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Abstract—Mealtime insulin dosing is a major challenge
for people living with type 1 diabetes (T1D). This task is
typically performed using a standard formula that, despite
containing some patient-specific parameters, often leads to
sub-optimal glucose control due to lack of personalization
and adaptation. To overcome the previous limitations here
we propose an individualized and adaptive mealtime insulin
bolus calculator based on double deep Q-learning (DDQ),
which is tailored to the patient thanks to a personalization
procedure relying on a two-step learning framework. The
DDQ-learning bolus calculator was developed and tested
using the UVA/Padova T1D simulator modified to reliably
mimic real-world scenarios by introducing multiple variabil-
ity sources impacting glucose metabolism and technology.
The learning phase included a long-term training of eight
sub-population models, one for each representative sub-
ject, selected thanks to a clustering procedure applied to
the training set. Then, for each subject of the testing set,
a personalization procedure was performed, by initializing
the models based on the cluster to which the patient be-
longs. We evaluated the effectiveness of the proposed bo-
lus calculator on a 60-day simulation, using several metrics
representing the goodness of glycemic control, and com-
paring the results with the standard guidelines for mealtime
insulin dosing. The proposed method improved the time
in target range from 68.35% to 70.08% and significantly
reduced the time in hypoglycemia (from 8.78% to 4.17%).
The overall glycemic risk index decreased from 8.2 to 7.3,
indicating the benefit of our method when applied for in-
sulin dosing compared to standard guidelines.
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I. INTRODUCTION

THE number of people diagnosed with type 1 diabetes
(T1D) has been rising worldwide in recent years [1]. The

management of T1D requires lots of effort from those who are
affected, as their body is no longer able to produce insulin,
one of the key hormones in blood glucose (BG) regulation. To
keep BG within the safe normoglycemic range, i.e., [70-180]
mg/dL [2], T1D standard therapy suggests the administration of
slow-acting insulin injections, usually performed once or twice a
day, to control BG in fasting conditions, together with fast-acting
insulin injections in correspondence of meals, to counteract the
subsequent rising of BG. According to the standard guidelines,
the latter dosage should be calculated following the formula in
(1), hereafter defined as the standard bolus calculator (BCS) at
mealtime [3]

BCS =
CHO

CR
+

Gc −Gt

CF
− IOB (1)

where CHO (g) is the meal carbohydrate intake, CR (g/U)
and CF (mg/dL/U) are the insulin-to-carbohydrates ratio and
the correction factor, i.e., two therapy parameters tuned by the
clinician [4], Gc (mg/dL) is the mealtime BG level, Gt (mg/dL)
is the target BG level, and IOB (U) is the insulin on board,
indicating the amount of previously injected insulin that is still
acting in the organism [5].

Leveraging the UVA/Padova T1D simulator, a FDA-approved
environment that can be used to test new insulin therapies via
in-silico clinical trials [6], we showed in [7], [8], [9] that (1)
can be sub-optimal and potentially harmful in some situations.
Indeed, excessive insulin dosage could lead to low BG levels (<
70 mg/dL), i.e. hypoglycemia [10], a major obstacle to glycemic
control for many patients, that lead to dangerous complications
including neurological damage, coma, and even death [11].
On the other hand, underestimation of mealtime insulin can
result in prolonged hyperglycemic events (BG > 180 mg/dL),
which are responsible for the development of microvascular and
macrovascular complications, and retinopathy [12].
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These results highlighted the need to improve mealtime in-
sulin dosing by adopting newer, more refined, and, most of all,
personalized and adaptive approaches.

The increased amount of available data collected thanks to
new technologies such as minimally-invasive continuous glu-
cose monitoring (CGM) sensors [13], [14], [15], which al-
low tracking glucose levels in almost real-time, and insulin
pumps, that enabled automated insulin delivery [16], fostered
the development of deep learning-based decision support algo-
rithms [17] in T1D management and smart bolus calculators
integrating powerful data-driven strategies aimed at improving
the standard bolus calculator based on different optimization
techniques.

