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A B S T R A C T

Structural problems play a critical role in many areas of science and engineering. Their efficient
and accurate solution is essential for designing and optimising civil engineering, aerospace, and
materials science applications, to name a few. When appropriately tuned, Algebraic Multigrid
(AMG) methods exhibit a convergence that is independent of the problem size, making them the
preferred option for solving structural problems. Nevertheless, AMG faces several computational
challenges, including its remarkable memory footprint, costly setup, and the relatively low
arithmetic intensity of the sparse linear algebra operations. This work presents AMGR, an
enhanced variant of AMG that mitigates such limitations. Its name arises from the AMG
reduction framework it introduces, and its flexibility allows for leveraging several features that
are common in structural problems. Namely, periodicities, spatial symmetries, and localised
non-linearities. For such cases, we show how to reduce the memory footprint and setup costs
of the standard AMG, as well as increase its arithmetic intensity. Despite being lighter than
the standard AMG, AMGR exhibits comparable scalability and convergence rates. Numerical
experiments on several industrial applications prove AMGR’s effectiveness, resulting in up to
3.7x overall speed-ups compared to the standard AMG.

1. Introduction

Civil engineering design often relies on simplified numerical models, such as 1D or 2D discretisations, to quickly assess overall
information like internal loading or global kinematic quantities. This approach is particularly useful for linear analyses or when
only small non-linearities are present. Frame and shell elements can be effectively used in the design process if the actual
structure can be reasonably approximated under the strict assumptions these elements rely on [1–4]. However, cases involving
a significant non-linearity require a more precise geometric description and detailed material characterisation. Typically, a three-
dimensional approach is employed to evaluate the failure or dissipative mechanisms exhibited by a civil structure under extreme
loading conditions such as earthquakes, explosions and fires [5–7], as well as to study historic structures [8]. Developing 3D civil
structural models is time-consuming and requires substantial hardware resources to obtain the analysis solution. Therefore, optimised
numerical procedures are essential to enhance the usability and efficiency of this type of analysis.

Structural analysis is also vital in designing and optimising automotive components, like the chassis, suspension systems, and
crash structures of the vehicles [9]. Similarly, it is essential in the aircraft industry to predict fatigue and identify possible failure
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modes of the various components, such as the wings and fuselages [10,11]. Other applications include the study of biomechanical
processes like bone or cartilage deformation under different loading conditions [12,13]; the simulation of manufacturing techniques
like stamping, forging and casting for predicting the performance and durability of manufactured goods [14,15]; and in offshore
engineering, the assessment of the stability of the structures in response to wave loads [16].

It is clear, then, how ubiquitous structural problems are, and how crucial their efficient solution results. Since the beginning
f numerical analysis, iterative methods based on Krylov subspaces have been employed to tackle their resolution. As discussed
n [17–19], they are simple to implement and easily parallelisable, solely relying on basic linear algebra kernels like the matrix by
ector product, the linear combination and the dot product of vectors. Nevertheless, iterative linear solvers are very sensitive to the
haracteristics of the problem at hand [20–22], and to be effective, they generally require robust preconditioners [23,24], whose
election, design, and implementation are far from trivial and remain very active research areas.

In the early years of numerical linear algebra, incomplete factorisations were very popular, as evidenced by works such
s [25,26]. In those pioneering articles, factorisation occurred without fill-in, leading to a Cholesky factor with a pattern equal
o that of the lower part of 𝐴. Subsequent advancements introduced strategies like dynamic fill-in control [27,28]. However, the
evelopment of parallel computing in the late 1990s made alternatives with greater parallelism overshadow the traditional (and
nherently sequential) methods based on incomplete factorisations. One such alternative is the preconditioners based on approximate
nverses. Their construction is fairly concurrent, and, most notably, their application relies on the 𝚂𝚙𝙼𝚅, a trivially parallelisable

kernel. Popular examples include AINV [29–31], SPAI [32], and the Factored Sparse Approximate Inverse (FSAI) [33,34].
In the current landscape of solving extreme-scale linear systems on massively parallel supercomputers, the issue of scalability

has become increasingly critical [35,36]. Despite offering great parallelism, single-level approximate inverses are not optimal, as
the number of iterations required to meet a prescribed accuracy grows with the problem size. To address this challenge, multilevel
preconditioners like Geometric Multigrid (GMG) [37,38] or Algebraic Multigrid (AMG) [39–41] emerged as effective solutions. By
leveraging a combination of smoother and coarse-grid correction, multigrid methods often solve PDEs at a convergence rate that is
independent of the problem size. Numerous freely available packages offering high-quality and very scalable implementations exist.
See, for instance, Hypre [42], Trilinos [43], and PETSc [44] libraries.

In order to improve the performance of the linear solvers, it is imperative to identify and address the challenges posed by the
current computing devices, developing novel strategies that overcome them. To name a few, introducing mixed precision [45] or
adapting more compute-intensive algorithms [46] effectively mitigates the low arithmetic intensity of the sparse linear algebra
kernels. Similarly, the increasing ratio of the network to the memory bandwidths spurred the creation of implementations that
either conceal or completely eliminate inter-node communications [47–49]. Additionally, the limited available memory motivated
strategies like exploiting data sparsity [50–52]. In the recent years, all such improvements have gained paramount importance in
the context of data-driven modelling [53,54], where there is an urgency to produce vast quantities of training and testing data from
traditional numerical simulations.

Several studies leveraging spatial symmetries for solving Poisson’s equation exist [55–57]. This work extends them by presenting
AMGR, an enhanced variant of AMG whose name arises from the AMG reduction framework on which it is based. Multigrid reduction
has been successfully applied in different contexts in the recent years [58,59]. Despite being initially defined in the context of
computational fluid dynamics (CFD) simulations [60], the present work leverages the flexibility of AMGR to make it take advantage
of several features that are common in structural problems. Namely, periodicities, spatial symmetries, and localised non-linearities.
In such cases, AMGR has multiple benefits. On the one hand, it introduces an aggressive coarsening to the top level of the multigrid
hierarchy that, despite making AMGR significantly lighter, preserves the excellent convergence of the standard AMG. On the other,
it makes the application of the top-level smoother faster and more efficient thanks to replacing the standard 𝚂𝚙𝙼𝚅 with the more
compute-intensive 𝚂𝚙𝙼𝙼 [61,62]. As a result, AMGR is lighter and more compute-intensive than the standard AMG, converges and
scales equally well, and yields up to 3.7x overall speed-ups.

