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In the classical stochastic resetting problem, a particle, moving according to some stochastic
dynamics, undergoes random interruptions that bring it to a selected domain, and then, the process
recommences. Hitherto, the resetting mechanism has been introduced as a symmetric reset about
the preferred location. However, in nature, there are several instances where a system can only
reset from certain directions, e.g., catastrophic events. Motivated by this, we consider a continuous
stochastic process on the positive real line. The process is interrupted at random times occurring
at a constant rate, and then, the former relocates to a value only if the current one exceeds a
threshold; otherwise, it follows the trajectory defined by the underlying process without resetting.
An approach to obtain the exact non-equilibrium steady state of such systems and the mean first
passage time to reach the origin is presented. Furthermore, we obtain the explicit solutions for
two different model systems. Some of the classical results found in symmetric resetting such as the
existence of an optimal resetting, are strongly modified. Finally, numerical simulations have been
performed to verify the analytical findings, showing an excellent agreement.

I. INTRODUCTION

Ecosystems regularly undergo either environmental or
anthropogenic disturbances which alter the number of
species as well as the size of their populations. Natu-
ral disasters or catastrophes, such as droughts, fires, epi-
demics or invasions may cause major declines. In the
aftermath of these, depleted populations have to recover
from low population sizes with an increased risk of ex-
tinction [1, 2]. Similarly, financial crashes affect gross
domestic product, asset prices, consumptions and invest-
ments, and therefore, strongly modify typical business
cycles [3, 4].

These two examples show that, besides being rare and
extreme, such events are not followed by episodes of com-
parable large increases in the corresponding variables.
Explaining abrupt crashes is challenging, especially when
trying to find a general tool applicable to a large class of
stochastic models. Indeed, these crises have the potential
to alter the temporal dynamics of state variables as well
as the steady state properties of the system.

In this work, we introduce a toy framework which can
be applied to a large class of stochastic processes and
can account for abrupt changes in some state variable.
It deals with the effects of sudden drops by introducing
random resetting events to a non-vanishing value within
a diffusive stochastic process.

As it stands today, stochastic resetting was originally
introduced in the context of search processes [5–10]. Re-
markably, its foundation has brought also a collection of
appealing results that include the non-equilibrium steady
state [11–19], optimization of the mean first passage time
[20–22], and fluctuation theorems [23–27].

Stochastic resetting has been used in a plethora of ap-
plications [7]. In the context of population dynamics,
resetting is known as catastrophe and mimics the effects
of natural disasters in the ecosystem. Indeed, some of the
primordial notions of stochastic resetting for the model-
ing of catastrophic events can be found in the literature

[28–34]. However, these models have been usually de-
scribed through a dynamics based on jump processes in
which resetting is added. The main goal of this paper is
to apply a comprehensive theoretical framework provided
by Markov processes with reset to population dynamics
described through diffusion processes.

Mimicking the perturbation produced by a natural dis-
aster or a sudden financial drop using stochastic resetting
forces us to re-define the assumptions of the relocations.
More specifically, the reset events have to be asymmetric,
i.e., albeit the population size (or the particle position)
may plummet owing to a catastrophic event, it is never-
theless impossible that an offsetting positive increment
of the variable occurs owing to another similar event.

Motivated by this, we present an approach to a general
problem of asymmetric stochastic resetting in diffusive
processes. We apply it to two paradigmatic examples
which exemplify the main features and consequences of
such asymmetry. Herein, we tackle the following two
relevant questions: i) What is the hallmark of such a
resetting mechanism at stationarity? In other words, how
is the non-equilibrium stationary state modified due to
resetting? ii) How does the mean lifetime of a population
change under asymmetric stochastic resetting?

The remaining of the paper is organized as follows. In
Sec. II, we discuss the basis of our model to mimic popu-
lation dynamics involving catastrophic events. The non-
equilibrium steady state and the mean first passage time,
respectively, are discussed in Secs. III and IV. Therein,
we introduce a general formalism that afterwards partic-
ularized to two specific situations of interest. Finally, we
present the main conclusion of our work in Sec. V. Some
technical details and lengthier auxiliary calculations are
shown in Appendices.
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FIG. 1. Sketch of asymmetric stochastic resetting process.
The system evolves over time (zigzag curve) with interrupting
events (horizontal arrows) which bring the former to a certain
value xr > 0 with rate r(x) = rΘ(x− xr).