For instance, in Herrero et al. [18], run-to-run control and
case-based reasoning were used to provide insulin dose rec-
ommendations based on the retrospective optimization of the
therapy parameters of (1) (i.e., CR and CF ) performed on a
daily basis, while in Fabris et al. [19] they proposed the use
of two methods to inform insulin dosing with biosignals from
wearable sensors, i.e. insulin sensitivity estimated through CGM
signal and the step count. In addition, in our recent work [20], we
developed a new bolus calculator based on LASSO regression
by leveraging a simulated dataset, while in Cappon et al. [21],
a simple neural network was preliminarily investigated for such
a scope. All these studies produced positive results, encourag-
ing further efforts on this direction. However, the design of a
supervised learning framework is far from being trivial in such
a context, due to the difficulty in retrieving the optimal target
of the learning task. Indeed, when considering data collected
from people living with T1D, the administered mealtime insulin
bolus is in most cases sub-optimal, leading to poor postprandial
glycemic control. Moreover, the insulin amount estimation is
highly patient-dependent, making it difficult to train a general
model which is valid for different subjects. Hence, the difficulty
of having reliable data, which includes an optimal insulin bolus,
together with the need for a model which is tailored to the pa-
tient’s needs, justifies the application of reinforcement learning
(RL) for such a task. Indeed, the application of RL is particularly
suitable, since it aims at automating the decision-making process
which characterized T1D management, by learning through the
interaction with a specific environment to achieve a goal, without
the need for labeled data. The work of Zhu et al. [22] proposed
a preliminary study in this direction, by applying a deep RL
algorithm (deep deterministic policy gradient) for the design
of an insulin bolus advisor. The use of this methodology to
develop a bolus calculator showed encouraging results, suggest-
ing that RL is suitable for such a task. However, the simulated
environment used in [22] did not consider relevant variability
sources which could impact glycemic control, e.g., CGM mea-
surement error, and the size of virtual cohort is relatively small
(n = 20).

In this article, we addressed the issue of mealtime insulin
dosing, being the most demanding and patient-dependent action
among all those required by the standard T1D therapy. For such
a scope, we leveraged an RL algorithm, in particular double
deep Q-learning (DDQ), which relies on a high level of individ-
ualization, by integrating a two-step learning process together

with a clustering procedure, to ensure a proper personalization of
the algorithm. The proposed DDQ-learning bolus calculator was
developed and tested on an updated version of the FDA-accepted
UVA/Padova T1D simulator [6], which allows recreating a real-
istic simulation environment, by including multiple variability
sources in a large virtual cohort of 100 subjects.

The use of a simulation tool that reliably mimics a real-world
scenario is crucial to preliminary assess the benefit that an RL
technique could bring when applied for the purpose of T1D
management, and in particular insulin dosing, before moving to
an ad-hoc clinical setting.

The paper is organized as follows. Section II reports the
basic principles of DDQ-learning together with the design of
the algorithm for the specific task of mealtime insulin dosing.
Section III describes the simulation environment used for this
purpose, and specifies the experimental set-up. In Section IV
and V we discuss the two-step learning framework and the as-
sessment of the resulting models respectively, while Section VI
reports some final considerations and future developments of the
proposed work.

II. METHODS

Hereafter, we will formulate the insulin dosing task as an RL
problem. First, in Section II-A we will describe in detail the core
algorithm adopted in our strategy, i.e., DDQ-learning, which is
a variant of Q-learning, a popular RL technique that learns the
value of an action in a particular state and aims at finding an
optimal policy in the sense of maximizing the expected value
of the total reward over any successive step, starting from the
current state [23]. Then, in Section II-B, we will present how we
integrated DDQ-learning for the specific purpose of developing
a new mealtime insulin bolus calculator.

A. Background on Double Deep Q-Learning

In general, the goal of RL is training an agent to perform
a task thanks to the interaction with a defined environment,
by assigning a specific reward to each agent’s action [24]. In
particular, for each discrete time step t the environment can be
represented by the state vector (st), which better describes the
current status of the environment among all possible vectors of
the state space S. Hence, the state at time t, is used by the agent
to choose an action (at) from all the possible sets of actions
(A), according to its policy (π : S → A). The action, which is
selected based on the policy π, is applied to the environment,
that evolves into the subsequent state (st+1). Finally, the action
related to the specific state is evaluated through a reward (rt),
that is assigned to the corresponding state-action pair (st, at).

