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A B S T R A C T

In recent works by Yang et al. (2017a, 2017b), and Yang et al. (2019), geographical, temporal, and sequential
deterministic reconciliation of hierarchical photovoltaic (PV) power generation have been considered for a
simulated PV dataset in California. In the first two cases, the reconciliations were carried out in spatial
and temporal domains separately. To further improve forecasting accuracy, in the third case these two
reconciliation approaches were applied sequentially. During the replication of the forecasting experiment, some
issues emerged about non-negativity and coherency (in space and/or in time) of the sequentially reconciled
forecasts. Furthermore, while the accuracy improvement of the considered approaches over the benchmark
persistence forecasts is clearly visible at any data granularity, we argue that an even better performance
may be obtained by a thorough exploitation of spatio-temporal hierarchies. To this end, in this paper the
spatio-temporal point forecast reconciliation approach is applied to generate non-negative, fully coherent
(both in space and time) forecasts. New spatio-temporal reconciliation approaches are adopted, exploiting for
the first time some relationships between two-step, iterative and simultaneous spatio-temporal reconciliation
procedures. Non-negativity issues of the final reconciled forecasts are discussed and correctly dealt with in a
simple and effective way. The spatio-temporal reconciliation procedures are applied to the base forecasts with
forecast horizon of 1 day, of PV generated power at different time granularities (1 h to 1 day), of a geographical
hierarchy consisting of 324 series along 3 levels. The normalized Root Mean Square Error (nRMSE) and the
normalized Mean Bias Error are used to measure forecasting accuracy, and a statistical multiple comparison
procedure is performed to rank the approaches. In addition to assuring full coherence and non-negativity of the
reconciled forecasts, the results show that for the considered dataset, spatio-temporal forecast reconciliation
significantly improves on the sequential procedures proposed by Yang et al. (2019), at any level of the spatial
hierarchy and for any temporal granularity. For example, the forecasted hourly PV generated power by the
new spatio-temporal forecast reconciliation approaches improve on the NWP 3TIER forecasts in a range from
4.7% to 18.4% in terms of nRMSE.
1. Introduction

Traditional electricity relies heavily on fossil fuels such as coal
and natural gas. Not only are they bad for the environment, but they
are also limited resources. Net-zero emissions by 2050 are crucial to
achieve the core Paris Agreement1 goals of a global average tempera-
ture rise of 1.5 degrees Celsius (United Nations, 2015), and this in turn
can only be achieved if global greenhouse gas emissions are halved by
the end of this decade (European Commission, 2019, United Nations,
2022). Solar power is one of the crucial production methods in the
move to clean energy, and as economies of scale drive prices down, its
importance will undoubtedly increase. The deployment of solar-power
generation is causing total installed capacity to increase at a very high

∗ Corresponding author.
E-mail address: difonzo@stat.unipd.it (T. Di Fonzo).

1 The Paris Agreement is a legally binding international treaty on climate change. Its goal is to limit global warming to well below 2, preferably to 1.5 degrees
Celsius, compared to pre-industrial levels. To achieve this long-term temperature goal, countries aim to reach global peaking of greenhouse gas emissions as soon
as possible to achieve a climate neutral world (i.e., with net-zero greenhouse gas emissions) by mid-century.

pace. Eurostat reports that the European Union added 18,224.8 MW of
net capacity in 2020, compared to its 16,146.9 MW increase in 2019,
registering a growth of 12.9%. At the end of 2020, the EU’s photovoltaic
base stood at 136,136.6 MW, which is a 15% year-on-year increase
(EurObserv’ER, 2022, p. 14).

Using solar resource as a stable source of energy is not an easy
task. Estimating the solar energy potential is a key target to ensure its
management in a reliable and efficient way for its integration into an
electrical power grid (Sengupta et al., 2017). The prediction of solar
irradiation despite its variability is particularly important as it is a pre-
condition for (i) the management of the solar photovoltaic production
through storage systems to reduce the impact of the intermittent nature
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of the solar resource, and (ii) the integration of the solar resource into a
power grid in order to meet the local energy needs and to cope with the
load fluctuations (Antonanzas et al., 2016). Understanding of the need
for short, mid or long term prediction (e.g., 1 h, 6 h or a day ahead
forecasting) is growing as utilities and grid operators gain experience
in dealing with solar-power sources. Increasing spatial and temporal
resolution of the available forecasting models (Benavides Cesar et al.,
2022, and references therein) would enable grid operators to better
forecast how much solar energy will be added to the grid. These
efforts will improve the management of solar power’s variability and
uncertainty, enabling its more reliable and cost-effective integration
onto the grid.

Solar forecasting is a fast-growing sub-domain of energy forecasting
(Yang et al., 2020, p. 20). We agree with the claim of Yang et al.
(2022), p. 7, that a ‘‘common misconception is that the novelty in
solar forecasting should be solely revolved around forecasting method-
ology. Indeed, forecasting methodology is an important aspect, but it is
never the only one’’. Nevertheless, we think that a clear assessment of
the available forecasting procedures may help in moving forward the
frontier of knowledge of this fundamental topic, generating beneficial
effects on the activities of practitioners.

A major goal for solar forecasting is to provide information on future
photovoltaic (PV) power generation at different locations, time scales,
and horizons to power system operators (Yang et al., 2022). In recent
works by Yang et al. (2017a,b), and Yagli et al. (2019), geographical,
temporal, and sequential deterministic reconciliation of hierarchical PV
power generation have been considered for a simulated PV dataset in
California. In the first two cases, the reconciliations were carried out in
spatial and temporal domains separately. To further improve prediction
accuracy, in the third case these two reconciliation approaches were
sequentially applied. During the replication of the forecasting exper-
iment,2 some issues emerged about non-negativity and coherency (in
space and/or in time) of the sequentially reconciled forecasts. Further-
more, while the accuracy improvement of the considered approaches
over the benchmark persistence forecasts is clearly visible at any data
granularity, we think that an even better performance may be obtained
by a thorough exploitation of both geographical (i.e., cross-sectional)
and temporal hierarchies.

At a given time point, a cross-sectional hierarchy describes the
accounting relationships linking the series of different levels of con-
temporaneous aggregation (in the simplest case, the total variable
is equal to the sum of its most disaggregated component series). A
temporal hierarchy describes the temporal aggregated time series of
a single variable originally defined at a specific time frequency, ob-
tained by non-overlapping sums of the high-frequency observations
(e.g., a daily time series may be obtained as the sum of the twenty
four values in each single day of an hourly time series). The idea
of exploiting the aggregation relationships valid both in space (cross-
sectional coherency), and for different time granularities (temporal
coherency) to improve the forecast accuracy of base forecasts for a
hierarchical time series, was discussed by Kourentzes and Athana-
sopoulos (2019), Yagli et al. (2019), Spiliotis et al. (2020), and Punia
et al. (2020). Di Fonzo and Girolimetto (2023) have shown the poten-
tiality and feasibility of a number of spatio-temporal3 reconciliation
approaches. More recently, Di Fonzo and Girolimetto (2022a) have
established some useful relationships between sequential, iterative and
simultaneous spatio-temporal reconciliation procedures, and proposed

2 The forecasting experiment grounds on the documentation files and data
ade available by Yang et al. (2017b).
3 In the cited references, the more general term ‘cross-temporal’ is used to

enote this particular forecast reconciliation approach. Due to the geograph-
cal connotation of the hierarchical time series considered in the empirical
pplication (Section 3), in this paper the expression ‘spatio-temporal forecast
14

econciliation’ is adopted. G
Fig. 1. Spatio-temporal hierarchy for a quarterly two-level spatial time series.

a simple and effective framework to ensure the non-negativity of the
final reconciled forecasts, which turns out to be useful when dealing
with naturally non-negative variables like PV power generation.

In this paper, spatio-temporal point forecast reconciliation is ap-
plied to generate non-negative, fully coherent (both in space and
time) forecasts of PV generated power. In particular, the iterative and
simultaneous approaches by Di Fonzo and Girolimetto (2023), and
the heuristic procedure proposed by Kourentzes and Athanasopoulos
(2019) are applied to a set of incoherent base forecasts with forecast
horizon of 1 day, of PV generated power at different time granularities
(1 h to 1 day), of a hierarchy comprising 324 series along 3 levels.
The normalized Root Mean Square Error and the normalized Mean
Bias Error are used to measure forecasting accuracy, and a statistical
multiple comparison procedure is performed to rank the approaches.

The paper is organized as follows. The deterministic (point) spatio-
temporal forecast reconciliation framework and some remarkable con-
nections between apparently different approaches are described in
Section 2. The forecasting experiment of Yagli et al. (2019) is replicated
and discussed in Section 3, and the performance of the proposed
forecasting approaches is presented in Section 4. Conclusions follow
in Section 5. The on-line appendix contains supplementary tables and
graphs related to the empirical application, and informations on the R
scripts used for the forecasting experiments. All the forecast reconcilia-
tion procedures considered in this paper are available in the R package
FoReco (Girolimetto and Di Fonzo, 2022).

2. Spatio-temporal point forecast reconciliation: a recap

To begin with, consider the very simple example of a two-level
spatial hierarchy, where the top variable 𝑋 is equal to the sum of
two bottom series,4 𝑊 and 𝑍. Further, assume that the highest time
frequency the variables are observed at is quarterly, which means that
semi-annual and annual time series may be obtained by simple non-
overlapping temporal aggregation of quarterly time series. Fig. 1 gives a
visual representation of such spatio-temporal hierarchy for a time cycle
of 1 year.

The square boxes in the figure denote the nodes of a two-level
spatial hierarchy, while the circles denote the nodes of the temporal

4 In this paper, we consider only genuine hierarchical/grouped time series,
hat share the same top- and bottom-level variables. The treatment of a
eneral linearly constrained multiple time series is discussed in Di Fonzo and
irolimetto (2023).
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hierarchies. Using a standard notation in the temporal forecast reconcil-
iation literature (Athanasopoulos et al., 2017, Yang et al., 2017b), the
superscript [𝑘] denotes the temporal aggregation order for each time
granularity, i.e. annual (𝑘 = 4), semi-annual (𝑘 = 2), and quarterly (𝑘 =
1). The spatial hierarchy is described by the aggregation relationship
𝑋 = 𝑊 +𝑍, which is valid for any temporal aggregation order 𝑘 ∈  =
{4, 2, 1} (i.e., 𝑥[𝑘]𝜏 = 𝑤[𝑘]

𝜏 + 𝑧[𝑘]𝜏 , 𝜏 = 1,… , 4∕𝑘). Assuming 𝑣 alternatively
qual to 𝑥,𝑤, 𝑧, the temporal hierarchies describing the relationships
etween different time granularities of a single time series may be
xpressed as

𝑣[4]1 = 𝑣[2]1 + 𝑣[2]2 the annual value is the sum of the two
semi-annual values,

𝑣[2]1 = 𝑣[1]1 + 𝑣[1]2 the first half-year value is the sum of
the first two quarters’ values,

𝑣[2]2 = 𝑣[1]3 + 𝑣[1]4 the second half-year value is the sum
of the last two quarters’ values,

and thus
𝑣[4]1 = 𝑣[1]1 + 𝑣[1]2 + 𝑣[1]3 + 𝑣[1]4 the annual value is the sum of the four

quarterly values.

