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A B S T R A C T

Targeted Radionuclide Therapy (TRT) is a medical technique exploiting radionuclides to combat cancer growth
and spread. TRT requires a supply of radionuclides that are currently produced by either cyclotrons or
nuclear research reactors. In this context, the ISOLPHARM project investigates the production of innovative
radionuclides for medical applications. This production will be based on the forthcoming SPES facility at the
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ISOLPHARM
Cerenkov luminescence imaging

utoradiography
adiopharmaceuticals

Legnaro National Laboratories (LNL) of the National Institute for Nuclear Physics (INFN), an ISOL facility where
high-purity radioactive beams will be used to produce carrier-free radiopharmaceuticals. Previous studies
demonstrated that a significant amount of 111Ag, an innovative 𝛽/𝛾 emitter suitable for TRT with theranostic
applications, can be obtained at the SPES facility. The present work describes the first imaging study on
phantoms with 111Ag performed by the ISOLPHARM collaboration. This is a fundamental step to pave the
way for the upcoming in vivo studies on the 111Ag-based radiopharmaceutical currently being developed.
The imaging potential of this radionuclide was investigated by acquiring phantom images with Cerenkov
Luminescence Imaging (CLI) and digital autoradiography (ARG).
t
I
l
w
p
i

s

r
i

e

r

w

p

1. Introduction

In the last few years, Targeted Radionuclide Therapy (TRT) has
shown notable potential as a strategy in cancer treatments (Brosch-
enz et al., 2023). This approach relies on guiding radioactive isotopes

toward tumor-associated targets, where accumulation occurs. At this
site, a significant amount of ionizing radiation is released, with emis-
sion depending on the selected radioisotope (𝛼, 𝛽 and 𝛾) (Morris et al.,
2021). Focusing the biological effect of ionizing radiation solely on
he target disease site enables the preservation of surrounding healthy

tissues. Diagnostics and treatments can both be performed using this
emission (theranostics). Indeed, radiopharmaceuticals’ accumulation
may be visualized by nuclear medicine imaging techniques, such as
Positron Emission Tomography (PET) or Single Photon Emission Com-
puted Tomography (SPECT), to evaluate the efficacy of the targeting
agent for therapeutic approaches (Xue et al., 2021; Sun et al., 2023;
Rowland and Cherry, 2008).

In recent years, advances in radiopharmaceutical development, vec-
tor technology, and labeling efficiency have contributed to the im-
provement of TRT (Sun et al., 2023). In this context, the ISOLPHARM
roject aims to produce radionuclides for nuclear medicine applications
t the SPES facility (Selective Production of Exotic Species), making use

of the outstanding selection power offered by the Isotope Separation
Online (ISOL) technique (Andrighetto et al., 2023, 2019). SPES is
under construction at INFN-LNL (National Institute for Nuclear Physics
 Legnaro National Laboratories) and is equipped with a cyclotron

used to accelerate protons. In the case of the ISOLPHARM project, the
beam impinges on a uranium carbide target (primary target), leading
to nuclear fission reactions that produce a wide gamma of neutron-
rich isotopes, among which 111Ag (Lilli et al., 2023). In order to select
he desired species, two selection processes occur. First, a Resonant
onization Laser Ion Source (RILIS) maximizes the extraction of a spe-
ific element from the ion source. Second, a mass spectrometer selects
nly isotopes with a specific mass within the accelerated Radioactive
on Beam (RIB). At the end of the beamline, a highly pure beam of a
pecific radioisotope is collected on a secondary target. After chemical
nd physical processes, the radionuclides of interest are extracted and
sed to label proper biological vectors (Ballan et al., 2021).

The ISOLPHARM project focuses on 111Ag, an innovative radionu-
lide that could be produced at SPES in larger quantities than tradi-
ional irradiation-based production (Tosato et al., 2020; Borgna et al.,

2017). The properties of this radioisotope may be exploited for ther-
nostic use in nuclear medicine. In fact, 111Ag shows medium energy
-emission and low energy 𝛾-ray emission, suitable for monitoring the
elivered dose (Andrighetto et al., 2019; Ballan et al., 2020). 111Ag has

a half-life of 7.45 days, similar to 177Lu which is used in radiopharma-
ceuticals approved by the Food and Drug Administration (FDA) and
he European Medicines Agency (EMA) in 2022 (Hennrich and Eder,

2022). Hence, 111Ag properties will be investigated in future preclinical
studies within the context of the third experiment promoted by the
ISOLPHARM collaboration, ADMIRAL, which extends over a three-year
period (2023–2025) (Arzenton, 2023). In order to assess the effects
of a 111Ag-based radiopharmaceutical, biodistribution analyses in an
in vivo model are required. In the context of the ISOLPHARM project,
previous studies have been performed to evaluate the biodistribution
 r

2 
of a complex containing 64Cu in mouse models, showing promising
results (Giaccone et al., 2022; Benfante et al., 2022; Tosato et al., 2022).