In this context, the goal of the algorithm is learning an optimal
policy π which maximizes the cumulative discounted future
reward (i.e., the return Gt):

Gt =

∞∑
τ=t

γτ−trτ+1 (2)

where γ is the discount factor, which takes values between
[0,1], and determines how much the rewards in the distant future
should be considered within the calculation.
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In Q-learning, in order to learn the optimal policy and maxi-
mize the reward defined in (2), the so-called action-value func-
tion is used [23]:

Qπ(st, at) = E[Gt|st, at, π] (3)

which is the expected return given the state st and actionat under
a specific policy π, representing the goodness of the action for
the given state. The optimal action-value function Q∗(s, a) can
be defined as the one maximizing (3), and satisfying the Bellman
optimality equation [23]:

Q∗(st, at) = E

[
rt+1 + γmax

at+1

Q∗(st+1, at+1)|st, at
]

(4)

When the number of possible state-action pairs is high, the
amount of time required to explore each state and apply a specific
action is impracticable. Thus, generating the so-called Q-table,
which stores Q∗(st, at) for each state-action pair, becomes an
excessively time-consuming process. To overcome this issue, in
deep Q learning, the exact action-value function is replaced by
a function approximator based on deep learning, i.e., a deep Q
network (DQN). A DQN is a deep multi-layered neural network
parametrized by its weight vector θ, which for a given state s
provides as output the approximation of Q∗(s, a), i.e., Qθ(s, a)
for all the possible actions in A.

Improving learning stability of DQN: In this article, we took
advantage of two important factors related to the DQN algo-
rithm, which increase learning stability: the experience replay
and the target network [25]. By leveraging experience replay, we
stored the agent’s experiences in the form (st, at, rt+1, st+1) in a
cyclic buffer called replay memory, from which a minibatch was
randomly drawn to update the DQN, instead of performing such
a task at each time step and thus leading to poor stability. The
use of experience replay also helps in breaking the correlation
between two consecutive samples while training the network.
The second stabilizing method was obtained by means of a
target network, which is a separate network having weights θ−,
that is initially equal to the ones of the network enacting the
policy. During training, the weights of the target network θ−

were updated to match the policy network θ after a fixed number
of steps [25].

In this study, we applied Double Deep Q-learning (DDQ), a
variant of deep Q-learning, which leverages the target network
θ− to tackle the maximization bias issue, i.e., the systematic
overestimation of the action-value function due to the maximiza-
tion step in (4), which characterized such an algorithm. The max
operator in DQN, in (4), uses the same values both to select and
evaluate action. This makes it more likely to select overestimated
values, resulting in overoptimistic value estimates. To prevent
this, DDQ-learning decouples the action selected from the action
evaluation by leveraging the target network parametrized by θ−

[26]. Hence, in DDQ-learning the target Q-value is computed as
follows:

Q(st, at) = rt+1 + γQθ

(
st+1, argmax

at+1

Qθ−(st+1, at+1)

)
(5)

Note that, the selection of the action is due to the policy network
θ, while the second network θ− is used to fairly evaluate the
value of this policy [26].

Fig. 1 visually summarizes the different steps and elements
which compose the DDQ-learning algorithm.

B. Development of the Insulin Bolus Calculator Based
on Double Deep Q-Learning

In this section, we present how we used the DDQ-learning
algorithm to develop a mealtime insulin bolus calculator. In
particular, at mealtime t, the patient needs to estimate and inject
the insulin dose to counteract the glycemic excursion due to
the meal. Within this framework, the mealtime condition is
represented by a specific state st, composed of easily accessible
physiological parameters of the T1D individual as described in
II-B1. Based on the current mealtime status, the best action at
selected by the policy was applied to the patient, i.e., the best
insulin amount to be injected, as defined in II-B2. Lastly, after
the insulin amount delivery, the postprandial glycemic outcome
was evaluated through the reward function specified in II-B3.

1) State Vector Choice: In this work, we used easily acces-
sible variables together with patient-specific therapy parameters
to describe the mealtime condition, which provides a compre-
hensive view of the prandial status.