All the relationships so far can be expressed in compact matrix form.
et y[𝑘]𝜏 =

[

𝑥[𝑘]𝜏 𝑤[𝑘]
𝜏 𝑧[𝑘]𝜏

]′
be the (3 × 1) vector of the observations with

emporal granularity 𝑘 ∈  of the variables in the spatial hierarchy
t time 𝜏 = 1,… , 4∕𝑘. The spatial aggregation relationships can be
escribed as follows:

[𝑘]
𝜏 = C

[

𝑤[𝑘]
𝜏

𝑧[𝑘]𝜏

]

, y[𝑘]𝜏 = S
[

𝑤[𝑘]
𝜏

𝑧[𝑘]𝜏

]

, U′y[𝑘]𝜏 = 0,

𝜏 = 1,… , 4
𝑘
, 𝑘 ∈ , (1)

here C is the spatial aggregation matrix, S is the spatial summing
atrix, and U′ is the matrix expressing the spatial constraints in ho-
ogeneous form, respectively given by:

=
[

1 1
]

, S =
[

C
I2

]

=
⎡

⎢

⎢

⎣

1 1
1 0
0 1

⎤

⎥

⎥

⎦

, U′ =
[

I1 − C
]

=
[

1 −1 −1
]

,

(2)

ith I𝑙 denoting the identity matrix of order 𝑙. The complete temporal
ggregation relationships linking the values of a single variable (say
) at different time granularities, may in turn be expressed through
atrices

K =
⎡

⎢

⎢

⎣

1 1 1 1
1 1 0 0
0 0 1 1

⎤

⎥

⎥

⎦

, R =
[

K
I4

]

=

⎡

⎢

⎢

⎢

⎢

⎣

1 1 1 1
1 1 0 0
0 0 1 1

I4

⎤

⎥

⎥

⎥

⎥

⎦

,

′ =
[

I3 − K
]

=
⎡

⎢

⎢

⎣

1 0 0 −1 −1 −1 −1
0 1 0 −1 −1 0 0
0 0 1 0 0 −1 −1

⎤

⎥

⎥

⎦

,

(3)

here K is the temporal aggregation matrix, R is the temporal summing
atrix, and Z′ is the matrix expressing the temporal constraints in
omogeneous form. It follows that:

𝑣[4]1

𝑣[2]1

𝑣[2]2

⎤

⎥

⎥

⎥

⎦

= Kv[1], v = Rv[1], Z′v = 0(3×1), (4)

here v[1] =
[

𝑣[1]1 𝑣[1]2 𝑣[1]3 𝑣[1]4

]′
, and

=
[

𝑣[4]1 𝑣[2]1 𝑣[2]2 𝑣[1]1 𝑣[1]2 𝑣[1]3 𝑣[1]4

]′
.

To simultaneously consider spatial and temporal aggregation rela-
ionships, all the nodes of the complete spatio-temporal hierarchy in

[1]
15

ig. 1 can be expressed in terms of the quarterly time series 𝑤𝜏 and
[1]
𝜏 , 𝜏 = 1,… , 4, according to the structural representation:

= Fb[1], (5)
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, (6)

here y =
[

x′ w′ z′
]′ is the vector containing the data for all variables

t any temporal granularity, b[1] =
[

w[1]′ z[1]′
]′ is the vector of the high-

requency bottom time series, and F is the spatio-temporal summing
atrix mapping b[1] into y. Expression (5) is the natural extension

f the cross-sectional (spatial) structural representation firstly shown
y Athanasopoulos et al. (2009). It relates the observations at the upper
evels of both spatial and temporal hierarchies to the high-frequency
ottom time series of the spatial hierarchy, which are the ‘very’ bottom
ime series in a spatio-temporal hierarchy (Di Fonzo and Girolimetto,
023).

Besides the number of variables forming the spatial hierarchy (𝑛 = 3
n the above example), two crucial aspects affecting the dimension
f matrix F are (i) the temporal frequency of the highest-frequency
ranularity (𝑘 = 1), and (ii) the amount of temporal granularities taken
nto account in the temporal hierarchy. For example, if one is interested
n coherently forecasted hourly time series within a day-cycle, the com-
lete spatio-temporal summing matrix R defining all intra-day temporal
ranularities ( = {24, 12, 8, 6, 4, 3, 2, 1}) has dimension (60 × 24), and is
qual to

=
[

𝟏24 I2 ⊗ 𝟏12 I3 ⊗ 𝟏8 I4 ⊗ 𝟏6 I6 ⊗ 𝟏4 I8 ⊗ 𝟏3 I12 ⊗ 𝟏2 I24
]′
.

(7)
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Matrix F is thus a large and sparse matrix5 of dimension (60𝑛×24𝑛𝑏),
here 𝑛 is the total number of series, and 𝑛𝑏 is the number of bottom

ime series in the spatial hierarchy, respectively (in the above example,
= 3 and 𝑛𝑏 = 2). Just to give an idea, the total number of variables in

he dataset of hourly time series analyzed in this paper (see Section 3) is
= 324, with 𝑛𝑏 = 318 bottom time series, thus matrix F has dimension

(19,440 × 7,632).6
In this framework, by extending the seminal idea by Hyndman et al.

2011), a forecast reconciliation problem arises when, for the nodes of
spatio-temporal hierarchy, a set of base forecasts – however obtained,
nd usually not aggregate consistent either in space and/or in time – are
ished to be revised to fulfill the coherency relationships in space and

ime valid for the target data. The purpose is to improve the accuracy
f the initial forecasts by combining forecasts at different aggregation
evels in space and time, and by incorporating in the final forecasts the
nformation given by spatial and temporal constraints.

.1. Notation

Suppose we want to forecast a 𝑛-variate high-frequency hierarchical
ime series

{

y[1]𝑡

}𝑇

𝑡=1
, with forecast horizon equal to the seasonal cycle

, (e.g., month per year, 𝑚 = 12, quarter per year, 𝑚 = 4, hour per day,
= 24), or a multiple thereof. Given a factor 𝑘 of 𝑚, we may consider
number of temporally aggregated versions of each component of y[1]𝑡 ,

given by the non-overlapping sums of 𝑘 successive values, each having
seasonal period equal to 𝑀𝑘 = 𝑚∕𝑘. To avoid ragged-edge data, we
assume that the total number of observations involved in the non-
overlapping aggregation is a multiple of 𝑚, and define 𝑁 the number of
the lowest-frequency series observations, i.e. 𝑁 = 𝑇 ∕𝑚. Let  be the set
of 𝑝 factors of 𝑚, in descending order,  = {𝑘𝑝, 𝑘𝑝−1,… , 𝑘2, 𝑘1}, where
𝑘𝑝 = 𝑚 and 𝑘1 = 1, and define 𝑘∗ =

∑𝑝
𝑗=2 𝑘𝑗 .

Following Di Fonzo and Girolimetto (2023), denote Y𝑁+ℎ ≡ Y the
[𝑛 × (𝑘∗ + 𝑚)] matrix of the target forecasts for any temporal granular-
ity, with low-frequency temporal horizon ℎ, given by:

Y =
[

Y[𝑚] Y[𝑘𝑝−1] …Y[𝑘2] Y[1]
]

=
[

A
B

]

=
[

A[𝑚] A[𝑘𝑝−1] … A[𝑘2] A[1]

B[𝑚] B[𝑘𝑝−1] … B[𝑘2] B[1]
]

, (8)

where 𝑚 is the highest available sampling frequency per seasonal cycle

(i.e., max. order of temporal aggregation). Each matrix Y[𝑘] =
[

A[𝑘]

B[𝑘]
]

,

𝑘 ∈ , contains the order-𝑘 temporal aggregates of the 𝑛𝑎 upper time
series (A[𝑘]), and of the 𝑛𝑏 bottom time series (B[𝑘]) in the spatial
hierarchy, respectively, with 𝑛 = 𝑛𝑎 + 𝑛𝑏. Accordingly, we define the
matrix of base forecasts Ŷ as:

Ŷ =
[

Ŷ
[𝑚]

Ŷ
[𝑘𝑝−1] … Ŷ

[𝑘2] Ŷ
[1]]

=

[

Â
[𝑚]

Â
[𝑘𝑝−1] … Â

[𝑘2] Â
[1]

B̂
[𝑚]

B̂
[𝑘𝑝−1] … B̂

[𝑘2] B̂
[1]

]

.

(9)

hile the target forecasts are expected to be aggregate-consistent both
n time and space, the base forecasts are in general spatially and/or

5 Sparse matrices require less memory than dense matrices, and allow some
omputations to be more efficient (Paige and Sanders, 1982, Davis, 2006, Bates
t al., 2022).

6 If the interest in forecasting at certain time granularities is low, this
imensionality issue may be mitigated by considering only part of the tem-
oral granularities between the highest and lowest temporal frequencies. For
xample, if one considers only hourly and daily forecasts, the reduced F is a
8,100 × 7,632) matrix, with a decrease of about 58% in the amount of matrix
ntries wrt its complete counterpart. Possible losses in the forecasting accuracy
f the reconciled forecasts according to reduced temporal hierarchies should
16

owever be evaluated. This issue is currently under study.
emporally incoherent, that is:
′Y = 0[𝑛𝑎×(𝑘∗+𝑚)] and Z′Y′ = 0[𝑘∗×𝑛],

while U′Ŷ ≠ 0[𝑛𝑎×(𝑘∗+𝑚)] and/or Z′Ŷ
′
≠ 0[𝑘∗×𝑛],

here U′ =
[

I𝑛𝑎 − C
]

and Z′ =
[

I𝑘∗ − K
]

are zero-constraints matrices
ssociated to the spatial and temporal constraints, respectively.

