
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

recoXplainer: A Library for Development and Offline
Evaluation of Explainable Recommender Systems

Ludovik Coba, Koa Health, Spain
Roberto Confalonieri, Free University of Bozen-Bolzano, Italy

Markus Zanker, Free University of Bozen-Bolzano, Italy, and University of Klagenfurt, Austria

Abstract—As recommender systems today play an
important role in our online experience and are in-
volved in a wide range of decisions, multiple stake-
holders demand explanations for the corresponding al-
gorithmic predictions. These demands—together with
the benefits of explanations (e.g., trust, efficiency, and
sometimes even persuasion)—have triggered signifi-
cant interest from researchers in academia and in-
dustry. Nonetheless, to the best of our knowledge,
no comprehensive toolkit for development and eval-
uation of explainable recommender systems is avail-
able to the community yet. Instead, researchers are
frequently faced with the challenge of re-implementing
prior algorithms when creating and evaluating new
approaches. Aiming to address the resulting need, this
paper introduces recoXplainer, an easy-to-use, unified
and extendable library that supports the development
and evaluation of explainable recommender systems.
recoXplainer includes several state-of-the-art black-box
algorithms, model-based and post-hoc explainability
techniques, and offline evaluation metrics to assess the
quality of the explanation algorithms.

Index Terms—Explainable Recommender Systems,
Model-based Explanations, Post-hoc Explanations,
Evaluation, Software library.

I. Introduction
Over the last few years, recommender systems (RSs)

have increasingly been deployed in everyday real-world ap-
plications, making RSs de-facto a fundamental part of our
daily decision-making in many contexts and domains. At
the same time, there have been growing societal demands
for providing explanations on how recommendations or,
more generally, predictions have been generated. In ad-
dition, the European Union’s General Data Protection
Regulation (GDPR) stipulates a right to ‘meaningful in-
formation about the logic involved’ in automated decision-
making—commonly interpreted as a ‘right to an explana-
tion’.1 In the case of RSs, these explanations are meant
to inform the user about the rationale behind generated

Corresponding author: roberto.confalonieri@unibz.it
L. Coba is with Koa Health, Spain. When this work was started,

he was with the Free University of Bozen-Bolzano, Italy. E-mail:
ludovik.coba@koahealth.com

R. Confalonieri, and M. Zanker are with the Free University of
Bozen-Bolzano, Italy. E-mail: {name.surname}@unibz.it

1Regulation (EU) 2016/679 on the protection of natural persons
with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General
Data Protection Regulation) [2016] OJ L119/1.

recommendations. Above and beyond meeting regulatory
requirements, explanations likely make automated systems
more transparent, efficient, and even persuasive by ulti-
mately increasing users’ trust [1]. Together, the societal
demand, the regulatory requirements, and the commercial
benefits led to a surge in activity in the field of eXplainable
Recommender Systems (XRSs) [2], [3].

However, the practice in the field explainability in RSs
hitherto has not only been addressed on the level of
mathematical formulations but also lacks working imple-
mentations in many cases. In particular, to the best of our
knowledge, no comprehensive toolkit for XRSs is avail-
able to the research community. Therefore, researchers
frequently have to re-implement and replicate previous
work in order to evaluate new research ideas. This often
leads to implementation and/or bench-marking related
problems [4], [5], [6]. The state of affairs is different for
eXplainable AI, for which a plethora of tools have been
developed (see e.g., [7], [8], [9], [10], [11], [12]).

In order to support efficient scientific processes we
therefore put forward a library for the development and
evaluation of explainable recommender systems. Its focus
is on extensibility, and support for code re-use, replication
and reproduction of best practices. Hence, this paper
presents recoXplainer (Fig. 1), a Python library for aiding
research in the emerging field of XRSs. recoXplainer aims
at accommodating the needs of different stakeholders, by
providing a unified, flexible, and easy-to-use library that
supports the development and evaluation of explainable
recommender systems.2

recoXplainer has the following distinctive features:

• Ease-of-use: The library implements a pipeline for
the development of XRSs consisting of data pre-
processing, model training, recommendation, expla-
nation, and evaluation.

• Unified: The library includes several state-of-the-art
recommendation algorithms, explanation techniques,
and implements standard evaluation protocols.

• Extensibility: The library provides an interface simi-
lar to other popular machine learning and deep learn-
ing frameworks to be easily extended.

2recoXplainer was demoed at AAAI-21 [13]. The code is available
at https://github.com/ludovikcoba/recoxplainer and it is released
under the MIT license.

https://github.com/ludovikcoba/recoxplainer

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Pre-process Train Recommend Explain Evaluate

Fig. 1: recoXplainer supports the development of explainable recommendation systems through five development
steps: data pre-processing, model training, recommending, explaining, and evaluating the recommendation and/or
the explanations generated.

The paper is organised as follows. Section II surveys
the field of explainable RSs. Section III gives a descrip-
tion of the library with its implemented black-box and
explanation algorithms as well as the included standard
evaluation procedures and metrics. Section IV exempli-
fies how to use the library through code snippets. Next,
Section III-D presents a use-case, and compares the ca-
pability of post-hoc explanation algorithms to explain the
recommendations generated by black-box algorithms using
embeddings. Finally, Section VI concludes the paper and
outlines some future works.

II. Explainable Recommender Systems
Research into explainable or interpretable AI systems

has a long tradition [14], [15] and enjoys great popularity
within AI [16]. Providing an exhaustive overview on past
and present efforts goes beyond the scope of the present
paper, however [17], [18], [19], [20], [21], for instance, offer
comprehensive entry points into the relevant literature of
explainable AI and its applications.

Current thinking holds that transparent explanations
show the user how a model functions internally [2], either
through deterministic descriptions of the functioning of
algorithms, or by explaining single components [22]. In the
context of RSs, this is the case for the type of explanations
used by platforms like Facebook or Amazon, e.g., “Friends
who liked item X also liked items Y, Z, . . .” (referred
to as neighbour-style explanations [23]); or by Netflix,
e.g., “Because you watched/liked item X, . . ., you are
recommended item Y, Z, . . .”. These explanation formats
follow multiple objectives, such as to inspire trust and
satisfaction or to persuade them in making choices [2].
Another type of explanations are attribute-based, where
the user is presented with the attributes (i.e., human com-
prehensible features, such as genre) that most influenced
a given recommendation [24]. The latter explanation style
is frequently applied for content-based RSs.

According to the taxonomy of explanation strategies
provided by Friedrich and Zanker [24], and more re-
cently by Mittelstad [22], there are three main algorithmic
paradigms for building explanations. This categorisation
depends on the type of reasoning used, namely white-
box, model-based, and black-box. White-box approaches
rely on transparent algorithms that generate recommen-
dations that are explainable by design (e.g., content-based

and knowledge-based). In model-based approaches, expla-
nations are generated by combining a recommendation
and an explanation in a single model (e.g., [25], [26]).
Interpretability is then obtained by performing a further
transformation into the latent space to induce linearity,
or by constraining the loss function with an interpretable
component, such that the model is no longer a black-
box. In contrast, black-box paradigms build post-hoc ex-
planations by interpreting the behaviour of the black-box
model after it has been trained, rather than constraining it
(e.g., [22], [27]). In this context, explanations are generated
by choosing a proxy (i.e., a potential interpretable model)
that approximates the behavior of the black-box. Peake et
al. [27], for instance, explain recommendations generated
by collaborative filtering by means of association rules
that act as local explanations of the black-box. Hence, the
explanations are generated on the output of the model,
and there is no under-the-hood reworking of the black-
box.