We defined the state vector at time t (st) by extracting, for each
meal, the following variables: the current CGM measurementGc

[mg/dL]; the carbohydrate content of the meal (CHO) [g]; the
CGM rate of change (ROC) [mg/dL/min], which gives insight
into the glucose dynamics, by indicating whether glucose level
is falling or rising and to what extent; the prandial insulin-to-
carbohydrates ratio (CR) [g/U], a therapy parameters indicating
how many grams of CHO will be covered by one unit of insulin
and which could vary from meal to meal; together with the
prandial insulin dose computed through the standard therapy
(BCS) [U] as in (1). In this process of feature selection, we
followed our previous work’s rationale [7], which involved the
exclusion of variables that, in this specific application, assumed
a constant value for each meal, e.g., the body weight (BW ), the
correction factor (CF ), the target glucose (Gt). As a result, we
defined st as:

st = {Gc, CHOt, ROCt, CRt, BCSt
}. (6)

2) Set of Possible Actions: In our scenario, there are multiple
types of actions which could potentially be adopted, such as the
estimation of the insulin dose itself, or the correction of the dose
suggested byBCs. Since the number of possible insulin amounts
associated with a state is considerably high, we decided not to
directly estimate the mealtime bolus, but to correct the dose
suggested by BCs, which thus will be considered as a starting
value. This choice was made to avoid an excessive number of
possible actions, which could lower the performance of our
algorithm. Hence, we defined an action at as a percentage mod-
ulation of the mealtime insulin dose suggested by the standard
therapy. In particular, the BCs dose can be decreased or increased
by a percentage α, which ranges from these possible values
α = {±25,±20,±10, 0}%. The motivation behind this choice
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Fig. 1. Representative scheme of the DDQ-learning framework applied to the T1D simulation environment. Within the Agent block, the state
st feeds both the policy and the target network, which will be used to approximate the Q(st, at). Then, the action at associated with the
maximum estimated Q-value will be an input of the T1D Simulator block, and in particular to the virtual subject, which will receive the insulin
dose corresponding to the chosen action. At time step t+ 1 the environment evolves into the subsequent state st+1, hence the reward rt+1 is
computed and the transitions (st, at, rt+1, st+1) are stored within the replay memory and will be used every N steps to update the policy network.

lies in the results obtained in our previous work [7] where mul-
tiple state-of-art insulin adjustment methods were preliminarily
assessed in silico. The literature approach which was correcting
the dose based on a percentage modulation resulted the safest
method under specific mealtime conditions [27], potentially
indicating that the insulin correction should also depend on the
entity of the meal and not be fixed to constant values.

Following this rationale, at each time step t, the chosen action
at = αt was applied to the bolus calculator as follows:

BCddqn(t) = BCs(t) + αtBCs(t) (7)

where BCddqn(t) represents the insulin amount suggested by
the DDQN algorithm at time step t.

3) Reward Function: We employed as reward function the
piecewise constant function presented in the preliminary work
of [22]. The constant values, i.e. the weights penalizing the
different glycemic ranges, which describes the reward function,
were tuned retrospectively in order to adapt the weights to the
different simulation environment used for this study, which in-
cludes multiple variability sources. Indeed, the piecewise linear
reward function was selected since it provided high flexibility
in penalizing narrow glycemic intervals with different weights.
As mentioned above, we tuned the weights retrospectively by
testing different values and selecting the ones which allowed
us to achieve the best trade-off between reducing time in hy-
poglycemia, without impacting on hyperglycemia, while im-
proving the time in range. Hence, the aim being evaluating the
glycemic control following the current meal at time instant t,
we assigned the weight selected during the previous step to each
postprandial CGM sample between the current time instant t
and t∗, which corresponds either to the following meal or a
postprandial 6 hours interval if the next meal occurred at a longer
time distance. In particular, the reward equation is reported
in (8):

rt =
1

t∗ − t

t∗∑
k=t

fR(Gk) (8)

where t∗ = min(t+ 6h, t+ 1). Note that weights were
assigned differently based on the glycemic range. Particularly,

Fig. 2. Reward function employed for the proposed DDQN algorithm.
Each CGM interval is associated with a constant value used within the
reward function. Green line represents the euglycemic range, while red
lines indicate intervals associated to adverse event.

hypoglycemia was penalized more compared to hyperglycemia,
since a hypoglycemic excursion is riskier than a hyperglycemic
excursion having the same amplitude. The selected rewards
were tuned by trial-and-error and associated with each glycemic
interval as follows:

fR(Gk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

+0.5 if 70 ≤ Gk ≤ 180

−0.9 if 180 < Gk ≤ 200

−1.2 if 200 < Gk ≤ 250

−1.5 if 250 < Gk ≤ 350

−1.8 if 30 < Gk < 70

−2 else

(9)

