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Abstract
We prove that, among weighted isotropic perimeters, only constant multi-
ples of the Euclidean perimeter satisfy the monotonicity property on nested
convex bodies. Although the analogous result fails for general weighted
anisotropic perimeters, a similar characterization holds for radially-weighted
anisotropic densities.
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1 INTRODUCTION

1.1 Monotonicity property

Let 𝑁 ≥ 2. If 𝐴, 𝐵 ⊂ ℝ𝑁 are two nested convex bodies, that is compact convex sets with non-empty interior such that
𝐴 ⊂ 𝐵, then

𝑃(𝐴) ≤ 𝑃(𝐵), (1.1)

where 𝑃(𝐸) = ℋ𝑁−1(𝜕𝐸) denotes the Euclidean perimeter of the convex body 𝐸 ⊂ ℝ𝑁 . The monotonicity property (1.1)
is well known and dates back to the ancient Greeks (Archimedes took it as a postulate in his work on the sphere and the
cylinder [1, p. 36]).
Inequality (1.1) can be proved in several ways: by the Cauchy formula for the area surface of convex bodies [5, Sect. 7];

by the monotonicity property ofmixed volumes [5, Sect. 8]; by the Lipschitz property of the projection on a convex closed
set [6, Lem. 2.4]; by the fact that the perimeter is decreased under intersection with half-spaces [25, Ex. 15.13].
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Inequality (1.1) extends to the anisotropic (Wulff) Φ-perimeter

𝑃Φ(𝐸) = ∫
𝜕𝐸

Φ(𝜈𝐸(𝑥)) dℋ
𝑁−1(𝑥),

where 𝜈𝐸 ∶ 𝜕𝐸 → 𝕊𝑁−1 is the inner unit normal of the convex body 𝐸 ⊂ ℝ𝑁 (defined ℋ𝑁−1-a.e. on 𝜕𝐸) and Φ ∶ ℝ𝑁 →

[0,+∞] is a fixed lower-semicontinuous, positively 1-homogeneous and convex function. Clearly, if Φ = | ⋅ |, then
𝑃Φ(𝐸) = 𝑃(𝐸). Similarly to Equation (1.1), the monotonicity of the Φ-perimeter is a consequence of one of the follow-
ing: the Cauchy formula for the anisotropic perimeter [5, Sect. 7]; the monotonicity property ofmixed volumes [5, Sect. 8];
the fact that the anisotropic perimeter is decreased under intersection with half-spaces [25, Rem. 20.3].
In passing, we mention that the monotonicity property holds even for perimeter functionals of the non-local type, as

the fractional perimeter [16, Lem. B.1] and, more generally, non-local perimeters induced by a suitable interaction kernel
[4, Cor. 2.30].
The monotonicity property of perimeters has gained increasing attention in recent years. We refer to [7, 8, 24, 31] and

to the survey [20] for quantitative versions of the monotonicity inequality (see also [22] for the quantitative monotonicity
in the non-local setting), and to [3, 9, 12, 15, 21, 23, 26] for some applications and related results.

1.2 Main result

In this note, we are interested in studying the monotonicity property on nested convex bodies for the class of weighted
perimeters. Given a Borel function 𝑓 ∶ ℝ𝑁 → [0,+∞], we let

𝑃𝑓(𝐸) = ∫
𝜕𝐸

𝑓(𝑥)𝑑ℋ𝑁−1(𝑥) (1.2)

be the weighted (isotropic) perimeter of the convex body 𝐸 ⊂ ℝ𝑁 . Clearly, if 𝑓 ≡ 𝑐 for some 𝑐 ∈ [0, +∞), then 𝑃𝑓 =

𝑐 𝑃, a constant multiple of the Euclidean perimeter. Weighted perimeters have been largely investigated in relation to
isoperimetric, cluster, and Cheeger problems, see [2, 10, 11, 13, 17–19, 28–30] and the survey [27] for an account on the
existing literature.
Our main result is the following rigidity property, namely, the only weighted perimeter satisfying the monotonicity

property is (a constant multiple of) the Euclidean perimeter.

