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Image analysis and LSTM methods for forecasting 
surficial displacements of a landslide triggered 
by snowfall and rainfall

Abstract  Landslide-prone areas, predominantly located in moun-
tainous regions with abundant rainfall, present unique challenges 
when subject to significant snowfall at high altitudes. Understand-
ing the role of snow accumulation and melting, alongside rainfall 
and other environmental variables like temperature and humidity, 
is crucial for assessing landslide stability. To pursue this aim, the 
present study focuses first on the quantification of snow accumu-
lated on a slope through a simple parameter obtained with image 
processing. Then, this parameter is included in a slope displace-
ment prediction analysis carried out with long short-term memory 
(LSTM) neural network. By employing image processing algorithms 
and filtering out noise from white-shown rocks, the methodology 
evaluates the percentage of snow cover in RGB images. Subsequent 
LSTM forecasts of landslide displacement utilize 28-day historical 
data on rainfall, snow, and slope movements. The presented proce-
dure is applied to the case of a deep-seated landslide in Italy, a site 
that in winter 2020–2021 experienced heavy snowfall, leading to sig-
nificant snow accumulation on the slope. These episodes motivated 
a study aimed at forecasting the superficial displacements of this 
landslide, considering the presence of snow both at that time and 
in the following days, along with humidity and temperature. This 
approach indirectly incorporates snow accumulation and potential 
melting phenomena into the model. Although the subsequent win-
ters were characterized by reduced snowfall, including this infor-
mation in the LSTM model for the period characterized by snow 
on the slope demonstrated a dependency of the predictions on this 
parameter, thus suggesting that snow is indeed a significant fac-
tor in accelerating landslide movements. In this context, detecting 
snow and incorporating it into the predictive model emerges as a 
significant aspect for considering the effects of winter snowfall. The 
method aims to propose an innovative strategy that can be applied 
in the future to the study of the landslide analyzed in this paper 
during upcoming winters characterized by significant snowfall, as 
well as to other case studies of landslides at high altitudes that lack 
precise snow precipitation recording instruments.

Keywords  Displacement forecasting · Snowmelt · LSTM · 
Landslide triggering · Images recognition · Smart monitoring

Introduction
Landslide disasters are widely distributed throughout the world 
(Kirschbaum et al. 2009). Some landslides occur within reservoirs 
and are influenced by long-term fluctuations in water level (Zou 
et al. 2023; Ye et al. 2024a). Some are reactivated and triggered 
due to earthquakes and deformed by rainfall (Sassa et al. 2005; 

Yin et al. 2009). In the Alps region of Europe, snow, temperatures, 
and humidity pose challenges to the stability of landslides during 
transitional seasons characterized by a warming climate (Guzzetti 
2000). Although rainfall is generally the main natural agent trigger-
ing landslides, in high-altitude countries and regions, snowfall and 
snowmelt are essential factors in considering the study of geologi-
cal hazards (Has et al. 2012; Bajni et al. 2021). Therefore, identifying 
the individual contributions of various hydrometeorological fac-
tors to accelerated movements is key to landslide research (Jakob 
et al. 2006; Ye et al. 2024b). In particular, landslides in frozen areas 
have been closely related to various meteorological and hydro-
logical phenomena; winter blizzards, soil freeze-thaw cycles, and 
snowmelt water infiltration play pivotal roles (Subramanian et al. 
2017; Hinds et al. 2021). Snowfall and accumulation on a slope can 
generate an additional load on the ground and induce instability. 
However, since temperatures are generally below zero, the addi-
tional resistance due to the soil freezing can partially compensate 
for the increased load (Harris et al. 2009). In addition, the thaw 
that occurs when temperatures rise in spring or on warmer days 
can generate water infiltration that cannot be easily accounted for 
in the hydrological balance of a slope.

Previous studies have reported evidence that anomalous spring 
and landslide events induced by snowmelt are clearly linked to 
warming (Durand et al. 2009; Saez et al. 2013; Xian et al. 2022). The 
important role of the dynamics controlling the atmosphere-surface 
interactions, which affected snowmelt processes and soil freezing-
thawing cycles, is evidenced by Subramanian et al. (2020) and Xian 
et al. (2022). Also, Matsuura et al. (2003) considered meteorologi-
cal factors, particularly snowmelt, in their landslide research and 
confirmed that snowmelt influences landslide displacement. The 
hydrological behavior of landslides, considering both snowpack 
and meteorological factors, has also been studied by Osawa et al. 
(2017) and Okamoto et al. (2018). They found that the pore water 
pressure response to the snow loading is strongly affected by the 
sliding mass permeability, which in turn is influenced by seasonal 
changes. Furthermore, Osawa et al. (2024) proposed a simplified 
semi-empirical hydrological model for landslide pressure response, 
aiming to predict the short-term response of pore pressure to rain-
fall and/or snowmelt inputs.

A comprehensive consideration of interrelated factors affecting 
the thermal-hydraulic-mechanical behavior of a landslide is indis-
pensable for understanding and predicting landslide occurrences in 
frozen terrains. However, quantifying snowfall or snowmelt is chal-
lenging due to monitoring methods and the stochastic nature of the 
environment. Martelloni et al. (2012) have proposed an integration 
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of a simple snow accumulation-melting model (SAMM) with land-
slide warning systems that utilize empirical rainfall thresholds. This 
model overcomes the gap between physically based models and the 
empirical temperature index models based on the traditional pluvi-
ometer monitoring combined with temperature data. Accordingly, 
snow accumulation is considered and integrated into a regional-
scale early warning system that relies on statistical rainfall thresh-
olds to predict landslide occurrences in the Emilia Romagna region 
(Italy) with the SAMM model. Another study has been carried out 
on a mountain basin nearby Champoluc in the Val D’Aosta region 
in Italy (Panzeri et al. 2022). The objective of evaluating the influ-
ence of snowmelt and precipitation on the development of shallow 
landslides was achieved by statistically comparing in situ meteoro-
logical observations with laboratory analyses. Cutting-edge weather 
and snowpack stations were utilized to conduct comprehensive 
analyses of snowmelt and meteorological data. The snowmelt plus 
atmospheric conditions such as temperature and humidity were 
integrated to intuitively observe the interaction between snow and 
soil. Chiarelli et al. (2023), instead, examined the case of the Tar-
tano basin in Lombardia (Italy). There, the landslide susceptibility 
prediction accuracy improved by 5% when involving snowmelt fac-
tor obtained with a traditional mechanical model that mimics the 
triggering mechanism of shallow landslides. Although the research 
studies demonstrated the significant influence of snow on land-
slide kinematics and some of them suggested and implemented 
monitoring methods and quantitative measures to consider the 
snow effects, they were unable to assess a standard methodology 
for considering the snow’s influence on the dynamics of a landslide 
or on a forecasting tool.

