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Abstract. Hintikka’s game theoretical approach to semantics has been successfully ap-

plied also to some non-classical logics. A recent example is Başkent (A game theoretical

semantics for logics of nonsense, 2020. arXiv:2009.10878), where a game theoretical se-

mantics based on three players and the notion of dominant winning strategy is devised

to fit both Bochvar and Halldén’s logics of nonsense, which represent two basic systems

of the family of weak Kleene logics. In this paper, we present and discuss a new game

theoretic semantics for Bochvar and Halldén’s logics, GTS-2, and show how it generalizes

to a broader family of logics of variable inclusions.
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1. Introduction

Traditionally, Kleene’s three-valued logics divide into two families: strong
and weak.1 Weak Kleene logics, Kw

3 , originate from weak tables (see Table
1 below). The two most important Kw

3 are Bochvar [5]2 and Halldén’s [24]
logics (B and H, respectively), which differ in the designated values they
take on.3

1See Kleene et al. [33].
2Translated in Bochvar and Bergmann [6].
3There is increasing interest in Kw

3 . To give some examples, Coniglio and Corbalan [16]
develop sequent calculi for Kw

3 , Paoli and Pra Baldi [36] introduce a cut-free calculus (a
hybrid system between a natural deduction calculus and a sequent calculus) for H, Ciuni
[12] explores some connections between H and Graham Priest’s Logic of Paradox, LP, and
Ciuni and Carrara [13] focus on logical consequence in H.

4To mention a few more examples, Barrio et al. [1], Cobreros and Carrara [15], Bonzio
et al. [8], Ciuni and Carrara [14], Da Re et al. [18], and Paoli and Pra Baldi [35].
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A good deal of research has been conducted on Kw
3 , both on the proof-

theoretical and on the algebraic side.4 Interestingly for us, Başkent [3] gives
a Hintikkian game theoretical semantics (GTS) for both B and H. To do
that, three-players non-sequential semantic games are employed, together
with the notion of dominant winning strategy. However, it is not straightfor-
ward to give a philosophical justification of why a GTS for B and H should
work in the way Başkent [3] describes. It might be possible to develop a dif-
ferent GTS that is semantically equivalent to Başkent’s GTS, but hopefully
better in some other respects. The present work aims precisely to explore
such a possibility.

This paper is organized as follows. In Section 2, we introduce the logics
B and H. In Section 3, we present Başkent’s GTS for B and H. In Section 4,
we develop GTS-2, that is our new GTS for B and H. Finally, in Section 5
we provide a generalization of GTS-2 to a broader family of logics of variable
inclusion.

2. Preliminaries

B and H are three-valued logics belonging to the family of Kw
3 . Their lan-

guage is the same as for classical logic, thus containing a unary operation ¬
and two binary operations ∧,∨. This will be the only language we will refer
to in the first three sections of the paper. However, in Section 5 we will work
with arbitrary languages and different logics, so it is convenient to state the
required logical preliminaries on a greater level of generality.

As usual, given a propositional language L, we denote by FmL the (abso-
lutely free) algebra of L-formulas built over a countable set of variables Var =
{x1, x2, . . . }, and by FmL its underlying universe. We omit the subscript
L when it is clear from the context. We use ϕ, φ, ψ, γ, δ . . . to denote arbi-
trary formulas, Γ, Φ, Ψ, Σ, . . . for sets of formulas, and x1, x2, . . . , y, z, t, . . .
for variables. Var(φ) is the set of all and only the propositional variables
occurring in φ, for all φ ∈ Fm. We also apply Var to sets of formulas by
stipulating that, for any Γ ⊆ Fm, Var(Γ) =

⋃{Var(φ) | φ ∈ Γ}. For our
purposes, we can safely identify a logic L and its associated consequence
relation |=L between sets of formulas and formulas. When the set Γ is in
this relation with the formula φ, we write Γ |=L φ, as is customary. Recall
that a (logical) matrix is a pair 〈A, F 〉, where A is an algebra and F ⊆ A.
By a valuation we understand a homomorphism from Fm to an algebra A,
which of course must be of the same language as Fm. Given a logic L and an
algebra A in the language L, we denote by V alL(A) the set of all valuations
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Table 1. The weak tables

from FmL to A. A matrix 〈A, F 〉 is complete for a logic L when A is in the
same language as L and the following holds:

Γ |=L φ ⇐⇒ ∀V ∈ V alL(A), if V (Γ) ⊆ F then V (φ) ∈ F.

