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Abstract: With this review paper we provide an overview of the main degradation mechanisms
that limit the long-term reliability of IR semiconductor lasers for silicon photonics applications.
The discussion is focused on two types of laser diodes: heterogeneous III–V lasers bonded onto
silicon-on-insulator wafers, and InAs quantum-dot lasers epitaxially grown on silicon. A compre-
hensive analysis of the reliability-oriented literature published to date reveals that state-of-the-art
heterogeneous laser sources share with conventional laser diodes their major epitaxy-related degra-
dation processes, such as the generation of non-radiative recombination centers or dopant diffusion,
while eliminating cleaved facets and exposed mirrors. The lifetime of InAs quantum dot lasers grown
on silicon, whose development represents a fundamental step toward a fully epitaxial integration
of future photonic integrated circuits, is strongly limited by the density of extended defects, mainly
misfit dislocations, protruding into the active layer of the devices. The concentration of such defects,
along with inefficient carrier injection and excessive carrier overflow rates, promote recombination-
enhanced degradation mechanisms that reduce the long-term reliability of these sources. The impact
of these misfits can be largely eliminated with the inclusion of blocking layers.

Keywords: silicon photonics; heterogeneous lasers; InAs quantum-dots; degradation; dislocations

1. Introduction

Silicon represents the most widely employed semiconductor material for the realiza-
tions of electronic devices and integrated circuits. Owing to its indirect bandgap, however,
its role in optoelectronics is limited to applications that leverage its waveguiding and
modulation properties, rather than its inefficient light emission, or that take advantage
of it as a cheap and readily available substrate for the epitaxial growth of other alloys.
This means that while high performance detectors and solar cells sensitive in the visible-to
near-infrared (NIR) range can be manufactured through well-established Si processes
adopted for large-scale microelectronics, the fabrication of light emitters, such as laser
diodes and LEDs, has to rely on other semiconductor materials systems, depending on
the wavelength of interest. This requirement pushed both the scientific community and
companies to develop optimized III–V and II–VI processes and devices that allow the
realization of a wide variety of optical sources and sensors. The wavelength of operation of
these devices can range from the deep UV, by leveraging the AlGaN/GaN semiconductor
material system [1], to the far infrared, for devices based on binary semiconductors such as
GaAs, InSb, CdTe, GaP, InAs, and their alloys. While this approach represents the optimal
path for the manufacturing of stand-alone components to be included in discrete-based
systems, it severely limits the direct inclusion of optical emitters into Si-based electronic
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and photonic circuits [2], which would allow fabricating low-cost fully integrated electro-
photonic circuits for a variety of silicon photonics applications. In fact, while efficient
and reliable III–N visible LEDs can be grown on silicon substrates despite the presence of
lattice mismatch-related extended defects [3–5], continuous-wave (CW) laser operation of
IR semiconductor devices requires very-low defect densities to be present within the active
region of the devices. Several strategies have been studied and implemented to achieve
epitaxial integration of III–V materials on silicon [6–8], but none of these ensured high
enough efficiency and scalability to promote their adoption for large-scale integration into
Si- and SOI-based photonic and electronic circuits.

Modern PICs for telecom applications circumvent the intrinsic limitation of Si as an
optical emitter either by relying on separate laser sources placed in the same package or
fiber coupled to the photonic circuit [9], or by selectively bonding III–V laser sources, grown
through a dedicated III–V process, onto the SOI substrate by means of low temperature
wafer bonding techniques [10–12] (Figure 1). This approach leverages both the high quality
of an optical source manufactured through an optimized process and the relatively low
manufacturing costs of PICs manufactured through a conventional SOI process [13,14].
While this approach is beneficial from a reliability standpoint, since high semiconductor
quality implies lower degradation rates and higher robustness against catastrophic optical
damages, it is not ideal in terms of industrialization, due to the additional costs and
manufacturing complexity associated with the required wafer bonding steps.
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Figure 1. Cross-sectional view of a heterogeneous laser diode (LD): the top III–V part is selectively
bonded onto the SOI wafer. The red shaded area highlights the optical mode within the heterogeneous
structure. © 2017 IEEE. Reprinted, with permission, from M. Buffolo et al., “Degradation Mechanisms
of Heterogeneous III–V/Silicon 1.55 µm DBR Laser Diodes,” in IEEE Journal of Quantum Electronics,
Volume 53, No. 4, pp. 1–8, August 2017, Art No. 8400108, doi:10.1109/JQE.2017.2714582 [15].