Thanks to its flexibility, the range of industrial applications compatible with AMGR is considerably extensive. For instance,
translational and rotational symmetries are commonly used to simplify the analysis of complex structures by breaking them down
into smaller repeating units [63–65], such as the bricks forming a wall or the symmetric part of a bridge pier. Similarly, reflection
symmetries arise in a wide variety of industrial applications, such as wheel rim failure, helical gear optimisation and bearing
vibrations [66,67]. Furthermore, AMGR accelerates the non-linear analysis of problems in which the non-linearity is limited to
a smaller region within the domain, as happens when simulating the failure response of steel joints [68], modelling the contact
between continuous domains [69] or simulating elasto-plastic deformation within a reservoir [70,71], to name a few. In all such
problems, AMGR greatly reduces the setup costs by reusing the (large) portions of the preconditioner that remain constant between
consecutive non-linear iterations.

The remaining sections of the paper are organised as follows. Section 2 reviews the main components of AMG preconditioners.
Section 3 defines the novel AMGR preconditioner for structural problems, detailing its application in different scenarios. Section 4
discusses the performance of AMGR on industrial problems, and finally, Section 5 gives some concluding remarks.

2. Overview of algebraic multigrid

For the sake of completeness, let us start by reviewing the main characteristics of Algebraic Multigrid (AMG). It is a class of
powerful methods for the efficient solution of linear systems of equations of the form:
2

𝐴𝑥 = 𝑏, (1)



Computer Methods in Applied Mechanics and Engineering 431 (2024) 117249A. Alsalti-Baldellou et al.

P
s
w

where 𝐴 ∈ R𝑛×𝑛 and 𝑥, 𝑏 ∈ R𝑛.
AMG can be used as a standalone solver or as a preconditioner to accelerate the convergence of Krylov-subspace methods like

CG [72], GMRES [73] or BICGSTAB [74]. Even though there are multiple implementations able to tackle general nonsymmetric or
addle-point problems, AMG was originally designed for symmetric positive-definite (SPD) matrices, on which it performs best. Thus,
e will restrict our attention to this context, assuming that 𝐴 is always SPD. Regarding the choice of AMG, it is mainly motivated

by its optimality, that is, by its capability of providing convergence rates independent (or mildly dependent) of the grid size. This
feature makes AMG particularly attractive for large-scale problems, as it guarantees solution times growing linearly with the grid
size. It reduces the error, 𝑒𝑘 = 𝐴−1𝑏 − 𝑥𝑘, through a multilevel approach that effectively removes components belonging to both
the low- and high-frequency parts of 𝐴’s eigenspectrum. When appropriately tuned, AMG allows for a convergence rate which does
not depend on the mesh size, allowing the resolution of linear systems with millions, or even billions, of unknowns in reasonable
timeframes.

For simplicity, let us consider a two-level AMG method. Its application starts by applying a basic iterative method, like (damped)
Jacobi or (block) Gauss–Seidel, to the linear system of (1):

𝑥𝑘+1∕2 = (I𝑛 −𝑀−1𝐴)𝑥𝑘 +𝑀−1𝑏, (2)

where I𝑛 ∈ R𝑛×𝑛 denotes the identity matrix of order 𝑛 and 𝑀−1 the smoother, that is, a preconditioner 𝑀 ∈ R𝑛×𝑛 such that
𝑀−1 ≃ 𝐴−1. In the case of Jacobi, for instance, 𝑀 = diag(𝐴). This process, termed relaxation or smoothing, is repeated a small
number of times, 𝜈1, due to the rapid deterioration of its convergence. Such deterioration is a well-known drawback of basic
iterative methods, which rapidly dampen the high-frequency error components but are ineffective in removing the low-frequency
ones. To remedy this, AMG reduces the low frequencies by treating them as the high frequencies of 𝐴𝑐 , a coarse representation of
𝐴 obtained by projecting 𝐴 onto a coarser space:

𝐴𝑐 = 𝑃 𝑇𝐴𝑃 ∈ R𝑛𝑐×𝑛𝑐 , (3)

in which 𝑃 ∈ R𝑛×𝑛𝑐 is the prolongation operator responsible for transferring the information between the coarse and fine levels.
The construction of 𝐴𝑐 is crucial for obtaining effective AMG methods. This work adopts a Classical AMG approach, in which

the coarse level unknowns are a subset of those in the fine level. Such a subset is selected as follows:

1. The edges between the nodes of the adjacency graph of 𝐴 are marked as either weak or strong, giving rise to the so-called
Strength of Connection (SoC) graph. Strong connections represent the directions along which the smooth error varies slowly
and, classically, include those edges satisfying:

−𝑎𝑖𝑗 > 𝜃 max
𝑘≠𝑖

{𝑎𝑖𝑘}, (4)

where 𝜃 ∈ R is a threshold parameter typically set to around 0.25.
2. After setting the SoC graph, the subset of coarse nodes is formed by applying a Maximum Independent Set (MIS) algorithm.

The subset of coarse nodes must be independent, to avoid bringing redundant information to the coarse level, and maximal,
to cover the original SoC graph entirely.

Then, the smoothed residual, 𝑟𝑘+1∕2 = 𝑏 −𝐴𝑥𝑘+1∕2, is projected onto the coarse space, where a correction vector is computed by
inverting 𝐴𝑐 :

ℎ𝑐 = 𝐴−1
𝑐 𝑃 𝑇 𝑟𝑘+1∕2. (5)

Subsequently, ℎ𝑐 is interpolated back to the fine space, ℎ = 𝑃ℎ𝑐 , and applied to 𝑥𝑘+1∕2. Typically, another relaxation step is applied
to the corrected solution to obtain the final approximation:

𝑥𝑘+1 = (I𝑛 −𝑀−𝑇𝐴)(𝑥𝑘+1 + ℎ) +𝑀−𝑇 𝑏. (6)

Remarkably enough, the post-smoothing step makes use of 𝑀 ’s transpose in order to make the overall AMG operator symmetric,
regardless of 𝑀 . By doing so, it can be used as a preconditioner for PCG.