White-box, model-based, and black-box paradigms
have different advantages and limitations. White-box ap-
proaches generate recommendations that are interpretable
by design. However, they do not always scale well, and
the explicit information needed to draw the recommen-
dations is not always available or accessible due to pri-
vacy concerns. Post-hoc explanations commonly impose
an accuracy-interpretability trade-off. They require an
additional training step to train the proxy that is used
to approximate the black-box. Besides, the proxy is usu-
ally only capable of generating a subset of the original
decisions. Therefore, it cannot explain all the decisions
made by the black-box. Model-based approaches have a
big advantage w.r.t. post-hoc explanations since they do
not require to train an interpretable proxy, or external
data for computing the explanations. However, they come
at a price, such as losing the flexibility of the model
(e.g., Constrained Matrix Factorisation [25] has a strong
popularity bias). Finally, post-hoc explanations do not
affect the structural integrity of the black-box model as
in the case of some model-based approaches.

A common problem of post-hoc explanations of black-
box models based on collaborative filtering is the lack of
information that can be exploited to generate comprehen-
sible explanations. To bridge this gap, some approaches

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

proposed to discover similarity relations between user
preferences (e.g., items in the past) and external sources
of information related to content features, e.g., in the form
of linked data or expert reviews. For instance, the authors
of [28], [29] proposed algorithm-agnostic frameworks able
to generate natural language explanations supporting the
suggestions provided by generic recommendation algo-
rithms.

III. RecoXplainer
recoXplainer is a unified, extendable and easy-to-use

library for development and assessment of XRSs. recoX-
plainer includes several explainability techniques that are
useful for various groups of stakeholders. The goal is to
equally help applied data scientists and researchers focus-
ing their efforts on improving this field. Hence, the library
provides an interface similar to other popular machine
learning and deep learning libraries, such as scikit-learn
and pytorch.

recoXplainer supports an explainability pipeline that
consists of five main steps (Fig. 1):

1) Pre-process: Data pre-processing is an essential step
for the creation of a recommender engine. Current
pre-processing features include making user and item
ids consecutive (to avoid sparsity when creating
latent factors), binarisation (to transform explicit
feedback into implicit), and data splitting (to create
training, development, and test sets).

2) Train: Once a dataset is pre-processed, it can
be used to train one of the algorithms imple-
mented in the library. Currently, the following
state-of-the-art algorithms are supported: Alternat-
ing Least Squares (ALS) [30], Bayesian Person-
alised Ranking (BPR) [31], Generalised Matrix Fac-
torisation (GMF) [32], and Multi-Layer Perceptron
(MLP) [32].

3) Recommend: This step allows one to produce a
ranked list of recommendations given a set of users.
The implementation is flexible, and it is independent
from the machine learning library used to create
the trained model. For instance, a machine learning
developer can train a model in tensorflow and still
create a recommendation list using our library. The
user can extend the library by adding new implemen-
tations through re-implementing the recommender
method interface.

4) Explain: This step allows one to produce a list of
explanations given a set of recommendations for a
list of users. The library supports the generation of
item-style and user-style explanation formats. These
formats depend on the explanation algorithm used.
The library includes both model-based and post-
hoc explanation algorithms. Among model-based al-
gorithms there are ALS-Explain [30], Explainable
Matrix Factorisation [33], and Explainable Autoen-
coder [34]. Post-hoc explanations are drawn using
Association Rules, K-Nearest Neighbor (kNN), and
Gaussian Mixture Model (GMM).

TABLE I: Symbols and definitions used throughout the
paper.

Symbol Definition
u some user
i some item
rui rating of user u on item i
cui confidence about observing rui
I domain of all items
U domain of all users
R interaction matrix
R̂ approximated interaction matrix
Iu set of items rated by user u
Ui set of users that rated item i
Lu recommendation list for user u
P users embedding
Q items embedding
pu embedding for user u
qi embedding for item i
K set of clusters
Explui Explainability of item i for user u

5) Evaluate: The library provides a number of metrics
to evaluate both recommendations and explanations.
Precision-oriented metrics, such as hit ratio, and nor-
malised Discounted Cumulative Gain (nDCG), are
used to evaluate a trained model. Off-line evaluation
metrics, such as Mean Explainability Precision [33],
Model Fidelity [27], and Explainability Score are
used to evaluate explanations.

The remainder of this section describes the explanation
algorithms and techniques that have been included in the
recoXplainer library. Table I summarises the notation used
throughout the paper.

A. Implemented Black-box Algorithms
recoXplainer implements some frequently used collabo-

rative filtering algorithms:
• Alternated Least Squares: ALS was introduced by

Hu [30] for implicit feedback.
• Bayesian Personalised Ranking - Matrix Factorisa-

tion: BPR-MF is an algorithm introduced by [31] for
implicit feedback.

• Generalised Matrix Factorisation: GMF was intro-
duced by [32] in the context of neural collaborative
filtering for recommender systems. It consists of an
adaptation of Matrix Factorisation (MF) algorithms
to a layered neural network.

• Multi-Layer Perceptron: MLP is a collaborative filter-
ing algorithm introduced by [32]. This model learns
to predict new items by first concatenating user and
item embeddings and then by applying several hidden
layers.

B. Model-based Explanation Algorithms
Model-based explanation algorithms generate explain-

able recommendations either by leveraging the linearity
present in the recommendation algorithm, or by constrain-
ing the loss function with an interpretable component.
Explanation algorithms belonging to this category do not

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

(a)

You were recommended ItemID-985 because similar
users to you rated this item as follows:

Rating Similar users’ ratings
⋆ 0
⋆⋆ 0
⋆⋆⋆ 0
⋆⋆⋆⋆ 11
⋆⋆⋆⋆⋆ 22
Average Rating: 4.5 ⋆⋆⋆⋆

(b)

Fig. 2: Examples of (a) explaining a recommendation for a random user in ML-100K with ALS-Explain; (b) explanation
generated with the Explainable Matrix Factorisation.

require additional computations (i.e., training an inter-
pretable proxy) or external data to generate the expla-
nations. However, in some cases they limit the flexibility
of the model. For instance, Constrained or Explainable
Matrix Factorisation is known to have a strong popularity
bias. recoXplainer includes three model-based explanation
algorithms: ALS-Explain [30], Explainable Matrix Factori-
sation [33], [35], and Explainable Autoencoder [34].

1) ALS-Explain: This explanation algorithm was pro-
posed by Hu [30]. It is an explanation method that lever-
ages the linearity present in matrix factorisation and the
update rules to generate item-style explanations. Tradi-
tional ALS learns the user and item factors (embeddings)
by minimising the following cost function:

min
∑
u,i∈R

cui(rui − puq
T
i)

2 + β(∥pu∥2 + ∥qi∥2)

The optimisation process fixes, in alternating turns, first
the user factors P , then the item factors Q, such that the
cost function becomes quadratic. Therefore, minimisation
can be achieved by solving the following least squares
problems:

pu = (QTCuQ+ βI)−1QTCup(u), (1)
qi = (PTCiP + βI)−1PTCip(i), (2)

where p(.) is the binary encoding of the ratings for user
u or item i; Ci and Cu are diagonal matrices defined as
Ci

uu = cui and Cu
ii = cui respectively. To explain recom-

mendations the user factors are replaced with the item
factors in Eq. 1, such that a prediction depends only on
the item representations (i.e., r̂ui = qTi pu = qTi (Q

TCuQ+
βI)−1QTCup(u)). By defining Wu = (QTCuQ+ βI)−1, a
sort-of weighted similarity is computed between two items
as suik = yTi W

uyk to generate a prediction as:

r̂ui =
∑

k:ruk>0

suikcuk .