The purpose of this study is to investigate a fast and reliable method
o localize and quantify 111Ag activity for upcoming preclinical studies.
n order to achieve this purpose, imaging tests of aqueous 111Ag+ so-
ution in calibration phantoms were performed. Images were acquired
ith Cerenkov Luminescence Imaging (CLI) and digital autoradiogra-
hy (ARG). CLI is a cheaper and faster alternative to standard nuclear
maging technique for shallow imaging depths, as in the case of small

animal studies planned within the ISOLPHARM collaboration (Bhatt
et al., 2018; Mc Larney et al., 2021). In fact, CLI offers a valid tool to
image 𝛽−-emitting radioisotopes such as 111Ag. Several works demon-
trated the possibility of performing in vivo imaging studies with this

optical method, using nuclear medicine probes (Robertson et al., 2009;
Ruggiero et al., 2010). However, due to the limited penetration depth of
optical photons, CLI is mainly limited to the preclinical scenario, even
though some clinical tests have shown promising results (Mc Larney
et al., 2021). Nevertheless, future clinical imaging with 111Ag will be
based on highly penetrating gamma radiation, exploited by scintig-
raphy and SPECT. In our study, digital autoradiography was used to
obtain 𝛾-ray imaging of 111Ag. It is a consolidated technique that can
be used as a control and is based on the scintillation phenomenon as
in the case of scintigraphy/SPECT (Solon, 2015; Miller, 2018). The
analyses were completed through the development and refinement of
a simulation tool, to aid the interpretation of the obtained images. The
same experiments have been performed using 68Ga, a positron emitter
commonly used in nuclear medicine, to compare newly acquired 111Ag
data with a well-known probe.

2. Material and methods

2.1. Radioisotopes

111Ag is a radionuclide with a half-life of 7.45 days. It decays
emitting electrons with an average energy of 360 keV and two 𝛾-
ays with energy of 342 keV (6.7% intensity) and 245 keV (1.2%
ntensity) (Morselli et al., 2023). TRT can benefit from the medium

energy 𝛽 emission (Handbook, 2011). Moreover, the contemporary
mission of 𝛾-rays makes 111Ag a candidate for theranostic purposes.

Currently, this radionuclide is produced with the standard neutron
capture reaction on a palladium target in the TRIGA Mark II nuclear
eactor at LENA laboratories in Pavia, where irradiation tests to as-

sess the feasibility of 111Ag production were conducted in the past
years (Morselli et al., 2023). For the purpose of the present work,
500 mg of natural palladium were irradiated for 8 h in the central
thimble of the reactor; a subsequent dissolution and reformulation
process was used to obtain the aqueous solution containing 111Ag+ that

as delivered to the Center for Advanced Preclinical in vivo Research
(CAPiR) laboratories of Catania University (Tosato et al., 2023).

Instead, the 68Ga solution was supplied by the Cannizzaro Hos-
ital, where it is routinely obtained by a 68Ge/68Ga generator for

clinical practice. 68Ga emits positrons with an average energy of
836 k eV (Benfante et al., 2023), followed by the emission of two 𝛾-rays
resulting from an annihilation process and both having an energy of
511 keV. Table 1 summarizes the physical characteristics of the two
adioisotopes discussed in this manuscript.
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Table 1
Radioactive decay features of 68Ga and 111Ag.

Isotope Half-life Type Mean energy (keV) Intensity (%)

68Ga 68 m 𝛽+ 836 88
𝛾 511 178

111Ag 7 d 𝛽− 360 92
𝛾 342 7

2.2. Imaging acquisition system

The images were acquired using a Bruker In-Vivo Xtreme, an optical
nd planar imaging system available for small animals and cell lines.
his device is capable of performing multimodal imaging analyses,

ncluding Bioluminescence Imaging (BLI), Multispectral VIS-NIR Flu-
rescence Imaging (MS-FLI), Direct Radioisotopic Imaging (DRI), CLI
nd X-ray Imaging. DRI is the proprietary name for ARG, the former
ne will be used in the context of this work (Alitalo et al., 2020; Vizard
t al., 1998).