In a two-grid scheme, the error propagation operator, 𝐸𝑇𝐺, defines the combined action of the relaxation and the coarse-grid
correction:

𝐸𝑇𝐺 = (I𝑛 −𝑀−𝑇𝐴)𝜈2 (I𝑛𝑐 − 𝑃𝐴−1
𝑐 𝑃 𝑇𝐴)(I𝑛 −𝑀−1𝐴)𝜈1 ∈ R𝑛×𝑛, (7)

where 𝜈1 and 𝜈2 denote the number of smoother sweeps in the pre- and post-relaxation steps, respectively, and, to ensure the
preconditioner’s symmetry, we have that 𝜈1 = 𝜈2 . A rapidly converging AMG exhibits an error propagator of norm close to zero
independently of the grid size. This condition generally holds when the smoother and coarse-grid correction complement each other
well, meaning that the error components not damped by the relaxation, i.e., the algebraically smooth components, are effectively
removed by the coarse-grid correction.

The coarsening ratio, i.e., the ratio of 𝑛𝑐 to 𝑛, is generally of the order of 10−1. Hence, for realistically sized problems, the costs of
inverting 𝐴𝑐 are exceedingly large. To overcome this limitation, AMG approximates the action of 𝐴−1

𝑐 by nesting another two-grid
method. In practise, this is done recursively until the size of the coarsest level allows for a direct solution. Although analogous
schemes exist, AMG is often applied as a V-cycle, that is, by moving from the finest to the coarsest level and back to the finest.
3
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Algorithm 2.1 Recursive AMG Setup
1: procedure AMG_SetUp(𝐴𝑘)
2: Define 𝛺𝑘 as the set of the 𝑛𝑘 vertices of the adjacency graph of 𝐴𝑘;
3: if 𝑛𝑘 is small enough to allow a direct factorisation then
4: Compute 𝐴𝑘 = 𝐿𝑘𝐿𝑇

𝑘 ;
5: else
6: Compute 𝑀𝑘 such that 𝑀−1

𝑘 ≃ 𝐴−1
𝑘 ;

7: Define the smoother as 𝑆𝑘 =
(

I𝑛𝑘 −𝑀−1
𝑘 𝐴𝑘

)

;
8: Partition 𝛺𝑘 into the two disjoint sets 𝑘 and 𝑘 via coarsening;
9: Compute the prolongation matrix 𝑃𝑘 from 𝑘 to 𝛺𝑘;

10: Compute the new coarse level matrix 𝐴𝑘+1 = 𝑃 𝑇
𝑘 𝐴𝑘𝑃𝑘;

11: AMG_SetUp
(

𝐴𝑘+1
)

;
12: end if
13: end procedure

Algorithm 2.2 AMG application in a V(𝜈1, 𝜈2)-cycle
1: procedure AMG_Apply(𝐴𝑘, 𝑦𝑘, 𝑧𝑘)
2: if 𝑘 is the last level then
3: Forward and Backward solve 𝐿𝑘𝐿𝑇

𝑘 𝑧𝑘 = 𝑦𝑘;
4: else
5: Smooth 𝜈1 times 𝐴𝑘𝑠𝑘 = 𝑦𝑘 starting from 0;
6: Compute the residual 𝑟𝑘 = 𝑦𝑘 − 𝐴𝑘𝑠𝑘;
7: Restrict the residual to the coarse grid 𝑟𝑘+1 = 𝑃 𝑇

𝑘 𝑟𝑘;
8: AMG_Apply

(

𝐴𝑘+1, 𝑟𝑘+1, ℎ𝑘+1
)

;
9: Prolongate the correction to the fine grid ℎ𝑘 = 𝑃𝑘ℎ𝑘+1;

10: Update 𝑠𝑘 ← 𝑠𝑘 + ℎ𝑘;
11: Smooth 𝜈2 times 𝐴𝑘𝑧𝑘 = 𝑦𝑘 starting from 𝑠𝑘;
12: end if
13: end procedure

The basic steps required to compute and apply a generic AMG are schematically presented in Algorithms 2.1 and 2.2, respectively.
he building blocks of any AMG implementation are the smoother, the coarsening strategy and the prolongation operator. In this
ork, we use the AMG provided by the Chronos library [75,76]. It is a classical AMG, meaning that the coarsening algorithm

lassifies the unknowns into fine and coarse and uses the latter as the primary unknowns for the coarser level. Conversely, in
ggregation-based AMG, the coarsening is obtained by aggregating the unknowns. It is usually preferred over classical AMG for
olving structural problems, as it is easier to accommodate the multidimensional near-kernel subspace represented by the rigid
ody modes. Nevertheless, the Dynamic Pattern Least Squares (DPLS) prolongation employed in Chronos allows for an accurate and
parse representation of multidimensional subspaces within a classical AMG framework [77]. Another key component of Chronos is
he FSAI smoother [33,78], which is extremely helpful for solving ill-conditioned problems. In the remainder of this paper, we will
how how to greatly improve these three components on problems with periodicities, spatial symmetries, or localised non-linearities.

. AMG reduction framework

This section presents AMGR, an AMG reduction framework previously introduced in the context of CFD simulations [60]. We will
efine it in general terms and then detail its extension towards structural problems. Namely, towards periodic structures, domains
ith symmetries, and problems with a non-linearity only applying to a subset of unknowns.