.2. Spatio-temporal bottom-up reconciliation

Bottom-up is an old and classic approach in the forecast reconcilia-
ion literature (Dunn et al., 1976, Dangerfield and Morris, 1992). This
pproach simply consists in obtaining the upper-level series’ forecasts
y summing-up the base forecasts of the bottom level series in the
ierarchy. The spatio-temporal bottom-up (st(𝑏𝑢)) reconciliation of 𝑘∗+
hierarchical time series’ base forecasts at different time granularities,
ay thus be represented as follows:

ec
(

Ỹ
′
st(𝑏𝑢)

)

= Fvec
(

B̂
[1]′)

↔ ỹst(𝑏𝑢) = Fb̂
[1]
, (10)

here F = (S⊗ R) is the spatio-temporal summing matrix, with ⊗
enoting the Kronecker product, and b̂

[1]
= vec

(

B̂
[1]′)

is the vector
ontaining the base forecasts of the high-frequency bottom time series.
he spatio-temporal bottom-up reconciliation can be thought of as
two-step sequential reconciliation approach, where either spatial

econciliation of the high-frequency bottom time series base forecasts
s followed by temporal reconciliation, or vice-versa (Di Fonzo and
irolimetto, 2022a). This observation opens the way to ‘partly bottom-
p’ spatio-temporal reconciliation approaches, where forecasts of the
time series for different time granularities, and aggregation coher-

nt only along a single dimension, are subsequently spatio-temporally
econciled via simple bottom-up according to the other dimension.
e call these spatio-temporal forecast reconciliation approaches either

t(𝑟𝑒𝑐te, 𝑏𝑢sp), or st(𝑟𝑒𝑐sp, 𝑏𝑢te), where ‘𝑟𝑒𝑐te’ and ‘𝑟𝑒𝑐sp’ denote a generic
orecast reconciliation approach in time and in space, respectively.

.3. Optimal combination spatio-temporal forecast reconciliation

Let us consider the multivariate regression model

̂ = Y + E, (11)

here the involved matrices have each dimension [𝑛 × (𝑘∗ + 𝑚)] and
ontain, respectively, the base (Ŷ) and the target forecasts (Y), and the
oherency errors (E) for the 𝑛 component variables of the hierarchical
ime series of interest. Consider now the vectorized version of the
odel, that is

ec
(

Ŷ
′)

= vec
(

Y′) + vec
(

E′
)

⇔ ŷ = y + 𝜂𝜂𝜂, (12)

here 𝜂𝜂𝜂 = vec
(

E′
)

is the spatio-temporal reconciliation error with
ero mean and p.d. covariance matrix st. Assuming st known, the
ptimal combination reconciled forecasts ỹost = vec

(

Ỹ
′
ost

)

are found
y linearly constrained minimization of the generalized least squares
GLS) objective function
(

y − ŷ
)′
−1
𝑠𝑡

(

y − ŷ
)

s.t. H′y = 0, (13)

here

′y =
[

U∗

I𝑛 ⊗ Z

]

y = 0[𝑛(𝑘∗+𝑚)×1] (14)

s a full row-rank spatio-temporal zero-constraint matrix, with U∗ =
0(𝑛𝑎𝑚×𝑛𝑘∗) I𝑚 ⊗ U′

]

P, and P is the [𝑛(𝑘∗ +𝑚) × 𝑛(𝑘∗ +𝑚)] commutation
atrix, such that Pvec(Y) = y (Di Fonzo and Girolimetto, 2023).

The projection approach solution (Byron, 1978; see also van Erven
nd Cugliari, 2015, Wickramasuriya et al., 2019, Panagiotelis et al.,
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Table 1
Approximations for the spatial (Hyndman et al., 2011, Hyndman et al., 2016, Wickra-
masuriya et al., 2019, Di Fonzo and Girolimetto, 2023) and temporal (Athanasopoulos
et al., 2017, Di Fonzo and Girolimetto, 2023) covariance matrix to be used in a
reconciliation approach∗.

Spatial framework Temporal framework

identity sp(𝑜𝑙𝑠): W = I𝑛 te(𝑜𝑙𝑠):  = I𝑘∗+𝑚
structural sp(𝑠𝑡𝑟𝑢𝑐): W = diag(S𝟏𝑛𝑏) te(𝑠𝑡𝑟𝑢𝑐):  = diag(R𝟏𝑚)
series variance sp(𝑤𝑙𝑠): W = Ŵ𝐷 = I𝑛 ⊙ Ŵ te(𝑤𝑙𝑠𝑣):  = ̂𝑤𝑙𝑠𝑣

MinT-shr sp(𝑠ℎ𝑟): W = �̂�Ŵ𝐷 + (1 − �̂�)Ŵ te(𝑠ℎ𝑟):  = �̂�̂𝐷 + (1 − �̂�)̂
MinT-sam sp(𝑠𝑎𝑚): W = Ŵ te(𝑠𝑎𝑚):  = ̂

∗ Ŵ (̂) is the covariance matrix of the spatial (temporal) one-step ahead in-sample
forecast errors, ̂𝑤𝑙𝑠𝑣 is a diagonal matrix ‘‘which contains estimates of the in-sample
one-step-ahead error variances across each level’’ (Athanasopoulos et al., 2017, p. 64),
and ̂𝐷 = I𝑘∗+𝑚 ⊙ ̂.

2021, Di Fonzo and Girolimetto, 2023) is given by7

ỹost =
[

I𝑛(𝑘∗+𝑚) −stH
(

H′stH
)−1H′

]

ŷ = Mstŷ. (15)

Di Fonzo and Girolimetto (2023) considered the following approx-
imations for the spatio-temporal covariance matrix (‘ost’ stands for
‘optimal spatio-temporal’):

ost(𝑜𝑙𝑠) - identity: st = I𝑛(𝑘∗+𝑚)
ost(𝑠𝑡𝑟𝑢𝑐) - structural: st = diag(F𝟏𝑚𝑛𝑏 )
ost(𝑤𝑙𝑠𝑣) - series variance scaling: st = 

⋀

st,𝑤𝑙𝑠𝑣, that is a straightfor-
ward extension of the series variance scaling matrix pre-
sented by Athanasopoulos et al. (2017) in the temporal
framework

ost(𝑏𝑑𝑠ℎ𝑟) - block-diagonal shrunk cross-covariance scaling:
st = PW

⋀𝐵𝐷
st,𝑠ℎ𝑟P

′

ost(𝑏𝑑𝑠𝑎𝑚) - block-diagonal cross-covariance scaling: st = PW
⋀𝐵𝐷

st,𝑠𝑎𝑚P
′

ost(𝑠ℎ𝑟) - MinT-shr: st = �̂�̂st,𝐷 + (1 − �̂�)̂st
ost(𝑠𝑎𝑚) - MinT-sam: st = 

⋀

st

here the symbol ⊙ denotes the Hadamard product, �̂� is an estimated
hrinkage coefficient (Ledoit and Wolf, 2004), 

⋀

st,𝐷 = I𝑛(𝑘∗+𝑚)⊙̂st, and
st is the covariance matrix of the spatio-temporal one-step ahead in-

ample forecast errors. The spatial point forecast reconciliation formula
s obtained by assuming 𝑚 = 1 (then 𝑘∗ = 0, and st = W is an (𝑛 × 𝑛)
.d. matrix):

̃ =
[

I𝑛 −WU
(

U′WU
)−1 U′

]

ŷ = Mspŷ. (16)

he reconciled forecasts through temporal hierarchies for a single time
eries (Athanasopoulos et al., 2017) are in turn obtained by setting
= 1 (i.e., 𝑛𝑎 = 0 and 𝑛𝑏 = 1; st =  is a (𝑘∗ + 𝑚 × 𝑘∗ + 𝑚) p.d.
atrix):

̃ =
[

I(𝑘∗+𝑚) −Z
(

Z′Z
)−1 Z′

]

ŷ = Mteŷ. (17)

Table 1 presents some approximations for the spatial and the tempo-
al covariance matrices. Other alternatives for temporal reconciliation,
xploiting possible information in the residuals’ autocorrelation, can be
ound in Nystrup et al. (2020) and Di Fonzo and Girolimetto (2023).

.4. Heuristic and iterative spatio-temporal reconciliation

Kourentzes and Athanasopoulos (2019) proposed an ensemble fore-
asting procedure (denoted KA), that exploits the simple averaging of

7 Alternatively, the spatio-temporally reconciled forecasts may be obtained
ccording to the spatio-temporal extension of the structural approach devel-
ped by Hyndman et al. (2011) for the cross-sectional framework (Di Fonzo
nd Girolimetto, 2022a).
17
different forecasts. It consists in the following steps (for further details,
see Di Fonzo and Girolimetto, 2023):
KA-Step 1 compute the temporally reconciled forecasts for each vari-

able 𝑖 ∈ {1,… , 𝑛}, and arrange them in the [𝑛 × (𝑘 + 𝑚)] matrix
Ỹte;

KA-Step 2 starting from Ỹte, compute the time-by-time spatially rec-
onciled forecasts for all the temporal aggregation levels (Ỹsp),
and collect all the (𝑛 × 𝑛) projection matrices used to reconcile
forecasts of 𝑘-level temporally aggregated time series, M[𝑘]

sp , 𝑘 ∈
;

A-Step 3 transform the step 1 forecasts once more, by computing
time-by-time spatially reconciled forecasts for all temporal ag-
gregation levels using the (𝑛×𝑛) matrix M, given by the average
of the matrices M[𝑘]

sp :

ỸKA =

(

1
𝑝
∑

𝑘∈
M[𝑘]

sp

)

Ỹte = MỸte. (18)

Di Fonzo and Girolimetto (2023) presented an iterative approach,
hat produces spatio-temporal reconciled forecasts by alternating fore-
ast reconciliation along one dimension (spatial or temporal), based
n the first two steps of the KA approach. The iteration 𝑗 ≥ 1 can be

described as follows:
Step 1 compute the temporally reconciled forecasts (Ỹ

(𝑗)
te ) for each

variable 𝑖 ∈ {1,… , 𝑛} of Ỹ
(𝑗−1)
sp ;

Step 2 compute the time-by-time spatially reconciled forecasts (Ỹ
(𝑗)
sp )

for all the temporal aggregation levels of Ỹ
(𝑗)
te .

At 𝑗 = 0, the starting values are given by Ỹ
(0)
sp = Ŷ, and the it-

erates end when the entries of matrix Dte = Z′Ỹ
(𝑗)′
sp , containing all

the temporal discrepancies, are small enough according to a suitable
convergence criterion (Di Fonzo and Girolimetto, 2023). In the descrip-
tion above, temporal-then-spatial reconciliation is iteratively performed
(ite(𝑟𝑒𝑐te, 𝑟𝑒𝑐sp)), otherwise the order may be reversed, thus generating
spatial-then-temporal reconciliation (ite(𝑟𝑒𝑐sp, 𝑟𝑒𝑐te)).

