
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19692  | https://doi.org/10.1038/s41598-022-21869-y

www.nature.com/scientificreports

Personalized prediction of optimal 
water intake in adult population 
by blended use of machine learning 
and clinical data
Alberto Dolci1,4, Tiphaine Vanhaecke 1,4*, Jiqiong Qiu1, Riccardo Ceccato2, 
Rosa Arboretti3 & Luigi Salmaso2

Growing evidence suggests that sustained concentrated urine contributes to chronic metabolic and 
kidney diseases. Recent results indicate that a daily urinary concentration of 500 mOsm/kg reflects 
optimal hydration. This study aims at providing personalized advice for daily water intake considering 
personal intrinsic (age, sex, height, weight) and extrinsic (food and fluid intakes) characteristics to 
achieve a target urine osmolality  (UOsm) of 500 mOsm/kg using machine learning and optimization 
algorithms. Data from clinical trials on hydration (four randomized and three non-randomized 
trials) were analyzed. Several machine learning methods were tested to predict  UOsm. The predictive 
performance of the developed algorithm was evaluated against current dietary guidelines. Features 
linked to urine production and fluid consumption were listed among the most important features 
with relative importance values ranging from 0.10 to 0.95. XGBoost appeared the most performing 
approach (Mean Absolute Error (MAE) = 124.99) to predict  UOsm. The developed algorithm exhibited 
the highest overall correct classification rate (85.5%) versus that of dietary guidelines (77.8%). This 
machine learning application provides personalized advice for daily water intake to achieve optimal 
hydration and may be considered as a primary prevention tool to counteract the increased incidence 
of chronic metabolic and kidney diseases.
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US  United States
USG  Urine specific gravity
UTI  Urinary tract infections
WHO  World Health Organisation
XGBoost  Extreme gradient boosting

In recent years a sharp increase in the prevalence of metabolic and kidney diseases across the general pop-
ulation has been  observed1,2. Growing evidence shows that body fluid imbalances, which result in elevated 
hydration biomarkers such as concentrated urine, contribute to negative health outcomes or life-threatening 
 situations3–7. In particular, low water intake and concentrated urine have been adversely linked to chronic kidney 
disease  progression2,8–10, kidney stones  incidence11 and glucose  dysregulation12,13. Additionally, interventional 
studies showed that increased fluid intake improved renal  functions14,15 in the general population, and greatly 
decreased urinary tract infection (UTI) recurrence  rate16 in adult women. Low water intake is also a global 
public health challenge as recent research assessing fluid intake habits across different countries worldwide 
highlights that about 50% of the study adult population and more than 50% of the child and adolescent study 
population did not comply with the European Food Safety Authority (EFSA) Adequate Intake of water from 
 fluids17,18. Despite existing recommendations for water intake and scientific evidence on the role of water for 
health, today, a considerable portion of the population is at risk of hydration-related health consequences such 
as metabolic and kidney disease.

It was previously proposed that a threshold value of daily urinary concentration may identify optimal fluid 
balance and provide a target to aim  for19,20. Several recent intervention studies, including randomized controlled 
trials, have now demonstrated that lowering 24 h urine osmolality  (UOsm) to 500 mOsm/kg or below, can reduce 
a predictive marker of cardiovascular risk, namely arginine vasopressin as measured by  copeptin16,21–23, as well as 
reduce UTI  incidence16. Collectively, these experimental results suggest that optimal hydration may be achieved 
by drinking sufficient water to reach this daily target for urine concentration. While current government-issued 
dietary guidelines consider the average need of a population, evidence sheds light on the opportunity for imple-
menting novel, individual-centric interventions to improve hydration among the general  population24. In this 
context, personalized hydration approach aims to develop specific and comprehensive water advice. This meth-
odology accounts for the physiological requirements of an  individual25,26 based on phenotypic characteristics, 
analysis of current behavior, preferences, barriers, and objectives.