II. MODEL

We approximate the evolution of the population size,
i.e., the number of individuals, of a given species by a
continuous-state stochastic process defined on the posi-
tive real line. Starting with a positive population size, at
later times the number of individuals, x, is governed by
the following Langevin dynamics,

dx

dt
= A(x) +

√
2B(x)η(t), (1)

where A(x) and B(x) (A(0) > 0 and B(0) = 0 in pop-
ulation dynamics), respectively, are the state-dependent
drift and diffusion terms. Also, η(t) is a Gaussian white
noise with zero mean and delta correlated, i.e., 〈η(t)〉 = 0
and 〈η(t)η(t′)〉 = δ(t − t′). The above stochastic differ-
ential equation has to be interpreted according to the
Itô scheme [35]. Diffusive models have been proven to
be very useful to capture emergent patterns in popula-
tion dynamics [43, 46–48]. Remarkably, Eq. (1) is very
general, allowing the study of generalized models involv-
ing heterogeneous diffusion, which are processes of great
interest in the field of anomalous diffusion [36–40].

In addition to the dynamics described by Eq. (1), we
assume that there is a stochastic resetting to a constant
value xr > 0. The resetting events occur at random
times with a constant rate r, but only if the population
size is above the resetting threshold xr. The schematic
representation of such a composed process is shown in
Fig. 1.

Of course, different choices of A(x) and B(x) lead to
completely different stochastic models, with very differ-
ent physical properties. Nevertheless, it is possible to
study some relevant features of the process with a uni-

fied approach, which we develop here. Later on, we will
look into two more specific cases, which have important
applications: (I) pure homogeneous diffusion; (II) simple
population dynamics with demographic stochasticity.

The resetting mechanism introduced above is a par-
ticular but relevant case of resetting. It corresponds to
regular stochastic resetting with a state-dependent rate
r(x) = rΘ(x− xr), where Θ(·) is the Heaviside function
that guarantees that resetting only occurs when popula-
tion size is larger than xr, in contrast to standard sym-
metric resetting mechanism. This is another appealing
aspect of our modeling since the formulation of state-
dependent resetting rates has been already introduced
[6, 41, 42] but the applications have been, to the best of
our knowledge, quite scarce.

The dynamics of the propagator p(x, t|x0), which is the
probability of reaching the state x at time t departing
from initial state x0 at time zero, is captured by the
master equation:

∂p(x, t|x0)

∂t
=− ∂J(x, t|x0)

∂x
− rΘ(x− xr)p(x, t|x0)

+ rδ(x− xr)

∫ ∞
xr

dy p(y, t|x0), (2)

where J(x, t|x0) := A(x)p(x, t|x0)− ∂x[B(x)p(x, t|x0)] is
the probability flux that stems from the resetting-free dy-
namics in Eq. (1). The second term on the right hand
side corresponds to the loss rate of the probability from x
due to resetting, while the third term represents the cor-
responding gain rate of the probability at x = xr coming
from the resetting of all positions larger than xr. Note
that the resetting term into Eq. (2) is a particularization
of the general term for state-dependent resetting rate,
firstly introduced in [6], for our specific choice of asym-
metric resetting.

III. NON-EQUILIBRIUM STATIONARY STATE

As stated in the introduction, the non-equilibrium
steady state for the symmetric resetting has been already
studied in the literature [7, 11–19]. However, in this pa-
per, we study the models where the resetting is asymmet-
ric with respect to its resetting location. Herein, we focus
on the study of the non-equilibrium stationary state of
Eq. (2), pss(x), subject to reflecting boundary conditions
at x = 0. We can obtain pss(x) by setting the left hand
side of the Eq. (2) to zero, and solving for the distribu-
tion. Since we have to deal with a discontinuity in the
equation (2), it is handy to define PL(x) and PR(x) as
the stationary solutions to the left and to the right of xr,
respectively. Therefore, the corresponding fluxes JL(x)
and JR(x) obey the following equations