Theorem 1.1. Let 𝑓 ∶ ℝ𝑁 → [0,+∞] be a Borel function such that 𝑓 ∈ 𝐿1
loc

(ℝ𝑁). If the weighted perimeter 𝑃𝑓

in Equation (1.2) satisfies the monotonicity property, that is,

𝑃𝑓(𝐴) ≤ 𝑃𝑓(𝐵) for any two nested convex bodies 𝐴 ⊂ 𝐵 inℝ𝑁 , (1.3)

then 𝑓 ≡ 𝑐 a.e. for some 𝑐 ≥ 0.

Theorem 1.1 is quite intuitive. In fact, one clearly expects that, if 𝑓 is not constant in some direction, then themonotonic-
ity property should be violated on any suitable family of convex bodies with some side (continuously) deforming along
that direction. However, one should carefully keep into account the values of 𝑓 on the entire boundary of each convex
body of the family, which forces one to consider deformations in that direction given by graphs of concave functions fixing
the boundary of the chosen side.
One may wonder whether the analog of Theorem 1.1 holds for weighted anisotropic perimeters. More precisely, given

a non-negative Finslerian weight 𝑓 ∶ ℝ𝑁 × 𝕊𝑁−1 → [0, +∞] (i.e., possibly depending also on the inner unit normal 𝜈𝐸 ∶

𝜕𝐸 → 𝕊𝑁−1 of the convex body 𝐸 ⊂ ℝ𝑁) and assuming the monotonicity of the weighted anisotropic perimeter 𝑃𝑓 , is it
true that 𝑓 = 𝑓(𝑥, 𝜈) does not depend on 𝑥? This is in general false. As a counterexample, consider any bounded vector
field 𝐹 ∈ 𝐶1(ℝ𝑁;ℝ𝑁) with constant divergence, div 𝐹 ≡ 𝛼 for some 𝛼 ∈ [0, +∞), and define the anisotropic weight 𝑓 ∶

ℝ𝑁 × 𝕊𝑁−1 → [0, +∞) as

𝑓(𝑥, 𝜈) = 𝐹(𝑥) ⋅ 𝜈 + 𝛽 for 𝑥 ∈ ℝ𝑁 and 𝜈 ∈ 𝕊𝑁−1, (1.4)
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1446 SARACCO and STEFANI

where 𝛽 ∈ [ ‖𝐹‖∞,+∞) ensures the non-negativity of the weight 𝑓. By the divergence theorem, the anisotropic weighted
perimeter

𝑃𝑓(𝐸) = ∫
𝜕𝐸

𝑓(𝑥, 𝜈𝐸(𝑥))𝑑ℋ
𝑁−1(𝑥) (1.5)

on the convex body 𝐸 ⊂ ℝ𝑁 satisfies

𝑃𝑓(𝐸) = ∫
𝜕𝐸

𝑓(𝑥, 𝜈𝐸(𝑥))𝑑𝑁−1(𝑥)

= ∫
𝜕𝐸

𝐹(𝑥) ⋅ 𝜈𝐸(𝑥)𝑑𝑁−1(𝑥) + 𝛽𝑃(𝐸)

= ∫
𝐸
div Fdx + 𝛽𝑃(𝐸)

= 𝛼|𝐸| + 𝛽𝑃(𝐸),

readily yielding the desiredmonotonicity property in virtue of that of theEuclidean perimeter (1.1) and that of the Lebesgue
measure with respect to nestedness.
Despite the counterexample in Equation (1.4), from Theorem 1.1 we can deduce the following result, which provides

a partial analog of the rigidity property in the anisotropic regime under some additional structural assumptions on the
weight function.

Corollary 1.2. Let 𝑓 ∶ ℝ𝑁 × ℝ𝑁 → [0,+∞] be a Borel function such that 𝑓 ∈ 𝐿1
loc

(ℝ2𝑁). Assume that there exist a radial
Borel function 𝑔 ∶ ℝ𝑁 → [0,+∞] and a lower semicontinuous, 1-homogeneous and convex functionΦ ∶ ℝ𝑁 → (0,+∞] such
that

𝑓(𝑥, 𝑣) = 𝑔(𝑥)Φ(𝑣) for 𝑥 ∈ ℝ𝑁 and 𝑣 ∈ ℝ𝑁. (1.6)

If the anisotropic weighted perimeter 𝑃𝑓 in Equation (1.5) satisfies the monotonicity property (1.3), then 𝑔 ≡ 𝑐 a.e. for some
𝑐 ≥ 0.