Physiological requirements for fluids are the result of a continuous and complex interplay between an indi-
vidual’s intrinsic and extrinsic factors which challenge homeostasis. Consequently, fluid balance, as a key player 
in our ability to maintain homeostasis, should be regarded as one of the main components for the provision 
of a personalized hydration intervention. In general terms, factors that may affect fluid balance are sex, body 
mass  composition27, physical activity, thermoregulatory  processes28, and medical  conditions29. As human beings 
constantly lose water through urine and insensible water losses, the only way to replenish total body water is to 
drink water from an external source. Considering the dynamic nature of the homeostatic processes that ulti-
mately determine fluid balance, we considered machine learning (ML) statistical analysis, a relevant and novel 
approach, to reflect these dynamics. Datasets from multiple clinical studies on hydration were used as a valid 
source of data for this investigation. The aim was to provide personalized advice on daily water intake considering 
personal intrinsic and extrinsic variability to achieve a target 24 h  UOsm of 500 mOsm/kg in a subset of healthy 
adults excluding athletes and pregnant and lactating women.

Subjects and methods
Study population. All research was conducted according to the ethical principles stated in the Declaration 
of Helsinki. All subjects provided written informed consent. Each study was approved by a local Ethics Commit-
tee (Comité Etico De Investigacion Clinica (CEIC) del Hospital Universitario La Princesa, Madrid, Spain; CEIC 
Hospital Universitario de La Paz, Madrid, Spain; Comité de Ética e Investigación para Estudios en Humanos 
(CEIEH), Mexico, Mexico; Comité de Bioética Para la Investigacion Clinica, Mexico, Mexico; Comité de Protec-
tion des Personnes (CPP) of Ile de France XI, Paris, France; Ethics Committee CPP Sud Méditerranée III, Nîmes, 
France; Ethics Committee CPP Est IV, Strasbourg, France; Ethics Committee CPP Est III, Nancy, France; Eth-
ics Committee of COMAC Medical, Sofia, Bulgaria; Supplemental Methods). Multiple datasets from previous 
clinical trials on hydration and fluid balance (4 open label randomized controlled trials, and 3 open label non 
randomized trials in parallel groups) were merged into one single dataset (n = 1164 participants) (Fig. 1). Each 
subject had 107 possible variables collected during the clinical studies at each single time point. Some partici-
pants had measurements of their biological variables performed on multiple timepoints during the same clinical 
study, consequently their information was arranged on multiple lines for homogeneity within the dataset. Par-
ticipants not meeting the aforementioned criteria on age (n = 4) and BMI (n = 13) were filtered out. Datapoints 
from study visits without complete information on biological and dietary parameters were filtered out. Addition-
ally, subjects’ datapoints were further filtered out if Plasma Osmolality  (POsm) was above 310 mOsm/kg (n = 32), 
a threshold for dehydration which corresponds to a ~ 5% body weight loss, a condition not generally met by the 
general  population30. Also, participants with a 24 h total fluid consumption below 200 mL (n = 2) were excluded 
on the basis that such fluid intake cannot meet fluid balance physiological requirements in general population. 
This resulted in a dataset of 1575 rows reporting information of 557 subjects. Within the resulting dataset, some 
participants had missing fluid intake data (n = 107). Nonetheless, to maintain a fair representation of the subject 
population and to not potentially undermine statistical analysis capability, these participants were retained in 
the dataset. This choice was driven by the capability that the ML approach has to deal with missing values, and it 
was worth considering the wealth of information these participants recorded for other variables. Following this 
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process, participants were randomly split according to their participant ID number with a ratio of 75:25, ensur-
ing that each participant was assigned to either the training set or the test set. The final dataset consisted in 1,148 
rows for the train test and 427 rows for the test set.

Feature selection. Extreme Gradient Boosting (XGBoost) was adopted to achieve the preliminary iden-
tification of the most relevant features linked to urine production in the dataset (Hyperparameters tuning in 
Supplemental Methods).

Machine learning algorithms. Once the most relevant features were identified in the dataset, several ML 
methods were used to predict  UOsm, including Random Forest (RF)31, Gradient Boosting Machines (GBM)32, 
Automatic Machine Learning (AutoML)33 using h2o  package34, and  XGBoost35 using XGBoost  package36 (Sup-
plemental Methods; Supplemental Fig. 1). Cross-validation and hyperparameters tuning were used to optimize 
the ML models (Supplemental Methods). These methods were selected due to their capability of automatically 
handling missing values. For example, XGBoost supports missing values by default, with branch directions for 
missing values are learned during training. In h2o package, missing values are interpreted as containing infor-
mation and in tree-based techniques split decisions for every node are found by treating missing values as a 
separate category.

