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Growing evidence suggests that sustained concentrated urine contributes to chronic metabolic and
kidney diseases. Recent results indicate that a daily urinary concentration of 500 mOsm/kg reflects
optimal hydration. This study aims at providing personalized advice for daily water intake considering
personal intrinsic (age, sex, height, weight) and extrinsic (food and fluid intakes) characteristics to
achieve a target urine osmolality (U,,,) of 500 mOsm/kg using machine learning and optimization
algorithms. Data from clinical trials on hydration (four randomized and three non-randomized
trials) were analyzed. Several machine learning methods were tested to predict U,,,. The predictive
performance of the developed algorithm was evaluated against current dietary guidelines. Features
linked to urine production and fluid consumption were listed among the most important features
with relative importance values ranging from 0.10 to 0.95. XGBoost appeared the most performing
approach (Mean Absolute Error (MAE) =124.99) to predict Ug,,,,. The developed algorithm exhibited
the highest overall correct classification rate (85.5%) versus that of dietary guidelines (77.8%). This
machine learning application provides personalized advice for daily water intake to achieve optimal
hydration and may be considered as a primary prevention tool to counteract the increased incidence
of chronic metabolic and kidney diseases.

Abbreviations

Als Adequate intakes

ALE Accumulated local effects

AUC Area under the curve

AutoML  Automatic machine learning
AVP Arginine vasopressin

BMI Body mass index

EFSA European Food Safety Authority
FDA Federal Drug Administration
GBM Gradient boosting machines
IOM Institute of Medicine

MAE Mean absolute error

MEC Mobile Examination Center

ML Machine learning

NHANES National Health and Nutrition Examination Survey
PDP Partial dependence plots

Poim Plasma osmolality

RF Random forest

SLSQP Sequential quadratic programming
TFI Total fluid intake

Uosm Urine osmolality
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Us United States

Usg Urine specific gravity

UTI Urinary tract infections
WHO World Health Organisation

XGBoost  Extreme gradient boosting

In recent years a sharp increase in the prevalence of metabolic and kidney diseases across the general pop-
ulation has been observed"?. Growing evidence shows that body fluid imbalances, which result in elevated
hydration biomarkers such as concentrated urine, contribute to negative health outcomes or life-threatening
situations®”. In particular, low water intake and concentrated urine have been adversely linked to chronic kidney
disease progression®®-1%, kidney stones incidence!' and glucose dysregulation'>". Additionally, interventional
studies showed that increased fluid intake improved renal functions'*" in the general population, and greatly
decreased urinary tract infection (UTI) recurrence rate!® in adult women. Low water intake is also a global
public health challenge as recent research assessing fluid intake habits across different countries worldwide
highlights that about 50% of the study adult population and more than 50% of the child and adolescent study
population did not comply with the European Food Safety Authority (EFSA) Adequate Intake of water from
fluids'”®. Despite existing recommendations for water intake and scientific evidence on the role of water for
health, today, a considerable portion of the population is at risk of hydration-related health consequences such
as metabolic and kidney disease.

It was previously proposed that a threshold value of daily urinary concentration may identify optimal fluid
balance and provide a target to aim for'**. Several recent intervention studies, including randomized controlled
trials, have now demonstrated that lowering 24 h urine osmolality (Ug,,) to 500 mOsm/kg or below, can reduce
a predictive marker of cardiovascular risk, namely arginine vasopressin as measured by copeptin'®*'-%, as well as
reduce UTI incidence'®. Collectively, these experimental results suggest that optimal hydration may be achieved
by drinking sufficient water to reach this daily target for urine concentration. While current government-issued
dietary guidelines consider the average need of a population, evidence sheds light on the opportunity for imple-
menting novel, individual-centric interventions to improve hydration among the general population*. In this
context, personalized hydration approach aims to develop specific and comprehensive water advice. This meth-
odology accounts for the physiological requirements of an individual*>?® based on phenotypic characteristics,
analysis of current behavior, preferences, barriers, and objectives.