Hence, the latent model is reduced to a linear model. Each
prediction is generated by the linear contributions of past
interactions. ALS-Explain generates item-style explana-
tions (see Fig. 2a). It is worth mentioning that there is
an interest to implement ALS-Explain as an additional
feature in Apache Spark3.

2) Explainable Matrix Factorisation: Explainable Ma-
trix Factorisation (EMF) was introduced by Abdollahi and
Nasraoui [33] and refined in [35] as a recommendation
approach. Explainable recommendations are obtained by
adding an extra soft-constraint to the traditional matrix
factorisation formula as shown below:

min
∑
u,i∈R

(rui−puq
T
i)

2+
β

2
(∥pu∥2 + ∥qi∥2)+λ∥pu−qi∥2Eui,

where R is the set of ratings for user u on item i,
∥pu∥2, ∥qi∥2 are the L2 regularisation terms and Eui holds
the information of how explainable item i is for user u.
Note that ∥pu − qi∥ constrains the representations of the
user/item vectors in the latent space in such a way that
they are close to each other (i.e., their difference is close to
zero), in order to minimise the objective function (usually
achieved via stochastic gradient descent).

Hence, a user-item ‘explainability’ matrix E is deter-
mined by computing for every user u and its identified
neighbourhood (i.e., the k most similar user profiles) how
frequently item i has been highly rated, i.e. Eui. This
matrix holds the explainability coefficients for any item
i for a user u as follows:

Eui =
∑
∀r∈R
r≥Pτ

r ∗ |NNk(u)ir|, (3)

where NNk(u) is the set of nearest neighbours for user u,
and NNk(u)ir corresponds to the set of nearest neighbours
of target user u who ‘positively’ rated i (with r greater
than a threshold Pτ).

3https://issues.apache.org/jira/browse/SPARK-27447

https://issues.apache.org/jira/browse/SPARK-27447

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Explainable Matrix Factorisation generates user-style
explanations (see Fig. 2b for an example). By interchang-
ing Eui to the item-based neighbourhood, the model can
be optimised to learn item-style explanations. To the
best of our knowledge, recoXplainer is the first library
implementing this recommendation algorithm in Python.

3) Explainable Autoencoder: Explainable Autoencoder
is a single layer autoencoder [34]. The encoder takes as in-
put a user’s ratings vector (Ru) and a user’s explainability
score vector (Eu) that is pre-computed following Eq. 3.
The vectors are mapped to a latent space as follows:

h = σ(W1(Ru + Eu) + b),

where σ is the sigmoid activation function, W1 is the
weight matrix, and b is a bias vector. The decoding maps
the latent representation into the predicted ratings R̂u as
follows:

R̂u = σ(W2(h+ b)).

The autoencoder is optimised by stochastic gradient de-
scent using the mean square error loss function.

C. Post-hoc Explanation Algorithms
Post-hoc explanations are obtained in two steps. First,

an interpretable proxy is trained using the recommen-
dations generated by a black-box algorithm. Then, the
trained proxy is used to compute explainable recommenda-
tions. Approaches under this category usually deal with an
interpretabilty-accuracy trade-off. The recommendations
generated by the proxy are typically more interpretable
but less accurate than those generated by the black-box.
recoXplainer implements three proxies: Association Rules
(AR), k-Nearest Neighbours (kNN), and clustering based
on Gaussian Mixture Models (GMM).

1) Association Rules: Association rule mining is a data
mining approach that discovers the relationship between
two categorical items X and Y of the form “IF X THEN
Y ” [37]. Given a catalogue of items I, a transaction T ⊆
I is defined as the set of items that are jointly liked or
interacted with (i.e., the set of co-interactions). Given an
antecedent X ⊆ I, and a consequent Y ⊆ I, such that
X∩Y = ∅, an association rule between X and Y indicates
that if X is in T then there is a strong likelihood that Y
is also in T . The quality of the mined association rules is
measured in terms of metrics such as support, confidence
and lift. An association rule is usually denoted as X ⇒ Y .

Association rules can be used to provide item-style
explanations (see Fig. 3a). This kind of explanations falls
within one of the archetypes of explanation styles [38].
They are human interpretable4, and they are able to
approximate Matrix Factorisation [27].

Our implementation reproduces the work of [27] and ex-
tends it beyond Matrix Factorisation, providing a model-
agnostic explanation approach. The explanation algorithm
works as follows:

4Several studies (see e.g., [39], [25], [38]) have shown how item-
style explanations are understandable by users as well as informa-
tive [40].

1) Association rules are mined using the predictions
generated by a black-box RS (including observed
interactions).

2) For each user, the learned transactions are filtered
such that antecedents are in the training set, and
consequents are unseen or non-interacted items re-
spectively.

3) The resulting subset is ordered by support/confi-
dence/lift.

4) The top-D consequents of the rules are kept as the
explainable item set.

The implementation of association rule mining uses the
mlxtend library.5

2) K-Nearest Neighbors: Similarly to AR, K-Nearest
Neighbor (kNN) uses the community-similar interactions
patterns to generate a prediction of the format “You
are recommended y because it is similar to x, z . . . ”
(see Fig. 3b for an example). Formally, given a target user
and the associated positively-rated items, the algorithm
identifies the k-most similar items for each target a and
ranks them according to aggregated similarities with the
different targets (see e.g., [37]).

The similarity between two items i and j is computed by
means of the cosine similarity, after considering the items
i and j as rating vectors i⃗ and j⃗ in the user space. Cosine
similarity measures the cosine angle between those vectors
as: sim(⃗i, j⃗) = cos(⃗i, j⃗) = (⃗i · j⃗)/(|⃗i| ∗ |⃗j|). Once similarities
among all items are computed, a neighbourhood of an
item i is formed by choosing the items with the highest
similarity value (NN(i)). Predictions over a target user u
and item i are calculated as the weighted sum [37]:

pu,i =

 ∑
j∈NN(i)

sim(⃗i, j⃗) ∗Ru,j

 /

 ∑
j∈NN(i)

sim(⃗i, j⃗)

 .

By switching the items’ space to the users’ space, kNN can
be used to generate user-based explanations. Similarity-
based explanations are interpretable by design [33], [25],
[23], [38] and are informative for the users [40].

The explanation algorithm based on kNN works as
follows:

1) For each user and recommendation from the black-
box model the kNN items are computed.

2) Neighbours are filtered so that they are in the train-
ing set of the user.

3) Only unseen interactions are filtered, and the simi-
larity score is used to rank items (in analogy to the
confidence score used to evaluate association rules).

4) The top-D predictions and their corresponding ex-
planations are drawn.

The implementation of kNN uses the scikit-learn li-
brary.6

3) Gaussian Mixture Model: Gaussian Mixture Model
(GMM) is a probabilistic model-based clustering ap-
proach [41]. This approach assumes that the data is gener-
ated by a mixture of underlying probability distributions.