∂xJL(x) = 0, 0 < x < xr, (3a)

∂xJR(x) = −rPR(x), x > xr. (3b)
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Note that, in our problem, it is convenient to study the
current contributions explicitly in this way. These equa-
tions have to be complemented with the boundary con-
ditions

JL(0) = 0, (4a)

lim
x→∞

JR(x) = 0, (4b)

and the matching conditions

PR(xr) = PL(xr), (5a)

JR(xr) = JL(xr) + r

∫ ∞
xr

dxPR(x). (5b)

Eq. (5a) is the continuity condition for our solution,
whereas the kink condition in Eq. (5b) is obtained by
integrating Eq. (2) from xr − ε to xr + ε and then taking
the limit ε→ 0+.

Since there is no probability leakage from the bound-
aries, the normalization is preserved over the whole evo-
lution, ∫ xr

0

dxPL(x, t) +

∫ ∞
xr

dxPR(x) = 1. (6)

It could seem that we have an excess of conditions, since
we have two second order ODEs (3), and five conditions
to fulfill, i.e., Eqs. (4), (5) and (6). This apparent para-
dox is resolved when studying carefully the kink con-
dition (5b). Integrating Eq. (3b) from xr to ∞, using
the boundary conditions (4b), and taking into account
that JL(x) = 0, one obtains the matching condition (5b).
Thus, the kink condition becomes a trivial identity that
always holds.

Let us first focus on the region 0 < x < xr. We have
to solve Eq. (3a) with the reflecting boundary condition
defined in (4a). This is a first order linear ODE for PL(x)
whose solution is determined up to an arbitrary constant
N1:

PL(x) = fL(N1, x), (7)

where

fL(N1, x) =
N1

B(x)
exp

[∫ x

dy
A(y)

B(y)

]
, (8)

that is, the equilibrium solution [35] of the stochastic
model without resetting.

When x is larger than xr, we solve Eq. (3b) with a
reflecting boundary at infinity, i.e., Eq. (4b). Thus, the
general solution is given by

PR(x) = fR(N2, x), (9)

determined up to another arbitrary constant N2. The
constants N1 and N2 can be found using conditions (5a)
and (6).

Hitherto, we have outlined a procedure to obtain the
solution for arbitrary smooth functions A(x) and B(x).

Clearly, the choice of a specific stochastic model is crucial
and could lead to computational difficulties in the deter-
mination of an explicit solution, especially in the calcu-
lation of fR (9). In order to appreciate analogies and dif-
ferences with processes with symmetric resetting, in the
following, we have considered two prototypical cases of
stochastic processes submitted to asymmetric resetting.
As well as being of intrinsic theoretical importance, they
are also relevant in applications.

In the first case (I), we consider a particle which under-
goes pure diffusion with diffusive constant D on the real
positive line. When hitting the origin, it bounces back
to the positive domain, whereas when (and only when)
its position is larger than xr, it is re-located at x = xr
at random times with a constant rate r. One obtains the
stationary distribution (see Appendix B for details):

pss(x) =


1

xr +
√
D/r

for 0 ≤ x ≤ xr,

exp
[
−
√
r/D(x− xr)

]
xr +

√
D/r

for x > xr.

(10)

Note that the probability of finding the particle at po-
sitions smaller than xr is uniform, whereas there is an
exponential decay for x > xr. The exponential decay
is the hallmark of standard diffusion [5] with symmetric
resetting, whereas, in the region without resetting, we
recover the uniform solution.

In the second case (II), we consider an ecological model
defined by A(x) = b−x and B(x) = x. The details of its
derivation are presented in Appendix A. The drift term
accounts for immigration and net death rate of individu-
als in a certain region. Instead, B(x) is linear on the pop-
ulation size, because the model assumes that the source of
stochasticity is only due to individual random births and
deaths. This model has been used to explain some macro-
ecological patterns in species-rich ecosystems [43, 44]. In
this case the asymmetric resetting describes how the pop-
ulation size plummets to a smaller size in the aftermath
of environmental catastrophic events. The solution for
the stationary distribution of this ecological model reads

pss(x) =

Nx
−1+be−x for 0 ≤ x ≤ xr,

Nx−1+be−x
U(r, b, x)