The most promising alternative to the heterogeneous integration of III–V laser into an
SOI process is represented by the adoption of laser diodes based on epitaxial growth
of quantum-dots (QDs), rather than on multi-quantum-wells (MQWs) active regions
(Figure 2). Owing to their 3D carrier confinement properties [16], the zero-dimensionality
QD structures are more tolerant with respect to the presence of extended defects [17,18],
and allow the fabrication of reliable and efficient optical sources even in the presence of
high densities of dislocations, as in the case of the heteroepitaxial growth of III–V materials
onto Si substrates. This fundamental property allowed 1.3 µm InAs quantum-dot lasers
epitaxially grown on Si with a threading dislocation density (TDD) of 108 cm−2 to reach the
lasing threshold and operate continuously, even at high temperature [19]. Once a higher
degree of maturity is reached, these devices will allow a fully-epitaxial integration of the
optical source into the SOI-based PIC.
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Figure 2. (a) Schematic illustration of the epitaxial structure of a typical InAs quantum-dot laser
epitaxially grown on silicon. The figure highlights one period of the active region, which contains a
thin p-doped layer within a GaAs barrier, and a single layer of InAs QDs placed within an InGaAs
well. (b) Atomic force microscopy (AFM) image of a quantum dot layer: white spots represent InAs
quantum-dots. (c) Cross-sectional transmission electron microscope (TEM) image of four layers of
quantum dots. (d) Cross-sectional scanning electron microscope (SEM) image of a QD laser facet.
© 2019 IEEE. Reprinted and adapted, with permission, from J. C. Norman et al., “A Review of
High-Performance Quantum Dot Lasers on Silicon,” in IEEE Journal of Quantum Electronics, vol. 55,
no. 2, pp. 1–11, April 2019, Art no. 2000511, doi:10.1109/JQE.2019.2901508 [16].

Considering that Si-based PICs offer (i) a very high degree of integration, due to the
high refractive index contrast between Si and the surrounding dielectric, (ii) the possibility
to integrate all the optical signal conditioning functions required by telecom applications,
and (iii) an easy integration with standard CMOS processes and microelectronic circuits,
the improvements in the reliability of the integrated optical source represents a fundamental
step for the future development of this technology. The aim of this review paper is
therefore to describe the device-specific degradation modes and mechanisms determining
the long-term reliability of laser diodes for silicon photonics communication applications.
In particular, our analysis focuses on heterogeneous III–V MQW lasers on SOI, representing
current state-of-the-art integrated lasers, and on quantum-dot laser epitaxially grown on
silicon, which may become the preferential light source for future photonic devices and
systems operating in the 1.31 µm–1.55 µm optical windows.

2. Reliability of Heterogeneous III–V Lasers on SOI Substrates

The III–V epitaxies adopted for the fabrication of heterogeneous lasers on SOI sub-
strates do not differ from the ones adopted for conventional laser diodes and therefore,
in principle, should exhibit similar degradation modes and mechanisms. During the early
stages of development of this novel technology, however, this assumption was not valid,
since the additional processing steps required to bond the III–V and the SOI wafers were
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found to cause the formation of thermally-induced defects within the III–V material in
correspondence of the bonding interface, as shown in Figure 3 [20].
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Figure 3. Thermally-induced bonding defects at the interface between the SOI waveguide and the
III–V active layer in a heterogeneous laser diode. Image adapted from: D. Liang et al., “Demonstration
of Enhanced III–V-On-Silicon Hybrid Integration by Using a Strained Superlattice as a Defect Blocking
Layer”, ECS Transactions, Volume 33, Number 4, pg. 421–426, 2010, doi:10.1149/1.3483532, © The
Electrochemical Society. Reproduced by permission of IOP Publishing Ltd. All rights reserved [20].