Physiological requirements for fluids are the result of a continuous and complex interplay between an indi-
vidual’s intrinsic and extrinsic factors which challenge homeostasis. Consequently, fluid balance, as a key player
in our ability to maintain homeostasis, should be regarded as one of the main components for the provision
of a personalized hydration intervention. In general terms, factors that may affect fluid balance are sex, body
mass composition?’, physical activity, thermoregulatory processes®, and medical conditions®. As human beings
constantly lose water through urine and insensible water losses, the only way to replenish total body water is to
drink water from an external source. Considering the dynamic nature of the homeostatic processes that ulti-
mately determine fluid balance, we considered machine learning (ML) statistical analysis, a relevant and novel
approach, to reflect these dynamics. Datasets from multiple clinical studies on hydration were used as a valid
source of data for this investigation. The aim was to provide personalized advice on daily water intake considering
personal intrinsic and extrinsic variability to achieve a target 24 h Ug,,, of 500 mOsm/kg in a subset of healthy
adults excluding athletes and pregnant and lactating women.

Subjects and methods

Study population.  All research was conducted according to the ethical principles stated in the Declaration
of Helsinki. All subjects provided written informed consent. Each study was approved by a local Ethics Commit-
tee (Comité Etico De Investigacion Clinica (CEIC) del Hospital Universitario La Princesa, Madrid, Spain; CEIC
Hospital Universitario de La Paz, Madrid, Spain; Comité de Etica e Investigacion para Estudios en Humanos
(CEIEH), Mexico, Mexico; Comité de Bioética Para la Investigacion Clinica, Mexico, Mexico; Comité de Protec-
tion des Personnes (CPP) of Ile de France XI, Paris, France; Ethics Committee CPP Sud Méditerranée III, Nimes,
France; Ethics Committee CPP Est IV, Strasbourg, France; Ethics Committee CPP Est III, Nancy, France; Eth-
ics Committee of COMAC Medical, Sofia, Bulgaria; Supplemental Methods). Multiple datasets from previous
clinical trials on hydration and fluid balance (4 open label randomized controlled trials, and 3 open label non
randomized trials in parallel groups) were merged into one single dataset (n=1164 participants) (Fig. 1). Each
subject had 107 possible variables collected during the clinical studies at each single time point. Some partici-
pants had measurements of their biological variables performed on multiple timepoints during the same clinical
study, consequently their information was arranged on multiple lines for homogeneity within the dataset. Par-
ticipants not meeting the aforementioned criteria on age (n=4) and BMI (n=13) were filtered out. Datapoints
from study visits without complete information on biological and dietary parameters were filtered out. Addition-
ally, subjects’ datapoints were further filtered out if Plasma Osmolality (P,,) was above 310 mOsm/kg (n=32),
a threshold for dehydration which corresponds to a~5% body weight loss, a condition not generally met by the
general population®. Also, participants with a 24 h total fluid consumption below 200 mL (n=2) were excluded
on the basis that such fluid intake cannot meet fluid balance physiological requirements in general population.
This resulted in a dataset of 1575 rows reporting information of 557 subjects. Within the resulting dataset, some
participants had missing fluid intake data (n=107). Nonetheless, to maintain a fair representation of the subject
population and to not potentially undermine statistical analysis capability, these participants were retained in
the dataset. This choice was driven by the capability that the ML approach has to deal with missing values, and it
was worth considering the wealth of information these participants recorded for other variables. Following this
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Clinical studies dataset
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mL (n=2)

Study population
(n =557 participants corresponding to 1575 datapoints)

Train set Test set
(n = 1,148 datapoints) (n =427 datapoints)

Figure 1. Participant flowchart.

process, participants were randomly split according to their participant ID number with a ratio of 75:25, ensur-
ing that each participant was assigned to either the training set or the test set. The final dataset consisted in 1,148
rows for the train test and 427 rows for the test set.

Feature selection. Extreme Gradient Boosting (XGBoost) was adopted to achieve the preliminary iden-
tification of the most relevant features linked to urine production in the dataset (Hyperparameters tuning in
Supplemental Methods).