The set F represents the set of designated values and, consequently, it can
be seen as the realization of a unary relation over the algebra A. Not every
logic is complete with respect to a single matrix, but in this paper we will
only consider logics which have this property, unless stated otherwise.

It is well-known that the two logics we are mainly interested in, namely
B and H, enjoy this property, as we proceed to recall. Let us consider the
three-element algebra WK described by the truth tables below:

The logics B and H are known to be complete with respect to two matrices
based on WK. But while the set of designated values of B is FB = {t}, that
of H is FH = {t,u}. In other words, B and H can be defined as follows:

Definition 2.1. Γ �B φ if and only if there is no valuation V : Fm → WK
such that V (γ) ∈ FB for all γ ∈ Γ, and V (φ) /∈ FB.

Definition 2.2. Γ �H φ if and only if there is no valuation V : Fm → WK
such that V (γ) ∈ FH for all γ ∈ Γ, and V (φ) /∈ FH.

Table 1 provides the full weak tables as they can be derived from Bochvar
and Bergmann [6] and Halldén [24]. The element u is usually called contam-
inating,5 as for each valuation V on WK and each formula φ(x1, . . . , xn) in
the variables x1, . . . , xn it holds that

V (φ(x1, . . . , xn)) = u ⇐⇒ V (xi) = u,

for some 1 ≤ i ≤ n. In other words, a formula is interpreted as u if and only
if one of its arguments is so.

5See e.g. Ciuni [12], Ciuni and Carrara [13] and Correia [17].
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Bochvar [5] and Halldén [24] interpret the third value u as nonsensical—
or meaningless, in Bochvar’s jargon.6 This interpretation goes along with
the way u propagates to a compound formula from its components: the
sense of a compound sentence depends on that of its components, and if
some component makes no sense, the sentence as a whole will make no
sense either.7 In their jargon, nonsensical sentences are expressions that are
syntactically well-formed and yet fail to convey a proposition.

Here are some failures of classically valid inferences in H, where ⊃ is the
material implication defined as φ ⊃ ψ = ¬φ ∨ ψ:

φ ∧ ¬φ �|=H ψ Ex Contradictione Quodlibet (ECQ)

φ ∧ ψ �|=H ψ Conjunctive Simplification (CS)

φ, φ ⊃ ψ �|=H ψ Modus Ponens (MP)

¬ψ, φ ⊃ ψ �|=H ¬φ Modus Tollens (MT)

φ ⊃ ψ,ψ ⊃ χ �|=H φ ⊃ χ Transitivity of Conditional (TR ⊃)

φ ⊃ (ψ ∧ ¬ψ) �|=H ¬φ Reductio ad Absurdum (RAA)

The failure of ECQ makes H paraconsistent. Further, all the classical
H-invalid inferences turn out to be B-valid. By contrast, all the H-valid
formulas turn out to be B-invalid. More generally, B has no tautology, which
makes it paracomplete—i.e., �|=B φ ∨ ¬φ—even if it is not paraconsistent—
i.e., ECQ is B-valid. A relevant failure of a classically valid inference in B

is:

φ �|=B φ ∨ ψ Disjunctive Adjunction (DA)

Let us now move on and examine a different (game theoretical) semantics
for B and H.

6Bochvar [5] and Halldén [24] use nonsensical—or meaningless—as an umbrella term
including paradoxical statements such as the Liar and Russell’s paradoxes, vague sen-
tences, denotational failure, and ambiguity. Though, there are some issues concerning the
interpretation of u. Recently, some new interpretations have been proposed. For example,
see Beall [4], Szmuc [39], Carrara and Zhu [10], Boem and Bonzio [7], Carrara and Zhu
[11], Ferguson [19], and Szmuc and Ferguson [38]. Here, we do not enter this topic since
this would go much beyond the purpose of the present discussion.