The instrument is based on a reverse detection platform, with an
ptical system placed underneath the sample support focusing the
ptical photons onto a 4 MP back-thinned CCD camera. While BLI, FLI
nd CLI are based on the light produced within the sample itself, DRI
nd X-ray imaging are achieved using a scintillator plate that converts
igh-energy radiation into visible and near-visible photons.

The instrument is equipped with different animal chambers and
eds. Anesthesia and evacuation systems provide the possibility of
erforming in vivo studies ensuring optimum animal care and end-user
afety. Furthermore, the acquisition is managed by a software package,
ruker Molecular Imaging (BMI) version 7.5.2.22464, which allows the
odification of acquisition parameters, including illumination, exci-

ation and emission filters, field of view (FOV) and camera exposure
imes. Even though the present study is based on the use of phantoms,
hese features will become crucial in the upcoming in vivo experiments
ith mice models and 111Ag.

2.3. Phantoms

The phantoms were custom made with a design based on the
Jaszczak one (Jaszczak, 1985). They were composed of one set of
three equally deep parallel hollow rods with uniform cross sections.
Each hole was placed in such a way that the closest distance between
two of them was exactly their diameter. Three different models were
produced by the LNL workshop, with cylinders having diameters of 2,
3 and 5 mm. A fourth model was included with a different diameter
for each of the three holes. The controlled geometry of the phantom
was an advantage, enabling a more precise and accurate quantitative
analysis of the collected images. The phantoms were made of PMMA,
a transparent material that allowed Cerenkov photons to escape the
phantom volume. Fig. 1 shows the top and lateral views of a schematic
phantom with 3 mm holes.

2.4. LBC detector

The LBC detector is made of a Scionix LaBrCl(Ce) scintillator and
 Hamamatsu PMT model R6231-100-01, optically coupled through an
LJEN Technology EJ-560 silicone rubber band (Morselli et al., 2023).

A 3D printed plastic case protects the scintillator and the PMT. The
utput signal from the detector is read by a CAEN DT-5725SB digitizer.
igh Voltage is provided by a CAEN DT547N module through the

custom made CAENHV_CTRL software. Data acquisition is managed by
pen source ABCD (Acquisition and Broadcast of Collected Data) soft-
are (Fontana et al., 2018). The activity of a sample can be measured

through the acquisition of a gamma spectrum with the LBC detector
using the equation:

𝐴 = 𝑁 (1)

𝜖 𝐼𝛾𝛥𝑡

3 
Fig. 1. Phantom design scheme.

where 𝑁 is the number of counts under the peak associated with a
specific transition, 𝜖 is the absolute photopeak detection efficiency, 𝐼𝛾
is the relative gamma intensity of the considered transition and 𝛥𝑡 is the
cquisition time in seconds. 𝑁 is obtained fitting the peak of interest
342 k eV for 111Ag and 511 k eV for 68Ga), while 𝜖 is obtained from a
imulation developed during the commissioning of the instrument.

2.5. Experimental protocol

At the beginning of the experiment, the 111Ag+ and 68Ga3+ stock
solutions measured 15.3 MBq and 247 MBq in volumes of 4.7 mL and
5 mL respectively. Both radioactive solutions were kept in screened
vials. The activity of the radioactive solutions was measured through
the LBC detector, with a source to detector distance of 10 cm.

A micropipette was used to fill the holes of the phantoms with the
pecific solution. The volume of solution inserted was determined by

the diameter of the holes. Holes of 2, 3, and 5 mm were filled with
0, 30, and 75 μL, respectively. The total activity for these volumes can
e found in Table 2. Then, the phantoms were covered in plastic wrap

and placed in the Bruker In-Vivo Xtreme to acquire the images. Inside
the imaging cabinet there is a sample holder consisting of a transparent
plastic layer where the phantoms were placed with the holes facing up.
A total of four phantoms, one for each of the models described above,
was used in the image acquisitions, placing them at the center of the
etection plane. A scheme of the used setup is shown in Fig. 2. All the

CLI and DRI images were acquired through the BMI software, using
the native 1 × 1 binning for the CCD sensor and saving them in Digital
Imaging and Communications in Medicine (DICOM) format.

