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EXISTENCE AND UNIQUENESS THEOREMS FOR SOME

SEMI-LINEAR EQUATIONS ON LOCALLY FINITE GRAPHS

ANDREA PINAMONTI AND GIORGIO STEFANI

(Communicated by Nageswari Shanmugalingam)

Abstract. We study some semi-linear equations for the (m,p)-Laplacian op-
erator on locally finite weighted graphs. We prove existence of weak solutions
for all m ∈ N and p ∈ (1,+∞) via a variational method already known in the
literature by exploiting the continuity properties of the energy functionals in-
volved. When m = 1, we also establish a uniqueness result in the spirit of the
Brezis–Strauss Theorem. We finally provide some applications of our main re-
sults by dealing with some Yamabe-type and Kazdan–Warner-type equations
on locally finite weighted graphs.

1. Introduction

1.1. Framework. When dealing with PDEs coming from the Euler–Lagrange equa-
tions of some energy functional, existence and multiplicity results of weak solutions
are usually achieved via the so-called Variational Method.

In the recent years, this approach has been employed by many authors in order
to deal with a large variety of interesting PDEs on graphs, see [5–8, 10–23, 25–29]
and the references therein. Of particular interest for the scopes of the present paper
is the work [19], where the authors proved existence of weak solutions for a Yamabe-
type equation on locally finite weighted graphs via the celebrated Mountain Pass
Theorem due to Ambrosetti and Rabinowitz [1].

The main aim of this note is twofold. On the one hand, by exploiting some ideas
developed in [9,24] in the context of Carnot groups, we prove the existence of weak
solutions for a Yamabe-type equation on locally finite weighted graphs. Our result is
similar to the one of [19] but holds under a different set of assumptions. On the other
hand, we adapt the strategy of [3] developed in the Euclidean setting to establish a
uniqueness result for the weak solutions of Yamabe-type equations on locally finite
weighted graphs in the spirit of the celebrated Brezis–Strauss Theorem [4].
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4758 A. PINAMONTI AND G. STEFANI

1.2. Main notation. Before stating our main results, we need to recall some no-
tation, see section 2 for the precise definitions.

Given G = (V,E) a locally finite non-oriented graph, the vertex boundary ∂Ω
and the vertex interior Ω◦ of a connected subgraph Ω ⊂ V are defined as

∂Ω = {x ∈ Ω : ∃y /∈ Ω such that xy ∈ E} , Ω◦ = Ω \ ∂Ω.

We say that Ω is bounded if it is a bounded subset of V with respect to the usual
vertex distance d : V × V → [0,+∞).

Once a symmetric weight function w : V × V → [0,∞) is given, we can define
the Laplacian of a function u : V → R as

(1.1) Δu(x) =
1

m(x)

∑
y∈V

wxy(u(y)− u(x)) for x ∈ V,

where m : V → [0,+∞) is the measure function

(1.2) m(x) =
∑
y∈V

wxy for all x ∈ V.

The gradient form associated to the Laplacian operator is the bilinear symmetric
form

Γ(u, v)(x) =
1

2m(x)

∑
y∈V

wxy(u(y)− u(x))(v(y)− v(x)), x ∈ V,

defined for any couple of functions u, v : V → R. As a consequence, the slope of the
function u : V → R is given by

|∇u|(x) =
√
Γ(u, u)(x) =

⎛
⎝ 1

2m(x)

∑
y∈V

wxy(u(y)− u(x))2

⎞
⎠

1
2

for x ∈ V.

Note that |Γ(u, v)| ≤ |∇u| |∇v| for any couple of functions u, v : V → R. In analogy
with the Euclidean framework, for any m ∈ N we recursively define the m-slope of
the function u as

|∇mu| =

⎧⎨
⎩
|∇(Δ

m−1
2 u)| if m is odd,

|Δm
2 u| if m is even,

where |Δm
2 u| denotes the usual absolute value of the function Δ

m
2 u. The natural

operator associated to the Sobolev spaces (Wm,p
0 (Ω), ‖ · ‖Wm,p

0 (Ω)) (see (2.1) for the

precise definition) is the (m, p)-Laplacian operator

Lm,p : W
m,p
0 (Ω) → Lp(Ω)

defined in the distributional sense for all u ∈ Wm,p
0 (Ω) as

(1.3)

