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the mean field solution (blue curve) prescribes a system entropy, which is higher than
the minimal entropy curve. The difference is due to the non-negative entropy production
term Ṡi > 0, while the fact that the entropy is globally decreasing is due to the mutation
bias, which can be described as an interaction with a cold environment causing a negative
entropy flux Ṡe < 0. The better fit of the mean field dynamics is consistent with the fact
that the theoretical minimum entropy curve reflects only the knowledge of q, while the
mean field model of mutation dynamic requires the knowledge of q and the Markov matrix
P of transitions.

From Figure 3b, we also see that the entropy production term is higher in the case
where the dynamics in (14) are described by W(40) with respect to W(1) (compare also
Figure 5b,d). This is probably due to the fact that W(40) is averaged over a class of sequences
DH(40), which contains more kind of mutations than DH(1) (see Section 5.1 above for the
definition of DH); therefore, it is likely that W(40) “contains” the interaction with multiple
environments, a situation that can be described from a theoretical point of view along the
lines of Section 4.1. To conclude, in Figure 5, we show the time-evolution of mean field
(master equation) dynamics and the time-evolution of the various entropy rate terms Ṡ, Ṡi
and Ṡe.
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Figure 5. (a) Plot of the solution p(t) of the mean field dynamics for W(1); (b) plot of entropy rate Ṡ
(black curve), internal entropy rate Ṡi (orange curve) and entropy flow rate Ṡe (blue curve) along the
solution of the mean field dynamics for W(1); (c) the same as in (a) for W(40); (d) the same as in (b)
for W(40).

6. Conclusions

In this paper, we have presented an analysis of the mutations in the SARS-CoV-2 RNA
sequences. Unlike the majority of genetic studies, which focus on the detailed functional
analysis of very specific regions of the sequences, we have considered only the sequence
base frequency as relevant information. Using a literary analogy, we discarded the poetry
in the book, and we concentrated only on the differences due to typographic errors between
the millions of printed copies. We can thus understand some features of the printing
machine, and discover that is biased towards some kind of errors. The functioning of the
printer can be described quantitatively by a probabilistic model, which is amenable to a
stochastic thermodynamic interpretation. We modeled the accumulation of mutations in
the RNA sequence as the slow drift of the probability p = p(t) describing a four-state
thermodynamical system in contact with a thermal bath from the initial q = p(0). The
evolution of the probability can be described as the mean field evolution of a Markov chain,
whose matrix P is derived from data, and it describes the existence of a mutation bias since
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the entropy is decreasing. It is remarkable that, for SARS-CoV-2, the entropy decrease
closely follows a theoretically computable lower bound. As far as we know, this is result is
new. We think that this simple model can complement classical approaches to the problem
of describing genetic variability.

Indeed, our approach is not confined to the study of genetic sequences, and it is
virtually applicable to any dynamical system described by a vector field ẋ = X(x, t) over
a manifold M and a finite partition E of M (coarse graining). The coarse-grained system
evolution is described by a sequence x = (x1, . . . , xN), xi ∈ E, and the probability vector q
is the so-called occupation measure of x. If we add a noise or drift term to the deterministic
evolution X, then we have a set of perturbed trajectories y = (y1, . . . yN) fluctuating around
x. One could retrieve some aspects of the evolution of the perturbed system from a record
of collected trajectories along the lines described in this work.
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Appendix A

Mean Field Approximation of Markovian Dynamics

We adapt the argument contained in [13] to our needs. Let us consider a population
of N identical particles subdivided between k urns. The probability distribution p =
(p1, . . . , pk) = ( n1

N , . . . , nk
N ) is called the occupation measure. We have p ∈ Sk

Q, where Sk
Q is

the k-dimensional simplex with rational values, which is a dense subset of Sk
R. Let us fix a

time step ∆t and consider the sequence of random variables Xn = p(t + n∆t) ∈ Sk
Q. Let us

suppose that at every time step, only one particle moves from from urn i to urn j, so that

p(t + ∆t) = p(t) +
1
N
(ej − ei) ∀i, j = 1, . . . , k

where ei, i = 1, . . . k are the unit vectors of the canonical base in Rk. Set ∆t = 1/N, and
define the conditional probability

Pij(p) = Prob
(

p(t +
1
N

t) = p +
1
N
(ej − ei)

∣∣∣p(t) = p
)

Let us suppose that they are continuous functions of p and independent of t and N. In
this way, the sequence of random variables defines a discrete time Markov chain. Let us
define the function on Sk

Q

Fi(p) = in(i)− out(i) =
k

∑
j=1

Pij(p)− Pji(p), i = 1, . . . , k

Since ∑i Fi(p) = 0, F(p) ∈ TpSk
Q, the tangent space to Sk

Q. Since F(p) is continuous and
it is defined on a dense subset of Sk

R it can be extended to Sk
R, which is compact. Therefore,

F(p) is a Lipschitz continuous vector field, and one can consider the O.D.E. and the Cauchy
problem

ṗ = F(p), p(0) = q

https://www.ncbi.nlm.nih.gov
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The vector field F is called the mean field dynamics (or the fluid limit approximation)
associated with the discrete Markov chain. Let p(t, q) be the solution, and denote with pc(t)
the stochastic process with continuous time interpolating the Markov chain. Moreover, let
us consider the random variable

DT(q) = max{|pc(t)− p(t, q)|, t ∈ 0, T}

The following large deviation type estimate is given in [13].

Proposition A1. There exists a C > 0 such that for all ε > 0, T > 0 and sufficiently large N, one
has

Prob
(

DT(q) ≥ ε
∣∣∣ p(0) = q

)
≤ 2ke−Cε2 N

For the Markov model presented in Section 3 (see (13)), we have

Fi(p) = ∑
j

pjPji − piPij = ((PT − I)p)i.
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