Alongside the image acquisitions, the activity of each phantom
as estimated considering the measured activity per milliliter and the

njected volume. A correlation between the collected light and the
activity content inside the phantom holes was sought for each imaging

ethod.

2.6. Monte-Carlo simulations

Monte Carlo simulations were developed to support the analysis,
s well as to provide useful information for upcoming in vivo studies.
he simulations were built upon Geant4 version 11.0.0 (Allison et al.,

2016), a free software package used to accurately simulate the passage
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Table 2
Activity of 68Ga and 111Ag according to the hole diameter at the start of the
experiment.

Isotope 10 μL 30 μL 75 μL
68Ga 362 k Bq 1.1 MBq 2.7 MBq
111Ag 31 k Bq 94 k Bq 236 k Bq

Fig. 2. Scheme of the geometry used in the data collection. The scintillator, represented
by the green screen below the sample support, is only present in DRI acquisition mode.

Fig. 3. Scheme of the geometry used in the simulations.

of particles through matter. Every aspect of a physics experiment can
be simulated with this toolkit: the geometry of the system, the materials
involved, the generation of primary particles, the tracking of particles
through materials and many others. Geant4 also offers efficient event
and track storage, volumes and particle trajectory visualization on a
Graphical User Interface (GUI), alongside data analysis capabilities
through its interface with ROOT software (Brun and Rademakers,
1997). Developed in C++, the toolkit uses its object-oriented method-
ology. The default classes available in the Geant4 toolkit are ready to
work but they are also designed to be extended by the user according
to their needs. Simulations were based on a schematic setup similar to
that shown in Fig. 3. It consisted of a PMMA phantom with holes filled
with water, a protective film and a sample holder in PVC, a Gd2O2S
scintillating screen and a silicon detector. The optical system to focus
photons onto the sensor was not modeled, as the internal structure of
the Bruker In-Vivo Xtreme was unknown. Therefore, the detector was
placed directly in contact with the scintillator (DRI) or with the sample
support (CLI). The physics lists employed in the developed simulations
are G4EmStandardPhysics_option4, G4OpticalPhysics, G4DecayPhysics
and G4RadioactiveDecayPhysics.

The primary particles were the nuclei of interest, namely 111Ag and
68Ga. They were generated at rest and left to decay, thanks to the use
of the radioactive decay physics list. The generation and propagation of
optical photons were enabled by the optical photon physics lists, which
required each material to be assigned a refractive index.

3. Results and discussion

3.1. Cerenkov Luminescence imaging

CLI images were acquired filling one phantom per kind with the
radioactive solutions. As an example, Fig. 4 shows the CLI image
4 
Table 3
Linear coefficients of the fits in the form 𝑦 = 𝑚𝑥 + 𝑞 for 68Ga and 111Ag CLI images.

Isotope 𝑚 (k Bq−1s−1) 𝑞 (s−1)
68Ga 21.8 −1690
111Ag 4.71 1.73

with 111Ag and 68Ga, obtained with an exposure of 10 and 3 min,
respectively, placing all the phantoms inside the instrument.

In both images, all the holes are recognizable, implying a resolution
of at least 2 mm for the CLI method with the two used radionuclides.
However, there are two main noticeable differences: the image with
111Ag features sharper edges, indicating higher resolution, but the
counts are significantly reduced despite approximately three times
longer acquisition time. Both facts can be attributed to the different
energy spectra of the 𝛽 particles produced by the decay of the ra-
dionuclides themselves. With a lower average energy compared to 68Ga
positrons, 111Ag electrons travel shorter distances within the material.
This results in smaller and more localized light production (Ciarrocchi
and Belcari, 2017). Furthermore, the 68Ga activity was approximately
5 times higher than that of 111Ag at the time of acquisition.

Images were analyzed to search for a correlation between the col-
lected light and activity in order to assess quantitative information
from the images in view of future experiments. The structure of the
images, with light organized in clusters corresponding to different
holes, suggested the use of clustering algorithms such as Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al.,
1996). However, the current algorithm could not be directly applied to
images conceived as 2D histograms with non-binary bin contents.