Despite these defects not being associated with the formation of extended defects
propagating through the epitaxial layers toward the active region, they were identified
to be limiting both device performance and reliability [20,21]. To reduce residual lat-
tice strain and avoid the eventual propagation of point defects during device operation,
a super-lattice (SL) structure was inserted in the proximity of the bonding interface [22].
The addition of a strained super-lattice effectively increased the performance of the de-
vices measured after the bonding procedure and increased yield from 60% to 99% [21].
In addition, the authors found that devices based on epitaxies featuring an SL layer exhibit
significantly lower premature failure rates during aging performed at temperature and cur-
rent density levels up to 85 ◦C and ~7 kA/cm2, respectively. Conversely, this optimization
did not seem to impact on the degradation rate of non-prematurely failed devices, possi-
bly indicating that their lifetime was mainly determined by other degradation processes.
This latter aspect was investigated more in-depth in [15], where the authors evaluated
the long-term reliability of 1.55 µm distributed Bragg reflector (DBR) heterogeneous laser-
diodes by means of a set of constant-current aging experiments carried out at current
densities up to 8.6 kA/cm2, at a temperature of 45 ◦C. In these stress conditions, the het-
erogeneous laser diodes exhibited a peculiar set of degradation processes, affecting both
the optical and electrical characteristics of the devices. In particular, the LDs under investi-
gation showed a gradual and stress-current dependent increase in threshold current that
was found to be correlated with the decrease in both turn-on voltage, as in [23], and bias-
dependent ideality factor, estimated at low forward voltages. These three processes were
found to be consistent with the increase in defect concentration within the active region of
the device. Conversely, no significant lowering in the slope-efficiency (SE) of the devices
was found to affect their optical characteristics. Considering that the slope efficiency of a
laser diode can be expressed as [24]:

SE = ηinj
αm

αm + αi



Electronics 2021, 10, 2734 5 of 13

where ηinj is the carrier injection efficiency, and αm and αi are respectively the mirror
and the modal losses, this finding indicated that the stress procedure did not impact
either the injection efficiency or the mirror losses of the laser. This latter point actually
represents a peculiar strength of heterogeneous laser diodes, in terms of reliability. In fact,
if a proper optical mode transition between the III–V material and the silicon waveguide is
achieved [25–27], the effective facets of the laser can be moved into the optical waveguide
and decoupled from the active semiconductor region. This eliminates the problem of facet
damage as one of the major sources of device degradation [21], and improves the robustness
against catastrophic and gradual mirror degradation [28]. This is important because it
enables lower cost, non-hermetic packaging. The central role of the epitaxy, rather than
mirrors, in heterogeneous devices degradation was further demonstrated in [29], where the
authors showed loop-mirror LDs featuring the same III–V structure of the lasers analyzed
in [15] exhibited similar degradation modes.

By analyzing the variation of the capacitance-voltage (C-V) characteristics during
stress, and of the derived apparent charge profile (Figure 4), the authors were able to ascribe
the observed gradual increase in threshold current to the relocation of charged defects,
or impurities, acting as non-radiative recombination centers (NRRCs). The diffusing species
was found to originate from the p-side of the device and to diffuse toward the active region,
corresponding in Figure 4 to lower apparent depths (xd).
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Figure 4. Relative variation of the apparent charge profile, calculated from C-V measurements
carried out at 1 MHz and T = 45 ◦C, of a heterogeneous DBR LD. Variations are referred to the
t = 0 curve, represented by a flat line. The localized increase in apparent free-charge at specific
depths, e.g., at xd = 27 nm, also indicated the presence of physical barriers opposing to the diffusion
process. © 2017 IEEE. Reprinted, with permission, from M. Buffolo et al., “Degradation Mechanisms
of Heterogeneous III–V/Silicon 1.55 µm DBR Laser Diodes,” in IEEE Journal of Quantum Electronics,
Volume 53, No. 4, pp. 1–8, August 2017, Art No. 8400108, doi:10.1109/JQE.2017.2714582 [15].

In addition to that, by considering that the amount of the observed free charge vari-
ation was in the order of 1017 cm−3 and that only dopants are intentionally introduced
in similar concentrations within the device, the authors postulated that the diffusion
of the p-dopant Zn may be driving the observed degradation process. Doping-related
diffusion is not something uniquely associated with heterogeneous lasers, since it is in-
herently related to the III–V epitaxy. This type of degradation can affect both III–N [30]
and III-As [31] emitters, and represents the reason why manufacturers of optoelectronic
devices tend to transition to less diffusive p-dopants, like carbon, for large scale manu-
facturing [32,33]. Generally speaking, the correlation between optical degradation and
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the generation/propagation of point defects or impurities suggests that even for modern
state-of-the-art devices, this kind of degradation process represents a limiting factor for
their long-term reliability.