5http://rasbt.github.io/mlxtend/
6https://scikit-learn.org/stable/

http://rasbt.github.io/mlxtend/
https://scikit-learn.org/stable/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

(a) (b)

Fig. 3: Example of post-hoc (item-style) explanation with (a) association rule and (b) kNN explanations on a top-3
list generated with MLP for a random user in ML-1M [36].

In practice, this means that each cluster can be mathemat-
ically represented by a parametric probability distribution.
Under this view, clustering a set of points into k clusters
amounts to infer the mixing probabilities (weights) and
parameters of the mixture distribution of k Gaussian
probability distributions, one for each cluster [41, Ch. 3].

A common problem of mixture models is that the
number of component k is not given a priori, and it needs
to be estimated. The search for an optimal k is usually
addressed by taking into account model selection criteria,
such as the Bayesian information criterion (BIC) or the
Akaike information criteria (AIC). These criteria penalise
models that have more parameters (e.g., clusters) to learn,
and reward models that fit the data well. Models selected
by the BIC tends to be simpler then the one selected by
the AIC [41, Ch. 3].

The main idea of using GMM to generate explanations
is that trained embeddings, learned by a black-box algo-
rithm, reflect intrinsic similarities of users in terms of their
past interactions w.r.t. certain items. Thus, it is possible
to generate item-style explanations by taking into account
the embeddings belonging to the same cluster. Table II
shows several examples of item-style explanations that are
generated using GMM as clustering algorithm.

The explanation algorithm based on GMM works as
follows:

1) User and item embeddings learned by a black-box
algorithm are extracted.

2) Embeddings’ dimension is reduced using a dimen-
sionality reduction technique.

3) Embeddings are clustered using GMM and BIC as a
criterion to find an optimal number of clusters.

4) Item-style explanations of each user recommenda-
tion are extracted by taking into account the most
similar item embeddings in the cluster.

The dimensionality reduction step is required because,
since user and item embeddings belong to a high dimen-
sional space, it is commonly difficult to find clustered
structures [42]. To reduce such complexity, we adopted
a dimensionality reduction technique, namely Uniform
Manifold Approximation (UMAP) [43]. Another approach
is t-SNE [44]. Whilst these approach reduce the dimen-
sions, they are also typically able to preserve (part of)
the original distances of the high-dimensional embeddings’
space. The implementation of GMM and UMAP uses the
scikit-learn and umap-learn library respectively.7

D. Evaluating Explanations
In offline evaluation of explanations, a formal definition

of interpretability is used as a proxy for quantifying the
explanation quality [45]. Our library implements three
metrics belonging to two categories of offline evaluation
metrics for explainability. The first category of metrics
evaluates whether a model behaves as expected. The
second category evaluates explainability via the proxy.
recoXplainer implements one metric for the first category
and two metrics for the second one.

It is important to notice that offline evaluation is not
the only way explanations should be evaluated. In recom-
mender systems, there is often the need to evaluate the
generated explanations with users. However, online evalu-
ation is out of the scope of this paper. The explanations

7https://pypi.org/project/umap-learn/

https://pypi.org/project/umap-learn/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE II: Examples of item-style explanations. Recommendations and item-style explanations for a random user in
ML-1M are generated from item embeddings trained with MLP and clustered according to GMM.

Rank Recommendation Because you liked:
1 While You

Were Sleeping
⇒ [Free Willy, Sleepless in Seattle, Welcome to the Dollhouse]

2 The Doom
Generation

⇒ [The Man Who Knew Too Little, My Own Private Idah, Another Stakeout]

3 Persuasion ⇒ [I.Q., Everyone Says I Love You, True Romance]

generated by our library are indeed archetypal explana-
tion styles, namely item- and user-style explanations, for
which a number of studies, which measure their human-
understandability, already exist (e.g., [39], [25], [38], [40]).

1) Mean Explainability Precision: This metric is partic-
ularly pertinent to the case of model-based explanations
(see Section III-B), when additional components are added
to the loss function. We implemented Mean Explainability
Precision (MEP) as proposed by Abdollahi and Nas-
raoui [33]. According to this metric, the explainability of
a recommendation list Lu for a given user u is measured
as the ratio between the number of explainable items in
Lu and |Lu|, as shown as follows:

MEP =
1

|U |
×

∑
u∈U

|{i : i ∈ Lu, Eui > 0}|
|Lu|

,

where U is the set of users, and Eui is a formalisation of the
definition of interpretability as defined by the algorithm
(see Eq. 3). MEP varies from 0 to 1, with 1 being the
highest achievable score. This metric is very sensible to
the definition of interpretability, therefore, an ill-defined
formulation of Eui can yield miss-leading results. As a case
in point, we set Pτ = 0 in Eq. 3, and run it on ML-100K.
In this scenario, MEP would always be equal to one, thus,
any recommendation will be considered fully explainable.

2) Model Fidelity: Model Fidelity belongs to the second
category of metrics. It aims at evaluating explainability
via the proxy. More specifically, it measures how accurate
the interpretable proxy is in generating an ‘explainable
version’ of the predictions of the black-box. Model fidelity
is a typical measure adopted in post-hoc explanation
approaches of black-box models [27]. Model fidelity can
be defined as:

Fidelity =
|L ∩ ProxPred|

|L|
,

where L is the set of recommendations generated by the
black-box model, and ProxPred is the set of the proxy
predictions. Model Fidelity varies from 0 to 1, with 1
being a perfect match between the black-box model and
the interpretable model. Fig. 4 shows the results of the
fidelity of a proxy trained using the recommendations
generated by several black-box algorithms that previously
went through a precision-oriented tuning process (using
the ML-1M dataset).

3) Explainability Score: The fidelity metric considers
the number of interpretable recommendations that can be
retrieved w.r.t. the original recommendations. However,
a different metric definition is required to measure to

what extent recommendations generated by a black-box
algorithm can be explained using latent factors. To this
end, we define a metric that measures the explainability
of a recommended item in terms of the number of user
interactions that can support its explanation.

More formally, given a user u and a recommendation i,
we define the Explainability Score of u w.r.t. i as follows:

Explui =
|Iu ∩Kl|

|Iu|
, (4)

where Iu is the set of interactions of user u, and Kl is the
cluster containing i (with {K1,K2, . . . ,Kn} representing
clusters). Then, the explainability score of a recommenda-
tion list Lu is defined as follows:

ExplLu
=

1

|Lu|
∑

∀i∈Lu

Explui . (5)

Notice that the set of learned embeddings Kl used in Eq. 4
can be replaced by a set of item embeddings computed
using a different learning method than clustering. For
instance, one can be interested in considering the most
similar item embeddings w.r.t. a given item recommenda-
tion, such as in the case of nearest neighbours.

4) Other Metrics: recoXplainer also implements
precision-oriented metrics, namely Hit Rate and nDCG,
to assess the performance of black-box recommenders.

IV. recoXplainer in Practice
Fig. 5 shows the UML diagram of the main classes

implemented in recoXplainer. The classes can be organised
in five main categories according to the functionalities
available in the library: data handling, model training,
recommendation, explanation, and evaluation.