∫
Ω

Lm,puϕ dm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Ω

|∇mu|p−2 Γ(Δ
m−1

2 u,Δ
m−1

2 ϕ) dm if m is odd,

∫
Ω

|∇mu|p−2 Δ
m
2 uΔ

m
2 ϕ dm if m is even,

whenever ϕ ∈ Wm,p
0 (Ω).
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EXISTENCE AND UNIQUENESS FOR SEMI-LINEAR EQUATIONS 4759

The (m, p)-Laplacian Lm,pu can be explicitly computed at any point of Ω. In
particular, L1,p is the p-Laplacian operator, given by

(1.4) Δpu(x) =
1

m(x)

∑
y∈Ω

(
|∇u|p−2(y) + |∇u|p−2(x)

)
wxy(u(y)− u(x)), x ∈ Ω,

for all u ∈ W 1,p
0 (Ω). When p = 2, we recover the usual Laplacian operator defined

in (1.1).

1.3. Main results. We are now ready to state our main results. Our first main
theorem is the following existence result for a Yamabe-type equation for the (m, p)-
Laplacian operator on locally finite weighted graphs.

Theorem 1.1. Let G = (V,E) be a weighted locally finite graph. Let Ω ⊂ V be
a bounded domain such that Ω◦ 
= ∅ and ∂Ω 
= ∅. Let m ∈ N, p ∈ (1,+∞) and
q ∈ [p− 1,+∞). Let f : Ω× R → R be a Carathéodory function such that

(1.5) |f(x, t)| ≤ a(x) + b(x) |t|q for every (x, t) ∈ Ω× R

for some non-negative a, b ∈ L1(Ω) with ‖a‖L1(Ω), ‖b‖L1(Ω) > 0. There exists

(1.6) Λ = Λ(m, p, q, ‖a‖L1(Ω), ‖b‖L1(Ω)) > 0

such that the Yamabe-type problem

(1.7)

⎧⎨
⎩
Lm,pu = λf(x, u) in Ω◦,

|∇ju| = 0 on ∂Ω, 0 ≤ j ≤ m− 1,

admits at least one non-trivial solution uλ ∈ Wm,p
0 (Ω) for every 0 < λ < Λ.

We observe that the growth condition of the function f assumed in (1.5) of
Theorem 1.1 is different from the one assumed in [19, Theorem 3]. In particular,
we do not assume that f(x, 0) = 0 for all x ∈ Ω. We also underline that the existence
threshold (1.6) depends uniquely on the growth of the function f and not on the
first eigenvalue of the (m, p)-Laplacian, as instead it happens in [19, Theorem 3].

Our second main result is the following uniqueness theorem for a Yamabe-type
equation for the p-Laplacian operator on locally finite weighted graphs in the spirit
of the famous Brezis–Strauss Theorem, see [3, 4].

Theorem 1.2. Let G = (V,E) be a weighted locally finite graph. Let Ω ⊂ V
be a bounded domain such that Ω◦ 
= ∅ and ∂Ω 
= ∅. Let p ∈ [1,+∞) and let
g : Ω×R → R be a function such that g(x, 0) = 0 and t �→ g(x, t) is non-decreasing
for all x ∈ Ω. If f1, f2 ∈ L1(Ω), h ∈ L1(∂Ω) and u1, u2 ∈ W 1,p(Ω) solve the
problems ⎧⎨

⎩
−Δpui + g(x, ui) = fi in Ω◦

ui = h on ∂Ω
for i = 1, 2,

then

(1.8)

∫
Ω

|g(x, u1)− g(x, u2)| dm ≤
∫
Ω

|f1 − f2| dm.

As a consequence, for every f ∈ L1(Ω) and h ∈ L1(∂Ω) the problem

(1.9)

⎧⎨
⎩
−Δpu+ g(x, u) = f in Ω◦,

u = h on ∂Ω

admits at most one solution u ∈ W 1,p(Ω).

Licensed to Scuola Internazionale Superiore. Prepared on Tue Mar  7 10:34:06 EST 2023 for download from IP 147.122.41.218.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4760 A. PINAMONTI AND G. STEFANI

By combining Theorem 1.1 and Theorem 1.2, we get the following well-posedness
result for a Yamabe-type problem for the p-Laplacian on locally finite weighted
graphs.