Heterogeneous laser sources have been commercialized for datacenter products with
current production rates of several million transceivers/year [34]. The reliability of these
devices is superb in spite of the fact that the transceivers are not hermetically packaged.
Figure 5 shows 80 ◦C aging with negligible aging over 19,000 h [34]. This illustrates the
advantage of silicon facets without III–V material at the facet.
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3. Reliability of InAs Quantum-Dot Laser Epitaxially Grown on Silicon

From a reliability standpoint, the advantages offered by a QD-based active layer to
heteroepitaxially-grown devices were first demonstrated in [35], where an average lifetime
is more than 10 times higher than conventional QW lasers grown on the same GaAs-on-
silicon was measured. To understand the physical origin of this dramatic improvement,
we must consider that in the presence of a high concentration of extended defects, as in the
case of heteroepitaxial III-As layers on Si [36], non-radiative trap-assisted recombination
processes are favored. The energy released by these processes can induce a local increase in
lattice temperature, thus favoring the generation of additional defects and promoting other
non-radiative recombination events [37]. Therefore, the magnitude of this recombination-
enhanced (RE) defects-generation process drastically increases in the proximity of extended
defects, like dislocation sites. This mechanism was also confirmed by preliminary material-
level analyses carried out by means of planar-view scanning TEM (PVSTEM), which
revealed that misfit dislocations (MDs) located in the proximity of the active layer acquired
a helical component after 600 h RT aging at 2.5 kA/cm2. Since this is a characteristic
behavior of dislocation growth by climb processes [38], this finding indicates that the aging
procedure induced the re-growth of pre-existent extended defects. This process was further
confirmed by more recent investigations carried out on InAs QD LDs grown on Si with
a lower TDD [39], through which the authors proved that misfit dislocations in device
layers submitted to high levels of carrier injection during aging undergo RE-climb/growth:
this effect is demonstrated by the evident protrusions affecting the MD in the aged device,
compared to the unaged one, as reported in Figure 6.
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Figure 6. (a) PV-STEM image of a single dislocation exhibiting a misfit segment along 110 direction
within an aged QD laser. The lighter (at the top) and darker (at the bottom) regions correspond,
respectively, to the device layer submitted to very-low and very-high carrier injection levels. In the
un-injected portion of the laser, the misfit dislocation remains straight, whereas dislocation climb
occurs in the heavily injected region. (b) PV-STEM of a single misfit dislocation contained within
an unaged and an aged QD laser. Evident protrusions are exhibited on one side of the dislocation
within the aged device. Reprinted from K. Mukherjee, et al., “Recombination-enhanced disloca-
tion climb in InAs quantum dot lasers on silicon”, Journal of Applied Physics 128, 025703 (2020)
https://doi.org/10.1063/1.5143606, with the permission of AIP Publishing [39].