As reported in (9), a glucose level within the target range was
associated with a positive reward. The highest penalty was
assigned to values in hypoglycemia, while hyperglycemic values
were not penalised all equally, having different weights based on
the severity of the interval. Fig. 2 depicts the different weights
assigned to each glycemic interval.
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TABLE I
MINIMUM AND MAXIMUM VALUES OF THE POSSIBLE CHO AMOUNT AND

TIME OF CONSUMPTION FOR THE DIFFERENT MEALS

TABLE II
HYPERPARAMETERS USED FOR BOTH THE SUB-POPULATION MODEL

TRAINING AND PERSONALIZED MODEL TUNING

C. Implementation Details on the DDQN Algorithm

In this Section, implementation details are reported to
further clarify the training process. During the learning phase,
all the hyperparameters highlighted in Section II-A have been
set following a trial-and-error procedure, by analyzing the
simulations. The values selected for each hyperparameters
are reported in Table II, while the weights of the DQNs were
initially initialized as random.

Before starting DDQN training, the replay memory intro-
duced in Section II-A was first filled by applying random actions
chosen from the set of possible actions of Section II-B2. Partic-
ularly, the hyperparameter related to the number of episodes
before the start of learning was set as the one that allowed to
explore a sufficient number of meals for a first fill of the replay
memory. After this phase, characterized by actions chosen com-
pletely random, we started the learning procedure by selecting
either a random action with probability ε or an action based on
the agent with probability 1− ε. In particular, the agent makes
use of a DQN, having two hidden layers composed by 32 and 16
nodes respectively, which maps state-space (R5) to action-space
(R7). The weights of the policy network were updated at the
end of one episode, according to minibatch gradient descent, by
randomly sampling from the replay memory, while the target
network was updated after a fixed number of episodes.

III. SIMULATION ENVIRONMENT

A. The UVA/Padova T1D Simulator

The proposed algorithm is trained and tested by means
of a well-established computer simulation software: the
UVA/Padova T1D Simulator (T1DS). Indeed, due to the na-
ture of RL techniques, the use of a simulation environment is
particularly suitable, being the learning of the model achieved
through the interaction with the environment and thus, following
a trial-and-error procedure. Performing such a process on a
virtual subject is key to avoiding dangerous situations within
a real clinical setting.

Briefly, T1DS [6], consists of a mathematical model describ-
ing the glucose-insulin dynamics in people with T1D using 13

differential equations and more than 30 parameters to represent
the large inter-subject variability. T1DS is equipped with 100
virtual subjects, each associated with a different realization of
the parameter set, which can be used to assess the performance
of new strategies for T1D management by designing ad-hoc in
silico clinical trials. The software has been accepted in 2008 by
the Food and Drug Administration as an alternative to preclinical
trials and it is widely used by the diabetes technology research
community [8], [19], [20], [22], [28].

In this work, we used an updated version of the FDA-accepted
UVA/Padova T1D Simulator [6], which includes several ele-
ments that enhance the realism of the simulated scenarios. These
improvements include a dedicated model to describe the dawn
phenomenon and time-varying therapy parameters modelled as
in [29], a model of CGM sensor measurement error [30], [31],
and a behavioural model of people with T1D [32]. Note that
the simulated CGM measurements have a sampling time of 5
minutes, i.e. 288 CGM readings are available for each day.

B. Simulated Scenario

In this work, the virtual cohort was composed of 100 adult
subjects, and the total population was divided into two different
subgroups, hereafter labeled as Set A and Set B. We obtained
the two subsets by randomly selecting 50 subjects for each
group while performing a stratified split, in which distribution
of the average CR pattern, the CF , and the body weight (BW )
variables between the two groups remained the same. The strat-
ification was performed to ensure homogeneity between the two
sets, being the aforementioned parameters used to identify the
subjects used to train the population models within the first
step of the learning framework. Hence, Set A was employed
for the development of the first learning step, while Set B was
retained to fine-tune the generalized models and, lastly, test the
performances. The first stage, applied on Set A, consisted of a
long-term training of K population models on 1200 simulated
days, while the personalization of the resulting DDQN models
was carried out on Set B, on a 180-day simulation as performed
in [22]. Such a long simulation time was needed since meals are
infrequent events within a day (three meals per day).