3. Replication and assessment of the forecasting experiment of
Yagli et al. (2019)

The dataset used in this study, called PV324, is the same used
by Yang et al. (2017a,b), and Yagli et al. (2019). It refers to 318
simulated PV plants in California, whose hourly irradiation data are
organized in three levels (Fig. 2):

• 0: 1 time series for the Independent System Operator (ISO),
given by the sum of the 318 plant series;

• 1: 5 time series for the Transmission Zones (TZ), each given by
the sum of 27, 73, 101, 86, and 31 plants, respectively;

• 2: 318 bottom time series at plant level (P).
Following Yang et al. (2017b) and Yagli et al. (2019), we per-

form a forecasting experiment with fixed length window of 14 days
(i.e., 336 h), forecast horizon of two days, and forecasting evaluation
taking into account only the day-2 forecasts. These settings are coher-
ent with the forecast operational submission requirements of CAISO,
the public corporation managing power grid operations in California
(Makarov et al., 2011, Kleissl, 2013). For the 318 hourly time series at
plant level, numerical weather prediction (NWP) forecasts generated
by 3TIER (3TIER, 2010) are used as base forecasts. All the remaining
base forecasts, for the six 0 and 1 time series at any time granularity
𝑘 ∈ , and for the 2 2-3-4-6-8-12-24 h time series, are computed using
the automatic ETS forecasting procedure of the R-package forecast
(Hyndman et al., 2021), not controlling for possible negative forecasts.
Furthermore, following Yagli et al. (2019), day-ahead persistence is
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Fig. 2. PV324 hierarchy: Independent System Operator level (1 time series, 0), Transmission Zones level (5 time series, 1), and Plant level (318 time series, 2).
Fig. 3. Base forecasts and sequential TSR2
(Yagli et al., 2019) reconciled forecasts. Boxplots of the distribution in the 350 replications of the forecasting experiment of the spatial

(in red) and temporal (in blue) gross discrepancies, as defined in (22). For spatio-temporal reconciled forecasts, both discrepancies are expected to be zero. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 2
Summary informations on the negative forecasts produced by the procedures considered by Yagli et al. (2019) in the forecasting
experiment. Replications with at least a negative forecast (# rep), number of series out of 324 (# series) with at least a negative
forecast in a single replication (min and max), and min and max negative values found in all replications (values). Hourly
and daily forecasts, forecast horizon: operating day.

Approach # rep # series Values # rep # series values

(350) min max min max (350) min max min max

Hourly forecasts Daily forecasts

basea 350 4 6 −15.617 −0.000 11 0 35 −51.205 −0.006
ost(𝑜𝑙𝑠) 350 109 324 −69.165 −0.000 11 0 60 −29.615 −0.001
ost(𝑜𝑙𝑠sp , 𝑠𝑡𝑟𝑢𝑐te) 350 91 324 −17.961 −0.000 6 0 28 −8.915 −0.008
ost(𝑠𝑡𝑟𝑢𝑐sp , 𝑜𝑙𝑠te) 350 137 324 −20.739 −0.000 11 0 33 −10.363 −0.000
ost(𝑠𝑡𝑟𝑢𝑐) 350 89 324 −14.292 −0.000 4 0 11 −1.020 −0.026
te(𝑜𝑙𝑠2)+sp(𝑜𝑙𝑠)b 350 42 324 −12.993 −0.000 10 0 72 −15.037 −0.018
te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑜𝑙𝑠)b 350 36 324 −12.994 −0.000 10 0 71 −14.791 −0.005
te(𝑜𝑙𝑠2)+sp(𝑠𝑡𝑟𝑢𝑐)b 350 144 324 −7.526 −0.000 10 0 43 −12.969 −0.005
te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑠𝑡𝑟𝑢𝑐)b 350 124 324 −7.642 −0.000 5 0 31 −7.042 −0.002

aThe approach produces spatial and temporal incoherent forecasts.
bThe approach produces temporal incoherent forecasts.
̃

̃

used as the reference model (PERS)8:

𝑦[1]𝑇+ℎ|𝑇 , 𝑃𝐸𝑅𝑆 = 𝑦[1]𝑇+ℎ−48. (19)

Given the lead time of 48 h, the day-ahead persistence takes the
measurements made at day −2 as the forecasts for the operating day
(Yagli et al., 2019, p. 394). Benchmark forecasts at any level of the
spatial hierarchy and for any temporal granularity are obtained through
spatio-temporal bottom-up of the 318 hourly bottom time series, that

8 On the choice of the standard reference forecasting method, see Yang
(2019).
18
is:

𝐲𝑃𝐸𝑅𝑆𝑏𝑢
= 𝐅𝐛[1]𝑃𝐸𝑅𝑆 = vec

(

�̃�′
𝑃𝐸𝑅𝑆𝑏𝑢

)

. (20)

It is worth noting that the benchmark forecasts are always non-negative,
and both spatially and temporally coherent. These important properties
are valid also for the forecasts obtained by spatio-temporal bottom-
up reconciliation of the 318 hourly bottom time series’ NWP forecasts
3TIER:

𝐲3𝑇 𝐼𝐸𝑅𝑏𝑢
= 𝐅𝐛[1]3𝑇 𝐼𝐸𝑅 = vec

(

�̃�′
3𝑇 𝐼𝐸𝑅𝑏𝑢

)

. (21)

In light of the theorem 1 in Di Fonzo and Girolimetto (2022a),
the STR and TSR sequential reconciliations proposed by Yagli et al.



Solar Energy 251 (2023) 13–29T. Di Fonzo and D. Girolimetto

b
a

Fig. 4. MCB Nemenyi test results: average ranks and 95% confidence intervals. The unconstrained reconciliation approaches considered by Yagli et al. (2019) are sorted vertically
according to the nRMSE(%) mean rank. Hourly (top panel) and Daily (bottom panel) forecasts for 0 ,1 ,2 levels (324 series). Forecast horizon: operating day. The mean rank of
each approach is displayed to the right of their names. If the intervals of two forecast reconciliation approaches do not overlap, this indicates a statistically different performance.
Thus, approaches that do not overlap with the green interval are considered significantly worse than the best, and vice-versa. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
(2019) reduce to the following approaches: ost(𝑜𝑙𝑠), ost(𝑜𝑙𝑠sp, 𝑠𝑡𝑟𝑢𝑐te),
ost(𝑠𝑡𝑟𝑢𝑐sp, 𝑜𝑙𝑠te), ost(𝑠𝑡𝑟𝑢𝑐). In addition, Yagli et al. (2019) consider
other four Temporal-then-Spatial-Reconciliation approaches, called
TSR2

, where the temporal reconciliation is applied only to the 318
plant level series’ base forecasts. In this case, although constant ma-
trices are used in either reconciliation steps, the theorem so far no
longer holds, so the obtained forecasts are temporally incoherent, as
we show in the following. In order to distinguish these approaches from
the conventional sequential techniques, we call them te(𝑜𝑙𝑠2)+sp(𝑜𝑙𝑠),
te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑜𝑙𝑠), te(𝑜𝑙𝑠2)+sp(𝑠𝑡𝑟𝑢𝑐), te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑠𝑡𝑟𝑢𝑐), respectively.

3.1. Non-negativity and aggregation consistency issues

Standard forecast reconciliation, both in space and/or in time,
may produce negative revised forecasts (Yang et al., 2017a,b, Yagli
et al., 2019), unless specific non-negative reconciliation approaches
are applied (Wickramasuriya et al., 2020, Di Fonzo and Girolimetto,
2022a, Girolimetto and Di Fonzo, 2022). Thus it is not surprising
that, with the exception of PERS𝑏𝑢 and 3TIER𝑏𝑢, the other approaches
considered by Yagli et al. (2019) produce some negative reconciled
forecasts. Details on this issue are shown in Table 2.

Negative hourly forecasts are obtained in all 350 replications of the
forecasting experiment, and there are some cases (in a range within
4 and 11 replications out of 350) where negative daily forecasts are
produced as well.9 Furthermore, the base forecasts are incoherent both
in space and time, and the sequential TSR2

approaches proposed

9 The relatively low number of negative hourly base forecasts is explained
y the fact that the hourly base forecasts of the 318 bottom time series
re NWP 3TIER forecasts, that are always non-negative. Negative values are
19
by Yagli et al. (2019) are temporally incoherent. This can be visually
appreciated from Fig. 3 , showing the boxplots from the distribution
of the spatial and temporal gross discrepancies registered in the 350
replications of the forecasting experiment, computed as (Di Fonzo and
Girolimetto, 2023):

Spatial gross discrepancy: 𝑑sp = ‖U′Ŷ‖1
Temporal gross discrepancy: 𝑑te = ‖Z′Ŷ

′
‖1

, (22)

where ‖X‖1 =
∑

𝑖,𝑗 |𝑥𝑖,𝑗 |. For truly spatio-temporal reconciled forecasts,
neither spatial nor temporal discrepancies are present, that is 𝑑sp =
𝑑te = 0.

In this case, forecast reconciliation may thus generate physically
unreasonable values. Furthermore, if coherency is wished, the appar-
ently innocuous practice of setting possible negative forecasts to zero
is not advisable, since incoherence in spatial and/or time dimensions
would be produced. To overcome the above limitations, in Section 4
we apply the simple operational strategy proposed by Di Fonzo and
Girolimetto (2022a), able to generate fully reconciled non-negative
forecasts.

3.2. Forecast evaluation

Following Yagli et al., 2019, the accuracy of the considered ap-
proaches is measured in terms of normalized Root Mean Square Error
(nRMSE), normalized Mean Bias Error (nMBE), and Forecast Skill score

instead present in the ETS base forecasts for the aggregated series. Details can
be found in the on-line appendix.
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Fig. 5. Comparison of nRMSE(%) between PERS𝑏𝑢 and ost(𝑠𝑡𝑟𝑢𝑐) (top panel), and between 3TIER𝑏𝑢 and ost(𝑠𝑡𝑟𝑢𝑐) (bottom panel). The black line represents the bisector, where the
nRMSE’s for both approaches are equal. On the top-left (bottom-right) corner of each graph, the percentage of points above (below) the bisector is reported. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article).
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(FS):

nRMSE[𝑘]
𝑖,𝑗 =

√

1
𝐿
∑𝐿

𝑙=1

(

𝑦[𝑘]𝑖,𝑗,𝑙 − 𝑦[𝑘]𝑖,𝑙

)2

1
𝐿
∑𝐿

𝑙=1 𝑦
[𝑘]
𝑖,𝑙

,

nMBE[𝑘]
𝑖,𝑗 =

1
𝐿
∑𝐿

𝑙=1

(

𝑦[𝑘]𝑖,𝑗,𝑙 − 𝑦[𝑘]𝑖,𝑙

)

1
𝐿
∑𝐿

𝑙=1 𝑦
[𝑘]
𝑖,𝑙

, FS[𝑘]𝑖,𝑗 = 1 −
nRMSE[𝑘]

𝑖,𝑗

nRMSE[𝑘]
𝑖,0

,

(23)

where 𝑖 = 1,… , 𝑛, denotes the series, 𝑘 ∈ , 𝑗 = 0,… , 𝐽 , denotes
the forecasting approach (𝑗 = 0 for the reference model PERS), and
𝐿 = 𝑛𝑟𝑒𝑝 ⋅ 𝑚

𝑘 , where 𝑛𝑟𝑒𝑝 = 350 is the number of the forecasting
xperiment replications. Whereas nRMSE penalizes large errors, nMBE
eveals over- and under-prediction through the sign of the metric (Yagli
20

i

t al., 2019, p. 394). Forecast Skill can be either negative (approach is
orse than the reference model) or positive (approach is better than

he reference model).