Since this process is proportional to the number of carriers that are locally captured by
the defective sites, the authors explained the huge difference in degradation rate between
QD- and QW-based devices by considering that QD structures offer a 3D confinement
that spatially localizes injected carrier, thus preventing their capture by nearby extended
defective sites (Figure 7). On the other hand, carriers that are not injected into, or that escape
from the QDs, are free to laterally diffuse, though with some limitations [40], and promote
REDR processes in correspondence of dislocation sites.
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Figure 7. Schematic representation of the RE degradation process occurring in proximity of the
active region of InAs QD LDs grown on Si. All the relevant electron-related capture (C), emission (E)
and radiative (ST, for stimulated) or non-radiative (NR) recombination processes involved have
been highlighted and labeled. Carriers that are injected into the active region (1) can either relax
via radiative transitions, if captured by a QD (2a), or via a non-radiative transition, if trapped by a
defect (2b). In this second case REDR may lead to growth or formation of new defects (3), inducing
the decrease in the internal quantum efficiency and the increase in absorption losses (4). (GS: ground
state; ES: excited states). © 2015 IEEE. Reprinted, with permission, from A. Y. Liu, et al., “Reliability
of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon,” in IEEE Journal of Selected
Topics in Quantum Electronics, vol. 21, no. 6, pp. 690–697, Nov.–Dec. 2015, Art no. 1900708,
doi:10.1109/JSTQE.2015.2418226 [35].
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Despite the partial immunity of QD-based LDs to the growth of climb dislocation net-
works that would usually be seen in comparable QW lasers, it has been demonstrated from
a statistical point of view that the density of dislocations still represents a limiting factor for
the long-term reliability of InAs QD LDs grown on Si [35]. In particular, a decrease in the
TDD of an order of magnitude can increase the device lifetime of a factor approximately
equal to 1000, as evidenced by the plots reported in Figure 8.
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II, III labels refer to devices grown with a TDD of 2.8 × 108 cm−2, 6 × 107 cm−2 and 7 × 106 cm−2,
respectively. Reprinted from D. Jung, et al., “Impact of threading dislocation density on the lifetime
of InAs quantum dot lasers on Si”, Appl. Phys. Lett. 112, 153,507 (2018) https://doi.org/10.1063/1.
5026147, with the permission of AIP Publishing. [41].

The above mentioned findings suggest that lifetime improvements of QD lasers epitax-
ially grown on silicon should likely proceed through the reduction in the concentration of
extended defects, mainly misfit dislocations [39], or through the optimization of the carrier
injection dynamics into the InAs QDs [40]. The former goal can either be achieved through
the optimization of the growth procedure, of the buffer layer or through a well-engineered
positioning of MD-trapping layers that prevent the formation of longitudinally extended
defects in the proximity of the active region, which may happen during the heating-up and
cooling-down phases of the growth process [42,43]. The introduction of misfit trapping
layers, which block over 90% of the misfit dislocations which would otherwise grow along
the active region [43,44], allows for a great increase in device reliability, as testified by the
higher optical stability exhibited by devices featuring trapping layers within their epitaxy
(Figure 9). This misfit growth appears to be the dominant failure mechanism for QD lasers
grown on silicon substrates.

On the other hand, a more efficient injection and stimulated recombination of carriers
within the QDs can be achieved by adopting a modulation-doping scheme [45], rather
than building a conventional p-i-n active structure. This doping approach can favor device
performance by easing hole injection, increasing the high-temperature and dynamic perfor-
mance of QD LDs, and favoring, under appropriate design rules, GS over ES operation [46].
In addition to that, p-modulation doping can improve device reliability, since the faster
holes transfer from the modulation doped layers to the GS of the QDs effectively reduces
the amount of free carriers available for defect-assisted non-radiative recombination events
and degradation processes [35,41].

https://doi.org/10.1063/1.5026147
https://doi.org/10.1063/1.5026147
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Efficient confinement of carriers, and associated device reliability, were also found to
exhibit a strong dependence on the operating regime, as evidenced by the experimental
results reported in [47].
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Figure 9. (a) Epitaxial structure of a QD LDs on Si featuring an MD trapping layer positioned
80 nm or 180 nm above and below the active region. (b) Variation of the L-I characteristics during
constant-current stress at twice their initial Ith measured at 80 ◦C, which also represents the stress
temperature. Reprinted with permission from [44] © The Optical Society.