The highest performing methodology was identified by applying the aforementioned ML techniques on the 
train set. Once the algorithm was obtained by the application of these techniques, predictions of  UOsm were 
generated on the test set. Once the predictions on the test set were calculated, Mean Absolute Error (MAE) was 
used to compare the predicted values of  UOsm to the actual ones recorded in the dataset. In particular, MAE is 
defined as 1N

∑N
i=1

∣∣yi − ŷi
∣∣ , where  yi and ŷi indicate the ith actual value and the related predicted value of the 

response variable respectively (i.e., ŷi estimates the conditional mean of  UOsm given subject-specific information). 

Figure 1.  Participant flowchart.
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It was chosen as it is in the same scale of the outcome and does not assign large weight to infrequent large errors. 
The highest performing methodology, chosen on the lowest prediction error was selected (XGBoost). The reli-
ability of the model was tested via repeating five times the whole train-test split and model estimation. Then, the 
performances on the test set were re-assessed to confirm matching results (Supplemental Table 3). The XGBoost 
is a black box model, where the importance of each feature on  UOsm is not disclosed. To elucidate the relation-
ships among these variables, several simulations were performed using Partial Dependence Plots (PDP)32,37 and 
Accumulated Local Effects (ALE)38 plots (Supplemental Methods).

Optimization. The ML approach allowed to establish a relationship between the  UOsm of each participant 
with their anthropometric characteristics, food and fluid intakes. Once this relationship was described, an opti-
mization procedure was implemented to generate personalized advice on the daily amount of water needed to 
reach the target  UOsm for optimal hydration (i.e. a  UOsm < 500 mOsm/kg). For each individual, all anthropometric 
and food parameters remain unchanged. The only variable that was modified in the reverse engineering phase 
is the amount of plain water, which indirectly affects total fluid intake. The augmented Lagrangian was used 
as optimization  algorithm39, because it also offers the opportunity to consider eventual constraints of interest 
which could be useful to avoid unreliable suggestions for particular individuals. This method integrates eventual 
non-linear constraints into the objective function  (UOsm < 500 mOsm/kg), so that a penalty is added for any vio-
lated constraint. The following constraints were used: the minimum and maximum acceptable values were set 
to 375 mOsm/kg and 625 mOsm/kg, respectively, and the target value was 500 mOsm/kg; the lower and upper 
bounds for the plain water intake were set to the observed minimum and maximum values in the dataset (i.e. 
0 and 4050 mL); all other variables remained constant during the optimization process. This objective function 
was then optimized by a local solver without non-linear constraints using Sequential Quadratic Programming 
(SLSQP)  algorithm40. The optimization procedure was applied on all the datapoints included in the test set.

Evaluation of classification performance. Contingency tables were used to evaluate the classification 
rate of the developed algorithm (Table 1). The difference between the actual Total Fluid Intake (TFI) and the 
predicted TFI were calculated and checked against the actual  UOsm reported in the dataset, either above or below 
the 500 mOsm/kg threshold. This  Uosm threshold is the target value of a 24 h urinary concentration and reflective 
of optimal fluid balance. This allowed to classify datapoints into four categories. True positives were those both 
with a higher TFI than the predicted TFI and being well hydrated  (UOsm < 500 mOsm/kg). True negatives were 
those both with a lower TFI than the predicted TFI and being underhydrated  (UOsm ≥ 500 mOsm/kg). The false 
positives were those with a higher TFI than the predicted TFI but who were underhydrated  (UOsm < 500 mOsm/
kg). Which means that the predicted TFI is not high enough to ensure optimal hydration. Finally, the false 
negatives were those with a lower TFI than the predicted TFI but who were still considered well hydrated 
 (UOsm < 500 mOsm/kg). This means that the predicted TFI could have been lower.

Overall percent classification by the algorithm was calculated using two metrics as follows:

The performance of the algorithm was further evaluated against values deriving from current European 
dietary guidelines for water intake. EFSA has set daily Adequate Intakes (AIs) for total water for the adult popu-
lation of 2.5 L for men and 2.0 L for  women41. These values include water that comes both from consumed fluids 
and food. It is estimated that the contribution of food and fluids to total water intake represent about 20% and 
80%, respectively, in adults. This means male adults should drink 2.0 L per day, and female adults 1.6 L. These 
sex-specific thresholds were used to evaluate the difference between the actual TFI and the predicted TFI in 
relation to  UOsm. The difference between the actual TFI and the EFSA AI was then checked against the actual 
 UOsm on the two sides of the 500 mOsm/kg threshold to generate contingency tables.