A. Data Handling
The DataReader class provides functionalities to ma-

nipulate a given dataset, and to convert it to a tensor rep-
resentation (for GPU computation). ML libraries such as
pytorch and tensorflow already implement pre-processing
utilities, e.g., the DataSet class in tensorflow, or the
DataLoader in pytorch. Nonetheless, they do not provide
utilities for recommender systems. The DataReader class
implements several functionalities: making user and item
ids consecutive (make_consecutive_ids_in_dataset) to
avoid sparsity when user and item ids are converted
into embeddings; converting explicit feedback to im-
plicit feedback (binarize), (sometimes) required by black-
box algorithms; and splitting the dataset into train

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

(a) Association Rules (ARs)

(b) Nearest neighbours (kNN)

Fig. 4: Model Fidelity when increasing the number D of
the predictions of the proxy model for the ML-1M dataset.
The fidelity of the ARs and kNN proxies is low when
only a few predictions are considered. The proxies become
more ‘faithful’ to the black-box when more predictions are
taken into account. However, this gain in fidelity penalises
the interpretability of the proxies since their complexity
increases as well (e.g., number of rules or neighbours).

and test sets by leaving out the n latest interactions
(split_leave_n_out), a typical procedure implemented
to train and evaluate recommendation algorithms [46].
These functionalities are shown in the following code’s
snippet.8

1 #Import the ml-1m dataset
2 data = DataReader(**cfg.ml1m)
3 #Re-arrange users' and items' Ids
4 data.make_consecutive_ids_in_dataset()
5 #binarize for implicit feedback
6 data.binarize(binary_threshold=1)
7 #Prepare train and test set
8 sp = Splitter()
9 train, test = sp.split_leave_n_out(data, frac=0.1)

B. Training a Model
Once the dataset has been loaded and prepared, training

a recommender algorithm in recoXplainer is easy. The
developer can instantiate one of the available models
in recoXplainer (or first add a new one as we will see
later), and train it. recoXplainer supports two categories
of recommender algorithms: model-based (ALSExplain,
EMFModel, and ExplAutoEncoderModel), and black-box
(ALS, BPR, GMFModel, and MLPModel). Training one of these
algorithms amounts to instantiate the corresponding class

8Classes are configured through a config file. Class parameters are
available through **cfg.

and call the fit method. The training time is of course
dependent on the platform, but recoXplainer supports
fast computation using GPU (if available). The following
snippet shows an example of how to instantiate and train
a GMF and an Extended Matrix Factorisation model
respectively.

1 #training GMF
2 gmf = GMF(**cfg.model.als)
3 gmf.fit(train)
4

5 #training EMF
6 emf = EMFModel(**cfg.model.emf)
7 emf.fit(train)

C. Making Recommendations
Making recommendations to a set of users is achieved

by instantiating the Recommender class. This class takes as
input a trained model and the training set used. The class
provides the method recommend_all to compute the top-
N recommendations for each user. Alternatively, when one
knows a specific user id, the recommend_user method can
be used. To evaluate the recommendations, the Evaluator
class provides a common interface to compute precision
oriented metrics such as hit ratio (cal_hit_ratio) and
nDCG (cal_ndcg). The evaluation is achieved by taking
into account the set of generated recommendations and
the test set obtained by the Splitter during the pre-
processing.

1 #recommend using EMF
2 recommender = Recommender(train, emf)
3 recommendations = recommender.recommend_all()
4

5 #evaluate
6 eval = Evaluator(test)
7 eval.cal_hit_ratio(recommendations)
8 eval.cal_ndcg(recommendations)

D. Explanations
The Explainer class provides a common inter-

face to explain the recommendations generated by
any of the implemented recommendation algorithms
(explain_recommendations). Explaining recommenda-
tions is achieved according to different explanation algo-
rithms, e.g., through a model-based approach or a proxy
(see Sections III-B and III-C). To this end, each algorithm
re-implements the explain_recommendation_to_user
method according to the algorithm specifics. For instance,
EMFExplainer extracts the explanations intrinsically com-
puted by EMFModel, whereas ARPostHocExplainer com-
putes explanations by first mining the association rules
and then extracting the explanations.

1 #generate explainable recommendations
2 expl = EMFExplainer(emf, recs, train)
3 expls = expl.explain_recommendations()
4

5 #explain GMF recommendations using association rules
6 ar_expl = ARPostHocExplainer(gmf, recs, train)
7 ar_expls = ar_expl.explain_recommendations()

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Explainer

AutoEncExplainer KNNPostHocExplainerALSExplainer ARPostHocExplainer GMMPostHocExplainerEMFExplainer

MFImplicitModel

ALS BPR

PyTorchModel

EMFModelGMFModel MLPModel

GenericRecommender

RecommenderExplAutoEncoderModel

Fig. 5: UML diagram of the (main) classes implemented in recoXplainer.

E. Evaluating Explanations
The last step in the development pipeline of recoXplainer

is the evaluation of the generated explanations using
the metrics of mean explainable precision, fidelity, and
explainability score. These metrics are implemented in the
ExplanationEvaluator class.

1 #evaluating explanations using mean explainable
2 #precision (mep)
3 ex_eval = ExplanationEvaluator(train.num_user)
4 mep = ex_eval.mep(res, emf.explainability_matrix)

F. Extending recoXplainer
Another advantages of recoXplainer is that it can be

extended in an straightforward way. The only requirement
for adding a new recommendation algorithm it that it has
to implement the predict method. This method takes as
input a user and item id and compute a recommendation,
e.g., using a forward step.

1 class MFModel(torch.nn.Module):
2

3 def forward(self, user_indices, item_indices):
4 #implement prediction
5 ...
6

7 def fit(self, dataset_metadata):
8 #implement optimisation
9 ...

10 return;
11

12 def predict(self, user_id, item_id):
13 #return a recommendation
14 pred = self.forward(user_id, item_id)
15 return pred

V. Use-case: Explaining Black-box
Recommendations using Latent Factors

Explaining recommendations generated by matrix fac-
torisation algorithms is challenging. The latent factors
used by Matrix Factorisation are indeed not associated
with any semantics [47]. Thus, they are not directly appli-
cable to draw any explanations. recoXplainer implements
post-hoc explanation algorithms that can explain ’black-
box’ recommendations by taking into account the embed-
dings learned by a black-box algorithm. The approach
followed amounts to cluster item embeddings by exploiting

their similarity, and then to use them to draw item-style
explanations. We ran an evaluation to compare the post-
hoc explanation algorithms implemented in recoXplainer
w.r.t. their capability to explain recommendations using
item embeddings.

To perform the comparison, we first trained and opti-
mised the black-box algorithms (see Section III-A) on a set
of publicly available datasets. Then, we sought soft clusters
of the learned items’ embeddings. Finally, we generated
item-style explanations over the entire set of predictions
for each algorithm. In the following, we describe the
datasets used, the experimental settings, and the results.

A. Datasets
In our experiments we used three benchmark datasets

that are publicly accessible. The datasets vary in terms of
domain, size, and sparsity:

• ML-100K [48] is a dataset containing 100K ratings
in a liker scale (1-5) from 943 users on 1,682 movies.
Each user rated at least 20 items.

• ML-1M [48] is a dataset containing 1 million ratings
in likert scale (1-5), from 6,040 users on 4,000 movies.
Each user in the dataset rated at least 20 items.

• Ciao-DVD [49] is a dataset collected from the Ciao
website in December, 2013. The dataset was cleaned
from duplicates by keeping only the latest rating in
case of repeated scores. Besides, we kept only users
that had at least 5 ratings. The resulting dataset
contains 2,615 users, 14,313 items and a total of
49,599 ratings.