Machine learning algorithms.  Once the most relevant features were identified in the dataset, several ML
methods were used to predict U, including Random Forest (RF)*!, Gradient Boosting Machines (GBM)¥,
Automatic Machine Learning (AutoML)* using h20 package®, and XGBoost*® using XGBoost package®® (Sup-
plemental Methods; Supplemental Fig. 1). Cross-validation and hyperparameters tuning were used to optimize
the ML models (Supplemental Methods). These methods were selected due to their capability of automatically
handling missing values. For example, XGBoost supports missing values by default, with branch directions for
missing values are learned during training. In h20 package, missing values are interpreted as containing infor-
mation and in tree-based techniques split decisions for every node are found by treating missing values as a
separate category.

The highest performing methodology was identified by applying the aforementioned ML techniques on the
train set. Once the algorithm was obtained by the application of these techniques, predictions of U, were
generated on the test set. Once the predictions on the test set were calculated, Mean Absolute Error (MAE) was
used to compare the predicted values of Ug,, to the actual ones recorded in the dataset. In particular, MAE is
defined as 3; SN |yi — ¥i|, where y, and y; indicate the ith actual value and the related predicted value of the
response variable respectively (i.e., ¥; estimates the conditional mean of Ug,, given subject-specific information).
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Uoem <500 mOsm/kg | Ug,,, =500 mOsm/kg

A[Actual-Predicted]

Total fluid intake = 0 True positive (TP) False positive (FP)
A[Actual-Predicted . .
T(Etal fluid intake < g False negative (FN) True negative (TN)

Table 1. Evaluation of the algorithm classification.

It was chosen as it is in the same scale of the outcome and does not assign large weight to infrequent large errors.
The highest performing methodology, chosen on the lowest prediction error was selected (XGBoost). The reli-
ability of the model was tested via repeating five times the whole train-test split and model estimation. Then, the
performances on the test set were re-assessed to confirm matching results (Supplemental Table 3). The XGBoost
is a black box model, where the importance of each feature on Uy, is not disclosed. To elucidate the relation-
ships among these variables, several simulations were performed using Partial Dependence Plots (PDP)***” and
Accumulated Local Effects (ALE)*® plots (Supplemental Methods).

Optimization. The ML approach allowed to establish a relationship between the U, of each participant
with their anthropometric characteristics, food and fluid intakes. Once this relationship was described, an opti-
mization procedure was implemented to generate personalized advice on the daily amount of water needed to
reach the target U, for optimal hydration (i.e. a Ugg, < 500 mOsm/kg). For each individual, all anthropometric
and food parameters remain unchanged. The only variable that was modified in the reverse engineering phase
is the amount of plain water, which indirectly affects total fluid intake. The augmented Lagrangian was used
as optimization algorithm®, because it also offers the opportunity to consider eventual constraints of interest
which could be useful to avoid unreliable suggestions for particular individuals. This method integrates eventual
non-linear constraints into the objective function (Ug, < 500 mOsm/kg), so that a penalty is added for any vio-
lated constraint. The following constraints were used: the minimum and maximum acceptable values were set
to 375 mOsm/kg and 625 mOsm/kg, respectively, and the target value was 500 mOsm/kg; the lower and upper
bounds for the plain water intake were set to the observed minimum and maximum values in the dataset (i.e.
0 and 4050 mL); all other variables remained constant during the optimization process. This objective function
was then optimized by a local solver without non-linear constraints using Sequential Quadratic Programming
(SLSQP) algorithm™. The optimization procedure was applied on all the datapoints included in the test set.

Evaluation of classification performance. Contingency tables were used to evaluate the classification
rate of the developed algorithm (Table 1). The difference between the actual Total Fluid Intake (TFI) and the
predicted TFI were calculated and checked against the actual Ug,, reported in the dataset, either above or below
the 500 mOsm/kg threshold. This U, threshold is the target value of a 24 h urinary concentration and reflective
of optimal fluid balance. This allowed to classify datapoints into four categories. True positives were those both
with a higher TFI than the predicted TFI and being well hydrated (U, <500 mOsm/kg). True negatives were
those both with a lower TFI than the predicted TFI and being underhydrated (U, =500 mOsm/kg). The false
positives were those with a higher TFI than the predicted TFI but who were underhydrated (Ug,,, <500 mOsm/
kg). Which means that the predicted TFI is not high enough to ensure optimal hydration. Finally, the false
negatives were those with a lower TFI than the predicted TFI but who were still considered well hydrated
(Uosm <500 mOsm/kg). This means that the predicted TFI could have been lower.
Overall percent classification by the algorithm was calculated using two metrics as follows:

Accuracy = (TP + TN) /(TP 4+ FP 4+ FN + TN),

Acceptable classifications = (TP + FN + TN) /(TP + FP + FN + TN).