Moreover, even if many scholars indicated that the snowmelt 
affected the landslide stability more than snow accumulation, 
snowmelt remains difficult to be allowed for landslide assessment 
because it cannot be directly measured by using traditional equip-
ment, such as the heated rain gauge. Moving from the basic idea 
that the snow melting is related to the variation of snow accumu-
lated on the slope surface, the authors suggest a procedure based on 
image processing for evaluating the actual amount of snow present 
on landslides and we try to apply this method on the case study of 
Sant’Andrea landslide, a deep-seated landslide in the North-East 
of Italy. This slope is chosen because, in addition to traditional 
monitoring tools, there is a terrestrial digital photographic system 
collecting RGB images of the slope for 3 years with the aim of using 
them as a monitoring dataset.

The use of photogrammetry within the monitoring procedure 
for landslide is a strategy that has already proven effective both 
on the Sant’Andrea landslide and on another Italian landslide 
(Gabrieli et al. 2016; Brezzi et al. 2020, 2021b). In these previous 
applications, the images were processed through some image pro-
cessing and digital correlation algorithms finalized to reconstruct 
the 2D displacement field on the image plane and subsequently 
to project it onto the three-dimensionality of the scene. Broadly 
speaking, the applications of photogrammetry monitoring meth-
ods for landslides are increasing (Pan 2018). There are signifi-
cant breakthroughs in multi-view photogrammetry, leading to 
the development of a novel category of algorithms and software 
tools that enable enhanced automation in surface reconstruction, 
feature detection, and displacement monitoring. These cutting-
edge techniques potentially offer topographic information to be 

used in geoscience applications, all while drastically reducing 
costs compared to some traditional methods such as topographic 
and laser scanning surveys (Stumpf et al. 2015). Moreover, the 
efficacy of integrating digital photogrammetry with geological 
data to enhance the characterization and comprehension of land-
slide mechanisms is noticeable. Consequently, this knowledge can 
contribute to the identification and formulation of effective miti-
gation strategies (Laribi et al. 2015).

When analyzing large numbers of images, the algorithm must 
be efficient and swift, based on determining simple yet descrip-
tive quantities. For this reason, to precisely measure the volume 
change in snow accumulation and melting, a dimensionless indi-
cator called Pixel Volume Index (PVI) is here introduced to accu-
rately represent variations in snow cover. The concept of Pixel 
Volume (PV) was initially employed to achieve video deblurring 
and the state-of-the-art performance both quantitatively and 
qualitatively (Son et al. 2021). Here, PVI is utilized and refined 
to quantify the snow volume, aiming to clearly depict the actual 
condition of snow presence on the slope. The model, which inte-
grates photogrammetry monitoring with deep learning using PVI 
as a link, holds significant potential and development space for 
predicting landslide displacement.

Next, once the quantification of the snow on the slope has been 
obtained, it is then used, together with other quantities such as 
temperature, humidity, and rainfall, as input of a model that fore-
casts the landslide displacements. Deep learning (DL) is an effec-
tive method for forecasting in many domains including geohazards 
(LeCun et al. 2015; Mondini et al. 2023; Nava et al. 2023; Liu et al. 
2024). Even more recently, it has also been introduced in the detec-
tion and evaluation of landslide susceptibility (Feizizadeh et al. 
2021; Sameen et al. 2020). Within DL, convolutional neural networks 
(CNNs) are most frequently used and behave the best in the image 
feature extraction (Bishop 1995). Therefore, they are frequently used 
for processing remote-sensing image dataset (Prakash et al. 2020; 
Ngo et al. 2021). However, unlike image data, matching time series 
data for use by CNNs can be difficult. To solve this, Teza et al. (2022) 
processed the time series data and transformed them into figures, 
in the shape of scalograms, with dimensions of 224 × 224 × 3. In 
this way, they were able to use a CNN to extract features and to 
obtain successful predictions of the surficial displacements of the 
Sant’Andrea landslide.

However, to establish a multi-factor landslide prediction model, 
CNNs can no longer undertake this task due to the resolution limi-
tations of images. Thus, another DL method, the long short-term 
memory (LSTM) neural network, is introduced and applied to land-
slides located in the Three Gorges reservoir (Xu and Niu 2018; Yang 
et al. 2019). As a type of recurrent neural network (RNN) (Medsker 
and Jain 1999), LSTM can capture long-term dependencies in vari-
ous time series data (Van Houdt et al. 2020), leveraging contextual 
information while establishing mappings between input and out-
put sequences (Hochreiter and Schmidhuber 1997). Moreover, the 
architecture of LSTM can be modified and extended according to 
the requirements of the task. In practical applications, multiple 
LSTM layers can be stacked to enhance the model’s representational 
capacity (Graves 2012).

In the study here presented, in consideration of many involved 
factors such as rainfall, snow (PVI), temperature, and humidity, 
different combinations and training durations are attempted to test 
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and improve the accuracy of LSTM predictions of the Sant’Andrea 
landslide’s movement.

Methodology
This methodology integrates several approaches from different 
fields for photogrammetric computation and machine learning. In 
the section on landslide monitoring, the primary focus is on the 
collection and pre-processing of image monitoring and geodetic 
measurement data. Within the early warning part, image process-
ing techniques, machine learning, and deep learning are effectively 
combined into a comprehensive system. As depicted in Fig. 1, initial 
data collection involves several monitored parameters of the land-
slide, including rainfall, temperature, humidity, and displacement 
(yellow circle). The directly detected quantities can also include the 
images acquired by the photographic system aimed at monitor-
ing the slope. In order to quantify the snow and generate usable 
data related to the snow quantity on the slope, since this cannot 
be directly monitored, image data from monitoring is compiled 
and processed to compute a Pixel Volume Index (PVI) for snow 
quantification (green boxes). All these quantities, image datasets, 
and elaboration results, directly collected and then processed, are 
included in the yellow dashed circle. Lastly, all the collected data 
are used as input into a customized LSTM neural network for the 
identification of the most suitable approach for predicting future 
displacements (red boxes).