It should be noted that for spatio-temporal coherent forecasts the
ndex nMBE[𝑘]

𝑖,𝑗 does not depend on the temporal aggregation order
∈  (see Appendix A). This means that, if 𝑗 denotes a fully co-

erent spatio-temporal forecast reconciliation approach, the following
dentities hold:

MBE[𝑚]
𝑖,𝑗 = nMBE[𝑘𝑝−1]

𝑖,𝑗 = ⋯ = nMBE[𝑘2]
𝑖,𝑗 = nMBE[1]

𝑖,𝑗 , 𝑖 = 1,… , 𝑛. (24)

From Table 3 it appears that on average all the considered forecast-

ng approaches improve on the benchmark PERS𝑏𝑢, in a range between
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Table 3
Forecast accuracies in terms of nRMSE(%), nMBE(%), and forecast skill over the PERS𝑏𝑢
enchmark of base forecasts and sequential reconciliation approaches. Unconstrained
econciliation procedures considered by Yagli et al. (2019), Tables 2, 3, p. 395. Hourly
H) and Daily (D) forecasts, forecast horizon: operating day. Bold entries and italic
ntries identify the best and the second best performing approaches, respectively. For
ourly and daily forecasts produced by fully coherent spatio-temporal reconciliation
pproaches, the nMBE(%) indices are equal (see Eq. (24)).
Approach 0 1 2

H D H D H D

nRMSE(%)

PERS𝑏𝑢 34.62 20.23 43.15 24.57 59.75 30.65
3TIER𝑏𝑢 26.03 12.48 33.95 16.75 53.46 25.19
basea 27.85 18.17 34.24 20.94 53.46 25.82
ost(𝑜𝑙𝑠) 30.69 17.91 39.17 21.74 51.54 26.73
ost(𝑜𝑙𝑠sp , 𝑠𝑡𝑟𝑢𝑐te) 28.26 16.96 35.19 20.61 48.20 25.46
ost(𝑠𝑡𝑟𝑢𝑐sp , 𝑜𝑙𝑠te) 28.74 17.33 35.48 20.82 49.32 26.14
ost(𝑠𝑡𝑟𝑢𝑐) 26.71 16.24 33.11 19.64 46.74 24.73
te(𝑜𝑙𝑠2)+sp(𝑜𝑙𝑠)b 27.80 17.96 34.36 21.80 48.52 26.71
te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑜𝑙𝑠)b 27.80 17.95 34.34 21.79 47.77 26.36
te(𝑜𝑙𝑠2)+sp(𝑠𝑡𝑟𝑢𝑐)b 27.02 17.24 33.40 20.62 47.76 25.98
te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑠𝑡𝑟𝑢𝑐)b 26.17 16.68 32.44 19.96 46.25 25.03

nMBE(%)

PERS𝑏𝑢 0.075 0.075 0.058 0.058 0.075 0.075
3TIER𝑏𝑢 −4.213 −4.213 −3.745 −3.745 −4.362 −4.362
basea −0.394 0.725 −0.131 1.000 −4.362 0.902
ost(𝑜𝑙𝑠) 0.593 0.593 0.557 0.557 0.590 0.590
ost(𝑜𝑙𝑠sp , 𝑠𝑡𝑟𝑢𝑐te) 0.359 0.359 0.339 0.339 0.354 0.354
ost(𝑠𝑡𝑟𝑢𝑐sp , 𝑜𝑙𝑠te) 0.735 0.735 0.744 0.744 0.733 0.733
ost(𝑠𝑡𝑟𝑢𝑐) 0.385 0.385 0.426 0.426 0.374 0.374
te(𝑜𝑙𝑠2)+sp(𝑜𝑙𝑠)b −0.353 0.769 −0.369 0.718 −0.352 0.754
te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑜𝑙𝑠)b −0.355 0.768 −0.369 0.718 −0.360 0.747
te(𝑜𝑙𝑠2)+sp(𝑠𝑡𝑟𝑢𝑐)b 0.100 0.858 0.119 0.863 0.099 0.850
te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑠𝑡𝑟𝑢𝑐)b−0.093 0.666 −0.048 0.695 −0.104 0.647

forecast skill

3TIER𝑏𝑢 0.248 0.383 0.213 0.318 0.105 0.178
basea 0.196 0.102 0.206 0.148 0.105 0.158
ost(𝑜𝑙𝑠) 0.113 0.115 0.092 0.115 0.137 0.128
ost(𝑜𝑙𝑠sp , 𝑠𝑡𝑟𝑢𝑐te) 0.184 0.162 0.184 0.161 0.193 0.169
ost(𝑠𝑡𝑟𝑢𝑐sp , 𝑜𝑙𝑠te) 0.170 0.143 0.178 0.152 0.175 0.147
ost(𝑠𝑡𝑟𝑢𝑐) 0.228 0.197 0.233 0.201 0.218 0.193
te(𝑜𝑙𝑠2)+sp(𝑜𝑙𝑠)b 0.197 0.112 0.204 0.113 0.188 0.129
te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑜𝑙𝑠)b 0.197 0.113 0.204 0.113 0.201 0.140
te(𝑜𝑙𝑠2)+sp(𝑠𝑡𝑟𝑢𝑐)b 0.219 0.148 0.226 0.161 0.201 0.152
te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑠𝑡𝑟𝑢𝑐)b 0.244 0.176 0.248 0.188 0.226 0.183

aThe approach produces spatial and temporal incoherent forecasts.
bThe approach produces temporal incoherent forecasts.

9.2% (ost(𝑜𝑙𝑠) for the 5 1 series’ hourly forecasts) and 38.3% (3TIER𝑏𝑢
for the 0 total series’ daily forecasts).10

The forecasting accuracy indices for each Transmission Zone fore-
casts are reported in Table 4.

We observe that:
• 3TIER𝑏𝑢 performs the best for the total series (0) at any temporal

granularity, the second best being te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑠𝑡𝑟𝑢𝑐).
• The approach te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑠𝑡𝑟𝑢𝑐) ranks first for 4 out of the 5

hourly upper series at level 1, whereas at daily level 3TIER𝑏𝑢
‘wins’ again. The performance of ost(𝑠𝑡𝑟𝑢𝑐) appears very close to
that of te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑠𝑡𝑟𝑢𝑐).

• te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑠𝑡𝑟𝑢𝑐) and ost(𝑠𝑡𝑟𝑢𝑐) show the best performance for
the 318 bottom time series at any temporal granularity, with a
slight prevalence of ost(𝑠𝑡𝑟𝑢𝑐) (for 𝑘 ≥ 3). It should be noted
that, unlike te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑠𝑡𝑟𝑢𝑐), ost(𝑠𝑡𝑟𝑢𝑐) forecasts are spatio-
temporally coherent.

• Unlike te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑠𝑡𝑟𝑢𝑐), 3TIER𝑏𝑢 forecasts are always non-
negative, and coherent both in space and time at any granularity.

10 The results for all temporal aggregation orders, 𝑘 ∈ {24, 12, 8, 6, 4, 3, 2, 1},
are available in the on-line appendix.
21
• For these reasons, 3TIER𝑏𝑢 should be considered as a challenging
competitor in the evaluation of the new proposed procedures
(Section 4).

To give a complete picture of the evaluation results for hourly and
daily forecasts, in Fig. 4 the Multiple Comparison with the Best (MCB)
Nemenyi tests are shown (Koning et al., 2005, Kourentzes and Athana-
sopoulos, 2019, Makridakis et al., 2022). This allows to establish if the
forecasting performances of the considered techniques are significantly
different.

At daily level, ost(𝑠𝑡𝑟𝑢𝑐) ranks first, and is significantly better than
the other forecasting approaches, with te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑠𝑡𝑟𝑢𝑐) at the second
lace. This result is reversed at hourly level: te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑠𝑡𝑟𝑢𝑐) ranks
irst and is significantly better than all the other approaches, with
st(𝑠𝑡𝑟𝑢𝑐) at the second place. However, it should be recalled that the
orecasts produced by te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑠𝑡𝑟𝑢𝑐) are not temporally coherent,
hich means that the sum of the hourly forecasts does not match with

he daily forecast.
Limiting ourselves to consider fully coherent reconciled forecasts,

he scatter plots of the 324 couples of nRMSE(%) for ost(𝑠𝑡𝑟𝑢𝑐) vs.,
espectively, PERS𝑏𝑢 and 3TIER𝑏𝑢 (Fig. 5), show that the most perform-
ng regression-based spatio-temporal reconciliation approach improves
niformly on the benchmark, and in the majority of cases on 3TIER𝑏𝑢,
articularly at hourly level (𝑘 = 1), where 89% of the variables are
bserved to show an improved nRMSE. However, it is worth noting
hat at daily level, this value decreases to 49%, which means that the
WP forecasts may still play a role at lower time granularity.

. Extended analysis: non-negative cross-temporal reconciliation

In this section, we explore the performance of forecast reconciliation
pproaches able to produce non-negative PV forecasts, both temporally
nd spatially coherent. For this reason, among the approaches proposed
y Yagli et al. (2019), we consider the reference benchmark PERS𝑏𝑢, the
WP base forecasts 3TIER𝑏𝑢, and ost(𝑠𝑡𝑟𝑢𝑐). These approaches are then
ompared with the following 7 spatio-temporal forecasting procedures:

• KA(𝑤𝑙𝑠𝑣te, 𝑤𝑙𝑠sp): the heuristic approach by Kourentzes and Athan
sopoulos (2019), using te(𝑤𝑙𝑠𝑣) in the first step, and sp(𝑤𝑙𝑠) in the
second, respectively;

• st(𝑤𝑙𝑠𝑣te, 𝑏𝑢sp), st(𝑠𝑡𝑟𝑢𝑐te, 𝑏𝑢sp), st(𝑤𝑙𝑠sp, 𝑏𝑢te), and st(𝑠𝑡𝑟𝑢𝑐sp, 𝑏𝑢te):
partly bottom-up spatio temporal reconciliation (see Section 2.2)
according to, respectively, te(𝑤𝑙𝑠𝑣), te(𝑠𝑡𝑟𝑢𝑐), sp(𝑤𝑙𝑠), and sp(𝑠𝑡𝑟𝑢𝑐)

• ost(𝑤𝑙𝑠𝑣) and ost(𝑏𝑑𝑠ℎ𝑟): optimal (in least squares sense) spatio-
temporal forecast reconciliation approaches using the in-sample
forecast errors (Di Fonzo and Girolimetto, 2023).