The performance of the algorithm was further evaluated against values deriving from current European
dietary guidelines for water intake. EFSA has set daily Adequate Intakes (Als) for total water for the adult popu-
lation of 2.5 L for men and 2.0 L for women*!. These values include water that comes both from consumed fluids
and food. It is estimated that the contribution of food and fluids to total water intake represent about 20% and
80%, respectively, in adults. This means male adults should drink 2.0 L per day, and female adults 1.6 L. These
sex-specific thresholds were used to evaluate the difference between the actual TFI and the predicted TFI in
relation to Ugg,. The difference between the actual TFI and the EFSA AI was then checked against the actual
Uggm 0n the two sides of the 500 mOsm/kg threshold to generate contingency tables.

Results
Demographic characteristics. Data are presented as mean (min; max) or as % of the respective dataset,
unless specified otherwise.

Both the train and test set showed an average age of 30 (19; 51) years (Supplemental Fig. 2) with a higher
presence of female participants (64% and 62%, respectively). BMI was of 23 (18;30) kg/m? in both sets. The range
of Upg, was [109-1252] mOsm/kg, with a mean value of 554 mOsm/kg in the train set, while in the test set it
was [141-1343] mOsm/kg with a mean value of 546 mOsm/kg. The total fluid consumption showed an average
value of about 1889 mL and a minimum value of 215 mL and 329 mL in the train and test sets, respectively. The
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Figure 2. Variable importance to determine Ug,,, and data distribution. (A) Feature importance plot showing
the 10 most important features obtained with XGBoost. (B-E) Data distribution of Urine osmolality against
24 h Urine volume (n=1575), Plain water intake (n=1404), Total fluid intake (n=1468) and Total water intake
(n=1448). Pearsons correlation coefficient; (s) significant, (ns) non-significant based on linear regression
p-value (<0.05). The R ggplot2 package was used to generate the figures https://ggplot2.tidyverse.org. R
Statistical Software version 3.6.3 (R Core Team https://cran.r-project.org/bin/windows/base/old/3.6.3/).

maximum values were equal to 6109 mL and 6742 mL in the train set and test set, respectively. The total plain
water consumption could vary between 0 and 4050 mL in the train set and between 100 and 3500 mL in the test
set. The average values were about 1301 mL and 1049 mL, in the train and test sets, respectively.

Feature selection. The preliminary identification of the most relevant features linked to urine production
is shown in Fig. 2. The features are ranked based on their fractional contribution to the model, i.e. the total gain
of each feature’s splits (x-axis of Fig. 2A). The adopted configuration of the model is reported in Supplemental
Methods. Features linked to urine production (volume and number of micturitions) as well as fluid consump-
tion were listed among the most important features with relative importance values ranging from 0.10 to 0.95.
At this stage, some key features were purposely excluded before generating predictions of urine osmolality such
as Urine volume and Number of micturition, to only utilize information easily accessible to the general popula-
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Figure 3. Partial dependence plots (PDP) and accumulated local effects (ALE) plots for 24 h Plain water
intake. (A) PDP plot for 24 h plain water intake. The large white curve represents the PDP plot. The black lines
represent the individual conditional expectation (ICE) curves, i.e. the equivalent to a PDP for individual data
instances. (B) ALE plots for 24 h plain water intake. The R pdp package was used to generate the figures https://
journal.r-project.org/archive/2017/R]J-2017-016/index.html. R Statistical Software version 3.6.3 (R Core Team
https://cran.r-project.org/bin/windows/base/old/3.6.3/).

tion. As a result, 23 variables out of 107 were kept in the dataset to generate predictions. These included Age, Sex,
Weight, Height and some food and fluid intake variables (See Supplemental Table 2 for the full list of features).