U(r, b, xr)
for x > xr,

(11)

where N is a normalization constant (see Appendix B
for further details) and U(α, β, x) is the confluent hy-
pergeometric function of the second kind [45]. Remark-
ably, pss(x) is a very well known function in theoretical
ecology, which is used to quantify the total number of
species with a given number of individuals within some
spatial region. In diffusive models of population dynam-
ics, this empirical pattern is usually well approximated
by a gamma distribution [43, 46–48] when there is no
resetting.
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FIG. 2. Relaxation to the steady state distribution pss(x).
Panel (a): (I) pure diffusion. Panel (b): (II) ecological model.
The solid curve stands for the stationary theoretical predic-
tion while circles, squares, and triangles are obtained from the
numerical simulation at three different times. The parameters
for panel (a) are x0 = xr = 2, r = 0.5, and D = 1; and for
panel (b) b = 0.9, x0 = xr = 0.25, and r = 0.5. In each case,
the vertical dashed line corresponds to the resetting location
xr.

In Fig. 2, we compare the theoretical prediction (solid
curve) of the steady state distribution pss(x) given in
Eqs. (10) and (11) with the distribution obtained by nu-
merical simulations (circles, squares, and triangles) at
three different times. Herein, we have taken the initial
condition equal to xr, but this has no effect on the final
stationary state. Notice that, as the observation time
increases, the difference between theory and finite time
simulations decreases, up to becoming negligible within
the plotted range, since simulations have reached the sta-
tionary regime.

IV. MEAN FIRST PASSAGE TIME

To study the mean first passage time (MFPT) to reach
x = 0, we have to assume that the origin of the real axis
is an absorbing boundary. If the probability to hit that
boundary is one as t → ∞, then the equation for the
MFPT departing from x, τ(x), is

−1 =A(x)∂xτ(x) +B(x)∂2xτ(x)

+ rΘ(x− xr)[τ(xr)− τ(x)], (12)

A comprehensive derivation of the above equation based
on the backward master equation (2) is reserved in Ap-
pendix C. This equation has to be complemented with
the boundary conditions

τ(0) = 0, (13a)

lim
x→∞

τ(x) is finite. (13b)

Note that the presence of resetting entails a finite MFPT
as x → ∞, since the reset connects any value of x > xr
with xr.

In order to find the solution of Eq. (12), we follow
a strategy similar to before: solving the equation to
both sides of xr separately and then imposing the proper

FIG. 3. Asymptotic of [τ(x) − τ(xr)] with respect to x.
Clearly, we can see that [τ(x) − τ(xr)] approaches r−1 (hor-
izontal red dashed line) as x → ∞. The parameters used
in the above plots for diffusion model (panel (a)) are D =
1, xr = 5, r = 0.1 and for ecological one (panel (b)) are
xr = 1.0, b = 0.8, r = 2.0.

boundary and matching conditions. In the following, we
present the solutions for the two cases of interest we have
introduced previously. The detailed derivation is rele-
gated to the Appendix D.

In the case of pure diffusion the MFPT reads

τ(x) =


− x2

2D
+ x

(
xr
D

+
1√
rD

)
0 ≤ x ≤ xr,

1− e−
√

r/D(x−xr)

r
+
x2r
2D

+
xr√
rD

x > xr.

(14)

On the other hand, the mean lifetime in the ecological
case equals to

τ(x) = τL(x)Θ(xr − x) + τR(x)Θ(x− xr), (15)

where

τL(x) =

∫ x

0

dy y−bey
[
Γ(b, y)− Γ(b, xr)

+
U(1 + r, 1 + b, xr)

U(r, b, xr)
xbre
−xr

]
, (16a)

τR(x) =τL(xr) +
1

r

[
1− U(r, b, x)

U(r, b, xr)

]
. (16b)

Note that limx→∞ τ(x) − τ(xr) = 1/r in both cases, as
shown in In Fig. 3. Indeed, this general property can be
derived from Eq. (12), when considering Eq. (13b) and
taking the limit x→∞.