Results
Demographic characteristics. Data are presented as mean (min; max) or as % of the respective dataset, 
unless specified otherwise.

Both the train and test set showed an average age of 30 (19; 51) years (Supplemental Fig. 2) with a higher 
presence of female participants (64% and 62%, respectively). BMI was of 23 (18;30) kg/m2 in both sets. The range 
of  UOsm was [109–1252] mOsm/kg, with a mean value of 554 mOsm/kg in the train set, while in the test set it 
was [141–1343] mOsm/kg with a mean value of 546 mOsm/kg. The total fluid consumption showed an average 
value of about 1889 mL and a minimum value of 215 mL and 329 mL in the train and test sets, respectively. The 

Accuracy = (TP + TN) / (TP + FP + FN + TN),

Acceptable classifications = (TP + FN + TN) / (TP + FP + FN + TN).

Table 1.  Evaluation of the algorithm classification.

UOsm < 500 mOsm/kg UOsm ≥ 500 mOsm/kg

∆[Actual-Predicted]
Total fluid intake ≥ 0 True positive (TP) False positive (FP)

∆[Actual-Predicted]
Total fluid intake < 0 False negative (FN) True negative (TN)
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maximum values were equal to 6109 mL and 6742 mL in the train set and test set, respectively. The total plain 
water consumption could vary between 0 and 4050 mL in the train set and between 100 and 3500 mL in the test 
set. The average values were about 1301 mL and 1049 mL, in the train and test sets, respectively.

Feature selection. The preliminary identification of the most relevant features linked to urine production 
is shown in Fig. 2. The features are ranked based on their fractional contribution to the model, i.e. the total gain 
of each feature’s splits (x-axis of Fig. 2A). The adopted configuration of the model is reported in Supplemental 
Methods. Features linked to urine production (volume and number of micturitions) as well as fluid consump-
tion were listed among the most important features with relative importance values ranging from 0.10 to 0.95. 
At this stage, some key features were purposely excluded before generating predictions of urine osmolality such 
as Urine volume and Number of micturition, to only utilize information easily accessible to the general popula-

Figure 2.  Variable importance to determine  UOsm and data distribution. (A) Feature importance plot showing 
the 10 most important features obtained with XGBoost. (B–E) Data distribution of Urine osmolality against 
24 h Urine volume (n = 1575), Plain water intake (n = 1404), Total fluid intake (n = 1468) and Total water intake 
(n = 1448). Pearson’s correlation coefficient; (s) significant, (ns) non-significant based on linear regression 
p-value (< 0.05). The R ggplot2 package was used to generate the figures https:// ggplo t2. tidyv erse. org. R 
Statistical Software version 3.6.3 (R Core Team https:// cran.r- proje ct. org/ bin/ windo ws/ base/ old/3. 6.3/).

https://ggplot2.tidyverse.org
https://cran.r-project.org/bin/windows/base/old/3.6.3/
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tion. As a result, 23 variables out of 107 were kept in the dataset to generate predictions. These included Age, Sex, 
Weight, Height and some food and fluid intake variables (See Supplemental Table 2 for the full list of features).

Mean Absolute Error (MAE) of machine learning algorithms. Several ML approaches were com-
pared to generate predictions of urine osmolality. XGBoost was the most performing approach (MAE = 124.99), 
returning the minimum test error as compared to AutoML (MAE = 126.86), RF (MAE = 129.03) and GBM 
(MAE = 132.15). The results of the multiple evaluations of our models are reported in Supplemental Table 3. The 
average MAEs were 124.47, 126.88, 128.8, and 130.11 and the related standard deviations were 2.65, 1.38, 1.93, 
and 1.48, respectively.

Since XGBoost is a black box model, several simulations were performed using PDP and ALE plots. Both 
methods showed that increasing water intake led to a progressive reduction of  UOsm; the greater reduction was 
observed when moving from 1200 to 1500 mL (Fig. 3). The observed relationship between plain water intake 
and  UOsm reflected homeostatic fluid balance physiological processes.