AMGR arises from applying a non-overlapping domain decomposition that, as Sections 3.1–3.3 will detail, must be consistent with
he problem at hand to exploit its advantages. Fig. 1 sketches a domain divided into 𝑛𝑏 subdomains and the resulting classification

of the unknowns, which splits them into inner (𝛺1 ⋅∪… ⋅∪ 𝛺𝑛𝑏 ) and interface (𝛤1 ⋅∪… ⋅∪ 𝛤𝑛𝑏 ) unknowns.
Regardless of the decomposition, the number of inner unknowns should be much larger than the number of interface unknowns,

i.e., 𝑛inn ≫ 𝑛ifc. Additionally, thanks to reordering the coefficient matrix by first indexing the inner and then the interface unknowns,
it satisfies the following block structure:

𝐴 =
(

𝐾̄ 𝐵̄
𝐵̄𝑇 𝐶̄

)

∈ R𝑛×𝑛, (8)

where 𝐾̄ ∈ R𝑛inn×𝑛inn , 𝐵̄ ∈ R𝑛inn×𝑛ifc , 𝐶̄ ∈ R𝑛ifc×𝑛ifc .
Even if we have not yet detailed how to define adequate decompositions, the structure of Eq. (8) suggests defining an AMG

reduction by (only) setting the interface unknowns as coarse. Unfortunately, this results in exceedingly large fine-coarse distances and
4
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Fig. 1. Schematic representation of a non-overlapping domain decomposition. Dashed lines identify the interface.

o allow for an accurate prolongation, we need to convert some inner nodes into coarse. Algorithm 3.1 summarises the population
lgorithm used to ensure a maximum interpolation distance 𝑘.

Algorithm 3.1 Interface population at a maximum interpolation distance 𝑘

1: procedure Populate_Coarsening(𝐴, 𝑘)
2: Measure the strength-of-connection of 𝐴
3: Filter the resulting adjacency graph, 𝑇
4: Compute symbolic power of 𝑇 , 𝑇 𝑘

5: Compute a maximum independent set on 𝑇 𝑘, MIS(𝑇 𝑘)
6: Populate coarsening with MIS(𝑇 𝑘)
7: end procedure

For the sake of simplicity, from this point, the inner and interface will not refer to the original decomposition (whichever it
s) but to their populated counterparts. Likewise, 𝑛ifc will designate the enlarged interface and 𝑛inn the remaining inner unknowns.

Then, we can introduce the following prolongation:

𝑃 ∶=
(

𝑊̄
I𝑛ifc

)

∈ R𝑛×𝑛ifc , (9)

where 𝑊̄ ∈ R𝑛inn×𝑛ifc and I𝑛ifc ∈ R𝑛ifc×𝑛ifc . The larger 𝑘 is, the more effective the AMG reduction becomes in reducing the problem
size. However, this comes at the price of making 𝑃 inaccurate. As discussed in Section 4, using 𝑘 = 2 provides an optimal balance.

The remaining pieces of the AMG reduction framework follow naturally. Firstly, the top-level smoother is defined as:

𝑀−1 ∶=
(

𝑀̄−1
𝐾

𝑀̄−1
𝐶

)

∈ R𝑛×𝑛, (10)

here 𝑀̄−1
𝐾 ≃ 𝐾̄−1 and 𝑀̄−1

𝐶 ≃ 𝐶̄−1. In Eq. (9), we can ignore 𝐴’s off-diagonal blocks without harming the overall quality of AMGR.
ndeed, overly accurate smoothers are ineffective in accelerating convergence and generally lead to a slower solution, as they do
ot yield a reduction in the iterations to offset its more expensive setup and application. In fact, the numerical experiments showed
hat thanks to being 𝐵̄ and 𝐵̄𝑇 substantially sparser than 𝐾̄ and 𝐶̄, we can safely ignore them for relaxation purposes, causing
o significant convergence degradation and, as will be discussed in the following sections, leaving room for optimisations in the
onstruction and application of the top-level smoother.

On the other hand, the reduced operator, 𝐴𝑐 ∈ R𝑛ifc×𝑛ifc , reads:

𝐴𝑐 ∶= 𝑃 𝑇
(

𝐾̄ 𝐵̄
𝐵̄𝑇 𝐶̄

)

𝑃 = 𝑊̄ 𝑇 𝐾̄𝑊̄ + 𝑊̄ 𝑇 𝐵̄ + 𝐵̄𝑇 𝑊̄ + 𝐶̄, (11)

hose inverse is approximated through a standard AMG, 𝑀−1
𝑐 ≃ 𝐴−1

𝑐 , leading to the following error propagation operator:

𝐸AMGR = (I𝑛 −𝑀−𝑇 )𝜈2 (I𝑛 − 𝑃𝑀−1
𝑐 𝑃 𝑇 )(I𝑛 −𝑀−1)𝜈1 , (12)

here 𝜈1 and 𝜈2 denote the number of pre- and post-smoothing sweeps, respectively.
Let us note that, regardless of the domain decomposition, AMGR introduces an aggressive coarsening that makes the cost of the

wo-grid correction relatively small. Additionally, imposing an adequate inner-interface partitioning allows for further numerical
nd computational advantages. Namely, for a reduction of the memory footprint and setup costs of the top-level smoother, and for
n increase of the arithmetic intensity relative to a standard AMG. The following subsections will discuss the selection of appropriate
ecompositions fully exploiting AMGR’s advantages.

.1. Substructuring

The most straightforward application of AMGR is to structural problems whose geometry arises from repeating a ‘‘substructure’’,
5

uch as the bricks forming a wall or the slices of a pillar. Then, by assigning a different subdomain to each substructure analogously
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Fig. 2. Adequate domain decomposition of periodic structures. Dashed lines identify the interface.

to Fig. 2, we obtain a coefficient matrix satisfying Eq. (8). Additionally, if we apply the same local ordering to each subdomain, we
ensure the following property:

𝐾̄ = I𝑛𝑏 ⊗𝐾 and 𝑀̄−1
𝐾 = I𝑛𝑏 ⊗𝑀−1

𝐾 , (13)

here 𝐾 ∈ R𝑛inn∕𝑛𝑏×𝑛inn∕𝑛𝑏 stands for the restriction of 𝐾̄ to the substructure, and 𝑀−1
𝐾 ≃ 𝐾−1 (see Fig. 2).