One day of simulation included three meals per day: breakfast,
lunch and dinner. Both meal timing and CHO content of the
meals were extracted from uniform distributions to match the
data reported in [33]. Table I reports the minimum and maximum
values of the distributions from which the meal timing and CHO
amount are drawn.

Moreover, to further improve the realism of the simulated
scenarios, meal carbohydrates counting error has been modeled
and added to the original meal amount as described in [34].
Of note, no corrective actions (rescue carbohydrates intakes or
corrective insulin boluses) were included during the simulations
to fairly compute the reward corresponding to the action chosen
by the algorithm. Indeed, a corrective action could add con-
founding factors within the rewarding process, since it would
bring glycemic levels back into the normoglycemic range, not
letting us assess the efficacy of the chosen action alone. As a
result, the only control action at allowed between mealtime at
time t and the following meal at time t+ 1 was represented by
the meal insulin bolus suggested by the policy.
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Fig. 3. Scatter plot of the 8 different clusters resulting from the applica-
tion of the K-medoids algorithm. Each of the 50 subjects is represented
by a specific BW, CF and average CR value. The sub-population sub-
jects, i.e., the medoids of each cluster, are outlined in black.

IV. LEARNING OF THE DQN

Learning of our model was performed on the first set of 50
subjects extracted in Section III, following the same two-step
learning rationale used in Zhu et al. [22] In particular, in the first
step we used a long-term simulation to train a set of K popu-
lation models able to represent the inter-subject physiological
variability observed in people with T1D, as described below in
Section IV-A (Step 1). Secondly, for a given subject, a specific
model is selected between the K population models and then
personalized in order to better fit his/her peculiar physiology, as
reported in Section IV-B (Step 2).

A. Step 1: Sub-Population Model Training

In order to obtain K sub-population models which are able
to describe the variability in T1D subject’s physiology, we
performed a sub-population model training by dividing Set A of
subjects into K different groups that share similar characteristics.
To achieve this goal, each subject was described with three
patient-specific parameters, i.e., the average CR value of the
daily pattern, the CF variable, and the BW. Then, we applied
the K-medoids clustering algorithm [35], in order to divide the
50 subjects composing the used population into K clusters.
The k-medoids method was selected in contrast to k-means,
as it choses datapoints as centers (medoids) of the clusters.
This procedure allowed us to extract K subject to be used as
population subjects. In particular, K = 8 was identified as the
optimal number of clusters by employing the elbow method.
Finally, we selected the K = 8 representative subjects as the
medoids of each cluster. Fig. 3 depicts, with different colours, the
8 identified clusters and the respective representative subjects,
highlighted with a black circle.

B. Step 2: Personalization of DQN-Learning Models on
Patient-Specific Data

In the second step, the sub-population DDQNs were fine-
tuned and thus, further personalized on each subject of Set B.
Indeed, after having defined the cluster to which each virtual
patient of Set B belongs, the DDQN weights were initialized

with the one resulting from the previous phase, i.e., θk and θ−k ,
where k indicates the k-th sub-population subject.

By setting specific safety constraints, which limits the meal
insulin correction, this phase of individualization could also be
safely carried out on the real subject within a clinical trial setting.
In addition to the possibility of introducing security constraints,
this phase may be performed using simulation tools which
leverage real data, such as [36], thus enabling the fine-tuning
of the generalized model on simulations derived from patients’
real data.

V. EVALUATION OF THE DQN ALGORITHM

The assessment of the RL algorithm was performed on 60
simulated days, where the experimental set-up was the one de-
scribed in Section III, and the population cohort was composed
of 50 subjects (Set B). Moreover, to evaluate the efficacy of
the proposed methodology, results were compared to 60 days
of simulation in which the standard bolus calculator reported in
(1) was used for the insulin dosing task. It should be pointed
out that, the daily scenarios in terms of mealtimes and CHO
amounts composing the meal within the 60-day testing period
differ from those within the 180-day personalization period of
Section IV-B. Lastly, to ensure a fair comparison between the
two insulin dosing methods and to allow replicable analysis, the
seed of the random number generator was fixed for each virtual
subject.