An optimization algorithm was generated to frame the final advice for water intake, using constraints on 
24 h  UOsm and 24 h plain water intake. The minimum and maximum acceptable values were set to 375 mOsm/
kg and 625 mOsm/kg, respectively, and the target value was set to 500 mOsm/kg. The lower and upper bounds 
for the plain water intake were set to the observed minimum and maximum values from the dataset (i.e. 0 and 
4050 mL). This allowed to estimate personalized advice for the individuals in the test set (Table 2). When the 
original urine osmolality was higher than 500 mOsm/kg, the tool calculated increased volumes of water intake. 
Conversely, when urine osmolality was low, (i.e. when the urine is diluted), the tool showed that the individual 
could reduce the water intake and still be optimally hydrated.

The algorithm developed in this study consisted of the combination of two main elements. Firstly, a ML 
algorithm, which generates a prediction for  UOsm starting from anthropometric characteristics, food, and fluid 
intake data. Secondly an optimization algorithm that generates personalized advice for optimal water intake based 
on the predicted  UOsm and actual fluid intake. To compare the performance of this combination of algorithms 
against current dietary guidelines, the relevance of the classification rates was calculated using contingency 
tables (Tables 3 and 4).

Figure 3.  Partial dependence plots (PDP) and accumulated local effects (ALE) plots for 24 h Plain water 
intake. (A) PDP plot for 24 h plain water intake. The large white curve represents the PDP plot. The black lines 
represent the individual conditional expectation (ICE) curves, i.e. the equivalent to a PDP for individual data 
instances. (B) ALE plots for 24 h plain water intake. The R pdp package was used to generate the figures https:// 
journ al.r- proje ct. org/ archi ve/ 2017/ RJ- 2017- 016/ index. html. R Statistical Software version 3.6.3 (R Core Team 
https:// cran.r- proje ct. org/ bin/ windo ws/ base/ old/3. 6.3/).

https://journal.r-project.org/archive/2017/RJ-2017-016/index.html
https://journal.r-project.org/archive/2017/RJ-2017-016/index.html
https://cran.r-project.org/bin/windows/base/old/3.6.3/
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The developed algorithm exhibited the highest overall correct classification rates with an accuracy rate of 
85.5% compared to an accuracy rate of 77.8% derived from dietary guidelines. When considering the propor-
tion of false negatives, (i.e. participants with a lower fluid intake than the predicted one and showing a urine 
concentration below the threshold for optimal hydration) the rate of acceptable classifications was still higher 
for the algorithm developed in the current study (94.8%) than that derived from dietary guidelines (92.7%).

Discussion
In this study, we generated a ML algorithm which in combination with an optimization algorithm provides 
personalized advice for daily water intake to achieve optimal hydration, as defined by a target 24 h  UOsm of 
500 mOsm/kg in healthy adults. This target has been previously proposed to decrease risks for long term diseases 
while ensuring optimal fluid balance  processes19. It is worth mentioning that we initially considered analyzing a 
subsample of data from the National Health and Nutrition Examination Survey (NHANES), a broad, validated 
and publicly available dataset of the United States population. Urine osmolality measures are available from 
NHANES 2009–2010 and 2011–2012. However, the large number of missing values and the low fractional 
contribution of the most relevant features to the model impaired the ability of generating predictions with an 
adequate degree of precision. All details about this analysis can be found in the Supplemental Data, NHANES 
section. Therefore, in the investigation here presented, we performed a post-hoc analysis of data pooled from 
multiple clinical studies on hydration and fluid balance in general adult population. This allowed to gather higher 
quality data from trustworthy and reliable sources in regards of data quality. Hence, we could highlight existing 
relationships between the observed features and  UOsm. With no similar ML application reported in the literature, 
we evaluated the performance of the prediction against values deriving from current EFSA dietary guidelines for 
water intake. Our prediction model proved to generate advice for 24 h optimal water intake for healthy adults 
with an excellent degree of fitting compared to current adequate intakes (AIs) for water.