Eq. (13) is very convenient as it allows for assembling 𝐾 and 𝑀−1
𝐾 instead of the entire 𝐾̄ and 𝑀̄−1

𝐾 . Consequently, AMGR reduces
he setup costs and memory footprint of 𝑀̄−1

𝐾 by a factor of 𝑛𝑏, which is particularly positive given the resources required by the
op-level smoother, 𝑀−1, within a multigrid hierarchy. Furthermore, the decomposition of Eq. (13) allows the standard 𝚂𝚙𝙼𝚅 by 𝐾̄
o be replaced with the faster 𝚂𝚙𝙼𝙼, which algebraically corresponds to:

𝚂𝚙𝙼𝚅 ∶
⎛

⎜

⎜

⎝

𝑦1
⋮
𝑦𝑛𝑏

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝐾
⋱

𝐾

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑥1
⋮
𝑥𝑛𝑏

⎞

⎟

⎟

⎠

∈ R𝑛inn ⟹ 𝚂𝚙𝙼𝙼 ∶ (𝑦1 … 𝑦𝑛𝑏 ) = 𝐾(𝑥1 … 𝑥𝑛𝑏 ) ∈ R𝑛inn∕𝑛𝑏×𝑛𝑏 . (14)

The fact that 𝚂𝚙𝙼𝙼 reads 𝐾 𝑛𝑏 fewer times makes its arithmetic intensity considerably higher, and since 𝚂𝚙𝙼𝚅 and 𝚂𝚙𝙼𝙼 are generally
memory-bound kernels, this increase translates into significant speed-ups. Notably, 𝚂𝚙𝙼𝙼 can also be leveraged on 𝑀̄−1

𝐾 when using
moothers that are applied through 𝚂𝚙𝙼𝚅, such as FSAI.

.2. Reflection symmetries in structural problems

AMGR can also be applied to structural problems presenting reflection symmetries. However, in such cases, the mixed components
f stress and strain change sign when a reflection is applied. For example, 𝜀𝑥𝑦 becomes −𝜀𝑥𝑦 after a reflection along the 𝑥-orthogonal
lane. Thus, the stiffness matrix of a body does not coincide with that of its reflections.

To better understand the relation between them, let us consider a degree of freedom-based ordering, in which we first index all
he 𝑥, then all the 𝑦 and finally all the 𝑧 degrees of freedom. Then, the stiffness matrix reads:

𝐴 =
⎛

⎜

⎜

⎝

𝐴𝑥𝑥 𝐴𝑥𝑦 𝐴𝑥𝑧
𝐴𝑦𝑥 𝐴𝑦𝑦 𝐴𝑦𝑧
𝐴𝑧𝑥 𝐴𝑧𝑦 𝐴𝑧𝑧

⎞

⎟

⎟

⎠

∈ R𝑛×𝑛, (15)

hereas the stiffness matrix of its mirroring (along the 𝑥-orthogonal plane) reads:

𝐴′
𝑥 =

⎛

⎜

⎜

⎝

𝐴𝑥𝑥 −𝐴𝑥𝑦 −𝐴𝑥𝑧
−𝐴𝑦𝑥 𝐴𝑦𝑦 𝐴𝑦𝑧
−𝐴𝑧𝑥 𝐴𝑧𝑦 𝐴𝑧𝑧

⎞

⎟

⎟

⎠

∈ R𝑛×𝑛. (16)

emarkably enough, both can be related through the following reflection matrix:

𝑅𝑥 =
⎛

⎜

⎜

⎝

−I𝑛∕3
I𝑛∕3

I𝑛∕3

⎞

⎟

⎟

⎠

∈ R𝑛×𝑛, (17)

hich satisfies that 𝑅−1
𝑥 = 𝑅𝑥, and transforms 𝐴 into 𝐴′

𝑥:

𝐴′
𝑥 = 𝑅𝑥𝐴𝑅𝑥. (18)

To extend AMGR’s advantages towards structural problems with symmetries, we need to take into account the considerations
6

bove. For simplicity, let us consider a body analogous to Fig. 3, i.e., with a single symmetry along the 𝑥-orthogonal plane. Then,
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Fig. 3. Arbitrary domain with a single symmetry identifying the inner, 𝛺1 ⋅∪𝛺2, and interface nodes, 𝛤1 ⋅∪𝛤2.

Fig. 4. Adequate domain decomposition for non-linear analysis. The wavy pattern identifies the interface.

the global stiffness matrix reads:

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎝

𝐴𝛺1𝛺1
𝐴𝛺1𝛤1

𝐴𝛺2𝛺2
𝐴𝛺2𝛤2

𝐴𝛤1𝛺1
𝐴𝛤1𝛤1 𝐴𝛤1𝛤2

𝐴𝛤2𝛺2
𝐴𝛤2𝛤1 𝐴𝛤2𝛤2

⎞

⎟

⎟

⎟

⎟

⎠

∈ R𝑛×𝑛. (19)

Recalling the notation of Eq. (8), let us observe that:

𝐾̄ =
(

𝐴𝛺1𝛺1
𝐴𝛺2𝛺2

)

, 𝐵̄ =
(

𝐴𝛺1𝛤1
𝐴𝛺2𝛤2

)

, 𝐶̄ =
(

𝐴𝛤1𝛤1 𝐴𝛤1𝛤2
𝐴𝛤2𝛤1 𝐴𝛤1𝛤1

)

, (20)

and, similarly to Eq. (13), by applying the same local ordering to each subdomain and denoting 𝐾 ≡ 𝐴𝛺1𝛺1
, we have that:

𝐾̄ =
(

𝐾
𝑅𝛺𝐾𝑅𝛺

)

and 𝑀̄−1
𝐾 =

(

𝑀−1
𝐾

𝑅𝛺𝑀−1
𝐾 𝑅𝛺

)

, (21)

where 𝑅𝛺 ∈ R(𝑛inn∕2)×(𝑛inn∕2) is the reflection matrix for the inner unknowns and 𝑀−1
𝐾 ≃ 𝐾−1.

Then, similarly to Eq. (14), we aim to exploit the structure of 𝐾̄ and 𝑀̄−1
𝐾 to replace 𝚂𝚙𝙼𝚅 with the more efficient 𝚂𝚙𝙼𝙼 (combined

with a specialised kernel for applying the reflections whose cost is negligible). As with the periodic structures, this will allow for a
reduction of the memory footprint and setup costs since AMGR does not require 𝐾̄ and 𝑀̄−1

𝐾 but the smaller 𝐾 and 𝑀−1
𝐾 . Furthermore,

the procedure above can be applied recursively to account for an arbitrary number of symmetries, 𝑠, therefore decomposing 𝐾̄ into
𝑛𝑏 = 2𝑠 blocks and strengthening the advantages of AMGR. Additionally, this can be done regardless of the boundary conditions,
which can be moved to the interface block and, therefore, do not affect 𝐾̄ ’s structure.