Pixel volume index

Due to the absence of dedicated snow monitoring devices, in the 
present work, the quantification of snow cover is determined using 
the Pixel Volume Index (PVI), a parameter that quantifies the cur-
rent presence of snow on the slope (see brief explanation below). 
Figure 2a represents a schematic scene to be processed, whereas 

Fig. 2b and c represent two important features necessary for snow 
quantification: an estimation of the snow thickness proportion and 
a percentage evaluation of the base area occupied by snow, detected 
on a representative patch of the image. These two quantities, named 
ST and SC respectively, allow the definition of a variable, denoted as 
snow PVI, obtained by directly multiplying ST and SC.

The processes of obtaining snow coverage SC and snow thick-
ness ST follow two distinct paths, each made up of several steps. 
When utilizing image analysis tools as a foundation, the first two 
specific areas must be masked, named AC and AT, as depicted in 
Fig. 2, respectively, for the evaluation of SC and ST.

A first approximation of snow coverage estimation could be 
obtained by counting the number of white pixels present in the 
masked area AC. Nonetheless, when analyzing the image dataset, 
different levels of exposure or lighting of the photo, the cloudy or 
sunny condition of the area, and different colors in different sea-
sons make the identification of the level of “white” contained in the 
pixels ambiguous. The direct consequence of this is an unreliable 
quantification of snow coverage. Furthermore, if there are other 
white objects on the scene, such as rocks and walls, these could 
hinder the code, resulting in a false recognition of the snow and 
consequent erroneous quantification of the SC parameter. To over-
come these problems, before counting the number of white pixels 
in the AC area, a specific algorithm is implemented to categorize 
the type of image in terms of illumination and overall coloration. 
For each image category, then, specific thresholds are searched for 
identifying the RGB contents which indicate the presence of “white” 
corresponding to snow and “white” corresponding to other objects. 
The algorithm used both for identifying the type of image and for 
recognizing the “white” corresponding to snow is based on the 
analysis of the red and blue contents of the pixels in the cropped 
area AC. In particular, it is possible to plot the information contents 
relating to all the pixels included in AC in a graph having red/blue in 

Fig. 1   Early warning system considering snow. The design is composed of three subsystems: monitored quantities are represented in the yel-
low circle; image recognition algorithms for snow estimation are shown in green; and the deep learning forecasting system is depicted in red 
shapes
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the X-axis and red in the Y-axis. Once these quantities are plotted, 
the algorithm can easily search for the location of the centroid of 
that group of graphed points. In fact, the position of the centroid 
allows to identify the type of image in terms of lighting and color. 
The threshold values and the categorization of the image types to 
be distinguished must be appropriately calibrated on the basis of 
the monitored scene and the variability of the predominant envi-
ronmental conditions.

After distinguishing the different types of images, for each of 
them, a methodology must be calibrated for recognizing the pixels 
representing snow and those representing walls or rocks (Fig. 3). 

This calculation is then automatically performed across all the RGB 
images collected. Following this method, it is effective to distin-
guish image tones as well as snow and white-shown rocks on the 
slope. Once the number of pixels covered by snow is recognized, 
the percentage of snow coverage can be calculated by dividing the 
obtained number by the total number of pixels included in AC.

The second parameter used for identification aims at quantify-
ing the thickness of snow present at the scene. Once SC is high, 
in fact, it becomes no longer able to express the accumulation of 
snow on the ground. For this reason, it is decided to add the second 
parameter, ST, which expresses the snow thickness. To attain this, 

Fig. 2   a Example of scene to process; b, c schematic diagrams for the quantification of the PVI components (parameters: AC, masked base 
area of snow; AT, masked thickness area of snow; SC, snow coverage; ST, snow thickness)

Fig. 3   Separation of snow images from images of white-shown rocks on the base of characteristic RGB patterns
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a second area AT must be masked, identifying a part of the image 
in which a clear accumulation process is observable, such as house 
roofs, fence walls, or other objects. In this area, snow thickness is 
designed to be the ratio of snow pixels to the total masked area and 
is defined to be a dimensionless value as well as snow coverage. 
Ultimately, the product of snow coverage (SC) and snow thickness 
(ST) is computed to be a dimensionless variable representing snow 
as PVI.

Long short‑term memory neural network

In this work, long short-term memory (LSTM) neural network is 
selected to conduct a forecasting mission due to its wide range of 
uses and ability to handle various types of data. LSTMs are a type 
of recurrent neural network architecture designed to better cap-
ture and remember long-term dependencies in sequential data, 
especially nonlinear relations among datasets (Fan et al. 2021). In 
contrast to conventional neural networks, which process input 
data linearly from start to finish, LSTMs have a recurrent connec-
tion that enables them to maintain a hidden state or a memory 
of past inputs as layer 1 and layer 2 indicate in Fig. 4. This capac-
ity to remember or forget some information makes them par-
ticularly adept at tasks involving sequential data or time series 
(Hochreiter and Schmidhuber 1997). The choice of the number 
of LSTM layers is determined based on the size of the dataset 
and the length of the sequences. Increasing the number of layers 
enhances data processing capacity. Given that this study involves 
five parameters including temperature, snow, rainfall, humidity, 

and displacement rate over a time span of 3 years, two LSTM 
layers are used in testing various configurations. Subsequently, 
displacement is predicted as the output value.

To gain a precise understanding of the factors influencing land-
slides, starting from the traditional model coupling only rainfall 
and displacement (RD model) rate, other combinations of factors 
are here considered, such as rainfall-snow-displacement (RSD) 
rate, rainfall-temperature-displacement (RTD) rate, rainfall-
humidity-displacement (RHD) rate, rainfall-snow-temperature-
displacement (RSTD) rate, and rainfall-snow-temperature-humid-
ity-displacement (RSTHD) rate models. All this is required in order 
to explore displacement rate trends under different conditions and, 
finally, select the optimal model.