The recommendation algorithms implemented in re-
coXplainer are designed to perform on implicit feedback.
Therefore, the above datasets were transformed in implicit
signals by converting every rating to 1, while 0 would
indicate the absence of interaction.

B. Experimental Settings
1) Evaluation Metrics: We tuned the algorithms to

maximise the Hit Rate (HR) and the normalised Dis-
counted Cumulative Gain (nDCG) on all the datasets [46].
We built the users’ test set by extracting one relevant
random item (Ru) from the entire set of rated items. Then,
similar to [50], [32], we extracted 99 random items with

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE III: Algorithms’ hyper-parameters maximising
HR and nDCG found by the grid search.

Dataset Alg. LD BS LR RT Ep HR nDCG

ML-1M
ALS 64 N/A N/A 0.005 90 81.30 58.20
BPR 64 N/A 0.005 0 70 74.01 50.40
GMF 16 512 0.0005 10−7 20 78.91 53.58
MLP 8 1024 0.005 10−7 30 76.27 49.17

ML-100K
ALS 16 N/A N/A 0.005 30 81.50 55.80
BPR 16 N/A 0.005 0 100 78.70 52.50
GMF 8 1024 0.005 10−7 30 81.55 54.43
MLP 16 512 0.005 10−7 30 79.53 51.69

Ciao-DVD
ALS 16 N/A N/A 0.005 40 54.80 37.64
BPR 16 N/A 0.01 0.01 100 56.10 37.30
GMF 8 512 0.005 10−7 30 53.17 34.05
MLP 64 512 0.005 10−7 10 60.04 36.84

Note: LD - Latent Dimensions; BS - Batch Size; LR - Learning
Rate; RT - regularisation term; Ep - Epochs; HR - Hit Rate;
nDCG - normalised Discounted Cumulative Gain.

unknown relevance (NRu) for each user u, where u did not
have any previous interaction with these items. Finally,
for each item i in Ru, we ranked the top-N items from
the set {i} ∪NRu, on which the evaluation is performed.
The evaluation metrics were averaged over all the items in
Ru and over all the users. All experiments were conducted
according to this protocol.

2) Implementation and Hyper-parameters Tuning: We
ran a grid search to seek the best hyper-parameters on
all the algorithms (where applicable, see Section III-A)
varying in: regularisation term = [0, .01, .001, .005, .0001,
.0005, .0000001], learning rate = [.01, .001, .005, .0001,
.0005], latent dimensions = [8, 16, 32, 64], number of
epochs = [10-100], and batch size = [512, 1024]. The best
hyper-parameters found are shown in Table III. Running
times for training the models are available in the code
repository of the project.9

3) Procedure: We trained ALS, BPR, GMF, and MLP
on three datasets, namely ML-100K, ML-1M, and Ciao-
DVD. After saving the embeddings of the trained models
with highest HR and nDCG, we performed a dimension-
ality reduction transformation using UMAP [43].10 Then,
we clustered the embeddings using GMM, and we chose
the one minimising the BIC as the optimal number of
clusters. We ran GMM for each algorithm and dataset,
and we varied the number of clusters from 1 to 500. The
optimal number of clusters for all datasets and algorithms
is shown in Table IV. Each experiment consisted of 20
runs. Computing the explanations for a given user takes
less than 0.01 sec.

4) Evaluating Post-hoc Explanation Algorithms: We
compared the three post-hoc explanation algorithms w.r.t.
their capabilities of explaining recommendations using
item embeddings. To this end, we used the explainability
score metric defined in Eq. 4. In the case of GMM-based
clustering, for each recommended item i in a recommen-

9https://github.com/ludovikcoba/recoxplainer
10As mentioned previously, another technique for dimensionality

reduction is t-SNE [44]. UMAP, however, is known to preserve
not only the internal but also the external distances among the
dimensions of the high-dimensional embeddings’ space.

TABLE IV: Detailed view of explainability scores for
GMM, Nearest Neighbours (NN) and Association Rules
(AR) respectively. Taking into account users’ item interac-
tions according to the clusters obtained by GMM leads to
higher explainability scores. All values for ExplGMM, ExplNN
and ExplAR are statistically significant. k is the highest
average number of interactions per user given the clusters.

Data Alg. #cls. ExplGMM k ExplNN ExplAR

ML-1M
ALS 72 0.113 33.15 0.081 0.014
BPR 55 0.139 42.00 0.098 0.019
GMF 53 0.157 44.85 0.121 0.021
MLP 15 0.330 154.00 0.218 0.051

ML-100K
ALS 36 0.214 32.60 0.152 0.024
BPR 26 0.221 33.30 0.133 0.025
GMF 6 0.542 123.10 0.430 0.057
MLP 22 0.332 35.30 0.160 0.023

Ciao-DVD
ALS 432 0.069 21.65 0.052 0.040
BPR 169 0.128 24.40 0.064 0.029
GMF 52 0.284 63.05 0.103 0.025
MLP 70 0.257 23.95 0.051 0.032

dation list, we clustered the embeddings using GMM,
and we used the clusters as Kl in Eq. 4. In the case
of nearest neighbours, for each recommended item i in
a recommendation list, we searched for the top k most
similar item embeddings w.r.t. i, where the similarity is
computed via cosine similarity. This set of similar item
embeddings is used as items for Kl in Eq. 4. In the case
of association rules, we first trained the association rules
on the recommended items generated by the black-box
algorithms. Then, for each user u, we kept any association
rule e ⇒ i such that e is an item with which u previously
interacted, and i is an unseen or non-interacted item. We
ordered the resulting subset by confidence. Finally, we
kept the top k consequents of the rules as items for Kl.

C. Results and Discussion
Fig. 6 shows the explainability score (Eq. 5) mean

values of users’ recommendations computed by taking into
account users’ item interactions clustered using GMM,
most similar users’ item interactions (NN), and association
rules (AR) respectively. As it can be observed, the explain-
ability score calculated using the optimal clusters’ number
obtained by GMM (ExplGMM) is always greater than the
explainability scores computed using NN (ExplNN) and
association rules (ExplAR) respectively. One possible reason
behind this is that GMM is able to identify users’ latent
behaviours, and, consequently, it groups users’ interac-
tions in a more consistent way.

Table IV offers a more detailed view and comparison of
the three explainability scores. In the table, k represents
the number of most similar item embeddings per user
used to calculate the explainability scores for the NN
and AR proxy respectively. We determined the value of
k as the highest average number of interactions per user
given the clusters. We found that this value offered a good
trade-off between how many items were clustered together
and how many items a user could have interacted within
the catalogue. This value is on average bigger than the

https://github.com/ludovikcoba/recoxplainer

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig. 6: Mean of explainability score for users’ recommendations computed by taking into account users’ item interactions
clustered using GMM, AR and the NN most similar users’ item interactions respectively (confidence intervals at 95%.)

number of elements (or past interactions) of a given user
in any cluster, as we do not expect all the items of a
user to be in the same cluster because (s)he might have
performed unexpected and exploratory actions [51]. As
a case of point, when training GMF on ML-100K, the
learned embeddings were clustered in 6 distinct clusters.
In this dataset we had an average of 59.5 ratings per user,
and users had on average 23.4 interactions per cluster.
However, we set k to 123.1 which was the highest average
number of interactions per user given the clusters.