A. Metrics

From the 60-day glucose profile, we extracted several metrics
evaluating glycemic control, which are widely adopted by the
diabetes research community [37], [38]. In particular, we de-
rived three metrics related to the the percentage of time spent
within the different glycemic ranges, that is the normoglycemic
range (TIR), i.e., 70 ≤ CGM ≤ 180 mg/dL, below this range
(TBR), i.e., CGM < 70 mg/dL, and above this range (TAR),
i.e., CGM > 180 mg/dL. Moreover, we computed two popular
indices used to quantify the risk of hypo- and hyperglycemia,
namely the low blood glucose index (LBGI) and high blood
glucose index (HBGI) respectively, together with the overall
blood glucose risk index (BGRI), which sums the two contri-
butions in one risk index, indicating the goodness of the overall
glycemic control [39]. In addition, the median number of hypo-
and hyperglycemic events per day was extracted to assess the
benefit introduced by the proposed algorithm. Lastly, to evaluate
the statistical significance of the resulting metric distributions
we applied a paired t-test with significance level equal to 5%
to those metrics having a Gaussian distribution based on the
Lilliefors test (i.e., TIR, TAR) [40], while the Wilcoxon test
with significance level equal to 5% was used for the TBR metric,
which showed a non-Gaussian distribution.

B. Results

In Fig. 4, the mean and the corresponding standard deviation
extracted from all the glucose profiles of the virtual subjects
belonging to the testing set are shown for both the DDQN algo-
rithm and the standard therapy. It is noted that, considering the
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Fig. 4. CGM mean and standard deviation intervals resulting from the virtual subjects belonging to the test set are reported for a representative
one-week-long simulation. CGM values related to the standard insulin dosing and DDQN bolus calculator are shown in red and blue respectively.
Dashed lines indicate the normoglycemic range.

TABLE III
VALUES RELATED TO MEDIAN AND INTERQUARTILE RANGES OF TBR [%],
TIR [%], TAR [%], Nhypo AND Nhyper ARE REPORTED FOR BOTH THE

STANDARD AND DDQN BOLUS CALCULATORS

negative shift of the standard deviation, in most hypoglycemic
events, the nadir is considerably reduced when BCddqn is used,
while the increase in terms of maximum hyperglycemic value
introduced by the DDQN algorithm is almost negligible.

The aforementioned remarks are consistent with the results
obtained by analyzing the metrics related to the time in different
glycemic ranges, as reported in Table III. Indeed, the advantage
brought in terms of hypoglycemia reduction is reflected in a
significantly lower distribution of TBR for BCddqn compared to
BCs, with a median value of 4.17% and 8.78% respectively. This
was achieved with a small negative impact on hyperglycemia, as
can be seen from the TAR distributions in Fig. 5, which reports
a median value of 23.47% and 22.24% for the DDQN and stan-
dard therapy respectively, not showing a statistical significance
between the two distributions. In general, the benefit introduced
by the proposed algorithm is positive, since both the interquartile
and the median value related to the TIR are improved. Moreover,
5 shows the TBR, TIR and TAR distributions related to both
BCddqn and BCs, together with the presence of only two outlier
values for TIR and TAR data.

The positive impact given by the DDQN method was also
confirmed when observing the median number of adverse events

Fig. 5. Distributions of TBR, TIR and TAR resulting from the testing
phase are reported in blue for the DDQN bolus calculator, while in red
for the standard bolus calculator.

per day, shown in Table III. Indeed, median Nhypo is reduced
from 1 event per day to zero, while Nhyper remains unchanged
for both methods.

To ensure that the moderate increase in TAR is not influ-
encing negatively the overall glycemic control, the risk metrics
described in Section V-A were analysed and reported in Fig. 6.
As expected, the LBGI is significantly reduced, while HBGI
showed a slight increase in the median value. However, the
BGRI, which summarizes the two aforementioned metrics,
showed an improvement, by decreasing the median value from
8.2 of the benchmark to 7.3 of the BCddqn. Also, the average
amount of daily insulin injected for each subject remained stable
for both the methods (11 U for the standard bolus calculator and
10.3 U for the proposed method), suggesting that the significant
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Fig. 6. Distributions of LBGI, HBGI, and BGRI resulting from the test-
ing phase are reported in blue for the DDQN bolus calculator, while in
red for the standard bolus calculator.

improvement in terms of metrics related to hypoglycemia is not
simply due to a decrease in insulin dosage, but to a more effective
redistribution of such hormone.