We plot the theoretical MFPT [Eqs. (14) and (15)]
with respect to the initial location x in Fig. 4 for both
cases. For a fixed r, it is clear that the MFPT reaches
asymptotically a constant value as x increases. More-
over, we highlight that τ(x) monotonically decreases as
r increases for a fixed x (see Fig. 5). This is because the
asymmetric resetting brings the system to xr only when
x is larger than xr. Hence, our results depart from the
ones obtained in [6], since the asymmetry in the reset-
ting makes the dependence monotonic and removes any
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FIG. 4. Mean first passage time τ(x). Panel (a): (I) pure
diffusion. Panel (b): (II) ecological model. It is observed that
τ(x) reaches a constant value for large x, and it increases with
the initial location of the system. As it is reasonable, the mean
first passage time decreases with resetting rate r for given x.
The vertical dashed line indicates the resetting location xr.
The parameters for panel (a) are xr = 5 and D = 1; and
for panel (b) b = 0.5 and xr = 5. In each case, the vertical
dashed line corresponds to the resetting location xr.

FIG. 5. Mean first passage time τ(xr) as a function the re-
setting rate r. Panel (a): (I) pure diffusion. Panel (b): (II)
ecological model. In both cases, solid curve is the analytical
prediction given by Eqs. (14) and (15) whereas the squares
are obtained from numerical simulations. The parameters for
the panel (a) are xr = x0 = 0.1 and D = 1; and for the panel
(b) xr = x0 = 0.1 and b = 0.5.

possibility of an optimal resetting rate, which stemmed
from the combined effect of resetting to both sides of
xr. Finally, we compare the analytical results of MFPT
[Eqs. (14) and (15)] with the numerical simulations in
Fig. 5 for both model systems, and they have an excel-
lent agreement.

In Fig. 6, the behavior of the mean first passage time
τ(x) is shown for two different models: diffusion system
(panel (a)) and ecological model (panel (b)). It is clear
that the τ(x) is monotonically decreasing with the reset-
ting rate r for given x. This is because the (asymmetric)
resetting always brings the system close to the absorb-
ing location in stark contrast to the symmetric resetting
where system can also reset to the opposite direction to
the absorbing location leads to non-monotonic behavior
as shown in the seminal work by Evans and Majumdar
[5].

FIG. 6. Mean first passage time τ(x) [given in (14) and (15)]
with respect to resetting rate r for given x. Herein, we show
τ(x) for diffusion model in panel (a) and the ecological model
in panel (b). As it is reasonable, the mean first passage time
decreases with resetting rate r for given x. For r → 0, τ(x)
diverges only for the diffusion model while it stays finite (in-
dicated by filled circles in panel (b)) for the ecological set-
ting, and is in agreement with the mean first passage time
in the absence of resetting. The parameters for panel (a) are
D = 1, xr = 5 and for panel (b) b = 0.5, xr = 5.

V. CONCLUSIONS

In this work, we have studied an asymmetric state-
dependent resetting mechanism for diffusive processes on
the positive real line. This model has allowed us to obtain
both i) the stationary state when the system is subject to
reflecting boundary conditions and ii) the mean first pas-
sage time to the the origin. We have exactly derived these
quantities in detail for two different model systems: the
paradigmatic homogeneous diffusion process, and an eco-
logical model for species-rich ecosystems. In both cases,
numerical simulations are in perfect agreement with our
theoretical predictions, validating our results.

An important motivation to study this class of mod-
els with asymmetric resetting relies on ecological appli-
cations. We have modeled the effect of a catastrophic
event as a sudden drop of the population to a fixed value
xr > 0. Such extreme events, owing to environmental
changes, may have disruptive consequences on ecosys-
tems. This is of course a caricature of reality, but this toy
model is nevertheless a good starting point that allows
exact mathematical treatment and initial investigations
of ecological or economic crashes. We have obtained that
the MFPT, which is the average time for a species to be-
come extinct, always decreases with the disaster rate r.
This is an intuitive result that contrasts with the usual
symmetric resetting in Brownian dynamics [6], where the
optimal resetting rate can be derived. However, in our
framework with asymmetry, the reset event always drives
the system closer to the absorbing position, thus decreas-
ing the first passage time on average.