Indeed, DBSCAN operates by evaluating point density, which is
constant in a 2D histogram because each pixel is surrounded by a fixed
number of pixels (excluding borders). Instead, in the present study,
discrimination had to be based on the pixels’ value, considering a
cluster as a group of pixels exhibiting higher counts than their imme-
diate neighbors. Therefore, the images were preprocessed as follows:
a threshold was set for the pixel content and, starting from a white
canvas, a point was drawn at the coordinates of a pixel only if its
value was greater than the chosen lower threshold. Thus, a new image
was obtained in which points were drawn in correspondence of high-
valued pixels, making clusters of points emerge where groups of pixels
boasting elevated values were present. DBSCAN algorithm could then
be applied to the pre-processed images and several quantities related
to light intensity were estimated for each identified cluster. Afterwards,
possible correlations between these quantities and the sample activity
were sought.

The activity content of each hole was estimated as 𝐴 = 𝑉 ⋅ 𝐴ml,
where 𝑉 was the volume of solution placed in each hole and 𝐴ml was
the activity per milliliter of 111Ag+ (or 68Ga3+) solution at the time
of image acquisition. This last quantity was obtained from the activity
measurements of the radioactive solution with the LBC detector, taking
into account the decay of the radionuclide in the time interval between
the initial activity estimation and the image acquisition.

The quantity most strongly correlated with the radioactive activity
was the total light output, calculated by summing the pixel counts
around the center of the cluster within 1.5 times the radius of the holes
themselves. Both Cerenkov-based images with 111Ag and 68Ga yielded
the same conclusions. To remove the dependence of the counts on the
acquisition time, they were normalized to the latter, resulting in counts
per second. Fig. 5 shows the relationship between counts per second
and activity for CLI data obtained with 111Ag and 68Ga. A linear fit
was also performed to highlight the linear correlation between the two
quantities. Linear coefficients are presented in Table 3.



D. Serafini et al. Applied Radiation and Isotopes 215 (2025) 111562 
Fig. 4. CLI images with 111Ag (a) and 68Ga (b). For the 111Ag image, phantoms’ diameters are 3 mm at top-left, mixed at top-right, 2 mm at bottom-left, 5 mm at bottom-right.
For the 68Ga image, phantoms’ diameters are 2 mm at top-left, mixed at top-right, 3 mm at bottom-left, 5 mm at bottom-right.
Fig. 5. Correlation plot counts per second vs activity for each cluster in the 111Ag (a) and 68Ga (b) CLI experimental image, dashed lines are linear fits.
Fig. 6. DRI images with 111Ag (a) and 68Ga (b). For the 111Ag image, phantoms’ diameters are 5 mm at top-left, 2 mm at top-right, mixed at bottom-left, 3 mm at bottom-right.
For the 68Ga image, phantoms’ diameters are 5 mm at top-left, 3 mm at top-right, mixed at bottom-left, 2 mm at bottom-right.
3.2. Direct radioisotopic imaging

The same experimental procedure was performed for the DRI im-
ages, acquiring data with a phantom of each kind placed inside the
imaging cabinet. Fig. 6 shows the experimental images obtained with
111Ag and 68Ga and an exposure time of 5 min and 30 s respectively.

A relevant difference with respect to the CLI case is that the holes
inside a single phantom are not distinguishable. Electrons of 360 keV
5 
have a mean CSDA range of approximately 1 mm in PMMA (Seltzer,
1993), meaning that only 𝛾-rays coming from 111Ag decay can travel
through the 5 mm thickness of PMMA separating the bottom of the
holes and the scintillator screen. The same applies to the positrons
generated in 68Ga decay. Hence DRI images are caused only by the
𝛾-rays interacting with the scintillator plate. Considering the isotropic
emission of such particles and the fact that most of them travel PMMA
unperturbed, scintillation can take place far away from the radioactive
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Fig. 7. Correlation plot counts per second vs activity for each cluster in the 111Ag (a) and 68Ga (b) DRI experimental image. Dashed lines are linear fits.
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Table 4
Linear coefficients of the fits in the form 𝑦 = 𝑚𝑥 + 𝑞 for 68Ga and 111Ag DRI images.

Isotope 𝑚 (k Bq−1s−1) 𝑞 (s−1)
68Ga 36.83 −10 760
111Ag 182.1 −13 090

decay vertex. As a result, the distribution of light is widened with
respect to the CLI case, where light production occurs only close to the
decay point.