Proposition 1.3. Let G = (V,E) be a weighted locally finite graph. Let Ω ⊂ V be
a bounded domain such that Ω◦ 
= ∅ and ∂Ω 
= ∅. Let p ∈ (1,+∞), q ∈ [p−1,+∞)
and a, b ∈ L1(Ω) with infΩ b ≥ 0. There exists

Λ = Λ(m, p, q, ‖a‖L1(Ω), ‖b‖L1(Ω)) > 0

such that the Yamabe-type problem

(1.10)

⎧⎨
⎩
−Δpu+ b|u|q−1u = a in Ω◦,

u = 0 on ∂Ω

has a unique solution u ∈ W 1,p
0 (Ω).

1.4. Organization of the paper. The structure of the paper is the following. In
Section 2 we recall the preliminary definitions and notions needed in the paper.
Sections 3 and 4 are devoted to the proofs of Theorems 1.1 and 1.2 respectively.
Finally, in Section 5 we provide some applications of our main results, along with
the proof of Proposition 1.3.

2. Preliminaries

In this section, we introduce the main notation and some preliminary results we
will need in the sequel of the paper.

2.1. Non-oriented graphs. Let V be a non-empty set and let E ⊂ V × V . We
write

x ∼ y ⇐⇒ xy = (x, y) ∈ E.

We will always assume that

xy ∈ E ⇐⇒ yx ∈ E.

We say that the couple G = (V,E) is a non-oriented graph with vertices V and
edges E.

The non-oriented graph G is locally finite if

# {y ∈ V : xy ∈ E} < +∞ for all x ∈ V,

that is, each vertex in V belongs to a finite number of edges in E.
Given n ∈ N, a path on G is any finite sequence of vertices {xk}k=1,...,n ⊂ V

such that

xkxk+1 ∈ E for all k = 1, . . . , n− 1.

The length of a path on G is the number of edges in the path. We say that G is
connected if, for any two vertices x, y ∈ V , there is a path connecting x and y. If
G is connected, then the function d : V × V → [0,+∞) given by

d(x, y) = min {n ∈ N0 : x and y can be connected by a path of length n} ,

for x, y ∈ V , is a distance on V . As a consequence, any connected locally finite
non-oriented graph has at most countable many vertices.

Licensed to Scuola Internazionale Superiore. Prepared on Tue Mar  7 10:34:06 EST 2023 for download from IP 147.122.41.218.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EXISTENCE AND UNIQUENESS FOR SEMI-LINEAR EQUATIONS 4761

Let G = (V,E) be a locally finite non-oriented graph. A weight on G is a function
w : V × V → [0,+∞), w(x, y) = wxy for x, y ∈ V , such that

wxy = wyx and wxy > 0 ⇐⇒ xy ∈ E

for all x, y ∈ V . We conclude this section by pointing out that the function m : V →
[0,+∞) defined in (1.2) can be interpreted as a measure on the graph by simply
setting ∫

V

u dm =

∫
V

u(x) dm(x) =
∑
y∈V

u(x)m(x) ∈ [0,+∞]

for any function u : V → [0,+∞).

2.2. Sobolev spaces on bounded domains. Let G = (V,E) be a weighted
locally finite graph and let Ω ⊂ V be a bounded domain. Note that the integral∫

Ω

u dm =

∫
Ω

u(x) dm(x) =
∑
x∈Ω

u(x)m(x)

of a function u : Ω → R is well-defined, since Ω is a finite set. Let p ∈ [1,+∞] and
m ∈ N0. The Sobolev space Wm,p(Ω) is the set of all functions u : Ω → R such that

(2.1) ‖u‖Wm,p(Ω) =

m∑
k=0

‖∇ku‖Lp(Ω) < +∞.

When m = 0, this space is simply the Lebesgue space Lp(Ω). Since Ω is a finite
set, the Banach space (Wm,p(Ω), ‖ · ‖Wm,p(Ω)) is finite dimensional and, actually,
coincides with the set of all real-valued functions on Ω.

For m ∈ N, we define

(2.2) Cm
0 (Ω) :=

{
u : Ω → R : |∇ku| = 0 on ∂Ω for all 0 ≤ k ≤ m− 1

}
and we let Wm,p

0 (Ω) be the completion of Cm
0 (Ω) with respect to the Sobolev

norm (2.1). The following result is proved in [19, Theorem 7].