In order to assess the influence of snowmelt on landslide 
deformation and the reliability of the early warning model, 
this paper employs three statistical indicators which are mean 
squared error (MSE), root mean squared error (RMSE), and mean 
absolute error (MAE). Among them, MSE weights the square 
of errors during calculation, making it more sensitive to large 
errors. This means that in the presence of outliers or anomalies, 
MSE can be influenced by these values, potentially causing the 
model to be overly responsive to outliers. MAE treats all errors 
equally and does not magnify the impact of outliers. RMSE falls 
between these two as it weights the square of errors but is still 
influenced by larger errors (Brassington 2017; Karunasingha 
2022). Therefore, both RMSE and MAE can offer a more com-
prehensive perspective, aiming in evaluating the model’s perfor-
mance across various scenarios.
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Fig. 4   Structure of the adopted LSTM network: temperature (T), snow (S), rainfall (R), humidity (H), and displacement rate (D) are the data 
used as input in layer 0, layer 1, and layer 2 which are LSTM layers and layer 3 is the output layer
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Study area

Landslide description
The Sant’Andrea landslide is situated in the Dolomites area of the 
Northern-Eastern Italian Alps and poses a significant risk to nearby 
residents (Fig. 5). Its estimated volume is around 60,000 m3, located 
in an area of about 72,000 m2. If the unstable mass collapsed, it 
could potentially block the Boite river, leading to flooding of the 
nearby Perarolo di Cadore hamlet and the area downstream (Brezzi 
et al. 2021a). Extensive geological and geotechnical studies have 
been conducted to understand the characteristics of the landslide 
area. The landslide consists of a 30-m-thick layer of clay-calcareous 
debris, composed of heterogeneous materials with varying grain 
sizes and geotechnical properties. It slides over weathered bedrock 
comprised of dolomitic lithology and folded layers rich in anhy-
drides and gypsum.

The geological and hydrogeological investigations revealed two 
groundwater flow systems within the landslide area: a shallow sys-
tem in the upper layers of the debris deposits and a deep system 
involving the upper part of the bedrock, which contains altered and 
fractured gypsum. Water plays a crucial role in slope instability, 
accelerating displacements during intense and prolonged rainfall 
events and causing slow displacements during dry periods through 
active water circulation.

The interaction between water and gypsum components of the 
bedrock and debris layers influences the mechanical properties of 
the rock mass. Hydration processes result in the plastic rheology 
of the weak gypsum lithology, as well as the development of karst 
cavities and microcracks.

Landslide monitoring

Monitoring of Sant’Andrea landslide has been carried out since 
2013 using a topographic system with reflective targets installed 
inside and outside the unstable area. It has provided valuable data 
on cumulative displacement over time, helping to understand the 
behavior of the landslide and identify areas of significant displace-
ment. Since 2013, the target configuration has been adapted several 
times after some episodes in which slope volumes close to the main 
scarp collapsed, the last of which occurred in June 2021. Figure 6a 
illustrates the arrangement of monitoring stations before and after 
this event. A natural collapse occurring in early June produced the 

detachment of about 8000 m3 from the front face (Fig. 6b), while on 
June 25, 2021, a professional team conducted a controlled blasting of 
about 5000 m3 on another unstable volume to remove it and miti-
gate the risk for the downstream area. Following these interven-
tions, based on monitoring data, the landslide appears to gradually 
reduce its displacement rate, even if not completely stabilized. This 
is clearly evidenced in Fig. 6, where the displacements developed 
in a 2-month interval before and after the controlled blasting are 
superimposed on the target maps.

In addition to the topographic monitoring, in May 2021 a photo-
grammetric system has been put into official use for monitoring the 
superficial deformation. The photographic system consists of three 
Canon EOS 1300D cameras installed on the other side of the Boite 
valley just at a distance of around 350 m from the Sant’Andrea land-
slide. Every 15 min, the system prompts the cameras to take pictures 
and then uploads them to an FTP (File Transfer Protocol) server. 
On the FTP server, all images can be viewed and downloaded as 
needed. However, some images captured during the night, heavy 
fog, or periods of intense rainfall and snowfall, due to their inherent 
visual disturbances, cannot be effectively utilized. They can only be 
regarded as references.

Result

Snow quantification algorithms
Snow data is the only data that cannot be directly measured and 
obtained through a monitoring probe or device. Currently, in fact, 
there are no related devices installed on the Sant’Andrea landslide 
that can quantitively monitor snowfall. Therefore, obtaining snow 
measurements indirectly through the collected images has become 
the strategy in this research, and the snow recognition algorithms 
have been developed and applied to it.

To this aim, we purposefully chose a target area according to 
two criteria. Firstly, we excluded areas densely covered by veg-
etation or persistently shrouded in shade, as these factors could 
introduce bias and obscure our findings. Secondly, the area 
must be correctly oriented with respect to the camera to have an 
accurate quantification of its cover. Following these criteria, we 
selected an optimal study area on the right side of the slope as 
Fig. 7a indicates, which contains 124,206 pixels. Subsequently, the 
centroid which represents the center of a set of a finite number of 
selected points (Berele & Catoiu, 2018; Abdi 2009) of each image 

Fig. 5   a Location of Sant’Andrea landslide in North-East of Italy (46° 23′ 57″N, 12° 21′ 20″E). b Aerial view of Sant’Andrea landslide. c Front 
view of the main scarp
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is calculated in Fig. 7b. This was necessary because the image 
tone has a strong interference on recognition and quantification 
of snow presence. In fact, as later explained, the recognition pro-
cess is based on the color composition of the selected area, which 
can vary significantly during the same day (morning, noon, and 
evening) as well as under different weather conditions (sunny, 
snowy, and cloudy weather). During different moments in the day 
and weather conditions, the images can exhibit a mainly bluish, 
yellowish, reddish, or adequate sunlight, as Fig. 8 shows. Conse-
quently, this variance impacts the RGB values of the object. In 
general, the brighter the color of an image, the higher the RGB 
values (Riehle et al. 2020). This leads to RGB values in images 
captured on sunny days being higher than those taken on cloudy 
and rainy/snowy weather. Similarly, RGB values for images with 
a diffuse snow coverage are higher than those without snow cov-
erage. This necessitates the establishment of distinct thresholds 

for quantifying snow, including snow coverage rate and snow 
coverage thickness.

Generally, blue-toned images are mostly taken during the early 
morning and evening at sunrise or sunset, and yellow-toned images 
are shot during daytime, with cloudy or rainy weather. In addi-
tion, weak sunlight can also cause a yellowish tint in the image. 
Furthermore, it is speculated that during the periods of seasonal 
transition (spring or fall), some cyclones originating from the south 
to southwest may carry sand and dust from the Sahara Desert, lead-
ing to images with shades of yellow and special brightness tones. 
On the contrary, when cyclones originate from the north or west, 
devoid of sand and dust, the color tones change entirely based on 
the varying intensity of light. Finally, sunlight exposure refers to the 
condition of direct sunlight on extremely sunny days. Therefore, the 
image tone differentiation was deciphered using a process based 
on centroid clustering.