As well as developing new interesting theoretical as-
pects of non-equilibrium statistical mechanics, asymmet-
ric stochastic resetting is an appealing tool for under-
standing fundamental features of natural disaster dynam-
ics in different systems, including ecosystems. A good
deal of realism could be achieved by considering xr a
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quenched random variable. The final stationary distribu-
tions and the MFPT should be averaged over the proba-
bility density function of xr, thus increasing the variabil-
ity of the final distributions.

The presented model is also applicable to other fields
beyond ecology and statistical mechanics. For instance,
the ecological model we have previously outlined is
known as the Cox–Ingersoll–Ross model [49] in the
mathematical finance literature. Such a paradigmatic
model with asymmetric resetting could be considered a
first approximation when including the effects of sudden
financial crises.

Appendix A: Ecological model in dimensionless
variables

The ecological model used in our work was introduced
and studied in detail in [47]. This model stems from
a continuous description of a birth and death process.
Specifically, the drift and diffusion coefficients, respec-
tively, are given by

A(x) = b− µx, B(x) = Dx. (A1)

Herein, there are three biological parameters, namely, µ,
b, and D. First, µ is the inverse of the characteristic
time associated with species turnover. Second, b takes
into account the effects from immigration. Finally, D
accounts for the demographic stochasticity.

It is handy to use a dimensionless description defined
by new variables x̃ = µx/D, t̃ = µt, and parameters b̃ =
b/D, r̃ = r/µ. Of course, the new timescale enters also
in the definition of the mean first passage time, τ̃ = µτ .
For the sake of simplicity, in our notation we drop the
tildes from now on. Using these dimensionless variables
and parameters, we have the drift and diffusion terms:

A(x) = b− x, B(x) = x. (A2)

Remarkably, once we define proper scales the stochastic
model without resetting reduces the number of parame-
ters from three to one parameter.

Appendix B: Explicit solution for the stationary
state

For the general case, the equation for the stationary
distribution in presence of asymmetric resetting is the
solution of the integro-differential equation,

0 =− ∂x[A(x)pss(x)] + ∂2x[B(x)pss(x)]

− rΘ(x− xr)pss(x) + rδ(x− xr)

∫ ∞
xr

dy pss(y),

(B1)

submitted to (i) natural boundary conditions in zero and
infinity, and the matching conditions discussed in the

main text, (ii) the matching condition at xr, and (iii)
the normalization from zero to infinity.

1. Case (I): Pure diffusion

First, we consider the simplest homogeneous diffusive
process, i.e., B(x) = D in the absence of any drift
A(x) = 0. Hence, this is a pure diffusion process on
the positive side of x-axis subjected to an asymmetric
resetting mechanism. In this case, the probability flux is
given by −D∂xpss(x) [see Eq. (B1)]. Therefore, the solu-
tions to the left and to the right of xr can be computed.
Specifically, we find that

fL(N1, x) = N1, (B2a)

fR(N2, x) = N2 e
−x
√

r/D, (B2b)

where N1 and N2 are the constants that can be deter-
mined using the matching and normalization conditions
discussed in the main text, and we obtain

N1 =
1

xr +
√
D/r

,

N2 =
exr

√
r/D

xr +
√
D/r

.

(B3)

Finally, substituting these N1,2, we find the stationary
probability density function given in Eq. (10).

2. Case (II): Ecological model

Now, we focus on solving the stationary distribution
in the ecological model defined in (A2). The solutions to
the left and to the right of xr can be computed, and we
get

fL(N1, x) = N1x
−1+b e−x, (B4a)

fR(N2, x) = fL(N2, x) U(r, b, x), (B4b)

where U(a, b, x) is the confluent hypergeometric function
of the second kind also known as Tricomi’s function. Im-
posing the matching and normalization conditions, we
obtain value of constants N1 and N2 in terms of the pa-
rameter of the model,

N1 =Γ(1 + r)Γ(1 + r − b)U(r, b, xr)

×
[
xbrΓ(−b)Γ(1 + r) 1F1(b− r, 1 + b,−xr)