Theorem 2.1 (Sobolev embedding). Let G = (V,E) be a locally finite graph and
let Ω ⊂ V be a bounded domain such that Ω◦ 
= ∅ and ∂Ω 
= ∅. Let m ∈ N

and p ∈ [1,+∞). The space Wm,p
0 (Ω) is continuously embedded in Lq(Ω) for all

q ∈ [1,+∞], i.e. there exists a constant Cm,p > 0, depending only on m, p and Ω,
such that

(2.3) ‖u‖Lq(Ω) ≤ Cm,p‖∇mu‖Lp(Ω)

for all q ∈ [1,+∞] and u ∈ Wm,p
0 (Ω).

By Theorem 2.1, the space (Wm,p
0 (Ω), ‖·‖Wm,p

0 (Ω)) is a finite dimensional Banach
space, where

(2.4) ‖u‖Wm,p
0 (Ω) = ‖∇mu‖Lp(Ω)

is a norm on Wm,p
0 (Ω) equivalent to the norm (2.1). Since Ω is a finite set, the

Banach space (Wm,p
0 (Ω), ‖ · ‖Wm,p

0 (Ω)) is finite dimensional and, actually, coincides

with the set Cm
0 (Ω) defined in (2.2).
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3. Proof of theorem 1.1

In this section, we prove our first main result following the strategy outlined
in [9]. Given λ > 0, we define

(3.1) Φ(u) = ‖u‖Wm,p
0 (Ω), Ψλ(u) = λ

∫
Ω

F (x, u) dm,

for all u ∈ Wm,p
0 (Ω), where

(3.2) F (x, t) =

∫ t

0

f(x, τ ) dτ for all t ∈ R.

Note that, thanks to the assumption in (1.5), the functional Ψλ is well-defined and
(strongly) continuous on Wm,p

0 (Ω). Indeed, we can estimate

|F (x, t)| ≤
∫ |t|

0

|f(x, τ )| dτ ≤
∫ |t|

0

a(x) + b(x) |τ |q dτ = a(x) |t|+ b(x)
|t|1+q

1 + q

for all (x, t) ∈ Ω× R, so that

|Ψλ(u)| ≤ λ

(
‖a‖L1(Ω)‖u‖L∞(Ω) + ‖b‖L1(Ω)

‖u‖1+q
L∞(Ω)

1 + q

)

which is finite for all u ∈ Wm,p
0 (Ω) by Theorem 2.1. In addition, if (un)n∈N ⊂

Wm,p
0 (Ω) is converging to some u ∈ Wm,p

0 (Ω), then un → u in L∞(Ω) as n → +∞
and thus

lim
n→+∞

Ψλ(un) = lim
n→+∞

∑
x∈Ω

F (x, un(x))m(x) =
∑
x∈Ω

F (x, u(x))m(x) = Ψλ(u)

by the continuity of the function t �→ F (x, t) for x ∈ Ω fixed.
The following two results are proved in [9, Lemma 3.2 and Lemma 3.3] respec-

tively for the case p = 2. Here we reproduce the proofs in our setting in the more
general case p ∈ (1,+∞) for the reader’s ease.

Lemma 3.1. Let p ∈ (1,+∞) and λ > 0. If

(3.3) lim sup
ε→0+

supu∈Φ−1([0,�])Ψλ(u)− supu∈Φ−1([0,�−ε])Ψλ(u)

ε
< �p−1

for some � > 0, then

(3.4) inf
σ<�

supu∈Φ−1([0,�])Ψλ(u)− supu∈Φ−1([0,σ]) Ψλ(u)

�p − σp
<

1

p
.

Proof. Let ε ∈ (0, �) and note that

lim
ε→0+

ε

�p − (�− ε)p
=

1

p�p−1
.

Therefore, in virtue of (3.3), we get that

lim sup
ε→0+

supu∈Φ−1([0,�])Ψλ(u)− supu∈Φ−1([0,�−ε])Ψλ(u)

�p − (�− ε)p

= lim sup
ε→0+

supu∈Φ−1([0,�])Ψλ(u)− supu∈Φ−1([0,�−ε])Ψλ(u)

ε
· ε

�p − (�− ε)p

=
1

p�p−1
lim sup
ε→0+

supu∈Φ−1([0,�])Ψλ(u)− supu∈Φ−1([0,�−ε])Ψλ(u)