The proof of Corollary 1.2 combines the invariance of the monotonicity property with respect to rotations with
Theorem 1.1.

2 PROOFS OF THE STATEMENTS

2.1 Proof of Theorem 1.1

We begin by observing that it is not restrictive to assume that 𝑓 ∈ 𝐶∞(ℝ𝑁). Indeed, given 𝐴 ⊂ 𝐵 two nested convex
bodies in ℝ𝑁 , the translated sets 𝐴 + 𝑦 ⊂ 𝐵 + 𝑦 are still two nested convex bodies for any 𝑦 ∈ ℝ𝑁 . Therefore, in virtue
of Equation (1.3) and changing variables, we get

∫
𝜕𝐴

𝑓(𝑥 − 𝑦)𝑑ℋ𝑁−1(𝑥) ≤ ∫
𝜕𝐵

𝑓(𝑥 − 𝑦)𝑑ℋ𝑁−1(𝑥). (2.1)

Let now (𝜚𝜀)𝜀>0 ⊂ 𝐶∞
𝑐 (ℝ𝑁) be any family of non-negative convolution kernels (for instance, 𝜚𝜀 = 𝜀−𝑁𝜚(⋅∕𝜀) for some 𝜚 ∈

𝐶∞(ℝ𝑁) such that supp 𝜚 ⊂ 𝐵1, 𝜚 ≥ 0, and ∫
ℝ𝑁 𝜚𝑑𝑥 = 1). Multiplying Equation (2.1) by 𝜚𝜀(𝑦), integrating on ℝ𝑁 with

respect to 𝑦, and owing to the Fubini–Tonelli theorem, we infer that

∫
𝜕𝐴

𝑓𝜀(𝑥)𝑑𝑁−1(𝑥) = ∫
𝜕𝐴

∫
ℝ𝑁

𝑓(𝑥 − 𝑦) 𝜚𝜀(𝑦)dy𝑑𝑁−1(𝑥)

≤ ∫
𝜕𝐵

∫
ℝ𝑁

𝑓(𝑥 − 𝑦) 𝜚𝜀(𝑦)dy𝑑𝑁−1(𝑥) = ∫
𝜕𝐵

𝑓𝜀(𝑥)𝑑𝑁−1(𝑥),

where 𝑓𝜀 = 𝑓 ∗ 𝜚𝜀 ∈ 𝐶∞(ℝ𝑁) is the standard convolution. By the arbitrariness of the nested convex bodies 𝐴 and 𝐵, the
weight 𝑓𝜀 still verifies Equation (1.3) for each 𝜀 > 0. If we show that∇𝑓𝜀 ≡ 0 for each 𝜀 > 0, then also∇𝑓 ≡ 0 in the sense
of distributions, and thus 𝑓 is equivalent to a constant function.

 15222616, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202300280 by C
ochraneItalia, W

iley O
nline L

ibrary on [08/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SARACCO and STEFANI 1447

F IGURE 1 The set 𝐸(𝜆) and its deformation 𝐹ℎ(𝜆) for 𝜆 > 0 and a given concave function ℎ ∶ [−𝛿, 𝛿]2 → ℝ vanishing on the boundary
of its domain.

Consequently, from now on, we assume that 𝑓 ∈ 𝐶∞(ℝ𝑁). We now claim that 𝜕𝑥𝑁𝑓(𝑥) = 0 for each 𝑥 ∈ ℝ𝑁 . By the
translation invariance in Equation (2.1), we just need to show that 𝜕𝑥𝑁𝑓(0) = 0.
Let 𝛿 > 0 to be chosen later on. For 𝜆 ∈ ℝ, we define

𝐸(𝜆) =

⎧⎪⎨⎪⎩

[−𝛿, 𝛿]𝑁−1 × [−𝛿, 0] for 𝜆 ≥ 0,

[−𝛿, 𝛿]𝑁−1 × [0, 𝛿] for 𝜆 < 0.