3.3. Tackling non-linearities

Non-linear problems are very common in Finite Element analyses and are typically solved through incremental Newton schemes.
These methods require the repeated solution of linear systems whose stiffness matrix may vary from one iteration to the next, forcing
the recomputation of the preconditioner at every non-linear step. As a result, all the AMG operators need to be reconstructed, and
the setup costs become predominant. AMGR can also be applied to accelerate the solution of non-linear problems in which the non-
linearity only affects a small part of the domain, something occurring very often in mechanics, e.g., in contact problems, breaking
tests or geomechanics.

Under such circumstances, AMGR greatly reduces the setup costs of AMG. It is enough to set as interface all the unknowns
affected by the non-linearity, see Fig. 4. Then, 𝐾̄ becomes constant, and the only parts of the system that we need to update are 𝐵̄
and 𝐶̄. Hence, the preconditioner setup costs are reduced approximately by a factor of 𝑛ifc∕𝑛inn.

Similar considerations apply to the reconstruction of the preconditioner, which only needs to update the smoother of the interface
block, 𝑀̄−1 ≃ 𝐶̄−1, the reduced operator, 𝐴 , and its AMG approximation, 𝑀−1 ≃ 𝐴−1.
7
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Fig. 5. (Left) Test problem for substructuring: masonry wall model. (Right) Test problem for reflection symmetries: bridge pier model.

4. Numerical results

This section investigates the advantages of AMGR in real-world applications. The problems considered cover all the strategies
described in Section 3 and consist of the simulation of a masonry wall, a bridge pier, a coaxial propeller, a geophysical and a
biomechanical model. While the former two allow for leveraging substructuring and reflection symmetries, the latter illustrate the
gains in non-linear analysis.

For simplicity, the right-hand side (RHS) used in the tests is a random vector, which ensures a wide range of frequencies in the
resulting residual, enabling a complete assessment of the preconditioner’s effectiveness in damping all error components. All the
executions rely on a combined MPI and OpenMP parallelism and have been conducted on the JFF cluster at the Heat and Mass
Transfer Technological Center. Its non-uniform memory access (NUMA) nodes are equipped with two Intel Xeon 6230 CPUs (20
cores, 2.1 GHz, 27.5 MB L3 cache and 140 GB/s memory bandwidth) linked to 288 GB of RAM and interconnected through 7 GB/s
FDR Infiniband.

4.1. AMGR and space regularities

Let us start by studying the performance of AMGR on problems presenting spatial regularities, which allow for increasing the
arithmetic intensity of AMG by replacing 𝚂𝚙𝙼𝚅 with 𝚂𝚙𝙼𝙼. Fig. 5 presents the Wall and Pier models, which arise from repetition and
mirroring, respectively, of a base model.

As discussed in Sections 3.1 and 3.2, AMGR introduces an aggressive coarsening to the top level of the multigrid hierarchy.
It relies on the population described in Algorithm 3.1, which guarantees a prescribed maximum interpolation distance, 𝑘. While
𝑘 = 1 allows for an accurate interpolation, it also reduces the effectiveness of the reduction as the initial coarsening becomes
overpopulated. In fact, Fig. 6 indicates that the resulting coarsening is less effective than that of the underlying AMG, as it leads
to larger and denser coarse-grid operators. Conversely, despite making AMGR lighter, using larger values of 𝑘 rapidly exceeds the
range of applicability of long-distance interpolation formulas, such as Extended+I (ExtI) [79] or DPLS [80]. Indeed, the number of
iterations grows fast with 𝑘, rendering the AMG reduction ineffective and evincing the need for an optimal 𝑘.

All the numerical experiments agreed with Fig. 6 in confirming 𝑘 = 2 as the best-performing parameter. Firstly, it leads to
a coarsening roughly as aggressive as the ones obtained with larger values of 𝑘 (see Fig. 6(a)). Secondly, the resulting multigrid
hierarchy is significantly lighter thanks to preventing the extra fill-in introduced by DPLS for larger interpolation distances (see
Fig. 6(b)). Thirdly, as summarised in Table 1, the quality of the preconditioner does not deteriorate, converging 𝑘 = 2 as fast as
𝑘 = 1 (or the standard AMG). On top of these, the population algorithm remains cost-effective, as computing the symbolic power of
𝑇 2 in Algorithm 3.1 represents a minor overhead.

As described in Sections 3.1 and 3.2, in the presence of spatial regularities, AMGR not only reduces the setup costs and memory
footprint of the top-level smoother but also accelerates its application. Both effects can be observed in the results of Table 2. On
the one hand, 𝑛𝑏 = 2 is enough to make AMGR’s setup significantly faster than AMG’s, becoming greater the gains as the number
of subdomains increase. Regarding the application costs, we observe that, for 𝑛𝑏 = 2, the solution (per iteration) of AMG is slightly
faster than that of AMGR. This slight overhead can be understood by recalling our implementation of the matrix multiplication by
the coefficient matrix, which, for the case of substructuring, i.e., with 𝐾̄ = I𝑛𝑏 ⊗𝐾, reads:

(

𝑦inn
𝑦ifc

)

=
(

𝐾̄ 𝐵̄
𝐵̄𝑇 𝐶̄

)(

𝑥inn
𝑥ifc

)

=
(

𝚂𝚙𝙼𝙼(𝐾, 𝑥inn) + 𝚂𝚙𝙼𝚅(𝐵̄, 𝑥ifc)
𝚂𝚙𝙼𝚅(𝐵̄𝑇 , 𝑥inn) + 𝚂𝚙𝙼𝚅(𝐶̄, 𝑥ifc)

)

∈ R𝑛, (22)

where, for example, 𝚂𝚙𝙼𝙼(𝐾, 𝑥inn) ∈ R𝑛inn denotes the output of an 𝚂𝚙𝙼𝙼 between 𝐾 and 𝑥inn.
Considering that 𝑛inn ≫ 𝑛ifc, it is clear that in Eq. (22), most computational efforts are devoted to the matrix multiplication by