Mean Absolute Error (MAE) of machine learning algorithms. Several ML approaches were com-
pared to generate predictions of urine osmolality. XGBoost was the most performing approach (MAE =124.99),
returning the minimum test error as compared to AutoML (MAE=126.86), RF (MAE=129.03) and GBM
(MAE =132.15). The results of the multiple evaluations of our models are reported in Supplemental Table 3. The
average MAEs were 124.47, 126.88, 128.8, and 130.11 and the related standard deviations were 2.65, 1.38, 1.93,
and 1.48, respectively.

Since XGBoost is a black box model, several simulations were performed using PDP and ALE plots. Both
methods showed that increasing water intake led to a progressive reduction of Ug,,; the greater reduction was
observed when moving from 1200 to 1500 mL (Fig. 3). The observed relationship between plain water intake
and Uy, reflected homeostatic fluid balance physiological processes.

An optimization algorithm was generated to frame the final advice for water intake, using constraints on
24 h U, and 24 h plain water intake. The minimum and maximum acceptable values were set to 375 mOsm/
kg and 625 mOsm/kg, respectively, and the target value was set to 500 mOsm/kg. The lower and upper bounds
for the plain water intake were set to the observed minimum and maximum values from the dataset (i.e. 0 and
4050 mL). This allowed to estimate personalized advice for the individuals in the test set (Table 2). When the
original urine osmolality was higher than 500 mOsm/kg, the tool calculated increased volumes of water intake.
Conversely, when urine osmolality was low, (i.e. when the urine is diluted), the tool showed that the individual
could reduce the water intake and still be optimally hydrated.

The algorithm developed in this study consisted of the combination of two main elements. Firstly, a ML
algorithm, which generates a prediction for U, starting from anthropometric characteristics, food, and fluid
intake data. Secondly an optimization algorithm that generates personalized advice for optimal water intake based
on the predicted Ug,, and actual fluid intake. To compare the performance of this combination of algorithms
against current dietary guidelines, the relevance of the classification rates was calculated using contingency
tables (Tables 3 and 4).

Scientific Reports |

(2022) 12:19692 | https://doi.org/10.1038/s41598-022-21869-y nature portfolio


https://journal.r-project.org/archive/2017/RJ-2017-016/index.html
https://journal.r-project.org/archive/2017/RJ-2017-016/index.html
https://cran.r-project.org/bin/windows/base/old/3.6.3/

www.nature.com/scientificreports/

Urine osmolality
Age (years) Height (cm) | Weight (kg) | Sex (mOsm/kg) Plain water intake (mL) | Total fluid intake (mL)
Original Original Original Original | Original | Optimized | Original | Optimized | Original | Optimized
20 161 67 Female 1139 492 500 1298 1200 1998
42 160 67 Female 1020 505 250 1313 1000 2063
20 178 68.3 Male 750 501 1500 1750 2172 2422
26 181 75.2 Male 330 498 2000 1298 4115 3413

Table 2. Personalized advice for some individuals of the test set.

Uosm
<500 mOsm/kg | 2500 mOsm/kg | Accuracy | Acceptable classification
>0 185 22
A[Actual-predicted] Total fluid intake 85.5% 94.8%
<0 40 180

Table 3. Contingency table of the machine learning/optimization algorithm prediction of total fluid intake.
Values are number of datapoints per category. Total sample size is n=427 datapoints.

Uosm
<500 mOsm/kg | 2500 mOsm/kg | Accuracy | Acceptable classification
>0 |16l 31
A[Actual-EFSA Al] Total fluid intake 77.8% 92.7%
<0 64 171

Table 4. Contingency table of values for total water intakes coming from fluids deriving from the European
Food Safety Authority (EFSA) dietary guidelines. Values are number of datapoints per category. Total sample
size is n=427 datapoints. EFSA AI European Food Safety Authority Adequate Intake.

The developed algorithm exhibited the highest overall correct classification rates with an accuracy rate of
85.5% compared to an accuracy rate of 77.8% derived from dietary guidelines. When considering the propor-
tion of false negatives, (i.e. participants with a lower fluid intake than the predicted one and showing a urine
concentration below the threshold for optimal hydration) the rate of acceptable classifications was still higher
for the algorithm developed in the current study (94.8%) than that derived from dietary guidelines (92.7%).