ε
<

1

p
.
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Thus we can find ε̄ ∈ (0, �) such that

supu∈Φ−1([0,�]) Ψλ(u)− supu∈Φ−1([0,�−ε̄]) Ψλ(u)

�p − (�− ε̄)p
<

1

p

and so σ̄ = �− ε̄ < � gives

inf
σ<�

supu∈Φ−1([0,�])Ψλ(u)− supu∈Φ−1([0,σ]) Ψλ(u)

�p − σp

<
supu∈Φ−1([0,�])Ψλ(u)− supu∈Φ−1([0,σ̄])Ψλ(u)

�p − σ̄p
<

1

p

proving (3.4). The proof is complete. �

Lemma 3.2. Let p ∈ (1,+∞) and λ > 0. If (3.4) holds for some � > 0, then

(3.5) inf
u∈Φ−1([0,�))

supv∈Φ−1([0,�])Ψλ(v)−Ψλ(u)

�p − ‖u‖p
Wm,p

0 (Ω)

<
1

p
.

Proof. In virtue of (3.4), we can find σ̄ ∈ (0, �) such that

sup
u∈Φ−1([0,σ̄])

Ψλ(u) > sup
u∈Φ−1([0,�])

Ψλ(u)−
1

p
(�p − σ̄p).

Since the functional Ψλ is continuous on Wm,p
0 (Ω), we can find ū ∈ Wm,p

0 (Ω) with
‖ū‖Wm.p

0 (Ω) = σ̄ such that

sup
u∈Φ−1([0,σ̄])

Ψλ(u) = sup
‖u‖W

m,p
0 (Ω)= σ̄

Ψλ(u) = Ψλ(ū)

and so

Ψλ(ū) > sup
u∈Φ−1([0,�])

Ψλ(u)−
1

p
(�p − σ̄p).

We thus conclude that

inf
u∈Φ−1([0,�))

supv∈Φ−1([0,�]) Ψλ(v)−Ψλ(u)

�p − ‖u‖p
Wm,p

0 (Ω)

<
supv∈Φ−1([0,�])Ψλ(v)−Ψλ(ū)

�p − ‖ū‖p
Wm,p

0 (Ω)

<
1

p

proving (3.5). The proof is complete. �

We are now ready to prove our first main result, in analogy with [9, Theorem 3.1].

Proof of Theorem 1.1. Let λ > 0 and consider the energy functional Eλ : Wm,p
0 (Ω)

→ R defined as

Eλ(u) =
Φ(u)p

p
−Ψλ(u) for all u ∈ Wm,p

0 (Ω),

where Φ and Ψλ are as in (3.1). By the growth condition (1.5) and Theorem 2.1,
we have that Eλ ∈ C1(Wm,p

0 (Ω);R), with derivative at u ∈ Wm,p
0 (Ω) given by

E ′
λ(u)[ϕ] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Ω

|∇mu|p−2 Γ(Δ
m−1

2 u,Δ
m−1

2 ϕ) dm− λ

∫
Ω

f(x, u)ϕ dm if m is odd,

∫
Ω

|∇mu|p−2 Δ
m
2 uΔ

m
2 ϕ dm− λ

∫
Ω

f(x, u)ϕ dm if m is even,
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4764 A. PINAMONTI AND G. STEFANI

for any ϕ ∈ Wm,p
0 (Ω). In particular, the solutions of the problem (1.7) are exactly

the critical points of the functional Eλ. Now let � > 0 to be fixed later. Since Eλ is
a continuous functional on Wm,p

0 (Ω), there exists uλ,� ∈ Φ−1([0, �]) such that

(3.6) Eλ(uλ,�) = inf
u∈Φ−1([0,�])

Eλ(u).

To conclude the proof, we just need to show that ‖uλ,�‖Wm,p
0 (Ω) < �. To this aim,

for ε ∈ (0, �) we consider

Λ(�, ε) =
supu∈Φ−1([0,�]) Ψλ(u)− supu∈Φ−1([0,�−ε])Ψλ(u)

ε
.

Recalling the definition of Ψλ in (3.1), we have

Λ(�, ε) =
1

ε

(
sup

u∈Φ−1([0,�])

Ψλ(u)− sup
u∈Φ−1([0,�−ε])

Ψλ(u)

)

≤ λ

ε
sup

u∈Φ−1([0,1])

∫
Ω

∣∣∣∣∣
∫ �u(x)

(�−ε)u(x)

|f(x, t)| dt
∣∣∣∣∣dm(x).