The reported results pointed out that, in general, the use of
BCddqn could provide a beneficial impact on glycemic con-
trol, by considerably reducing not only the occurrence but also
the duration of hypoglycemia, without significantly affecting
hyperglycemia.

VI. DISCUSSION AND CONCLUSION

In this article, we proposed a mealtime insulin bolus calculator
based on a DDQN algorithm, which leverages a high level
of personalization and adaptation through a two-step learning
framework combined with a clustering procedure. This method
allowed us to fine-tune the generalized model related to the sub-
population subject which shows more similarity to the patient.
Such individualization of the insulin dosing was implemented
to deal with the multiple variability sources introduced by the
updated and highly realistic version of the UVA/Padova T1D
Simulator used in this work, as described in Section III.

The presented bolus calculator was tested within the sim-
ulated environment for a 60 days simulation, and compared
to the state-of-art method for insulin dose calculation, i.e., the
standard bolus calculator in (1), by extracting different metrics
widely used by the diabetes research community to assess the
quality of glycemic control. Despite the challenging scenario
provided by the employed simulated environment, results in
terms of time spent within the different glycemic ranges, the
number of adverse events and glycemic risk metrics were
encouraging, showing the ability of the proposed method to
completely avoid, in some cases, or mitigate the magnitude of
postprandial hypoglycemic events, while improving the time in
range from 68.35% to 70.08% and without significantly impact-
ing on the time in hyperglycemia compared to the benchmark.

The obtained performances indicated the potential efficacy
of the algorithm in adjusting the standard dosage based on the
mealtime state of the subject. Moreover, the average amount

of daily insulin delivered to the subject remained stable both
for the standard and the proposed method, pointing out that
the reduction of hypoglycemia is not due to a simple decrease
of the mealtime insulin amount, but rather the algorithm is
redistributing the daily amount of insulin more effectively.

Limitations of the work include the need for a relatively long
period to personalize the population model, being the meal an
infrequent event within a day. However, two main points need
to be considered. Being T1D an autoimmune disease charac-
terized by a life-long therapy, a significant availability of data
related to its monitoring and treatment (performed through CGM
sensors and insulin delivery devices) is present. Consequently,
many subjects already have access to a great amount of data
related to their past therapy, which could be leveraged for the
personalization phase on this algorithm. Moreover, for those
individual not having access to past data, many datasets are also
available in the literature, which could be used to apply transfer
learning or meta-learning [41], [42]. Indeed, the availability of
such datasets, could allow us to employ simulation tools, such
as the one developed by Cappon et al. [36] or, which identify
a model on a patient’s glucose trace and to replay the scenario
by changing the inputs of the model (e.g, insulin bolus), thus
evaluating the effectiveness of a specific therapy. On the other
hand, the standard therapy followed by people living with T1D is
tuned by the clinician on a visit to visit bases, and is characterized
by a constant learning process to understand how the insulin
and the other physiological factors affects the body. For this
reason, in such application, the requirement of a prolonged time
is normal. Moreover, being this study a proof-of-concept, we
focused only on the comparison with the standard formula, as
our final aim is proposing a method which provides a more
personalized therapy, tailored to the specific subject. For this
reason, future developments of this study will involve a com-
prehensive comparison with the main literature methods aimed
at personalizing this dosage. Hence, future works will involve
an assessment in a clinical setting together with the exploration
of the aforementioned methodology to speed up the personaliza-
tion phase. Moreover, further developments of the method may
include the exploration of a simulated scenario which also takes
into account the insulin sensitivity variability, a challenging
factor impacting T1D management, together with the assess-
ment of the algorithm within a simulated environment which
considers also confounding factors such as rescue carbohydrates
or corrective insulin boluses. In conclusion, the application of a
DDQ-learning algorithm combined with an effective model per-
sonalization procedure allowed us to achieve promising results
within the updated version of the FDA-accepted UVA/Padova
simulated environment when applied for prandial insulin dose
adjustment.
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