.1. Non negative forecast reconciliation: sntz

Each approach, when used in its ‘free’ version, i.e., without con-
idering non-negative constraints in the linearly constrained quadratic
rogram (13), is not guaranteed to always produce non-negative recon-
iled forecasts. This fact may be an issue for the analyst, since in many
ractical situations negative forecasts could have no meaning, thus un-
ermining the quality of the results found and the conclusions thereof.
n what follows, we consider a simple heuristic strategy to avoid
egative reconciled forecasts, without using any sophisticated, and time
onsuming, numerical optimization procedure.11 More precisely, pos-
ible negative values of the unconstrained reconciled high-frequency
ottom time series forecasts are set to zero. Denote B̃

[1]
0 the matrix

ontaining the non-negative reconciled forecasts produced by a ‘free’
pproach, and the ‘zeroed’ ones. The complete vector of non-negative

11 Recent contributions on this topic in the hierarchical forecasting field
are Wickramasuriya et al. (2020), Girolimetto and Di Fonzo (2022) and Di
Fonzo and Girolimetto (2022b).
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Table 4
Forecast accuracies in terms of nRMSE(%), nMBE(%), and forecast skill over the PERS𝑏𝑢 benchmark of base forecasts and sequential reconciliation
approaches for the series at 1 level (Transmission Zones). Unconstrained reconciliation procedures considered by Yagli et al. (2019), Tables 2,
3, p. 395. Hourly (H) and Daily (D) forecasts, forecast horizon: operating day. Bold entries and italic entries identify the best and the second
best performing approaches, respectively. For hourly and daily forecasts produced by fully coherent spatio-temporal reconciliation approaches,
the nMBE(%) indices are equal (see Eq. (24)).

Approach TZ1 TZ2 TZ3 TZ4 TZ5

H D H D H D H D H D

nRMSE(%)

PERS𝑏𝑢 28.72 16.12 40.27 22.40 46.48 26.96 52.82 29.75 47.44 27.62
3TIER𝑏𝑢 22.81 10.43 33.34 16.72 34.01 17.06 46.40 22.80 33.16 16.75
basea 22.41 13.55 32.05 18.70 35.14 21.95 44.94 26.89 36.67 23.58
ost(𝑜𝑙𝑠) 29.27 14.89 34.58 19.25 39.55 22.91 47.30 26.50 45.16 25.15
ost(𝑜𝑙𝑠sp , 𝑠𝑡𝑟𝑢𝑐te) 24.26 13.93 32.32 18.47 36.69 21.78 43.89 25.30 38.81 23.59
ost(𝑠𝑡𝑟𝑢𝑐sp , 𝑜𝑙𝑠te) 23.44 13.50 32.89 18.83 37.42 22.33 44.76 25.97 38.90 23.49
ost(𝑠𝑡𝑟𝑢𝑐) 22.00 12.81 30.92 17.82 34.79 20.94 42.02 24.50 35.83 22.12
te(𝑜𝑙𝑠2)+sp(𝑜𝑙𝑠)b 22.95 15.46 32.06 19.23 35.12 22.38 44.93 26.91 36.73 25.02
te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑜𝑙𝑠)b 22.93 15.46 32.05 19.22 35.11 22.37 44.92 26.90 36.70 25.00
te(𝑜𝑙𝑠2)+sp(𝑠𝑡𝑟𝑢𝑐)b 22.11 13.36 31.40 18.70 34.70 21.93 42.97 26.06 35.82 23.06
te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑠𝑡𝑟𝑢𝑐)b 21.58 13.00 30.48 18.09 33.58 21.18 41.86 25.21 34.69 22.32

nMBE(%)

PERS𝑏𝑢 −0.013 −0.013 0.099 0.099 0.127 0.127 0.030 0.030 0.050 0.050
3TIER𝑏𝑢 −1.967 −1.967 −3.215 −3.215 −3.636 −3.636 −7.364 −7.364 −2.542 −2.542
basea −0.101 0.889 −0.419 0.842 −0.134 1.613 −0.119 0.159 0.118 1.499
ost(𝑜𝑙𝑠) 0.250 0.250 0.307 0.307 1.006 1.006 0.345 0.345 0.876 0.876
ost(𝑜𝑙𝑠sp , 𝑠𝑡𝑟𝑢𝑐te) 0.078 0.078 0.091 0.091 0.577 0.577 0.326 0.326 0.625 0.625
ost(𝑠𝑡𝑟𝑢𝑐sp , 𝑜𝑙𝑠te) 0.660 0.660 0.478 0.478 0.968 0.968 0.591 0.591 1.026 1.026
ost(𝑠𝑡𝑟𝑢𝑐) 0.442 0.442 0.203 0.203 0.541 0.541 0.185 0.185 0.759 0.759
te(𝑜𝑙𝑠2)+sp(𝑜𝑙𝑠)b −0.492 0.428 −0.577 0.653 −0.248 1.471 −0.268 −0.007 −0.258 1.047
te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑜𝑙𝑠)b −0.490 0.429 −0.578 0.653 −0.249 1.470 −0.273 −0.012 −0.256 1.049
te(𝑜𝑙𝑠2)+sp(𝑠𝑡𝑟𝑢𝑐)b 0.135 0.794 −0.123 0.685 0.182 1.233 0.114 0.446 0.289 1.157
te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑠𝑡𝑟𝑢𝑐)b 0.047 0.706 −0.249 0.559 0.009 1.060 −0.242 0.090 0.194 1.063

forecast skill

3TIER𝑏𝑢 0.206 0.353 0.172 0.254 0.268 0.367 0.121 0.234 0.301 0.394
basea 0.220 0.159 0.204 0.165 0.244 0.186 0.149 0.096 0.227 0.146
ost(𝑜𝑙𝑠) −0.019 0.076 0.141 0.141 0.149 0.150 0.104 0.109 0.048 0.089
ost(𝑜𝑙𝑠sp , 𝑠𝑡𝑟𝑢𝑐te) 0.155 0.136 0.197 0.176 0.211 0.192 0.169 0.150 0.182 0.146
ost(𝑠𝑡𝑟𝑢𝑐sp , 𝑜𝑙𝑠te) 0.184 0.163 0.183 0.159 0.195 0.172 0.153 0.127 0.180 0.149
ost(𝑠𝑡𝑟𝑢𝑐) 0.234 0.205 0.232 0.205 0.251 0.223 0.204 0.177 0.245 0.199
te(𝑜𝑙𝑠2)+sp(𝑜𝑙𝑠)b 0.201 0.041 0.204 0.141 0.244 0.170 0.149 0.095 0.226 0.094
te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑜𝑙𝑠)b 0.202 0.041 0.204 0.142 0.245 0.170 0.150 0.096 0.227 0.095
te(𝑜𝑙𝑠2)+sp(𝑠𝑡𝑟𝑢𝑐)b 0.230 0.171 0.220 0.165 0.253 0.187 0.187 0.124 0.245 0.165
te(𝑠𝑡𝑟𝑢𝑐2)+sp(𝑠𝑡𝑟𝑢𝑐)b 0.249 0.194 0.243 0.192 0.277 0.215 0.208 0.153 0.269 0.192

aThe approach produces spatial and temporal incoherent forecasts.
bThe approach produces temporal incoherent forecasts.
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patio-temporal reconciled forecasts is computed as the spatio-temporal
ottom-up aggregation of b̃

[1]
0 = vec

[

(

B̃
[1]
0

)′]

, that is, according to
xpression (10):

̃0 = Fb̃
[1]
0 . (25)

We call set-negative-to-zero (sntz) this simple, and quick device
o obtain non negative reconciled forecasts. While it certainly in-
reases the forecasting accuracy of the high-frequency bottom time
eries forecasts wrt the ‘free’ counterparts, this does not hold true in
eneral for the upper level series forecasts. In addition, even if the
riginally reconciled forecasts are obtained according to an unbiased
pproach, the sntz-reconciled forecasts are no more unbiased, like the
on-negative forecasts obtained through numerical optimization proce-
ures (Wickramasuriya et al., 2020). However, in practical situations
he differences between the results produced by the sntz heuristic,
nd those obtained through a state-of-the-art numerical optimization
rocedure like osqp (Stellato et al., 2020) implemented in FoReco
Girolimetto and Di Fonzo, 2022), could be negligible. For example,
ig. 6 shows the graphs of one day of hourly forecasts computed by
nconstrained ost(𝑠𝑡𝑟𝑢𝑐), ost(𝑠𝑡𝑟𝑢𝑐)osqp and ost(𝑠𝑡𝑟𝑢𝑐)sntz, respectively,
or the aggregated series (ISO and five Transmission Zones), and for
wo bottom variables at plant level (P295 and P315) with a large number
f negative reconciled forecasts. For each variable we consider the day
22
ith the highest number of negative forecasts. It appears that the phys-
cally feasible forecasts produced by the non-negative reconciliation
pproaches are about the same at the aggregate levels, whereas some
ifference is visible at Plant level.

Table 5 shows the indices nRMSE(%) of the reconciled forecasts
roduced by the ost(𝑠𝑡𝑟𝑢𝑐) approach according to unconstrained and
on-negative (both sntz and osqp) variants. It is worth noting that
he sntz heuristic always gives the lowest nRMSE(%), independently
f the temporal granularity of the forecasts.12 This result is visually
onfirmed by the graphs in Fig. 7, showing the scatter plots of the 324
ouples of nRMSE(%) for ost(𝑠𝑡𝑟𝑢𝑐)osqp vs. ost(𝑠𝑡𝑟𝑢𝑐)sntz. For this dataset,
st(𝑠𝑡𝑟𝑢𝑐)sntz beats ost(𝑠𝑡𝑟𝑢𝑐)osqp in no less than 94% of the 324 series
or any temporal granularity. However, looking at indices nMBE(%) in
able 5, it emerges also that the bias of the ost(𝑠𝑡𝑟𝑢𝑐)sntz forecasts is
ore pronounced than ost(𝑠𝑡𝑟𝑢𝑐)osqp. This seems to be a price to pay

or using such a simple heuristic.

.2. Forecast accuracy of the selected approaches

Table 6 shows the indices nRMSE(%) and nMBE(%) of the consid-
red non-negative spatio-temporal forecast reconciliation approaches,

12 Similar results were found for all the considered reconciliation
approaches. The details are available at request from the authors.
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Fig. 6. One day of hourly reconciled forecasts for two of the 318 bottom variables (Plants P295 and P315, component of TZ5), and for the six upper time series (5 Transmission
Zones and the Total ISO). For each series, it is shown the day with the highest number of negative forecasts produced by the reconciliation approach ost(𝑠𝑡𝑟𝑢𝑐) (in red). The
non-negative forecasts are obtained by ost(𝑠𝑡𝑟𝑢𝑐)osqp (in green) and ost(𝑠𝑡𝑟𝑢𝑐)sntz (in blue). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Table 5
Forecast accuracy in terms of nRMSE(%) and nMBE(%) of unconstrained and non-negative reconciled forecasts using the ost(𝑠𝑡𝑟𝑢𝑐) approach.
All temporal aggregation orders are considered, from hourly (𝑘 = 1) to daily (𝑘 = 24). Forecast horizon: operating day. Bold entries identify the
best approach. As the forecasts are produced by fully coherent spatio-temporal reconciliation approaches, the nMBE(%) indices are equal for
any temporal aggregation order 𝑘 (see Eq. (24)).