Representing 40–60% of body mass, water is the largest constituent of the human body. Like any other human 
physiological processes, water homeostasis is continuously challenged; in particular trans-epidermal, respira-
tory, fecal and urinary represent the main fluid losses and therefore threats to normal body  functioning6,42. The 
human body has a limited capacity to store water and previous reports highlight that there is a mean daily water 
turnover of 3.6 ± 1.2 L/day or 2.8–3.3 and 3.4–3.8 L/day in women, and men,  respectively43. Being between 0.25 to 
0.35 L/day, only a fraction of water is produced in the body as result of metabolic processes, consequently, water 
losses must be replaced by ingestion of  fluids44. The body puts in place highly refined responses to maintain the 
volume of the body water within a narrow range independently to the conditions that it may be  facing45. Under 
this light, water has been called the ‘most essential’  nutrient45.

Table 2.  Personalized advice for some individuals of the test set.

Age (years) Height (cm) Weight (kg) Sex
Urine osmolality 
(mOsm/kg) Plain water intake (mL) Total fluid intake (mL)

Original Original Original Original Original Optimized Original Optimized Original Optimized

20 161 67 Female 1139 492 500 1298 1200 1998

42 160 67 Female 1020 505 250 1313 1000 2063

20 178 68.3 Male 750 501 1500 1750 2172 2422

26 181 75.2 Male 330 498 2000 1298 4115 3413

Table 3.  Contingency table of the machine learning/optimization algorithm prediction of total fluid intake. 
Values are number of datapoints per category. Total sample size is n = 427 datapoints.

UOsm

Accuracy Acceptable classification< 500 mOsm/kg ≥ 500 mOsm/kg

∆[Actual-predicted] Total fluid intake
≥ 0 185 22

85.5% 94.8%
< 0 40 180

Table 4.  Contingency table of values for total water intakes coming from fluids deriving from the European 
Food Safety Authority (EFSA) dietary guidelines. Values are number of datapoints per category. Total sample 
size is n = 427 datapoints. EFSA AI European Food Safety Authority Adequate Intake.

UOsm

Accuracy Acceptable classification< 500 mOsm/kg ≥ 500 mOsm/kg

∆[Actual-EFSA AI] Total fluid intake
≥ 0 161 31

77.8% 92.7%
< 0 64 171
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Despite its primary role, water is under-researched and often referred to as a forgotten, neglected nutrient. 
As an example, a review from Perrier and colleagues points to the discrepancies between regional water intake 
recommendations, and the fact that these reference values represent  AIs41,46,47. The AIs derive from observational 
or experimental data that provide estimates of average water intake while lacking scientific evidence to associate 
a consumption threshold with positive or negative health  outcomes4,7. From a practical point of view, general 
population currently does not benefit from recommendations for plain water intake in the dietary guidelines 
that are based on the health outcomes associated with the consumption of such nutrient. While thirst is generally 
considered enough of a warning for fluid  replenishment48,49, guidelines are mostly generated for those who face 
physical exertion or extreme environmental  conditions50. Implicitly, the message spread is that there is no need 
to pay attention to water intake except for those conditions.

On the contrary, a large and growing body of evidence suggests that maintaining an optimal water intake 
which avoids urine supersaturation and reduces excessive arginine vasopressin (AVP) secretion may be greatly 
beneficial for the kidney and reduce metabolic  risk47. If we consider the astonishing increase in incidence of these 
diseases in the general population, this should be regarded as a form of primary prevention for public health. 
Ultimately, this optimal intake is reflected by the cut-off value of 500 mOsm/kg for 24 h  UOsm

51–53. Initially, this 
target was based on retrospective analyses of existing clinical data. Currently, evidence deriving from several 
randomized control trials have showed that reaching such a target for  UOsm can reduce circulating copeptin, as 
a proxy for AVP, as well as improve metabolic markers and reduce UTI  incidence3,16,22.

In this investigation, we showed that a ML algorithm which integrates clinical features in combination with an 
optimization algorithm can accurately predict personalized water intake to achieve a target  UOsm of 500 mOsm/
kg in healthy adults. More in detail, the algorithm holistically considers different variables spanning from anthro-
pometric characteristics, biological, nutritional and beverage intake data. These variables may not be related to 
fluid-balance processes directly but comprehensively describe individuals from a physiological point of view. 
From there, it employs a data-driven unbiased approach to infer the main factors predictive of optimal water 
intake. To this instance, the algorithm identifies multiple functional pathways in respect to optimal water intake. 
As examples, individuals with low water intakes are associated with a higher  UOsm which results in advice to 
increase plain water consumption. Oppositely, individuals with low  UOsm are advised an amount of water which 
is lower compared to the reported data contained in the dataset. Therefore, when an individual shows high 
 UOsm, the algorithm is essentially capable to advise an increase of plain water consumption, while when opposite 
scenario appears, a decrease in water consumption is proposed.