Moreover, given ℎ ∶ [−𝛿, 𝛿]𝑁−1 → ℝ any concave function vanishing on the boundary of [−𝛿, 𝛿]𝑁−1 ⊂ ℝ𝑁−1, we set

Γℎ(𝜆) =

⎧⎪⎨⎪⎩

{𝑥 = (𝑥′, 𝑥𝑁) ∈ ℝ𝑁 ∶ 𝑥′ ∈ [−𝛿, 𝛿]𝑁−1 and 0 ≤ 𝑥𝑁 ≤ 𝜆ℎ(𝑥′)} for 𝜆 ≥ 0,

{𝑥 = (𝑥′, 𝑥𝑁) ∈ ℝ𝑁 ∶ 𝑥′ ∈ [−𝛿, 𝛿]𝑁−1 and 𝜆ℎ(𝑥′) ≤ 𝑥𝑁 ≤ 0} for 𝜆 < 0,

and we refer to Figure 1 for a visual aid in the three-dimensional case. Note that 𝐸(𝜆) and 𝐹(𝜆) = 𝐸(𝜆) ∪ Γℎ(𝜆) are convex
bodies in ℝ𝑁 with 𝐸(𝜆) ⊂ 𝐹(𝜆) for all 𝜆 ∈ ℝ. Hence, in virtue of Equation (1.3), we get that

𝑃𝑓(𝐹(𝜆)) ≥ 𝑃𝑓(𝐸(𝜆)) for all 𝜆 ∈ ℝ.

By the area formula, the above inequality rewrites as

∫
[−𝛿,𝛿]𝑁−1

𝑓(𝑥′, 𝜆ℎ(𝑥′))
√
1 + 𝜆2 |∇ℎ(𝑥′)|2 − 𝑓(𝑥′, 0)𝑑𝑥′ ≥ 0 for all 𝜆 ∈ ℝ.

In particular, the function 𝓁 ∶ ℝ → [0,+∞), given by

𝓁(𝜆) = ∫
[−𝛿,𝛿]𝑁−1

𝑓(𝑥′, 𝜆ℎ(𝑥′))
√
1 + 𝜆2 |∇ℎ(𝑥′)|2𝑑𝑥′ for 𝜆 ∈ ℝ,

achieves its minimum at 𝜆 = 0, so that 𝓁′(0) = 0. Since 𝑓 is a smooth function, we can exchange the differentiation and
the integration signs, obtaining

∫
[−𝛿,𝛿]𝑁−1

𝜕𝑥𝑁𝑓(𝑥
′, 0) ℎ(𝑥′)𝑑𝑥′ = 0 (2.2)
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1448 SARACCO and STEFANI

for any concave function ℎ ∶ [−𝛿, 𝛿]𝑁−1 → ℝ vanishing on the boundary of [−𝛿, 𝛿]𝑁−1. In particular, ℎ(𝑥′) > 0 for all 𝑥′ ∈

(−𝛿, 𝛿)𝑁−1 as soon as ℎ ≢ 0. By contradiction, if 𝜕𝑥𝑁𝑓(0) ≠ 0, then, by smoothness of 𝑓, we may assume that 𝜕𝑥𝑁𝑓(𝑥) has
constant sign for each 𝑥 ∈ 𝐵𝑟(0) for some 𝑟 > 0. Choosing 𝛿 > 0 so small that [−𝛿, 𝛿]𝑁−1 × {0} ⊂ 𝐵𝑟(0), the equality (2.2)
immediately yields a contradiction.
In the previous argument, the choice of fixing the 𝑁th component does not play any role and can be repeated almost

verbatim to show that 𝜕𝑥𝑖𝑓(0) = 0 for each 𝑖 = 1, … ,𝑁. Thus, again by the translation invariance (2.1), we get that∇𝑓(𝑥) =

0 for all 𝑥 ∈ ℝ𝑁 , yielding the conclusion.