VI. Conclusion and Future Works
Although in the past few years RS research has been

increasingly focused on the generation of explanations,
to the best of our knowledge, there is no comprehensive
library supporting and accelerating this type of work.
Following the footsteps of other researchers in XAI [52],
we implemented recoXplainer, a library supporting the de-
velopment and assessment of explainable recommendation
algorithms.

recoXplainer is an easy-to-use, unified, and extendable
library that supports the development of eXplainable Rec-
ommender Systems. It does so by providing a development
pipeline consisting of several steps, namely data pre-
processing, training, recommendation, explanation and
evaluation. It implements data manipulation techniques
useful for recommender systems. It implements state-
of-art collaborative filtering recommendation algorithms
based on Matrix Factorisation, such as ALS, BPR, MLP,
and GMF. It supports the generation of explainable rec-
ommendations by means of model-based and post-hoc
explanation algorithms. The library is able to draw ex-
planations for black-box recommendations by clustering
learned item embeddings. recoXplainer also implements a
standardised evaluation protocol for both precision- and
explanation-oriented evaluation. The recoXplainer library
will be beneficial for a wide range of practitioners in the
field of eXplainable Recommender Systems.

Our library currently implements traditional explana-
tion algorithms such as model-based and black-box tech-
niques. We plan to integrate further approaches as well.
For instance, enriching explanations with content-based
information as proposed in [28], [29] will be an interesting

addition to current functionalities. Crucially, one of the
distinctive features of our library is its extensibility. This
enables machine learning developers, and in particular, the
recommender system community, to add more explanation
techniques and algorithms to it.

Acknowledgment
A part of the work has been carried out at Alpha Health,

Telefónica Innovación Alpha, Barcelona, Spain. The au-
thors thank the reviewers for their valuable comments.

References
[1] R. Goebel, A. Chander, K. Holzinger, F. Lecue, Z. Akata,

S. Stumpf, P. Kieseberg, and A. Holzinger, “Explainable ai: the
new 42?” in Int. Cross-Domain Conf. for Machine Learning and
Knowledge Extraction. Springer, 2018, pp. 295–303.

[2] N. Tintarev and J. Masthof, “Explaining recommendations:
design and evaluation,” in Recommender Systems Handbook.
Boston, MA: Springer US, 2015, pp. 217–253.

[3] Y. Zhang and X. Chen, “Explainable recommendation: A survey
and new perspectives,” Foundations and Trends in Information
Retrieval, vol. 14, no. 1, pp. 1–101, 2020.

[4] M. D. Ekstrand, M. Ludwig, J. Kolb, and J. T. Riedl, “LensKit:
a modular recommender framework,” Proc. of the fifth ACM
conference on Recommender systems - RecSys ’11, p. 349, 2011.

[5] M. F. Dacrema, P. Cremonesi, and D. Jannach, “Are we really
making much progress? A worrying analysis of recent neural
recommendation approaches,” in RecSys 2019 - 13th ACM
Conference on Recommender Systems. New York, NY, USA:
Association for Computing Machinery, Inc, 9 2019, pp. 101–109.

[6] L. Çoba and M. Zanker, “Replication and reproduction in rec-
ommender systems research - evidence from a case-study with
the rrecsys library,” in Advances in Artificial Intelligence: From
Theory to Practice. Springer, 2017, pp. 305–314.

[7] S. Maksymiuk, A. Gosiewska, and P. Biecek, “Landscape of
R packages for explainable artificial intelligence,” CoRR, vol.
abs/2009.13248, 2020.

[8] D. Rothman, Hands-On Explainable AI (XAI) with Python.
Packt, 2020.

[9] L. Gianfagna and A. D. Cecco, Explainable AI with Python.
Springer International Publishing, 2021.

[10] R. Confalonieri, T. Weyde, T. R. Besold, and F. M. del
Prado Martín, “Trepan Reloaded: A Knowledge-driven Ap-
proach to Explaining Black-box Models,” in Proceedings of the
24th European Conference on Artificial Intelligence, vol. 325.
IOS press, 2020, pp. 2457–2464.

[11] J. M. Alonso, C. Castiello, L. Magdalena, and C. Mencar,
Explainable Fuzzy Systems: Paving the Way from Interpretable
Fuzzy Systems to Explainable AI Systems. Springer Interna-
tional Publishing, 2021.

[12] E. Mariotti, J. M. Alonso, and R. Confalonieri, “A framework
for analyzing fairness, accountability, transparency and ethics: A
use-case in banking services,” in IEEE International Conference
on Fuzzy Systems 2021 (Fuzz-IEEE 2021), 2021, to appear.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[13] L. Coba, R. Confalonieri, and M. Zanker, “Recoxplainer:
An extendible tookit for the developoment of explainable
recommendation systems,” in Tutorials of the 35th AAAI
Conference on Artificial Intelligence (AAAI-21), 2021. [Online].
Available: http://www.inf.unibz.it/~rconfalonieri/aaai21/

[14] M. G. Core, H. C. Lane, M. Van Lent, D. Gomboc, S. Solomon,
and M. Rosenberg, “Building explainable artificial intelligence
systems,” in AAAI, 2006, pp. 1766–1773.

[15] W. Swartout, C. Paris, and J. Moore, “Explanations in knowl-
edge systems: Design for explainable expert systems,” IEEE
Expert, vol. 6, no. 3, pp. 58–64, 1991.

[16] T. Miller, “Explanation in artificial intelligence: Insights from
the social sciences,” Artificial Intelligence, vol. 267, pp. 1–38,
2019.

[17] R. Confalonieri, L. Coba, B. Wagner, and T. R. Besold, “A his-
torical perspective of explainable artificial intelligence,” WIREs
Data Mining and Knowledge Discovery, vol. 11, no. 1, 2021.

[18] R. Confalonieri, T. Weyde, T. R. Besold, and F. Moscoso del
Prado Martín, “Using ontologies to enhance human understand-
ability of global post-hoc explanations of black-box models,”
Artificial Intelligence, vol. 296, 2021.

[19] J. M. Alonso and G. Casalino, “Explainable artificial intelligence
for human-centric data analysis in virtual learning environ-
ments,” in First International Workshop, HELMeTO 2019, ser.
Communications in Computer and Information Science, vol.
1091. Springer, 2019, pp. 125–138.

[20] A. Anguita-Ruiz, A. Segura-Delgado, R. Alcalá, C. M. Aguilera,
and J. Alcalá-Fdez, “eXplainable Artificial Intelligence (XAI)
for the identification of biologically relevant gene expression
patterns in longitudinal human studies, insights from obesity
research,” PLOS Computational Biology, vol. 16, pp. 1–34, 2020.

[21] S. H. A. El-Sappagh, J. M. Alonso, F. Ali, A. Ali, J. Jang, and
K. S. Kwak, “An Ontology-Based Interpretable Fuzzy Decision
Support System for Diabetes Diagnosis,” IEEE Access, vol. 6,
pp. 37 371–37 394, 2018.

[22] B. Mittelstadt, C. Russell, and S. Wachter, “Explaining Expla-
nations in AI,” in Proceedings of the Conference on Fairness,
Accountability, and Transparency - FAT* ’19. New York, New
York, USA: ACM Press, 2019, pp. 279–288.

[23] M. Bilgic and R. J. Mooney, “Explaining Recommendations:
Satisfaction vs. Promotion,” Proc. of Workshop on the Next
Stage of Recommender Systems Research at IUI’05, pp. 13–18,
2005.