As in the case of the CLI images, the DBSCAN algorithm was used
o identify the light clusters and estimate different quantities searching
or a light-activity correlation. Once again, the total light yield was the

most correlated for both 111Ag and 68Ga data. Fig. 7 shows the plot of
ounts per second - activity for the DRI 111Ag and 68Ga images. Linear

coefficients are presented in Table 4.
In conclusion, data analysis demonstrated the possibility of retriev-

ng quantitative information from experimental images, showcasing the
otential for establishing a correlation between the counts and radionu-
lide activity in CLI and DRI acquisition modes. This potential will be
rucial for the upcoming in vivo imaging studies, where the activity
n specific organs or regions within a mouse’s body will be estimated
ia CLI and DRI images. To enable such an estimation process, the
nalysis had to be integrated by creating a framework that allows for
ctivity quantification regardless of the geometry and the materials of
he sample. Simulations were fundamental in achieving this outcome,
llowing us to link light intensities across different experimental setups.

3.3. Simulation tuning

For the simulation part of the experiment, a simplified configura-
ion was used due to the unknown internal structure of the actual
nstrument. The detector was positioned in contact with either the scin-
illating screen (for DRI) or the sample support (for CLI). To ensure the
eliability of the simulation tool, the latter was tuned using experimen-
al data, devising simulation strategies for both imaging methods. This
ine-tuning involved adjusting unknown parameters while comparing
imulated and experimental images using clusters’ profiles. By selecting
 region of interest (ROI) around the center of each hole, a profile
long the 𝑥-axis was obtained by summing the pixels vertically. The
rofiles were compared with respect to their shape and the relative

intensity of the different holes, which needed to be consistent with
the experimental images. Fig. 8 depicts the CLI image with 111Ag on
he left, highlighting the centers of various clusters and the associated
egions of interest. The right panel, instead, shows the profiles of the
ifferent clusters for the considered image.

To obtain CLI images that closely resembled the experimental ones,
 constraint on the angle of entrance of optical photons in the detector
 m

6 
was imposed. In the case of DRI, however, this was not necessary;
he unknown parameter to be tuned was the scintillator thickness.
oreover, the optical photon absorption length for radioactive so-

utions had to be derived from the comparison of profiles between
xperimental and simulated images since these parameters were not
nown in advance.

Fig. 9 shows the experimental CLI image with 111Ag (left) and
the corresponding simulated image (right). Fig. 10 shows, instead, a
comparison of all the profiles hole by hole, for the two images.

Once a reliable simulation tool was developed, it was used to asses
quantitative information about the imaging modalities, like spatial
resolution.

3.4. Spatial resolution

One of the most common ways of measuring the spatial resolution
of an imaging system in nuclear medicine is the point spread function
(PSF), particularly its full width at half maximum (FWHM) and full
width at tenth maximum (FWTM) (Bailey, 2015). Using the developed
imulations, it was possible to model a point-like source inside a phan-
om to obtain the PSF. The source was positioned at the geometrical
enter of a uniform PMMA phantom with dimensions equal to the ones
sed in the real experiments. It was thus possible to retrieve the PSF of

111Ag and 68Ga, in both acquisition modes.
To obtain the FWHM and the FWTM, the center of the PSFs were

itted with a parabola in order to obtain the maximum height. Then,
he half maximum and tenth maximum locations were determined
y linear interpolations from the nearest two neighboring points of

the half and tenth peak value, as described in the NEMA NU 1-2018
guidelines (NEMA, 2019). Fig. 11 shows the PSF, the FWHM and the
FWTM for 111Ag and 68Ga in CLI mode. The results of the analysis are
presented in Table 5.

111Ag appears to be characterized by a better spatial resolution than
68Ga for both imaging methods. Although the FWHM values are similar,
he difference can be noticed with the FWTM. In fact, due to the shape
f the PSF, which broadens more below half of the maximum, the
ifference between the two radionuclides becomes more apparent using
he width at tenth maximum.