Thanks to the growth condition (1.5), we can estimate

λ

ε

∫
Ω

∣∣∣∣
∫ �u(x)

(�−ε)u(x)

|f(x, t)| dt
∣∣∣∣ dm(x)

≤ λ

ε

∫
Ω

ε a(x)|u(x)|+ b(x)

(
�q+1 − (�− ε)q+1

q + 1

)
|u(x)|q+1 dm(x)

≤ λ‖u‖L∞(Ω)‖a‖L1(Ω) +
λ‖u‖q+1

L∞(Ω)‖b‖L1(Ω)

q + 1

(
�q+1 − (�− ε)q+1

ε

)
for all u ∈ Wm,p

0 (Ω). Thus, by the embedding inequality (2.3), we get

Λ(�, ε) ≤ λCm,p‖a‖L1(Ω) +
λCq+1

m,p ‖b‖L1(Ω)

q + 1

(
�q+1 − (�− ε)q+1

ε

)
and so

lim sup
ε→0+

Λ(�, ε) ≤ λ
(
Cm,p‖a‖L1(Ω) + Cq+1

m,p ‖b‖L1(Ω) �
q
)
.

We now define

(3.7) λ� =
�p−1

Cm,p‖a‖L1(Ω) + Cq+1
m,p ‖b‖L1(Ω) �q

∈ (0,+∞)

and, consequently,
Λ = sup

�>0
λ� ∈ (0,+∞)

(note that Λ < +∞ is ensured by the fact that q ≥ p − 1). Now fix λ < Λ and
choose the parameter � > 0 in such a way that λ < λ� < Λ. This choice implies
that

lim sup
ε→0+

Λ(�, ε) ≤ λ
(
Cm,p‖a‖L1(Ω) + Cq+1

m,p ‖b‖L1(Ω) �
q
)

< λ�

(
Cm,p‖a‖L1(Ω) + Cq+1

m,p ‖b‖L1(Ω) �
q
)
< �p−1,

so that

lim sup
ε→0+

supu∈Φ−1([0,�])Ψλ(u)− supu∈Φ−1([0,�−ε])Ψλ(u)

ε
< �p−1.
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We can now apply Lemma 3.1 to get that

inf
σ<�

supu∈Φ−1([0,�]) Ψλ(u)− supu∈Φ−1([0,σ])Ψλ(u)

�p − σp
<

1

p

and so, by Lemma 3.2, we infer that

inf
u∈Φ−1([0,�))

supv∈Φ−1([0,�])Ψλ(v)−Ψλ(u)

�p − ‖u‖p
Wm,p

0 (Ω)

<
1

p
.

The above inequality implies that there exists wλ,� ∈ Φ−1([0, �)) such that

sup
v∈Φ−1([0,�])

Ψλ(v) < Ψλ(wλ,�) +
�p − ‖wλ,�‖pWm,p

0 (Ω)

p
.

Now, if by contradiction we assume that ‖uλ,�‖Wm,p
0 (Ω) = �, then the previous

inequality implies that

Ψλ(uλ,�) < Ψλ(wλ,�) +
�p − ‖wλ,�‖pWm,p

0 (Ω)

p

which is equivalent to Eλ(uλ,�) > Eλ(wλ,�), contradicting (3.6). The proof is com-
plete. �

Remark 3.3 (The precise value of Λ in Theorem 1.1). Note that the above proof
allows to give a precise value to the existence threshold Λ > 0 in Theorem 1.1.
Indeed, one just need to find the maximal value of the function defined in (3.7),
which is explicitly computable in term of p, q, ‖a‖L1(Ω), ‖b‖L1(Ω) and Cm,p. In
particular, in the limiting case q = p− 1, one has

Λ = lim
�→+∞

�p−1

Cm,p‖a‖L1(Ω) + Cp
m,p‖b‖L1(Ω) �p−1

=
1

Cp
m,p‖b‖L1(Ω)

,

which does not depend on ‖a‖L1(Ω).

4. Proof of Theorem 1.2

In this section we prove Theorem 1.2. The overall strategy is to adapt the line
developed in [3, Appendix B] for the Euclidean setting to the present framework.
Note that [3] is focused on the case p = 2 only. Nonetheless, exploiting the explicit
expression (1.4) of the p-Laplacian, we are able to extend the approach of [3] also
to the case p 
= 2.