Level (series) Non-negative
reconciliation

nRMSE(%) nMBE(%)

1 2 3 4 6 8 12 24 1–24

0 (1)
free 26.71 26.35 25.67 25.57 23.03 24.80 16.74 16.24 0.385
sntz 26.64 26.27 25.56 25.48 22.86 24.71 16.25 15.73 −1.079
osqp 26.74 26.36 25.67 25.55 23.01 24.77 16.36 15.85 −0.398

1 (5)
free 33.11 32.54 31.60 31.37 28.19 30.06 20.49 19.64 0.426
sntz 32.99 32.41 31.45 31.23 27.96 29.91 19.88 19.00 −0.973
osqp 33.11 32.52 31.58 31.32 28.15 29.99 20.01 19.14 −0.311

2 (318)
free 46.74 44.02 42.05 41.07 36.67 38.16 26.56 24.73 0.374
sntz 46.51 43.80 41.80 40.83 36.34 37.90 25.85 23.97 −1.109
osqp 46.63 43.93 41.94 40.93 36.53 37.99 25.97 24.10 −0.422
23
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Fig. 7. Comparison of nRMSE(%) between sntz and osqp non-negative forecast reconciliation using the ost(𝑠𝑡𝑟𝑢𝑐) approach. The black line represents the bisector, where the
nRMSE’s for ost(𝑠𝑡𝑟𝑢𝑐)osqp and ost(𝑠𝑡𝑟𝑢𝑐)sntz are equal. On the top-left (bottom-right) corner of each graph, the percentage of points above (below) the bisector is reported. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
Fig. 8. MCB-Nemenyi test on selected non-negative spatio-temporal reconciliation approaches with operating day forecast horizon. 0 ,1 ,2 levels (324 series). Top panel: hourly
forecasts; Bottom panel: daily forecasts. The mean rank of each approach is displayed to the right of their names. If the intervals of two forecast reconciliation approaches do
not overlap, this indicates a statistically different performance. Thus, approaches that do not overlap with the green interval are considered significantly worse than the best, and
vice-versa. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
using the sntz heuristic, and the corresponding forecast skills over the
benchmark forecasts PERS𝑏𝑢. Overall, the accuracy improvements of
24
the new proposed approaches over the persistence model are in the
range 16.5%–46.5%, whereas 3𝑇 𝐼𝐸𝑅𝑏𝑢 improvements are in the range
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Table 6
Forecast accuracy of selected non-negative spatio-temporal reconciliation approaches
and base forecasts in terms of nRMSE(%), nMBE(%), and forecast skill over the PERS𝑏𝑢
enchmark. Hourly and daily forecasts, forecast horizon: operating day. Bold entries and
talic entries identify the best and the second best performing approaches, respectively.
or hourly and daily forecasts produced by fully coherent spatio-temporal reconciliation
pproaches, the nMBE(%) indices are equal (see Eq. (24)).
Approach 0 1 2

H D H D H D

nRMSE(%)

PERS𝑏𝑢 34.62 20.23 43.15 24.57 59.75 30.65
3TIER𝑏𝑢 26.03 12.48 33.95 16.75 53.46 25.19
ost(𝑠𝑡𝑟𝑢𝑐) 26.64 15.73 32.99 19.00 46.51 23.97

KA(𝑤𝑙𝑠𝑣te , 𝑤𝑙𝑠sp) 23.59 13.55 30.23 16.91 44.48 22.21
st(𝑠𝑡𝑟𝑢𝑐sp , 𝑏𝑢te) 21.99 12.38 28.80 15.82 49.76 24.33
st(𝑤𝑙𝑠sp , 𝑏𝑢te) 21.23 10.82 28.97 15.01 49.88 23.66
st(𝑠𝑡𝑟𝑢𝑐te , 𝑏𝑢sp) 24.81 14.43 31.41 17.80 45.30 22.93
st(𝑤𝑙𝑠𝑣te , 𝑏𝑢sp) 23.50 13.42 30.13 16.78 44.42 22.12
ost(𝑤𝑙𝑠𝑣) 23.63 13.64 30.21 17.01 44.44 22.27
ost(𝑏𝑑𝑠ℎ𝑟) 24.13 13.92 30.45 17.12 45.24 22.54

nMBE(%)

PERS𝑏𝑢 0.075 0.058 0.075
3TIER𝑏𝑢 −4.213 −3.745 −4.362
ost(𝑠𝑡𝑟𝑢𝑐) −1.079 −0.973 −1.109

KA(𝑤𝑙𝑠𝑣te , 𝑤𝑙𝑠sp) −0.691 −0.823 −1.399
st(𝑠𝑡𝑟𝑢𝑐sp , 𝑏𝑢te) −1.834 −1.593 −1.935
st(𝑤𝑙𝑠sp , 𝑏𝑢te) −2.810 −2.418 −2.910
st(𝑠𝑡𝑟𝑢𝑐te , 𝑏𝑢sp) −1.435 −1.308 −1.473
st(𝑤𝑙𝑠𝑣te , 𝑏𝑢sp) −1.429 −1.320 −1.454
ost(𝑤𝑙𝑠𝑣) −1.312 −1.195 −1.335
ost(𝑏𝑑𝑠ℎ𝑟) −0.734 −0.734 −0.728

forecast skill

3TIER𝑏𝑢 0.248 0.383 0.213 0.318 0.105 0.178
ost(𝑠𝑡𝑟𝑢𝑐) 0.231 0.222 0.235 0.227 0.222 0.218

KA(𝑤𝑙𝑠𝑣te , 𝑤𝑙𝑠sp) 0.319 0.330 0.299 0.312 0.256 0.275
st(𝑠𝑡𝑟𝑢𝑐sp , 𝑏𝑢te) 0.365 0.388 0.333 0.356 0.167 0.206
st(𝑤𝑙𝑠sp , 𝑏𝑢te) 0.387 0.465 0.329 0.389 0.165 0.228
st(𝑠𝑡𝑟𝑢𝑐te , 𝑏𝑢sp) 0.283 0.287 0.272 0.276 0.242 0.252
st(𝑤𝑙𝑠𝑣te , 𝑏𝑢sp) 0.321 0.337 0.302 0.317 0.257 0.278
ost(𝑤𝑙𝑠𝑣) 0.317 0.326 0.300 0.308 0.256 0.273
ost(𝑏𝑑𝑠ℎ𝑟) 0.303 0.312 0.294 0.303 0.243 0.265

10.5%–38.3%. Partly bottom-up approaches, with spatial reconciliation
at the first step (i.e., st(𝑤𝑙𝑠sp, 𝑏𝑢te) and st(𝑠𝑡𝑟𝑢𝑐sp, 𝑏𝑢te)) show a good
performance for the six series at levels 0 and 1. For the 318 disaggre-
gated series at the Plant level, st(𝑤𝑙𝑠𝑣te, 𝑏𝑢sp) and ost(𝑤𝑙𝑠𝑣) rank first
nd second, respectively, and their accuracy indices are very close each
ther, whereas the nMBE(%) of ost(𝑤𝑙𝑠𝑣) is lower than st(𝑤𝑙𝑠𝑣te, 𝑏𝑢sp).
n addition, all the considered non-negative forecast reconciliation
pproaches, even using the sntz heuristic (see Section 4.1), have smaller
ias than the NWP forecasts 3TIER.

From Table 7 it emerges that even for distinct 1 series (Transmis-
ion Zones), the new approaches perform better than all the approaches
onsidered by Yagli et al. (2019), reported in Table 4.

Furthermore, almost all the new approaches significantly outper-
orm PERS𝑏𝑢, 3TIER𝑏𝑢, and ost(𝑠𝑡𝑟𝑢𝑐) for both hourly and daily forecasts
Fig. 8).

For a more compelling comparison of different forecasting methods,
n Table 8 are shown the forecast skills in terms of nRMSE of the new
patio-temporal reconciliation approaches over the more challenging
WP 3TIER𝑏𝑢 forecasts. All the forecasts skills are positive, and in a

ange between 0.047 and 0.184, for the hourly PV generated power
orecasts at any spatial level. In this case it turns out that the new fore-
ast reconciliation approaches, in addition to assuring full coherence
nd non-negativity of the revised forecasts, have a better forecasting
ccuracy. For daily forecasts, however, the picture is less clear-cut. The
ew forecasting approaches always improve for the 318 disaggregate
eries at the Plant level (2), whereas for ISO and Transmission Zones
his happens only for two partly bottom-up approaches.
25

2

Finally, focusing on the two best performing approaches of the
orecasting experiment (st(𝑤𝑙𝑠𝑣te, 𝑏𝑢sp) and ost(𝑤𝑙𝑠𝑣)), and looking at
he nRMSEs of the individual series, it is worth noting that:

• st(𝑤𝑙𝑠𝑣te, 𝑏𝑢sp) always produces more accurate forecasts than
ost(𝑠𝑡𝑟𝑢𝑐), for any series and granularity (Fig. 9);

• the accuracy increases of st(𝑤𝑙𝑠𝑣te, 𝑏𝑢sp) over the NWP approach
3TIER𝑏𝑢 are still clear (Fig. 10), even though for daily forecasts
3TIER𝑏𝑢 performs better in about 1 case out 4;

• the accuracy of st(𝑤𝑙𝑠𝑣te, 𝑏𝑢sp) is practically indistinguishable
from that of ost(𝑤𝑙𝑠𝑣) (Fig. 11).

We may thus conclude that, for the PV324 dataset considered
n this work, a thorough exploitation of spatio-temporal hierarchies
ignificantly improves the forecasting accuracy over the approaches
onsidered in Yagli et al. (2019). In particular, the use of the in-sample
ase forecast errors, even in the simple diagonal versions of te(𝑤𝑙𝑠𝑣)
first step of st(𝑤𝑙𝑠𝑣te, 𝑏𝑢sp)), and ost(𝑤𝑙𝑠𝑣), increases the forecasting
ccuracy at different time granularities.

. Conclusion

Renewable energy is providing increasingly more energy to the
rid all over the world. But grid operators must carefully manage the
alance between the generation and consumption of energy to make
he best use of abundant renewable energy. For an ISO, this provides
reater grid stability, higher revenue and better use of what sun is
vailable at any one time. Better short-term solar energy forecasts mean
ower-emissions, cheaper energy and a more stable electricity grid.
olar forecasting is thus a key tool to achieve these results. In this
aper, spatio-temporal point forecast reconciliation has been applied to
enerate non-negative, fully coherent (both in space and time) forecasts
f PV generated power. Both methodological and practical issues have
een tackled, in order to develop effective and easy-to-handle spatio-
emporal forecasting approaches. In addition to assuring both spatial
nd temporal coherence, and non-negativity of the reconciled forecasts,
he results show that for the considered dataset, spatio-temporal fore-
ast reconciliation significantly improves on the sequential procedures
roposed by Yagli et al. (2019), at any geographical level of the
ierarchy and for any temporal aggregation order. It is worth noting
hat for the hourly PV generated power at any spatial level, all forecasts
kills are positive and range between 4.7% and 18.4% when the NWP
TIER is used as reference model.