Fig. 6   Positions of topographic targets and colored distribution of the displacement accumulated during the periods a April–May 2021 and b 
August–September 2021. The arrows represent the horizontal displacements accumulated at each specific target

Fig. 7   a Selected area for quantifying snow (pink colored area on the left side of the image). b Inside the selected area, some points are indi-
cated for the centroid individuation (right coordinate system); “×” represents the centroid of these 124,206 pixels
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The masking areas in images with different tones exhibit dif-
ferent centroid distributions. Centroids of the target area in each 
image are calculated by means of the K-mean clustering method 
(Likas et al. 2003). The images will be classified into different tones’ 
collection based on the position of the centroid. Figure 9 shows 
the data related to a test set which includes 50 images, manually 
selected and categorized to be representative of the four different 
tones: each point represents the red value vs. red/blue ratio deter-
mined by the centroid of the target area in each image. In the same 
plot, the subdivisions among the four categories are drawn and 
implemented in an algorithm to divide the entire dataset (4369 
images), consisting of 1298 images collected in winter.

The next step in the process of snowfall identification involves 
identifying the presence of exposed, white rocks on the slope, 
as shown in Fig. 10b and c. These rocks introduce significant 
interference in the recognition work. In fact, the algorithm first 

adopted for snow recognition identified white-shown rocks as 
snow. To solve this error, the RGB values of all the photos were 
extracted and analyzed. These data are reported in a plot (Fig. 11) 
where the X-axis represents the ratio of red value to blue value, 
while the Y-axis represents the red value. Of course, one R/B vs. 
R plot for each group of photos needed to be constructed with 
different color tones. The points appear grouped in two clusters: 
data referring to the green group represents images showing 
mostly snow with a few visible rocks, while the gray group com-
prises conditions where there is no snow at all. The pixel data of 
the two groups are well separated, making it possible to establish 
a criterion for effectively distinguishing areas covered by snow 
from white-shown rocks. The threshold curves were generated 
accordingly by manually selecting three calibration points and 
calculating the fitting curve through them (Burton-Johnson and 
Wyniawskyj 2020). In Fig. 11, the thresholds were manually set 

Fig. 8   Image data in four different tones without and with snow on the slope. a Bluish image with rock. b Yellowish image with rock. c Special 
brightness image with rock. d Sunlight image with rock. e Bluish image with snow. f Yellowish image with snow. g Special brightness image 
with snow. h Sunlight image with snow

Fig. 9   Range of images’ centroid distribution in different tones
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as either bluish, yellowish, sunlight, or special brightness. Note 
that the images with relatively complete snow coverage before 
and after snowfall are predominantly in blue tones: in this case, 
the distinction between snow and white rocks is quite evident. 
Additionally, most images acquired during the winter include 
rocks that are not entirely covered by snow.

Therefore, within the algorithm, different thresholds are set for 
snowfall detection in different tonal images to ensure the separa-
tion between snowfall and white-shown rocks, ultimately identify-
ing the snow coverage in the selected area. We consider the selected 
area as representative of the whole image, and the recognition 
results are represented by a coverage percentage.

Fig. 10   Separation of snow from exposed white rocks: a panorama of landslide with partial snow cover. b Exposed white rocks on the slope 
seen after zooming in. c The actual snow seen after zooming in
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Fig. 11   Separation of snow images from images of white-shown rocks on the basis of characteristic RGB patterns. Thresholds for a bluish 
images, b yellowish images, c sunlight images, and d special brightness images
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To quantify the snow presence with accuracy, in addition to 
coverage percentage, another essential parameter is snow thick-
ness. To achieve this objective, considering the appropriate rec-
ognition views and places where it is possible to discern clear 
boundaries between snow-covered and non-covered areas, the 
most suitable place to quantify the snow thickness appears to be 
the top of a retaining wall located at the landslide rear (Fig. 12a). 
This is because the snow covering the top of this wall is clearly 
visible and it aligns with the shooting angle, providing a more 
realistic representation of the snow depth. As Fig. 12 indicates, 
on the top of the retaining wall (Fig. 12b), a rectangular region 
of 10 × 40 pixels (Fig. 12c) was selected for snow thickness quan-
tification. Due to the absence of interference from white-shown 
rocks on the slope, the extracted rectangular area is converted 
into a binary image (Liu et al. 2012). Then, to identify the bound-
ary between the snow and non-snow zone in the binary image, 
another criterion is used, for which the boundary localizes a 
difference of 45 or more in the gray values between the snowy 
and non-snowy areas. Using this method, as shown in the binary 
image of Fig. 12c, two distinct boundaries ensue: the upper one 
represents the boundary between the snow cover and the back-
ground behind it, while the lower one represents the boundary 
between the snow cover and the retaining wall. Finally, after cal-
culating the proportion of snow pixels in each column of the 
rectangular area, the average proportion of ten columns is used 
to represent the thickness of the snow, and it is also a dimension-
less value as snow coverage. As a result, the thickness of the snow 
can be identified.

Finally, a new parameter named Pixel Volume Index (PVI) is 
introduced to visualize the amount of snow. Its definition is:

where SC is the snow coverage, representing the percentage of 
selected area occupied by snow, and ST is the thickness propor-
tion of snow as explained in Fig. 13. Among all the collected data 
images, the data with the thickest snow is considered as 100%, and 
when there is no snow, the thickness is 0%. All other results are 
expressed as a proportionate percentage of the maximum value 
after recognition. SC and ST are dimensionless indicators as well 

(1)PVI [%] = S
c
⋅ S

T

as PVI whose variation over time can quantify the trends of snow 
accumulation or melting.

Snow data visualization

The images captured with the photogrammetric monitoring over 3 
years including three winters are collected and used as input data-
set. In total, the dataset contains 4369 images.

To quantify the landslide displacement rate, we selected moni-
toring stations located within the undamaged yellow deformation 
area in Fig. 6b, i.e., the portion of landslide exhibiting medium 
displacement rates. Among these, the GPS1 station is considered 
the most representative since it presents a time series data more 
regular because it is the less susceptible to effects induced by wind 
and passage of animals.