We begin with the following result, analogous to [3, Lemma B.1].

Lemma 4.1. Let G = (V,E) be a weighted locally finite graph. Let Ω ⊂ V be a
bounded domain such that Ω◦ 
= ∅ and ∂Ω 
= ∅. Let p ∈ [1,+∞) and f ∈ L1(Ω).

If u ∈ W 1,p
0 (Ω) is a solution of the problem

(4.1)

{
−Δpu = f in Ω◦,

u = 0 on ∂Ω,

then ∫
Ω

f H(u) dm ≥ 0

for every non-decreasing locally Lipschitz function H : R → R such that H(0) = 0.
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Proof. We start by observing that H(u) ∈ W 1,p
0 (Ω). Indeed, H(v) ∈ C0

0 (Ω) for all
v ∈ C0

0 (Ω) with |∇H(v)| ≤ L|∇v| on Ω, where L = Lip(H, [−c, c]), c = ‖v‖L∞(Ω).
Using H(u) as a test function in (4.1), we get∫

Ω

f H(u) dm = −
∫
Ω

ΔpuH(u) dm =

∫
Ω

|∇u|p−2 Γ(u,H(u)) dm ≥ 0,

because

Γ(u,H(u))(x) =
1

2m(x)

∑
y∈Ω

wxy(u(y)− u(x))(H(u(y))−H(u(x))) ≥ 0

since H is non-decreasing. The proof is complete. �

As a consequence, and in analogy with [3, Proposition B.2], from Lemma 4.1 we
deduce the following result.

Corollary 4.2. Let G = (V,E) be a weighted locally finite graph. Let Ω ⊂ V be
a bounded domain such that Ω◦ 
= ∅ and ∂Ω 
= ∅. Let p ∈ [1,+∞), M > 0 and

f ∈ L1(Ω). If u ∈ W 1,p
0 (Ω) is a solution of the problem{

−Δpu = f in Ω◦,

u = 0 on ∂Ω,

then ∫
Ω∩{u≥M}

f dm ≥ 0,

∫
Ω∩{u≤−M}

f dm ≥ 0.

In particular, ∫
Ω∩{|u|≥M}

f sgn(u) dm ≥ 0,

where sgn: R → R is the sign function defined by sgn(t) = t
|t| for t 
= 0 and

sgn(0) = 0.

Proof. For every n ∈ N such that n > 1
M , we let Hn : R → R be the function

Hn(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 for t ≤ M − 1

n ,

nt− nM + 1 for M − 1
n < t < M,

1 for t ≥ M.

Since Hn is Lipschitz, non-decreasing and such that Hn(0) = 0, by Lemma 4.1 we
get that ∫

Ω

f Hn(u) dm ≥ 0.

Passing to the limit as n → +∞, we find that∫
Ω∩{u≥M}

f dm ≥ 0,

as desired. The conclusion thus follows by linearity. �

We are now ready to prove our second main result, in analogy with [3, Corol-
lary B.1].
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Proof of Theorem 1.2. The function v = u1 − u2 ∈ W 1,p
0 (Ω) solves the problem

(4.2)

⎧⎨
⎩
−Δpv = F in Ω◦,

v = 0 on ∂Ω

with F = f1 − f2 − g(x, u1) + g(x, u2) ∈ L1(Ω). By Corollary 4.2, we have that∫
Ω

F sgn(v) dm ≥ 0,

which is equivalent to∫
Ω

(g(x, u1)− g(x, u2)) sgn(u1 − u2) dm ≤
∫
Ω

(f1 − f2) sgn(u1 − u2) dm

and (1.8) immediately follows. As a consequence, if f1 = f2 then also g(x, u1) =
g(x, u2) and thus F = 0 in (4.2). Therefore Δpv = 0 in Ω and thus

sup
Ω

|v| ≤ C1,p

∫
Ω

|∇v|p dm = −C1,p

∫
Ω

vΔpv dm = 0

by Theorem 2.1 and (1.3), so that u1 = u2. The proof is complete. �

5. Applications

In this last section we briefly discuss some applications of our main results.
We begin by stating the following result, which shows that the Dirichlet problem

in W 1,2
0 (Ω) for the Laplacian operator with sufficiently well-behaved non-linearity

admits a unique solution.