However, these findings should be considered neither conclusive,
or valid in general. Other forecasting experiments, through simula-
ions and using other datasets, as well as in solar forecasting and in
ther application fields, should be performed to empirically robustify
he results shown so far. In addition, other research queries could
aise in the field of spatio-temporal PV forecast reconciliation, like
sing reduced temporal hierarchies, as well as forecasting through ap-
ropriate Machine Learning end-to-end approaches (Stratigakos et al.,
022), and probabilistic instead of deterministic (point) forecasting
Panamtash and Zhou, 2018, Jeon et al., 2019, Yang, 2020, Yagli et al.,
020, Ben Taieb et al., 2021, Panagiotelis et al., 2022). All these topics
re left for future research.
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Table 7
Forecast accuracy of selected non-negative spatio-temporal reconciliation approaches and base forecasts in terms of nRMSE(%),
nMBE(%), and forecast skill over the PERS𝑏𝑢 benchmark, for the series at 1 level (Transmission Zones). Hourly and daily
forecasts, forecast horizon: Operating day. Bold entries and italic entries identify the best and the second best performing
approaches, respectively. For hourly and daily forecasts produced by fully coherent spatio-temporal reconciliation approaches,
the nMBE(%) indices are equal (see Eq. (24)).

Approach TZ1 TZ2 TZ3 TZ4 TZ5

H D H D H D H D H D

nRMSE(%)

PERS𝑏𝑢 28.72 16.12 40.27 22.40 46.48 26.96 52.82 29.75 47.44 27.62
3TIER𝑏𝑢 22.81 10.43 33.34 16.72 34.01 17.06 46.40 22.80 33.16 16.75
ost(𝑠𝑡𝑟𝑢𝑐) 21.92 12.41 30.84 17.30 34.67 20.21 41.84 23.84 35.66 21.23

KA(𝑤𝑙𝑠𝑣te , 𝑤𝑙𝑠sp) 20.23 11.10 28.57 15.43 30.98 17.45 39.72 22.09 31.64 18.51
st(𝑠𝑡𝑟𝑢𝑐sp , 𝑏𝑢te) 20.15 10.92 27.01 14.37 28.74 15.74 38.12 20.89 29.99 17.17
st(𝑤𝑙𝑠sp , 𝑏𝑢te) 19.33 9.72 28.11 14.18 29.55 15.10 39.20 20.17 28.68 15.88
st(𝑠𝑡𝑟𝑢𝑐te , 𝑏𝑢sp) 21.04 11.63 29.55 16.24 32.57 18.73 40.51 22.67 33.37 19.75
st(𝑤𝑙𝑠𝑣te , 𝑏𝑢sp) 20.20 10.98 28.53 15.35 30.89 17.37 39.69 22.01 31.32 18.19
ost(𝑤𝑙𝑠𝑣) 20.18 11.18 28.53 15.50 30.97 17.53 39.56 22.16 31.84 18.69
ost(𝑏𝑑𝑠ℎ𝑟) 21.00 11.74 29.25 16.02 31.63 17.85 39.73 22.27 30.65 17.74

nMBE(%)

PERS𝑏𝑢 −0.013 −0.099 0.127 0.030 0.050
3TIER𝑏𝑢 −1.967 −3.215 −3.636 −7.364 −2.542
ost(𝑠𝑡𝑟𝑢𝑐) −0.422 −1.082 −0.864 −1.707 −0.790

KA(𝑤𝑙𝑠𝑣te , 𝑤𝑙𝑠sp) −0.575 −0.959 −0.814 −1.348 −0.417
st(𝑠𝑡𝑟𝑢𝑐sp , 𝑏𝑢te) −0.702 −1.434 −1.514 −3.390 −0.926
st(𝑤𝑙𝑠sp , 𝑏𝑢te) −1.437 −2.237 −2.530 −4.937 −0.949
st(𝑠𝑡𝑟𝑢𝑐te , 𝑏𝑢sp) −0.620 −1.300 −1.224 −2.243 −1.153
st(𝑤𝑙𝑠𝑣te , 𝑏𝑢sp) −0.890 −1.417 −1.246 −2.039 −1.011
ost(𝑤𝑙𝑠𝑣) −0.768 −1.330 −1.169 −1.865 −0.843
ost(𝑏𝑑𝑠ℎ𝑟) −0.652 −0.727 −0.676 −0.828 −0.778

forecast skill

3TIER𝑏𝑢 0.206 0.353 0.172 0.254 0.268 0.367 0.121 0.234 0.301 0.394
ost(𝑠𝑡𝑟𝑢𝑐) 0.237 0.230 0.234 0.228 0.254 0.250 0.208 0.199 0.248 0.231

KA(𝑤𝑙𝑠𝑣te , 𝑤𝑙𝑠sp) 0.296 0.312 0.291 0.311 0.334 0.353 0.248 0.258 0.333 0.330
st(𝑠𝑡𝑟𝑢𝑐sp , 𝑏𝑢te) 0.299 0.323 0.329 0.359 0.382 0.416 0.278 0.298 0.368 0.378
st(𝑤𝑙𝑠sp , 𝑏𝑢te) 0.327 0.397 0.302 0.367 0.364 0.440 0.258 0.322 0.396 0.425
st(𝑠𝑡𝑟𝑢𝑐te , 𝑏𝑢sp) 0.268 0.279 0.266 0.275 0.299 0.305 0.233 0.238 0.297 0.285
st(𝑤𝑙𝑠𝑣te , 𝑏𝑢sp) 0.297 0.319 0.292 0.315 0.335 0.356 0.249 0.260 0.340 0.341
ost(𝑤𝑙𝑠𝑣) 0.297 0.307 0.292 0.308 0.334 0.350 0.251 0.255 0.329 0.323

ost(𝑏𝑑𝑠ℎ𝑟) 0.269 0.272 0.274 0.285 0.320 0.338 0.248 0.251 0.354 0.358
Fig. 9. Comparison of nRMSE(%) between non-negative reconciliation approaches: ost(𝑠𝑡𝑟𝑢𝑐) and st(𝑤𝑙𝑠𝑣te , 𝑏𝑢sp). Forecast horizon: operating day. The black line represents the
bisector, where the nRMSE’s for both approaches are equal. On the top-left (bottom-right) corner of each graph, the percentage of points above (below) the bisector is reported.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
26
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Fig. 10. Comparison of nRMSE(%) between non-negative reconciliation approaches: 3TIER𝑏𝑢 and st(𝑤𝑙𝑠𝑣te , 𝑏𝑢sp). Forecast horizon: operating day. The black line represents the
bisector, where the nRMSE’s for both approaches are equal. On the top-left (bottom-right) corner of each graph, the percentage of points above (below) the bisector is reported.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Fig. 11. Comparison of nRMSE(%) between non-negative reconciliation approaches: ost(𝑤𝑙𝑠𝑣) and st(𝑤𝑙𝑠𝑣te , 𝑏𝑢sp). Forecast horizon: operating day. The black line represents the
bisector, where the nRMSE’s for both approaches are equal. On the top-left (bottom-right) corner of each graph, the percentage of points above (below) the bisector is reported.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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Table 8
Forecast skills over the NWP 3TIER𝑏𝑢 forecasts of ost(𝑠𝑡𝑟𝑢𝑐) and of the new spatio-
temporal forecast reconciliation approaches. Red entries identify negative skills. (For
interpretation of the references to color in the entries of this table, the reader is referred
to the web version of this article).

Approach Hourly forecasts Daily forecasts

0 1 2 0 1 2

ost(𝑠𝑡𝑟𝑢𝑐) −0.023 0.028 0.130 −0.260 −0.134 0.048

KA(𝑤𝑙𝑠𝑣te , 𝑤𝑙𝑠sp) 0.094 0.110 0.168 −0.085 −0.010 0.118
st(𝑠𝑡𝑟𝑢𝑐sp , 𝑏𝑢te) 0.155 0.152 0.069 0.008 0.056 0.034
st(𝑤𝑙𝑠sp , 𝑏𝑢te) 0.184 0.147 0.067 0.133 0.104 0.061
st(𝑠𝑡𝑟𝑢𝑐te , 𝑏𝑢sp) 0.047 0.075 0.153 −0.156 −0.063 0.089
st(𝑤𝑙𝑠𝑣te , 𝑏𝑢sp) 0.097 0.113 0.169 −0.075 −0.002 0.122
ost(𝑤𝑙𝑠𝑣) 0.092 0.110 0.169 −0.093 −0.016 0.116
ost(𝑏𝑑𝑠ℎ𝑟) 0.073 0.103 0.154 −0.115 −0.022 0.105

Appendix A. The index nMBE for different temporal aggregation
orders with fully coherent spatio-temporal forecast reconciliation
approaches

Let 𝑦[𝑘]𝑡 , 𝑡 = 1,… , 𝑁𝑘, 𝑘 ∈ , be the spatio-temporal reconciled fore-
asts for a single time series in a complete time cycle (see Section 2).
he temporal coherency implies that

𝑦[𝑘]𝑡 =
𝑘𝑡
∑

𝑗=𝑘(𝑡−1)+1
𝑦[1]𝑗 , ∀𝑘 ∈ , (A.1)

where 𝑦[1]𝑗 , 𝑗 = 1,… , 𝑁1, denotes the forecasts for the series observed
at the highest time frequency.

As the realizations of the time series are by definition temporally
coherent (i.e., 𝑦[𝑘]𝑡 =

∑𝑘𝑡
𝑗=𝑘(𝑡−1)+1 𝑦

[1]
𝑗 ), the normalized Mean Bias Error

defined in Eq. (23) can be written as

nMBE[𝑘] =
1
𝑁𝑘

∑𝑁𝑘
𝑡=1

(

𝑦[𝑘]𝑡 −𝑦[𝑘]𝑡

)

1
𝑁𝑘

∑𝑁
𝑡=1 𝑦

[𝑘]
𝑡

=
∑𝑁𝑘

𝑡=1

(

∑𝑘𝑡
𝑗=𝑘(𝑡−1)+1 𝑦

[1]
𝑗 −

∑𝑘𝑡
𝑗=𝑘(𝑡−1)+1 𝑦

[1]
𝑗

)

∑𝑁𝑘
𝑡=1

∑𝑘𝑡
𝑗=𝑘(𝑡−1)+1 𝑦

[1]
𝑗

=
∑𝑁1

𝑗=1

(

𝑦[1]𝑡 −𝑦[1]𝑡

)

∑𝑁1
𝑗=1 𝑦

[1]
𝑗

= nMBE[1], 𝑘 ∈ {𝑚, 𝑘𝑝−1,… , 𝑘2}.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.solener.2023.01.003.
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