Remark 2.1. In the above proof, one needs much less than the monotonicity of the perimeter on nested convex bodies
in order to conclude that the weight is constant. Indeed, it would be enough to know that, for each direction 𝑒𝑖 ∈ 𝕊𝑁−1,
𝑖 = 1, … ,𝑁, and each point 𝑥 ∈ ℝ𝑁 , the monotonicity property holds on two hypercubes (not necessarily with the same
edge size) with a face containing 𝑥 and orthogonal to 𝑒𝑖 with opposite outward normals ±𝑒𝑖 on that face.

2.2 Proof of Corollary 1.2

Let us denote by SO(𝑁) be the special orthogonal group, and let 𝜇 ∈ 𝒫(SO(𝑁)) be the (unique)Haar probability measure
on SO(𝑁) (see [14] for a detailed exposition). Given 𝐴 ⊂ 𝐵 two nested convex bodies inℝ𝑁 , the rotated sets(𝐴) ⊂ (𝐵)

are still two nested convex bodies for any  ∈ SO(𝑁). Therefore, in virtue of Equation (1.3) and changing variables, we
get

∫
𝜕𝐴

𝑓((𝑥),(𝜈𝐴(𝑥)))𝑑ℋ
𝑁−1(𝑥) ≤ ∫

𝜕𝐵

𝑓((𝑥),(𝜈𝐵(𝑥)))𝑑ℋ
𝑁−1(𝑥), (2.3)

owing to the elementary facts that (𝜕𝐸) = 𝜕(𝐸) and that 𝜈(𝐸)((𝑥)) = (𝜈𝐸(𝑥)) for ℋ𝑁−1-a.e. 𝑥 ∈ 𝜕𝐸 whenever
𝐸 ⊂ ℝ𝑁 is a convex body (refer to [25, Sect. 17.1] for a precise justification). Due to Equation (1.6) and the radial assumption
on 𝑔, inequality (2.3) rewrites as

∫
𝜕𝐴

𝑔(𝑥)Φ((𝜈𝐴(𝑥)))𝑑ℋ
𝑁−1(𝑥) ≤ ∫

𝜕𝐵

𝑔(𝑥)Φ((𝜈𝐵(𝑥)))𝑑ℋ
𝑁−1(𝑥) (2.4)

for ∈ SO(𝑁). We now claim that the function

𝕊𝑁−1 ∋ 𝜈 ↦ ∫
SO(𝑁)

Φ((𝜈))𝑑𝜇()

is constant. Indeed, given any 𝜈 ∈ 𝕊𝑁−1, we can find𝜈 ∈ SO(𝑁) such that 𝜈 = 𝜈(e1). Due to the invariance properties
of the Haar measure 𝜇, we can compute

∫
SO(𝑁)

Φ ((𝜈)) 𝑑𝜇() = ∫
SO(𝑁)

Φ ((𝜈(𝑒1))) 𝑑𝜇()

= ∫
SO(𝑁)

Φ ((𝑒1)) 𝑑𝜇(−1
𝜈 )

= ∫
SO(𝑁)

Φ ((𝑒1)) 𝑑𝜇() (2.5)

where, with a slight abuse of notation,  ↦ 𝜇(−1
𝜈 ) stands for the push-forward of the measure 𝜇 with respect to the

right translation by −1
𝜈 . Hence, integrating on SO(𝑁) with respect to 𝜇, using the Fubini–Tonelli theorem, the above

equality, that Φ > 0, and simplifying, from Equation (2.4) we get

∫
𝜕𝐴

𝑔(𝑥)𝑑ℋ𝑁−1(𝑥) ≤ ∫
𝜕𝐵

𝑔(𝑥)𝑑ℋ𝑁−1(𝑥)

for any two nested convex bodies 𝐴 ⊂ 𝐵. The conclusion follows from Theorem 1.1.
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SARACCO and STEFANI 1449

Remark 2.2. One could slightly weaken the hypotheses of Corollary 1.2 by allowing Φ to also attain zero. In fact, it is
enough to require that the integral in Equation (2.5) is not zero.
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