𝐾̄. While it is significantly accelerated thanks to replacing 𝚂𝚙𝙼𝚅(𝐾̄, 𝑥inn) with the more compute-intensive 𝚂𝚙𝙼𝙼(𝐾, 𝑥inn), applying
Eq. (22) introduces a slight overhead compared to the standard 𝚂𝚙𝙼𝚅 by the coefficient matrix, 𝚂𝚙𝙼𝚅(𝐴, 𝑥) ∈ R𝑛. Indeed, the four
8
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Fig. 6. Influence of the maximum interpolation distance on the multigrid hierarchy. Results obtained on the Pier problem using 𝑛𝑏 ∈ {2, 4} and a varying
maximum interpolation distance, 𝑘 ∈ {1,… , 5}.

separate kernel calls (together with the combination of their output) require two additional vector accesses. Despite 𝚂𝚙𝙼𝙼 gains for
𝑛𝑏 = 2 not being enough to hide such extra overheads, increasing 𝑛𝑏, and therefore 𝚂𝚙𝙼𝙼 accelerations, make AMGR iterations faster
than AMG’s. According to Table 2, this is already the case for 𝑛𝑏 = 4, which yielded up to 43% overall speed-ups.

It is worth noting that such speed-ups are possible thanks to AMGR not harming AMG’s excellent rates of convergence. Fig. 7
illustrates this in the two model problems.

Let us also note that increasing the arithmetic intensity of AMG by replacing 𝚂𝚙𝙼𝚅(𝐾̄, 𝑥inn) with 𝚂𝚙𝙼𝙼(𝐾, 𝑥inn) requires a consistent
computational partitioning. Namely, to distribute the base model among the available resources and extend such a partitioning to
the remaining subdomains. Fig. 8 exemplifies this by distributing an arbitrary 2D problem with two reflection symmetries (and,
therefore, 𝑛𝑏 = 4 subdomains) among four computing devices.

Of course, in the limit case of distributing small subdomains among lots of devices, such partitioning may be suboptimal.
9

However, this is not an issue for realistically sized problems. Fig. 9 displays the strong scalability of AMG and AMGR on the Pier



Computer Methods in Applied Mechanics and Engineering 431 (2024) 117249A. Alsalti-Baldellou et al.
Table 1
Overall influence of the maximum interpolation distance on AMGR.

preconditioner 𝑛𝑏 𝑘 coarsening ratio avg nnzr its

AMG – – 0.07 500.5 78
AMGR 2 1 0.13 446.5 81
AMGR 2 0.05 477.3 82
AMGR 3 0.04 625.4 84
AMGR 4 0.04 572.3 114
AMGR 5 0.04 486.5 1179
AMGR 4 1 0.13 444.7 80
AMGR 2 0.05 465.0 81
AMGR 3 0.04 589.8 84
AMGR 4 0.04 511.4 149
AMGR 5 0.04 505.0 1271

Table 2
AMGR results with substructuring (Wall) and reflection symmetries (Pier).

(a) Wall (𝑛 = 6.9e+6, 𝜅(𝐴) = 1.4e+6, on two JFF nodes)

preconditioner 𝑛𝑏 coarsening ratio avg nnzr its t-pc (s) t-sol (s) t-tot (s) speed-up

AMG – 0.08 501.0 80 68.2 8.8 77.0 1.0x
AMGR 2 0.04 399.0 95 47.3 11.4 58.7 1.3x
AMGR 4 0.04 383.4 94 45.0 8.9 53.9 1.4x

(b) Pier (𝑛 = 6.9e+6, 𝜅(𝐴) = 1.7e+6, on two JFF nodes)

preconditioner 𝑛𝑏 coarsening ratio avg nnzr its t-pc (s) t-sol (s) t-tot (s) speed-up

AMG – 0.07 501.0 78 78.3 10.4 88.7 1.0x
AMGR 2 0.05 477.3 82 54.4 11.7 66.1 1.3x
AMGR 4 0.05 465.0 81 53.9 9.2 63.1 1.4x

Fig. 7. Convergence of AMG and AMGR on the Wall (left) and Pier (right) models.

model. Despite the minimal decay for 𝑛𝑏 = 4, AMG and AMGR exhibit almost identical scalability and run efficiently with workloads
down to 40K dofs per CPU core, matching past strong scalability results of Chronos’ AMG [75].

4.2. AMGR and non-linearities

When it comes to non-linear analysis, AMGR proves very effective in reducing AMG’s setup costs, which typically account for
70% to 80% of the overall solution time. Fig. 10 presents the three models considered: a coaxial propeller, the geophysical model
PUNQ [81] and a more ill-conditioned biomechanical model of a human heel [82]. They provide typical examples of localised
non-linearities. The coaxial propeller exhibits a non-linearity due to contact, whereas a material non-linearity characterises the
geophysical and biomechanical models.

As with spatial regularities, the best-performing interpolation distance for the population algorithm was 𝑘 = 2. Table 3 compares
the results obtained with AMG and AMGR. The AMG reduction was slightly more aggressive than AMG’s coarsening on the coaxial
propeller. However, this was not the case for the geophysical and biomechanical models, where AMGR’s coarsening ratios were
approximately 1.5 times larger. Despite this, the resulting reduced operators were about 5 times lighter, leading to about 30%
faster iterations.
10
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Fig. 8. Computational domain partitioning of a 2D model with two reflection symmetries.

Fig. 9. Strong scalability analysis of AMG and AMGR on the Pier model problem. Workload ranging from 171K to 21K dofs per core.

Fig. 10. Test problems for non-linear analysis.
11
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Fig. 11. Convergence of AMG and AMGR on the Coaxial propeller (top-left), geophysical (top-right) and biomechanical (bottom) models.

In the absence of spatial regularities, it is no longer possible to leverage 𝐾̄ ’s structure to replace 𝚂𝚙𝙼𝚅 with 𝚂𝚙𝙼𝙼. However, we
still have to incur the overhead of applying the coefficient matrix through four separate kernel calls, as in Eq. (22), making AMGR
iterations on the Coaxial propeller slightly slower. On top of that, as illustrated in Fig. 11, AMGR’s convergence is comparable but
a little slower than AMG’s.