+ Γ(1 + r − b) {Γ(b) 1F1(−r, 1− b, xr)

+ Γ(1 + r)U(r, b, xr) [Γ(b)− Γ(b, xr)]}
]−1

,

(B5a)

N2 =
N1

U(r, b, xr)
, (B5b)
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where 1F1(α;β;x) is the Kummer confluent hyperge-
ometric function, and Γ(z) :=

∫∞
0
dt e−ttz−1 and

Γ(z, a) :=
∫∞
a
dt e−ttz−1, respectively, are the gamma

and the incomplete gamma functions. Thus, we obtain
the final distribution as shown in Eq. (11), where for sim-
plicity, we write N = N1.

Appendix C: Derivation of the equation for the
mean first passage time

In this section, we obtain the mean first passage time
for the system to hit the target x = 0 (i.e., the absorb-
ing boundary) for the first time during the evolution.
It is always convenient to write the backward master
equation. With this, we study the probability density
function p(x, t|x0, t0) for the system to be in x at time
t starting from x0 at time t0 as a function of x0 and t0.
Note that in the backward equation, both x0 and t0 are
the variables in contrast to the case of forward formalism
where they play the role of parameters with x and t being
the variables. Our starting point to derive the backward
framework is the Chapman-Kolmogorov equation [35],

p(x, t|x0, t0) =

∫ ∞
0

dx1 p(x, t|x1, t1)p(x1, t1|x0, t0),

(C1)
where t1 ∈ (t, t0) is an intermediate time. If we differ-
entiate the above Eq. (C1) with respect to t1, introduce
the forward equation for p(x1, t1|x0, t0), carry out inte-
gration by parts and evaluate it at the end for t1 = t0,
we finally arrive at

−∂p(x, t|x0, t0)

∂t0
=

[
A(x0)

∂

∂x0
+B(x0)

∂2

∂x20

]
p(x, t|x0, t0)

+ rΘ(x− xr)

×
[
p(x, t|xr, t0)− p(x, t|x0, t0)

]
.

(C2)

The above equation is the desired backward master equa-
tion.

Integrating the above equation (C2) over x from 0 to
∞, shifting t0 by changing the variable t − t0 to t, and
then, differentiating with respect to time t, we obtain
the evolution equation for the first passage distribution
F (t, x) for a system departing from x and arriving at
x = 0 for the first time,

∂F (t, x)

∂t
=

[
A(x)

∂

∂x
+B(x)

∂2

∂x20

]
F (t, x)

+ rΘ(x− xr)
[
F (t, xr)− F (t, x)

]
. (C3)

Note that in order to simplify the notation we have
dropped the subindex 0 in x0. The above equation is
subjected to the boundary conditions F (0, x) = 0 and
limt→∞ F (t, x) = 0, where the latter condition ensures
that

∫∞
0
dt F (t, x) is finite.

Now, we define the probability of exiting through x = 0
departing from x regardless of the time required

Π(x) :=

∫ ∞
0

dt F (t, x), (C4)

where the boundary conditions for Π(x) are

Π(0) = 1, (C5a)

lim
x→∞

Π(x) is finite. (C5b)

While the first condition ensures the total exit probability
of the system started from the absorbing boundary is one,
the second one says that there is a finite probability of
the system to reach the absorbing boundary at x = 0
started from x→∞.

This quantity follows the following differential equation

0 =A(x)∂xΠ(x) +B(x)∂2xΠ(x)

+ rΘ(x− xr) [Π(xr)−Π(x)] . (C6)

The solution of Eq. (C6) given the boundary conditions
(C5) for the two cases of interest we have already intro-
duced in this paper is simply Π(x) = 1 since the system
eventually reach the absorbing boundary.

Now, the mean first passage time τ(x) for exiting
through x = 0 is defined as

τ(x) :=

∫∞
0
dt t F (t, x)

Π(x)
. (C7)

Multiplying equation (C3) by t and integrating over time
from 0 to∞, we obtain the differential equation for τ(x),

−Π(x) =A(x)∂x[Π(x)τ(x)] +B(x)∂2x[Π(x)τ(x)]

+ rΘ(x− xr) [Π(xr)τ(xr)−Π(x)τ(x)] , (C8)

where we have made use of limt→∞ tF (t, x) = 0. The
boundaries condition in this case are

τ(0) = 0, (C9a)

lim
x→∞

τ(x) is finite. (C9b)

Note that the presence of resetting provides that the
mean first passage time has to be finite for x→∞ since
the reset connects any value of x > xr with xr.