Corollary 5.1. Let G = (V,E) be a weighted locally finite graph. Let Ω ⊂ V be a
bounded domain such that Ω◦ 
= ∅ and ∂Ω 
= ∅. Let g : Ω × R → R be a function
such that t �→ g(x, t) is C1 and non-decreasing with g(x, 0) = ∂tg(x, 0) = 0 for all
x ∈ Ω. Let us set f̄(x) = g(x, 0) for all x ∈ Ω. There exists δ > 0 with the following
property: if f ∈ L2(Ω) with ‖f − f̄‖L2(Ω) < δ, then the problem⎧⎨

⎩
−Δu+ g(x, u) = f in Ω◦,

u = 0 on ∂Ω

admits a unique solution u ∈ W 1,2
0 (Ω).

The uniqueness part in Corollary 5.1 is clearly immediately achieved by Theorem
1.2, while the existence part follows from the following result, which is inspired by
the work [2].

Lemma 5.2. Let G = (V,E) be a weighted locally finite graph. Let Ω ⊂ V be a
bounded domain such that Ω◦ 
= ∅ and ∂Ω 
= ∅. Let g : Ω × R → R be a function
such that t �→ g(x, t) is of class C1 with ∂tg(x, 0) = 0 for all x ∈ Ω. Let us set
f̄(x) = g(x, 0) for all x ∈ Ω. There exist δ, ε > 0 with the following property: if
f ∈ L2(Ω) with ‖f − f̄‖L2(Ω) < δ, then the problem⎧⎨

⎩
−Δu+ g(x, u) = f in Ω◦,

u = 0 on ∂Ω

admits a unique solution u ∈ W 1,2
0 (Ω) with ‖u‖W 1,2

0 (Ω) < ε.
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Proof. Let us consider the function F : W 1,2
0 (Ω) → L2(Ω) defined by

F(u) = −Δu+ g(x, u)

for all u ∈ W 1,2
0 (Ω). Note that the map F is well-defined, since W 1,2

0 (Ω) ⊂ L∞(Ω)
with continuous embedding by Theorem 2.1 and thus also x �→ g(x, u(x)) ∈ L∞(Ω)
by the continuity property of g and by the fact that the number of vertices in Ω is
finite. We additionally note that F ∈ C1(W 1,2

0 (Ω), L2(Ω)). Indeed, the Laplacian Δ
is linear and the map u �→ g(x, u) is of class C1 thanks to the continuity properties

of g. Finally, we observe that the map F ′(0) : W 1,2
0 (Ω) → L2(Ω) is invertible, since

F ′(0) = −Δ by the assumption that ∂tg(x, 0) = 0 for all x ∈ Ω. Since F(0) = f̄ , the
conclusion follows by the Inverse Function Theorem and the proof is complete. �

Our two main results Theorems 1.1 and 1.2 can be combined in order to achieve
the well-posedness of a Yamabe-type problem on bounded domains, namely Propo-
sition 1.3.

Proof of Proposition 1.3. The function g(x, t) = b(x)|t|q−1t, defined for (x, t) ∈
Ω× R, satisfies the assumptions of Theorem 1.2, so that problem (1.10) admits at
most one solution and we just need to deal with the existence issue. If ‖a‖L1(Ω) =
0, then clearly a = 0 and thus the null function u = 0 is the unique solution of
problem (1.10). If ‖a‖L1(Ω) > 0 instead, then we apply Theorem 1.1. Indeed,

the function f(x, t) = a(x) − b(x)|t|q−1t, defined for (x, t) ∈ Ω × R, satisfies the
assumptions of Theorem 1.1, and the conclusion thus follows in virtue of Remark
3.3. �

We conclude our paper with the following uniqueness result for a Kazdan–
Warner-type problem on bounded domains. Its proof is a simple application of
Theorem 1.2 and is thus left to the reader.

Corollary 5.3. Let G = (V,E) be a weighted locally finite graph. Let Ω ⊂ V
be a bounded domain such that Ω◦ 
= ∅ and ∂Ω 
= ∅. Let p ∈ [1,+∞) and let
α, β ∈ L1(Ω) be two non-negative functions. For every f ∈ L1(Ω) and h ∈ L1(∂Ω),
the Kazdan–Warner-type problem

(5.1)

⎧⎨
⎩
−Δpu+ α eβu = f in Ω◦,

u = h on ∂Ω

admits at most one solution u ∈ W 1,p(Ω).
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