Despite such a priori discouraging results, AMGR was most effective in accelerating the solution of non-linear problems. As was
already pointed out, for such cases, the preconditioner needs to be recomputed prior to each solution, and its reconstruction needs
to be accounted for within the overall solution time. As discussed in Section 3.3, most of AMGR’s setup can be recycled between
non-linear iterations, only requiring to recompute the smoother of the interface block, 𝑀̄−1

𝐶 ≃ 𝐶̄−1, the reduced operator, 𝐴𝑐 , and
ts AMG approximation, 𝑀−1

𝑐 ≃ 𝐴−1. Fig. 12 decomposes the portion of setup AMGR recycles, labelled as ‘‘Pre-processing’’, and the
ortion it needs recomputing at each non-linear iteration, labelled as ‘‘Setup’’. Two things become clear. First, in non-linear analysis,
ost of the overall solution time is devoted to the preconditioner’s setup. And secondly, AMGR greatly reduces such time, yielding
.7x overall speed-ups.

. Conclusions

This research focuses on developing faster solution methods for structural problems. In particular, we presented an AMG
eduction framework that enhances the standard AMG preconditioner by exploiting features commonly present in structural
roblems. While similar techniques have been used for scalar-valued Poisson’s problems in the context of CFD simulations, this
ork reformulates them for vector-valued fields, like displacements in structural engineering, as well as for non-linear analysis.
he features leveraged by AMGR, the resulting preconditioner, are periodicities, spatial symmetries, and localised non-linearities.
n all such cases, AMGR introduces an AMG reduction to the top level of the multigrid hierarchy that makes it significantly lighter
han a standard AMG. This is done by selecting a few unknowns to form an initial coarse space that is then expanded through an
ggressive coarsening strategy. Subsequent levels are purely algebraic.

AMGR identifies the unknowns for the initial coarsening based on the problem’s characteristics, granting its flexibility and
llowing for further improvements. When applied to problems with periodicities or spatial symmetries, i.e., decomposable into
𝑏 subdomains, AMGR imposes a consistent ordering that makes the top-level smoother satisfy a constant block diagonal structure.
his allows for replacing the standard 𝚂𝚙𝙼𝚅 with the more compute-intensive 𝚂𝚙𝙼𝙼, therefore accelerating the smoother application
nd reducing its memory footprint and setup costs by a factor of 𝑛 . Hence, the larger the number of subdomains, 𝑛 , the greater
12
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Table 3
AMGR results with non-linear analysis.

(a) Coaxial propeller (𝑛 = 4.6e+6, 𝜅(𝐴) = 1.2e+8, on two JFF nodes)

preconditioner 𝑛𝑏 coarsening ratio avg nnzr its t-pc (s) t-sol (s) t-tot (s) speed-up

AMG – 0.06 324.5 65 76.9 10.0 76.9 1.0x
AMGR 1 0.05 323.1 80 20.3 13.2 33.5 2.3x

(b) Geophysical model (𝑛 = 7.0e+5, 𝜅(𝐴) = 2.6e+8, on one JFF node)

preconditioner 𝑛𝑏 coarsening ratio avg nnzr its t-pc (s) t-sol (s) t-tot (s) speed-up

AMG – 0.07 439.6 221 13.3 5.5 18.8 1.0x
AMGR 1 0.12 77.3 292 2.5 5.6 8.1 2.3x

(c) Biomechanical model (𝑛 = 1.1e+6, 𝜅(𝐴) = 1.6e+10, on one JFF node)

preconditioner 𝑛𝑏 coarsening ratio avg nnzr its t-pc (s) t-sol (s) t-tot (s) speed-up

AMG – 0.06 348.4 61 17.7 2.1 19.8 1.0x
AMGR 1 0.08 80.7 89 3.1 2.3 5.4 3.7x

Fig. 12. Decomposition of the overall solution time normalised by the number of unknowns. While the setup phase is done at each non-linear iteration, the
pre-processing stage is only performed once and, therefore, excluded from the total solution time. The number of iterations is indicated on top of each bar.

𝚂𝚙𝙼𝙼’s advantages. Remarkably enough, this strategy can be applied regardless of the boundary conditions, as they do not affect the
matrices’ structure. Numerical experiments on a masonry wall and a bridge pier confirmed AMGR’s capacity to leverage periodicities
and spatial symmetries, respectively, being up to 43% faster than the standard AMG with 𝑛𝑏 = 4 subdomains.

AMGR proved particularly effective on structural problems with non-linearities affecting only a smaller part of the domain. This is
ommon in applications like contact mechanics or geomechanical simulations, for which the coefficient matrix changes at each non-
inear iteration. Consequently, the preconditioner needs to be updated accordingly, and its reconstruction accounts for 70% to 80%
f the overall solution time. AMGR removes the (few) unknowns affected by the non-linearity, making most of the preconditioner
onstant and greatly reducing the portion of the preconditioner that needs to be rebuilt. Numerical experiments on a coaxial
ropeller, a geophysical and a biomechanical simulation proved the advantages of AMGR for tackling localised non-linearities,
ielding up to 3.7x overall speed-ups.

Hence, all results confirm that AMGR is very advantageous for solving structural problems with periodicities, reflection
ymmetries, or localised non-linearities. However, to use it, the simulation codes must be adapted appropriately, as AMGR cannot
nfer from the coefficient matrix which features to leverage. Localised non-linearities are relatively simple to manage by placing last
he dofs affected by the non-linearity (and therefore changing from a non-linear iteration to the next). On the other hand, leveraging
eriodicities and symmetries may be more challenging due to the discrete model having to preserve them. While this can be easily
ccomplished on in-house codes, e.g., by only discretising one of the subdomains and managing the interfaces separately, it may be
ore challenging on third-party simulation codes.

Future developments include the implementation of AMGR for graphics processing units (GPUs), which will greatly benefit
rom the higher arithmetic intensity of 𝚂𝚙𝙼𝙼. Additionally, we aim to extend the AMG reduction framework on which AMGR is
ased towards general problems. Despite not leveraging the problem’s characteristics, the resulting strategy would benefit from the
ggressive coarsening it introduces.
13
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