Discussion

In this study, we generated a ML algorithm which in combination with an optimization algorithm provides
personalized advice for daily water intake to achieve optimal hydration, as defined by a target 24 h U, of
500 mOsm/kg in healthy adults. This target has been previously proposed to decrease risks for long term diseases
while ensuring optimal fluid balance processes'?. It is worth mentioning that we initially considered analyzing a
subsample of data from the National Health and Nutrition Examination Survey (NHANES), a broad, validated
and publicly available dataset of the United States population. Urine osmolality measures are available from
NHANES 2009-2010 and 2011-2012. However, the large number of missing values and the low fractional
contribution of the most relevant features to the model impaired the ability of generating predictions with an
adequate degree of precision. All details about this analysis can be found in the Supplemental Data, NHANES
section. Therefore, in the investigation here presented, we performed a post-hoc analysis of data pooled from
multiple clinical studies on hydration and fluid balance in general adult population. This allowed to gather higher
quality data from trustworthy and reliable sources in regards of data quality. Hence, we could highlight existing
relationships between the observed features and U, With no similar ML application reported in the literature,
we evaluated the performance of the prediction against values deriving from current EFSA dietary guidelines for
water intake. Our prediction model proved to generate advice for 24 h optimal water intake for healthy adults
with an excellent degree of fitting compared to current adequate intakes (Als) for water.

Representing 40-60% of body mass, water is the largest constituent of the human body. Like any other human
physiological processes, water homeostasis is continuously challenged; in particular trans-epidermal, respira-
tory, fecal and urinary represent the main fluid losses and therefore threats to normal body functioning®*?. The
human body has a limited capacity to store water and previous reports highlight that there is a mean daily water
turnover of 3.6 + 1.2 L/day or 2.8-3.3 and 3.4-3.8 L/day in women, and men, respectively®. Being between 0.25 to
0.35 L/day, only a fraction of water is produced in the body as result of metabolic processes, consequently, water
losses must be replaced by ingestion of fluids**. The body puts in place highly refined responses to maintain the
volume of the body water within a narrow range independently to the conditions that it may be facing®. Under
this light, water has been called the ‘most essential’ nutrient®.
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Despite its primary role, water is under-researched and often referred to as a forgotten, neglected nutrient.
As an example, a review from Perrier and colleagues points to the discrepancies between regional water intake
recommendations, and the fact that these reference values represent Als*"447, The Als derive from observational
or experimental data that provide estimates of average water intake while lacking scientific evidence to associate
a consumption threshold with positive or negative health outcomes*’. From a practical point of view, general
population currently does not benefit from recommendations for plain water intake in the dietary guidelines
that are based on the health outcomes associated with the consumption of such nutrient. While thirst is generally
considered enough of a warning for fluid replenishment*®*, guidelines are mostly generated for those who face
physical exertion or extreme environmental conditions*. Implicitly, the message spread is that there is no need
to pay attention to water intake except for those conditions.

On the contrary, a large and growing body of evidence suggests that maintaining an optimal water intake
which avoids urine supersaturation and reduces excessive arginine vasopressin (AVP) secretion may be greatly
beneficial for the kidney and reduce metabolic risk?’. If we consider the astonishing increase in incidence of these
diseases in the general population, this should be regarded as a form of primary prevention for public health.
Ultimately, this optimal intake is reflected by the cut-off value of 500 mOsm/kg for 24 h U, *'~*. Initially, this
target was based on retrospective analyses of existing clinical data. Currently, evidence deriving from several
randomized control trials have showed that reaching such a target for Ug,,, can reduce circulating copeptin, as
a proxy for AVP, as well as improve metabolic markers and reduce UTI incidence®'®?2,