[24] G. Friedrich and M. Zanker, “A Taxonomy for Generating
Explanations in Recommender Systems,” AI Magazine, vol. 32,
no. 3, p. 90, 2011.

[25] B. Abdollahi and O. Nasraoui, “Explainable Matrix Factoriza-
tion for Collaborative Filtering,” in Proceedings of the 25th
International Conference Companion on World Wide Web -
WWW ’16 Companion, 2016, pp. 5–6.

[26] Y. Koren, “Factorization meets the neighborhood: A multi-
faceted collaborative filtering model,” in Proceedings of the
ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 2008, pp. 426–434.

[27] G. Peake and J. Wang, “Explanation mining: Post hoc inter-
pretability of latent factor models for recommendation systems,”
in Proc. of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 7 2018, pp. 2060–2069.

[28] C. Musto, F. Narducci, P. Lops, M. de Gemmis, and G. Se-
meraro, “Linked open data-based explanations for transpar-
ent recommender systems,” International Journal of Human-
Computer Studies, vol. 121, pp. 93–107, 2019.

[29] C. Musto, M. de Gemmis, P. Lops, and G. Semeraro, “Gen-
erating post hoc review-based natural language justifications
for recommender systems,” User Modeling and User-Adapted
Interaction, pp. 1–45, 2020.

[30] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative Filtering for
Implicit Feedback Datasets,” in 2008 Eighth IEEE International
Conference on Data Mining. IEEE, 12 2008, pp. 263–272.

[31] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-
thieme, “BPR : Bayesian Personalized Ranking from Implicit
Feedback,” Proceedings of the Twenty-Fifth Conference on Un-
certainty in Artificial Intelligence, vol. cs.LG, p. 452–461, 2009.

[32] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neu-
ral Collaborative Filtering,” in Proc. of the 26th International
Conference onWorld Wide Web - WWW ’17, 2017, pp. 173–182.

[33] B. Abdollahi and O. Nasraoui, “Using Explainability for Con-
strained Matrix Factorization,” in Proc. of the 11th ACM Con-
ference on Recommender Systems - RecSys ’17, 2017, pp. 79–83.

[34] P. S. Haghighi, O. Seton, and O. Nasraoui, “An explainable au-
toencoder for collaborative filtering recommendation,” CoRR,
vol. abs/2001.04344, 2020.

[35] L. Coba, P. Symeonidis, and M. Zanker, “Personalised novel
and explainable matrix factorisation,” Data and Knowledge
Engineering, vol. 122, pp. 142–158, 2019.

[36] F. M. Harper, F. Xu, H. Kaur, K. Condiff, S. Chang, and L. Ter-
veen, “Putting Users in Control of their Recommendations,” the
2015 ACM conference on Recommender systems, RecSys 2015,
pp. 3–10, 2015.

[37] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Analysis of
recommendation algorithms for e-commerce,” in Proc. of the 2nd
ACM Conference on Electronic Commerce, 2000, pp. 158––167.

[38] A. Papadimitriou, P. Symeonidis, and Y. Manolopoulos, “A
generalized taxonomy of explanations styles for traditional and
social recommender systems,” Data Mining and Knowledge Dis-
covery, vol. 24, no. 3, pp. 555–583, 5 2012.

[39] J. L. Herlocker, J. A. Konstan, and J. Riedl, “Explaining collab-
orative filtering recommendations,” in Proceedings of the 2000
ACM conference on Computer supported cooperative work -
CSCW ’00, 2000, pp. 241–250.

[40] C. Trattner and D. Jannach, “Learning to recommend simi-
lar items from human judgments,” User Modeling and User-
Adapted Interaction, vol. 30, no. 1, 2020.

[41] C. C. Aggarwal and C. K. Reddy, Data Clustering: Algorithms
and Applications, 1st ed. Chapman & Hall/CRC, 2013.

[42] H.-P. Kriegel, P. Kröger, and A. Zimek, “Clustering high-
dimensional data: A survey on subspace clustering, pattern-
based clustering, and correlation clustering,” ACM Trans.
Knowl. Discov. Data, vol. 3, no. 1, pp. 1:1–1:58, Mar. 2009.

[43] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform man-
ifold approximation and projection for dimension reduction,”
CoRR, vol. abs/1802.03426, 2018.

[44] L. van der Maaten and G. Hinton, “Visualizing data using t-
SNE,” Journal of Machine Learning Research, vol. 9, pp. 2579–
2605, 2008.

[45] F. Doshi-Velez and B. Kim, “Towards a rigorous science of
interpretable machine learning,” CoRR, vol. abs/1702.08608,
2017.

[46] G. Shani and A. Gunawardana, “Evaluating recommendation
systems,” Recommender systems handbook, pp. 257–298, 2011.

[47] O. Levy and Y. Goldberg, “Dependency-based word embed-
dings,” in Proceedings of the 52nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 2: Short Papers).
Association for Computational Linguistics, 2014, pp. 302–308.

[48] F. M. Harper and J. A. Konstan, “The movielens datasets:
History and context,” ACM Trans. Interact. Intell. Syst., vol. 5,
no. 4, pp. 19:1–19:19, Dec. 2015.

[49] G. Guo, J. Zhang, D. Thalmann, and N. Yorke-Smith, “Etaf: An
extended trust antecedents framework for trust prediction,” in
Proc. of the 2014 IEEE/ACM Int. Conf. on Advances in Social
Networks Analysis and Mining, 2014, pp. 540–547.

[50] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recom-
mender algorithms on top-n recommendation tasks,” in Proc. of
the fourth ACM conference on Recommender systems - RecSys
’10. New York, New York, USA: ACM Press, 2010, p. 39.

[51] S. Vargas and P. Castells, “Rank and relevance in novelty and
diversity metrics for recommender systems,” in Proceedings of
the 5th ACM Vonference on Recommender Systems. ACM
Press, 2011, pp. 109–116.

[52] V. Arya, R. K. E. Bellamy, P.-Y. Chen, A. Dhurandhar,
M. Hind, S. C. Hoffman, S. Houde, Q. V. Liao, R. Luss, A. Mo-
jsilović, S. Mourad, P. Pedemonte, R. Raghavendra, J. Richards,
P. Sattigeri, K. Shanmugam, M. Singh, K. R. Varshney, D. Wei,
and Y. Zhang, “One Explanation Does Not Fit All: A Toolkit
and Taxonomy of AI Explainability Techniques,” CoRR, vol.
abs/1909.03012, 2019.

http://www.inf.unibz.it/~rconfalonieri/aaai21/

	Introduction
	Explainable Recommender Systems
	RecoXplainer
	Implemented Black-box Algorithms
	Model-based Explanation Algorithms
	ALS-Explain
	Explainable Matrix Factorisation
	Explainable Autoencoder

	Post-hoc Explanation Algorithms
	Association Rules
	K-Nearest Neighbors
	Gaussian Mixture Model

	Evaluating Explanations
	Mean Explainability Precision
	Model Fidelity
	Explainability Score
	Other Metrics

	recoXplainer in Practice
	Data Handling
	Training a Model
	Making Recommendations
	Explanations
	Evaluating Explanations
	Extending recoXplainer

	Use-case: Explaining Black-box Recommendations using Latent Factors
	Datasets
	Experimental Settings
	Evaluation Metrics
	Implementation and Hyper-parameters Tuning
	Procedure
	Evaluating Post-hoc Explanation Algorithms

	Results and Discussion

	Conclusion and Future Works
	References