The quantitative results of snow PVI, combined with daily rain-
fall, temperature, humidity, and displacement rate data, are dis-
played together in Fig. 14, showing their relationship. The snow 
PVI appropriately captures the changes in snow cover on the 
Sant’Andrea landslide as highlighted by the dashed boxes. In the 
northern Italian Alps region, winter 2020–2021 produced heavy 
snowfalls: two substantial snows occurred on December 28, 2020, 

Fig. 12   Extraction of snow thickness in pixel unit from the image: a overall image. b Detail of the overall image showing the retaining wall at 
the landslide rear. c Selected 10 × 40 pixels area for determination of the snow thickness

Fig. 13   Illustration of snow thickness under different conditions 
(Image 1 shows a little snow, image 2 exhibits a large amount of 
snow, while image 3 indicates no snow)
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and on January 2, 2021, during the period of the most intense land-
slide deformation. In Fig. 14, the snow PVI accurately depicts the 
accumulation and melting of these two intense snowfalls, while also 
evidencing the temporal relationship between snowfall, snowmelt, 
and landslide movement. The snow increased the gravitational load 
on the landslide and, on the other hand, the melting snow infiltrated 
on the landslide, thus disrupting the stress balance and causing 
accelerated deformation. Unfortunately, this effect is not completely 
determinative because the displacement rate is surely affected also 
by the large amount of rain that also occurred in the same period. 
During the winter of 2021–2022, there was only one snowfall, con-
centrated on December 9, 2021. Its entity was less than the previous 
year and of shorter duration. Additionally, there were minor rains 
and a slight acceleration of landslide activity. Finally, the winter of 
2022–2023 was particularly warm with temperatures well above the 
mean values of the area for that period and, as a result, there was 
virtually no snow.

It is important to note that the landslide exhibits high accelera-
tion not only due to snow. As already demonstrated by Teza et al. 
(2022), rain is one of the most important factors controlling the 
mobility of this landslide. But Fig. 14 clearly evidences that also 
snow has an impact on landslides, which cannot be ignored when 
analyzing the deformation of the Sant’Andrea landslide.

Displacement forecasting and causal analysis

In order to accurately investigate the influence of snowfall on 
landslide displacement, various combinations of meteorological 
parameters are utilized in relation to the displacement rate. Here, 
R, S, T, H, and D respectively represent daily rainfall, snow PVI, air 
temperature, air humidity, and surficial displacement rate of the 
GPS1 monitoring station. Different configurations share the same 
data segmentation that consists of 373 days (from November 1, 2020, 
to November 7, 2021) used for training and 266 days (from Novem-
ber 8, 2021, to July 30, 2022) used in the forecasting. The testing of 
the model is conducted within a range of several combinations, 
among which some configurations, such as RTD and RHD, con-
sider only temperature and humidity variables associated with rain, 

and others consider rain in association with snow and temperature 
(RSTD) or all the factors together (RSTHD). Totally, six combina-
tions are considered.

Figure 15 compares the tests of displacement rates predicted in 
the forecasting period by the six different configurations. Table 1 
lists the values of corresponding reliability indicators. Consider-
ing both Fig. 15 and Table 1, it is observed that RSTHD predicted 
the highest and most unrealistic values for the displacement rate; 
consequently, it reaches the worst evaluation among all the configu-
rations. RTD and RHD also yield unrealistic results, even if lower 
than those of RSTHD. In contrast, RD and RSD closely align with 
the measured displacement rate and exhibit favorable evaluation 
parameters.

Notably, configurations including snow, such as RSD and RSTD, 
show an increase in displacement rate following the variation of 
snow on the slope, the behavior that seemed to occur during winter 
2020–2021 and can be theoretically justified. In fact, it is commonly 
thought that snow melt increases water infiltration and ground-
water pressure at the sliding surface, consequently changing the 
momentum balance of the landslide. The result here obtained suc-
cessfully demonstrates that snow is one of the factors influencing 
landslide displacement, but it might be that the weight assigned to 
snow is too high.

The same consideration can be tested on temperature and 
humidity: their presence raises the displacement rate too high in 
the second period. We have attributed the reason for this to the 
learning pattern of deep learning neural networks. The essence 
of deep learning neural networks lies in the regression analysis 
between data, discerning relationships between different data 
through learning from input data and calculating weights and bias 
for mutual influences among data points. In this case study, unlike 
rainfall and snow where values can be zero at times, the values of 
temperature and humidity are always non-zero and span a wide 
range. This leads to their consistent presence, and they are there-
fore assigned a certain weight in the model throughout the learn-
ing process when the temperature is very low, thereby elevating 
the outcome. This also indicates that temperature and humidity, as 
indirect factors influencing landslide displacement, are not suitable 

Blasting

Fig. 14   Snow PVI related to temperature, humidity, and rainfall in the period from March 1, 2020, to June 30, 2023
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for being incorporated into the Sant’Andrea displacement forecast-
ing models.

The outcomes suggest that rainfall (RD) is still the most impor-
tant factor which we should consider firstly; then, the configuration 
RSD and RSTD curves underwent a delayed displacement change 
after the snow event. Therefore, the preliminary analysis suggests 
that snow has an impact on the deformation of the landslide.

Furthermore, when focusing on the two configurations with the 
best results, RD and RSD, the comparison of the trend of the two 
curves is unexplainable, since RSD consistently remains higher 
than RD even after the snow events. However, upon analyzing 
Figs. 14 and 15, it becomes apparent that after the collapse of June 
2021 and the subsequent induced blasting, the landslide motion 
gradually stabilized toward a quite constant rate. It is natural to 
think that these events (natural and induced collapses) produced 
a significant change in the kinematic mechanism of Sant’Andrea 
landslide, thus resulting in a lack of alignment between RD and 
RSD predictions along the same level.

Considering the reasons above, the dataset was expanded and 
the landslide was studied in two phases. Based on the kinematic 
movement pattern, July 1, 2021, is regarded as a time point that 

divides the timeline, thereby segmenting the evolution of the land-
slide into two stages. The first stage spans from March 1, 2020, to 
June 30, 2021, while the second stage encompasses the period from 
July 1, 2021, to June 30, 2023. Both stages are utilized to investi-
gate the influencing factors on the landslide and for forecast-
ing purposes, applying only the LSTM model for RD and RSD 
configurations.