One of the first steps of our approach consisted in the ranking of the most important features related to 
urine osmolality. This revealed that the most important features were related to hydration physiology (i.e., urine 
volume, and the consumption of plain water and fluids in general). This shows that the ML approach is a suit-
able approach to model the fluids that come in and out of the human body. Urine volume and concentration 
are regulated by the same hormonal mechanisms and were shown to be highly  correlated3,54,55. Given that the 
end goal of this study was to provide any human being with advice for water intake to be optimally hydrated, we 
had to consider the accessibility of the data that individuals could provide. The number of features was reduced 
to a minimum to allow for a minimalist need of information from the general population while maintaining 
and excellent output quality. As an example, outside of any clinical context, people would generally be able to 
provide anthropometric variables such as age, sex, weight, and height. Also, food and fluid intake data can be 
easily recollected. Oppositely, the volume of urine collected throughout a 24 h period may pose some challenges 
and therefore prevent usage from the general population. For this reason, the algorithms developed do not ask 
for such information to generate a prediction for optimal water intake.

Our investigation represents a first exploration on the application of ML techniques on fluid balance physi-
ological processes. Nonetheless, the study here presented comes with several limitations. Currently, the overall 
weight in determining the prediction for water intake between the algorithm and the optimization process is 
undetermined. Future research should address this aspect to determine whether more effective methodologies 
in regards of the optimization algorithm could be implemented. However, it appears that with current optimi-
zation process the overall performance of the algorithm in providing a prediction for optimal intake remains 
adequate. For this initial investigation, the data used to generate predictions rely uniquely on a subset of healthy 
clinical trials’ participants. Athletes, or subject taking part in strenuous physical activity, pregnant and lactating 
women were excluded from these trials on purpose. Therefore, it should be regarded as a priority to integrate data 
from more diverse and vulnerable populations such as aging  population56,57, pregnant and lactating  women58,59, 
and people regularly drinking extremely low or high volumes of water, especially when their  UOsm still shows 
reasonable values regardless of the expectations. The latter would allow to test the method at the two-ends of 
the physiological spectrum. Integrating additional extrinsic data on seasonality, ambient temperature, physical 
activity should be regarded as an additional next step to further personalize the advice on water intake. Addi-
tionally, while considering different beverages consumed by individuals, the current algorithm only modulates 
plain water intake in the prediction generated. While water consumption is associated with positive health 
outcomes, the same cannot be currently supported for other beverages. Therefore, future developments could 
integrate advice for different beverages in combination with plain water intake. Finally, a clinical validation of 
the proposed ML algorithm is warranted to validate the predicted amount water to achieve  UOsm of 500 mOsm/
kg with real world evidence.

An additional learning we would like to share is about the importance of blending high-quality, context-
specific data deriving from clinical studies into ML. This may allow to fix the reliability issues often reported 
by healthcare recipients when using artificial intelligence derived applications in decision-making processes.
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Conclusions
Employing personalized advice for optimal water intake may contribute to decrease disease development and 
progression and may also be valuable in rationally designing nutritional interventions in a variety of kidney and 
metabolic disorders. More broadly, accurate personalized water intake predictions in these scenarios may be of 
great practical value, as they will integrate nutritional modifications more extensively into the clinical decision-
making scheme. Indeed, we contributed to the demonstration that artificial intelligence and ML adoption can be 
implemented for taking advantage of digital algorithmic evidence to improve healthcare in general population. 
Here, we present an application of ML as primary prevention providing personalized advice on daily water intake 
considering personal intrinsic and extrinsic variability to achieve an optimal target for  UOsm of 500 mOsm/kg.

Data availability
The source code and datasets generated and analyzed during the current study may be made available from the 
corresponding author with prior agreement of legal and compliance Danone Research offices on reasonable 
request.
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