Given that typical resolution values for a SPECT system are around
2 mm (Attarwala et al., 2020), the FWHM values obtained highlight
the potential of CLI and DRI for preclinical imaging. Moreover, since
tumors in mice can be considered macroscopic when they reach a
diameter of at least 2 mm (Puaux et al., 2011), it should be possible
to distinguish such structures using the imaging methods applied,
specially CLI. However, unlike SPECT imaging, it is important to note
hat the spatial resolution of a CLI system is heavily influenced by the
ptical properties of the medium where the source is located, and even
ore so by the depth of the source. Regarding DRI, due to the absence
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Fig. 8. Analysis of CLI image with 111Ag. Identification of the cluster centers marked as blue dots and the regions of interest shown with red lines (a). Profiles obtained for each
cluster (b).
Fig. 9. 111Ag CLI experimental (a) and simulated (b) images.
Table 5
FWHM and FWTM of 111Ag and 68Ga with the two imaging methods, CLI and DRI.

Isotope CLI DRI

FWHM (mm) FWTM (mm) FWHM (mm) FWTM (mm)
68Ga 0.5 1.6 3.5 11
111Ag 0.4 0.9 2.2 8.4

of a collimation system, increasing the source-to-scintillator distance
causes a substantial broadening of the PSF, leading to a detrimental
effect on spatial resolution. As a result, the above findings cannot be
generalized to any geometric configuration and are only applicable at
shallow depths, both for CLI and DRI.

Eventually, a simulation tool able to mimic experimental data was
obtained. Although some properties like spatial resolution were esti-
mated, the developed software will be particularly useful for analyzing,
planning, and optimizing future experiments prior to data collection.
Furthermore, the simulation tool will have a crucial role in performing
quantitative analysis for upcoming in vivo studies. The MOBY digital
mouse model (Carter et al., 2019; Segars et al., 2004) will be included
in the simulations to ensure a better quantitative interpretation of
preclinical data. In addition, this expedient will allow us to reduce the
number of animal tests, still obtaining valuable insights on the new
radiopharmaceutical. Preliminary simulated images have already been
obtained using MOBY, however its potential will be fully exploited in
7 
the near future, through the comparison with preclinical data on mice
models.

4. Conclusions

TRT is a consolidated approach for cancer treatments that pro-
vides advantages over other modalities. In fact, the selectivity of this
technique enables the exertion of the cytotoxic effect predominantly
on tumor cells, preserving healthy tissue from the radiation-induced
damage. TRT developments are focused on the enhancement of the
efficacy of this form of treatment, studying innovative vectors, new
labeling techniques and radionuclides that may be used to synthesize
novel radiopharmaceuticals (Sgouros et al., 2020).

In the present work, the characterization of CLI and DRI scans is
presented together with a preliminary imaging study regarding 111Ag.
The valuable properties of 111Ag for TRT captured the interest of the
ISOLPHARM collaboration. In fact, the emission of both electrons and
𝛾-rays makes 111Ag a good candidate for theranostic applications in
TRT (Andrighetto et al., 2019). Specifically, in our study, the Bruker
In-Vivo Xtreme device was selected to perform preliminary imaging
scans and pave the way for preclinical imaging investigation. 111Ag was
examined in phantoms, providing valuable insights for the upcoming
in vivo studies. The success in obtaining accurate images highlighted
the theranostic potential of 111Ag, building the rationale for future
biodistribution experiments in mice models using 111Ag-labeled radio-
pharmaceuticals. Furthermore, the possibility of retrieving quantitative
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Fig. 10. Comparison of experimental and simulated profiles for 111Ag CLI images.
Fig. 11. Point spread functions of 111Ag (left) and 68Ga for CLI mode. The point source was placed in the center of a uniform PMMA phantom like the ones used in the experimental
etup. FWHM and FWTM are highlighted with colored lines and their values are presented in Table 5.
information from CLI and DRI images was investigated. The analysis
revealed a relation between the intensity of the collected light and the
activity of the sample. To generalize the analysis, Monte Carlo simu-
lations based on Geant4 toolkit were built to develop a quantitative
ramework that could work with several experimental setups, as in the
ase of future in vivo studies with mice models. To pursue such an
bjective, simulations were tuned with experimental data performing
 comparison of light profiles between experimental and simulated
mages. The development of a reliable simulation tool validated with
LI and DRI images of calibration phantoms lays the foundation for the

uture studies foreseen by the ISOLPHARM collaboration. Moreover,
ntegrating the MOBY digital mouse model (Segars et al., 2004) in
he software will aid the quantitative analysis of the upcoming in vivo

images that will be collected, making it possible to investigate the
theranostic potential of 111Ag in a preclinical scenario.
8 
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