The first stage lasted for 487 days, with 275 days used for the 
training set and 212 days utilized as the forecasting set. The obtained 
results are shown in Fig.  16. According to the results, it can be 
observed that in the first stage, snow variation during winter accel-
erated the landslide deformation, even if the predictive outcomes 
do not reach the peak values observed in reality: this indicates that 
although the model considers both rainfall and snowmelt could 
predict the landslide acceleration, it could not accurately forecast 
its displacement magnitude. The predictions based on rainfall are 
significantly lower than the actual values. Therefore, snow is also an 
important factor that accelerates landslide deformation in winter.

The reliability indicators of two LSTM models for this stage 
(Table 2) indicate a relatively poor reliability of both the models, even 
if the correspondence of predicted values with measured ones accord-
ing to the trends of Fig. 16 seems effective. This is due to the fact that 
even if the trend seems well described, especially by the RSD model, 
there are large differences between the predicted and the original data 
in correspondence of the peak, which push the reliability indicators 
toward higher values. In any case, in comparison to the RD configura-
tion, the RSD configuration demonstrated prediction performance 
that is closer to reality, in particular with regard to the identification of 
the displacement peak in February 2021. Although the forecasting was 
slightly delayed and the indicators were not very good, this directly 
demonstrates that in the first phase, snowmelt played a crucial role in 
accelerating the displacement rate of the landslide.

As regards the second stage, it spanned 730 days, with 488 days 
used for the training set and 242 days allocated for the forecasting 
set. The predicted displacement rates are illustrated in Fig. 17, while 

Table 1   Reliability indicators of all the analyzed configurations

Configurations MAE MSE RMSE

RD 1.12 3.01 1.73

RSD 1.48 4.61 2.15

RTD 3.84 19.50 4.42

RHD 1.60 4.83 2.20

RSTD 3.16 12.58 3.55

RSTHD 4.50 34.63 5.89

Fig. 15   Comparison of forecasting tests’ results of different configurations (original represents the real displacement rate, while R, S, T, H, and 
D are rainfall, snow PVI, temperature, humidity, and displacement rate, respectively)
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Table 3 summarizes the reliability indicators. On the basis of the 
outcomes, it can be inferred that in the second stage, the landslide 

noticeably exhibits smaller deformations and strongly reduced 
sensitivity to rainfall. Moreover, due to the extremely limited 
snowfall during the winter of 2023, with only two minor snow 
events, the snow does not exert a significant impact on the landslide. 
Nevertheless, the model still proves applicable for predictions in 
the second stage, with RD and RSD results being quite similar, 
both satisfying the landslide forecasting requirements. Further 
exploration depends on future research involving substantial 
snowfall events that can be utilized.

Table 3 manifests that both RD and RSD exhibited a fundamen-
tally consistent trend and basically identical evaluation parameters, 
with the differences between each evaluation parameter being less 
than 0.01. Both can be used for predicting and assessing future 
trends. However, due to the notably warmer winter from 2022 to 
2023, resulting in minimal snowfall, the significance of snowmelt in 
the deformation of Sant’Andrea landslide during the second stage 
could not be properly explored. Nonetheless, for future years with 

Fig. 16   Forecasting results of 1st period with original displacement rate

Table 2   Reliability indicators of RD and RSD in the 1st stage

Configurations MAE MSE RMSE

RD 5.08 132.52 11.51

RSD 4.67 89.42 9.46

Table 3   Evaluation parameters of RD and RSD in the 2nd stage

Configurations MAE MSE RMSE

RD 0.68 0.94 0.97

RSD 0.68 0.95 0.97

Fig. 17   Forecasting results of 2nd period with original displacement rate
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abundant snowfall, model validation and optimization can continue 
to be applied. Furthermore, similar experiments and exploration 
can be conducted on landslides situated in higher latitude areas 
with abundant snowfall.

Finally, to better understand and quantify the impact of snow 
on landslide movements, a Spearman correlation analysis was 
conducted to examine the relationship between snow PVI and dis-
placement rate. Figure 18a presents the correlation coefficient for 
the first period when snow was relatively abundant, while Fig. 18b 
shows the correlation coefficient for the second period. In the first 
period, the correlation coefficient is 0.6, indicating a moderate level 
of correlation between snow PVI and displacement rate (moderate 
correlation typically ranges from 0.3 to 0.7). In the second period, 
due to reduced snow in the warmer season, the correlation coef-
ficient decreases to 0.36, but still falls within the moderate correla-
tion range. The significance of the correlation is assessed using a 
p-value, with a p-value less than 0.05 indicating that the observed 
correlation is statistically significant and unlikely to be due to ran-
dom chance. Overall, these findings suggest a statistically signifi-
cant, albeit moderate, correlation between snow PVI and displace-
ment rate, underlining the importance of considering snow PVI in 
forecasting landslide movements.

Discussion
This study combines photogrammetry monitoring and LSTM 
methods to analyze and predict the displacement rate of landslides. 
Photogrammetry is specifically used to evaluate the presence of 
snow on the slope, with the aim of also considering the influence 
of snow accumulation and melting on the landslide displacement, 
which is analyzed using LSTM. In previous research, snowfalls have 
not often been considered comprehensively as rainfalls, and, gen-
erally in time series data analysis, rainfall becomes the primary 
factor in displacement analysis (Brezzi et al. 2021b; Teza et al. 2022, 
and Nava et al. 2023). However, in high-latitude and high-altitude 
regions, snowfall occupies a significant duration in winter and 
is one of the factors that cannot be ignored for landslide study. 
Additionally, in this study, meteorological factors such as tempera-
ture and humidity are considered to complement the analysis of 

snowfall and snowmelt, providing a valuable exploration of condi-
tions when snow occurs. The paper reveals that the variations of 
snow can accelerate the displacement rate of landslides to some 
extent. Also, a moderate positive correlation between the amount 
of snow and the displacement rate is shown.