By means of a current step-stress experiment, carried out at T = 35 ◦C and at current
densities up to 10 kA/cm2, the authors were able to ascribe the optical degradation of the
QD LDs on Si under test to a defect-related generation process, whose rate was found
to increase when the devices are driven at current levels above the onset of ES emission.
In this bias regime, corresponding to current levels above 220 mA (Figure 10), injected
carriers tend to occupy QD states at higher energy levels, and therefore see an effective
escape barrier which is lower compared to the case of GS-only operation, where most of
the carrier occupies the GS of the first ES of the QDs. As a consequence, the rate of escape
and of REDR processes described in [35] and by Figure 7 increase, thus increasing the
degradation rate. This is also evidenced by the increase in the slope of the Ith-1/SE curve
reported in the right plot of Figure 10 for stress time roughly corresponding to the onset of
ES emission. The straight linear correlation between the threshold current increase and
the increase in 1/SE also indicated that the degradation process was lowering the injection
efficiency, measured under nominal operating conditions. This kind of variation was found
to be compatible with the increase in SRH recombination rate within device layers close
to the active region: defect-assisted recombination occurring within these layers prevents
carriers from being potentially injected into the GS of the QDs, therefore lowering the
apparent injection efficiency of the laser. The effect of non-radiative recombination centers
placed within the InGaAs well on the optical performance was also confirmed by numerical
simulations, performed on models based on similar device structures [48].
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Figure 10. Variation of the optical characteristics of a 3 × QD layer 1.3 µm laser grown on Si
with 7 × 106 cm−2 TDD, submitted to a current step-stress experiment. Left plot: trend of the
luminescence from the ground (GS) and excited (ES) states recorded during stress at increasing
current. The inset graph shows a sketch of the band-diagram of the DWELL region, showing the
transitions related to GS and ES emissions. Right plot: correlation between the variation in threshold
current and the change in the reciprocal of slope efficiency. © 2019 IEEE. Reprinted, with permission,
from M. Buffolo et al., “Physical Origin of the Optical Degradation of InAs Quantum Dot Lasers,”
in IEEE Journal of Quantum Electronics, Volume 55, No. 3, pp. 1–7, June 2019, Art No. 2000607,
doi:10.1109/JQE.2019.2909963 [47].

Further constant-current aging experiments [49,50] confirmed the role of the genera-
tion/propagation of non-radiative recombination centers in the gradual optical degradation
of QD LDs on Si, evidencing both a strong dependence of this process on stress current
density and showing that the observed optical degradation kinetics are compatible with
a diffusion process. While this latter finding still requires additional investigations for
the determination of the physical origin of the related mechanism, the strong power-law
dependence of the degradation rate on stress current density, testified by a mean time-to-
failure (MTTF) ∝ J−3.9, is compatible with a recombination-driven degradation, since the
number of escaping carriers is directly related to the rate of injected carriers during stress.

The improvements in epitaxial quality and the previously described mitigation strate-
gies allowed to attain devices with very-high MTTF. In particular, if we define this latter
parameter as the average time required for a sample operating at a constant 10 mW OP
to increase by two times its initial threshold current, QD LDs with lifetimes in excess of
22 years under high temperature aging (T = 80 ◦C) have recently been demonstrated [44].

4. Conclusions

With this paper, we have reviewed the most relevant scientific results concerning the
degradation mechanisms and the reliability of SWIR laser diodes for silicon photonics
applications, with a focus on heterogeneous III–V/Si lasers and on InAs quantum-dot
lasers epitaxially grown on silicon.

The few available literature reports dealing with the reliability of heterogeneous IR
laser diodes indicate that such devices, nowadays, only suffer from minor reliability issues
related to the wafer bonding procedure required to couple the III–V IR source to the rest of
the photonic circuit contained within the SOI substrate. Additionally, the decoupling of the
laser facets from the active semiconductor region increases the robustness against mirror
damage and COMD. Conversely, experimental results indicate that these lasers can still be
affected by gradual degradation processes involving the generation and/or propagation
of impurities and non-radiative recombination centers within the III–V epitaxy. This con-
sideration ultimately shows that point defects may represent a major reliability issue for
modern MQW emitters, as far as their long-term reliability is concerned, and suggests that
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a tighter control of defects, as well as the transition to a less diffusive p-type dopant may
be necessary steps for the improvement of the lifetime of these novel sources.

On the other hand, statistical analyses, material-oriented investigation and accurate
evaluation of the gradual degradation processes related to QD LDs epitaxially grown on Si
evidence that the improvement in the long-term reliability of such devices should proceed
mainly through the reduction in dislocation density, mainly misfit-type dislocations, present
in correspondence of the active region. The reliability of QD-based lasers is also strongly
affected by structural design choices, such as the p-doping approach, that impact on the
carrier injection and recombination dynamics within the DWELL region. The optimization
of both of these aspects, along with the addition of misfit trapping layers, may allow QD
lasers to replace conventional QW-based devices for future silicon photonics applications,
and to attain a fully-epitaxial integration of the laser source into the PIC.
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