In this investigation, we showed that a ML algorithm which integrates clinical features in combination with an
optimization algorithm can accurately predict personalized water intake to achieve a target U, of 500 mOsm/
kg in healthy adults. More in detail, the algorithm holistically considers different variables spanning from anthro-
pometric characteristics, biological, nutritional and beverage intake data. These variables may not be related to
fluid-balance processes directly but comprehensively describe individuals from a physiological point of view.
From there, it employs a data-driven unbiased approach to infer the main factors predictive of optimal water
intake. To this instance, the algorithm identifies multiple functional pathways in respect to optimal water intake.
As examples, individuals with low water intakes are associated with a higher U, which results in advice to
increase plain water consumption. Oppositely, individuals with low U, are advised an amount of water which
is lower compared to the reported data contained in the dataset. Therefore, when an individual shows high
Uosm» the algorithm is essentially capable to advise an increase of plain water consumption, while when opposite
scenario appears, a decrease in water consumption is proposed.

One of the first steps of our approach consisted in the ranking of the most important features related to
urine osmolality. This revealed that the most important features were related to hydration physiology (i.e., urine
volume, and the consumption of plain water and fluids in general). This shows that the ML approach is a suit-
able approach to model the fluids that come in and out of the human body. Urine volume and concentration
are regulated by the same hormonal mechanisms and were shown to be highly correlated®**. Given that the
end goal of this study was to provide any human being with advice for water intake to be optimally hydrated, we
had to consider the accessibility of the data that individuals could provide. The number of features was reduced
to a minimum to allow for a minimalist need of information from the general population while maintaining
and excellent output quality. As an example, outside of any clinical context, people would generally be able to
provide anthropometric variables such as age, sex, weight, and height. Also, food and fluid intake data can be
easily recollected. Oppositely, the volume of urine collected throughout a 24 h period may pose some challenges
and therefore prevent usage from the general population. For this reason, the algorithms developed do not ask
for such information to generate a prediction for optimal water intake.

Our investigation represents a first exploration on the application of ML techniques on fluid balance physi-
ological processes. Nonetheless, the study here presented comes with several limitations. Currently, the overall
weight in determining the prediction for water intake between the algorithm and the optimization process is
undetermined. Future research should address this aspect to determine whether more effective methodologies
in regards of the optimization algorithm could be implemented. However, it appears that with current optimi-
zation process the overall performance of the algorithm in providing a prediction for optimal intake remains
adequate. For this initial investigation, the data used to generate predictions rely uniquely on a subset of healthy
clinical trials’ participants. Athletes, or subject taking part in strenuous physical activity, pregnant and lactating
women were excluded from these trials on purpose. Therefore, it should be regarded as a priority to integrate data
from more diverse and vulnerable populations such as aging population®**, pregnant and lactating women>*,
and people regularly drinking extremely low or high volumes of water, especially when their Ug, still shows
reasonable values regardless of the expectations. The latter would allow to test the method at the two-ends of
the physiological spectrum. Integrating additional extrinsic data on seasonality, ambient temperature, physical
activity should be regarded as an additional next step to further personalize the advice on water intake. Addi-
tionally, while considering different beverages consumed by individuals, the current algorithm only modulates
plain water intake in the prediction generated. While water consumption is associated with positive health
outcomes, the same cannot be currently supported for other beverages. Therefore, future developments could
integrate advice for different beverages in combination with plain water intake. Finally, a clinical validation of
the proposed ML algorithm is warranted to validate the predicted amount water to achieve Ug,,, of 500 mOsm/
kg with real world evidence.

An additional learning we would like to share is about the importance of blending high-quality, context-
specific data deriving from clinical studies into ML. This may allow to fix the reliability issues often reported
by healthcare recipients when using artificial intelligence derived applications in decision-making processes.
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Conclusions

Employing personalized advice for optimal water intake may contribute to decrease disease development and
progression and may also be valuable in rationally designing nutritional interventions in a variety of kidney and
metabolic disorders. More broadly, accurate personalized water intake predictions in these scenarios may be of
great practical value, as they will integrate nutritional modifications more extensively into the clinical decision-
making scheme. Indeed, we contributed to the demonstration that artificial intelligence and ML adoption can be
implemented for taking advantage of digital algorithmic evidence to improve healthcare in general population.
Here, we present an application of ML as primary prevention providing personalized advice on daily water intake
considering personal intrinsic and extrinsic variability to achieve an optimal target for Uy, of 500 mOsm/kg.
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