From the observation carried out in the first snowy winter, the 
snow is an important factor affecting the landslide and modifying 
its stability. Unfortunately, the following winter provided just a few 
snowfalls, so the relationship between snow and movement does 
not appear to be so evident. Moreover, the kinematic mode of the 
Sant’Andrea landslide changed around July 2021 after both the natu-
ral and man-induced collapse. The former mode shows large dis-
placement sensitive to rainfall and snow while the latter mode sug-
gests being gradually stable. According to the kinematic movement 
pattern, July 1, 2021, is treated as a point that divides the timeline, 
thus splitting the landslide evolution into two stages. The first stage 
is from March 1, 2020, to June 30, 2021, while the second stage is from 
July 1, 2021, to June 30, 2023. Both are used to explore the affected 
factors of landslide and for forecasting. In the first stage, there were 
significant displacements, and the evaluation parameters for RD 
deviated notably. Among them, the MAE, MSE, and RMSE reached 
5.08, 132.52, and 11.51, respectively. The RSD combination performed 
even better than RD, with values of 4.67, 89.42, and 9.46. The pre-
dictions differed considerably from the actual values at the most 
intense deformation points, yet simultaneously demonstrated the 
indispensable role of snow in accelerating landslide displacement. 
The supposed snow melting process increases the availability of 
water, which infiltrates the soil and rock layers, thereby raising pore 
water pressure within the landslide mass. This increase in pore water 
pressure reduces the effective stress, decreasing the shear strength 
of the slope materials and making them more prone to movement. 
The cyclic nature of freezing and thawing also contributes to soil 
and rock weakening over time, exacerbating deformation. Therefore, 
it is observed that after the snow thaws, it will gradually infiltrate 
downwards and exert an influence on landslide deformation. As the 
infiltration process obviously has a certain lag effect, the maximum 
snowpack and the maximum landslide deformation are obviously 
not synchronized. However, in the second stage, there was minimal 

Fig. 18   Spearman correlation analysis between snow PVI and landslide displacement rate (0.6 and 0.36 are correlation coefficients; a smaller 
p-value (**) indicates that the observed correlation is statistically significant)
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and stable displacement variation. The predictive evaluation param-
eters MAE, MSE, and RMSE for both RD and RSD were all less than 
1, showing consistent predictive accuracy. In both stages, humidity 
and temperature decrease the quality of the forecast and do not 
seem to be significant parameters for this case. As for correlation 
coefficients of snow PVI and displacement rate within the moder-
ate range, the fact that snow PVI remains at 0 except during winter 
reversely impacts the correlation level. Therefore, this result sup-
ports a significant association between the two variables. Overall, 
these processes combined make snowmelt a critical factor in the 
temporal and spatial dynamics of landslide activity, particularly in 
regions with significant seasonal snow cover.

The basic segment of the model utilizes photogrammetry moni-
toring, which is a convenient, economical, and direct method. Addi-
tionally, with the newly described procedure, the presence of snow 
has been vividly reconstructed, and its quantification, visualized as 
a numerical parameter, is introduced into the LSTM network as data 
from the past 28 days to predict the value for the next day. The LSTM 
forecast model obtained in this manner demonstrates a relatively 
straightforward data-driven approach, enabling effective landslide 
prediction with promising results. However, the suggested method 
may encounter some difficulties in practical application. For exam-
ple, in landslides located in remote mountains, problems could arise 
with monitoring, even when carried out with traditional tools. In 
our case, for instance, three cameras recording images of the slope 
were installed from three different positions. Due to inadequate 
maintenance during the winter, in some periods, we only received 
monitoring images from one camera. This reduces the possibility for 
accurate monitoring. Another aspect that complicated the application 
of LSTM models was the occurrence of natural and man-induced 
collapses, which significantly altered the kinematic mechanism of the 
analyzed landslide. This necessitated dividing the monitoring period 
into two or more stages for separate analysis. The overall dataset 
had to be subdivided into two parts relative to the periods before 
and after the collapses in June 2021. Consequently, the data series 
were reduced and may vary significantly. In the examined case, it was 
evident that the rainfall-snow configuration yielded the most accu-
rate results in the first period, while both rainfall and rainfall-snow 
configurations performed well in the second period, particularly as 
snowfall reduced in intensity and frequency. From an operational 
perspective, one possible drawback is that the pixel volume index is 
a value that can reflect the process of snowfall and melting, but when 
the snowfall is very intense, even if it is possible to capture images 
from three cameras, the reference points for quantification of snow 
thickness are covered by snow. This poses a significant challenge to 
the reconstruction of the real snow accumulation process.

Due to the reasons above, the proposed method would be 
useful and convenient in specific circumstances. For instance, 
the snowfall amount should not be too low. Since the melting 
and infiltration of snow take longer than rainfall of equivalent 
intensity, snow is generally not considered a triggering factor 
for landslides. In winter 2022, for example, the warm weather 
rendered the effect of snowfall negligible. Additionally, this 
method is best applied to natural landslides that have not been 
disturbed by human activities, as human interventions may 
affect the accuracy of prediction models. Finally, for the collec-
tion of image data, the landslide location should be relatively 

accessible to facilitate maintenance. Apart from the mentioned 
limitations, this method offers a cost-effective and convenient 
approach for landslide monitoring and early warning.

Ultimately, it is important to emphasize that, in future research, 
it would be necessary to incorporate groundwater table data into 
this prediction model to investigate the thermo-hydraulic coupling 
process of landslide deformation. Unfortunately, in this case, no 
hydraulic data were available to delve into the physical mechanism 
of the snow melting phenomenon.

Conclusion
The method proposed in this paper offers a new approach for 
addressing landslides in snow-covered regions. To summarize the 
role of snow in the Sant’Andrea landslide, in the first stage, both 
rainfall and snowfall impact the landslide displacement rate, albeit 
with a delay, as it takes time for the rainfall and snowmelt to infil-
trate into the soil. Rainfall consistently emerges as the most signifi-
cant and frequent factor affecting the Sant’Andrea landslide year by 
year. However, during winter, snowmelt also plays an indispensable 
role in influencing deformation. Furthermore, a moderate positive 
correlation exists between snow amount and landslide displace-
ment rate. This highlights a mixed level of significance of snowmelt 
in the Alpine region of northern Italy.

Moreover, the integration of two techniques enables the incorpo-
ration of snow into the prediction model. Using photogrammetric 
measurement techniques to monitor the Sant’Andrea landslide is 
advantageous due to its economic, convenient, and real-time trans-
mission characteristics. Additionally, in the absence of dedicated 
snow monitoring devices on the slope, the image-based snow quan-
tification procedure can be applied to reconstruct the snowfall and 
melting processes, thereby providing a more comprehensive expla-
nation for landslide deformation.

Regardless, 3 years constitute a relatively short observational 
period, which is insufficient for drawing definitive conclusions. 
Despite the scarcity of snow limiting its intensive application in 
LSTM modeling, the preliminary results presented here are promis-
ing for the proposed method of incorporating snow influence. This 
method is innovative and straightforward, with potential applica-
tions in future observations during subsequent winters in Perarolo 
di Cadore or in other possible sites.
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