Eqs. (C6) and (C8) can be solved to the left and to
the right of xr separately. Boundary conditions (C5a)
and (C9a) apply to the left solution whereas the (C5b)
and (C9b) apply to the right solution. The full solution
of the both Π(x) and τ(x) can be obtained using match-
ing condition at xr (i.e., both functions and their first
derivatives should be continuous at x = xr). However,
these are difficult to obtain for general drift and diffusive
coefficient. In the following section, we study in detail the
two cases of interest taking into account that Π(x) = 1
therein.
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Appendix D: Explicit solution for the mean first
passage time

The equation for the mean first passage time in the
general case is given by (C8) submitted to boundary con-
ditions in (C9) and the matching condition. Below, we
study the two cases of interest reported in the main text.

1. Case (I): Pure diffusion

In the case of pure diffusion, the differential equation
for τ(x) becomes simply

− 1 = D∂2xτ(x) + rΘ(x− xr)[τ(xr)− τ(x)]. (D1)

We solve the above differential equation using the bound-
ary conditions (C9) and matching conditions and get the
solution reported in the main text

τ(x) =


− x2

2D
+ x

(
xr
D

+
1√
rD

)
0 ≤ x ≤ xr,

1− e−(x−xr)
√

r/D

r
+
x2r
2D

+
xr√
rD

x > xr.

(D2)

2. Case (II): Ecological model

In the ecological case, we find again that Π(x) = 1.
Thus, the mean first passage time τ(x) obeys the differ-
ential equation

−1 =(b− x)∂xτ(x) + x∂2xτ(x)

+ rΘ(x− xr)[τ(xr)− τ(x)]. (D3)

It is possible to solve the above differential equation using
the boundary conditions (C9) and the matching condi-
tions at x = xr. That yields the solution

τ(x) = τL(x)Θ(xr − x) + τR(x)Θ(x− xr), (D4)

where

τL(x) =

∫ x

0

dy y−bey
[
Γ(b, y)− Γ(b, xr)

+
U(1 + r, 1 + b, xr)

U(r, b, xr)
xbre
−xr

]
(D5a)

τR(x) =τL(xr) +
1

r

[
1− U(r, b, x)

U(r, b, xr)

]
, (D5b)

which is the solution reported in the main text. The
integral in Eq. (D5a) can be explicitly carried out. Nev-
ertheless, we have chosen to keep the integral form in
order to avoid clutter. Note that the above solutions is
well defined for b < 1, as also happened in absence of
resetting for the absorbing solution in the original model
[47].

Appendix E: Simulation method

Herein, we put forward the method of numerical sim-
ulation we have used along this work. Specifically, all
simulations are based on the the discretization of the
Langevin equation (1) which is complemented with the
stochastic resetting.

To obtain the distribution at time t, we discretize the
time t = n ∆t, where n is an integer and ∆t stands for
the unit time step. Our choice for the initial condition is
x(0) = xr. On the one hand, if x(t) > xr,

1. with probability 1− r∆t, where r is a constant re-
setting rate, the system evolves according to

x(t+ ∆t) = x(t) +A(x(t)) +
√

2B(x(t))∆t ζ, (E1)

where ζ is the Gaussian random variable with mean
0 and variance 1.

2. whereas it is abruptly reset to xr with probability
r∆t,

On the other hand, if x(t) < xr, the system undergoes
the stochastic evolution as illustrated in the step 1. The
process iterates until time t is achieved. We obtain the
distribution building the histogram after repeating the
stochastic process NR realizations.

For the results of the MFPT, we assume an absorb-
ing boundary at the origin x = 0, and observe the first
time the system hits the absorbing boundary following
discretized scheme of the dynamics as illustrated above.
We repeat the process for NR number of realizations and
compute the MFPT.
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