7The principle is also endorsed by Goddard [22] and Goddard and Routley [23].
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3. Başkent’s GTS for B and H

In the standard matrix semantics introduced in the previous Section 2, a
logic can be defined via preservation of designated values under all valua-
tions. Instead, the key idea behind a game theoretic semantics (GTS) is to
model a logic on the basis of the outcomes of a semantic game.8 In GTS,
some players play against each other to win the game by reaching atomic
formulas with specific truth-values based on their roles, and following some
well-defined rules—i.e., the rules of the game. Specifically, which truth-value
φ obtains under a valuation depends on who, among the players, has a win-
ning strategy, that is a set of moves which guarantees victory regardless of
how the opponents play. Let us be more precise and present the GTS devel-
oped by Başkent [3] for B and H. First, we define a model M for semantic
games:

Definition 3.1. A model M for semantic games for B and H is a pair
M = 〈D,V 〉, where D ⊆ Var is a non-empty domain on which the game is
played and V is a valuation on WK.

Second, we define a semantic game for B and H, SBH(φ, M), for a given
formula φ in a model M :

Definition 3.2. A semantic game SBH(φ,M) for a formula φ in a model
M is a tuple 〈π, ρ, σ, τ, F 〉 where:

• π is the set of players: π = {Falsifier, Verifier, Dominator}.

• ρ is the set of game rules, that is inductively defined as follows:

(ρx) If φ ∈ Var, the game terminates, and Verifier wins if V (φ) = t,
Falsifier wins if V (φ) = f, and Dominator wins if V (φ) = u;

(ρ¬) If φ = ¬ψ, Falsifier and Verifier switch roles, Dominator keeps his
role, and the game continues as SBH(ψ, M);

(ρ∧) If φ = χ ∧ ψ, Falsifier and Dominator choose between χ and ψ
independently and simultaneously;

(ρ∨) If φ = χ ∨ ψ, Verifier and Dominator choose between χ and ψ
independently and simultaneously;

(ρS) Dominator’s strategy strictly dominates the Verifier’s and Falsifier’s.

• σ is the set of positions (or moves) of the game, i.e., the set of tuples
〈pi, ϕ〉, where pi ∈ π and ϕ is a sub-formula of φ, such that:

8For an introduction to Hintikka’s game theoretical semantics see e.g. Hintikka [26],
Hintikka and Sandu [29], and Pietarinen [37]. GTSs for some many-valued logics have been
presented in Fermüller [20] and Fermüller and Majer [21].



1444 M. Carrara et al.

(σx) If φ ∈ Var, then 〈pi, φ〉 ∈ σ for all pi ∈ π;
(σ¬) If φ = ¬ψ, then 〈pi, φ〉 ∈ σ for all pi ∈ π, and 〈pj , ψ〉 ∈ σ for some

pj ∈ π depending on ψ’s main connective;
(σ∧) If φ = χ ∧ ψ, 〈Falsifier, φ〉 ∈ σ, 〈Dominator, φ〉 ∈ σ, and 〈pj , χ〉,

〈pk, ψ〉 ∈ σ for some pj , pk ∈ π depending on χ and ψ’s main con-
nectives;

(σ∨) If φ = χ ∨ ψ, 〈Verifier, φ〉 ∈ σ, 〈Dominator, φ〉 ∈ σ, and 〈pj , χ〉,
〈pk, ψ〉 ∈ σ for some pj , pk ∈ π depending on χ and ψ’s main con-
nectives.

• τ is the set of positions of the game-token in the case of concurrent play,
i.e., the set of pairs of concurrent positions of two different players that
is determined by the following clauses:

(τ∧) If φ = χ ∧ ψ, {〈Falsifier, φ〉, 〈Dominator, φ〉} ∈ τ ;
(τ∨) If φ = χ ∨ ψ, {〈Verifier, φ〉, 〈Dominator, φ〉} ∈ τ .

• F is the set of designated values: FB = {t} for B, and FH = {t,u} for H.

Thus, semantic games for B and H are 3-players non-collaborative non-
sequential perfect-information games. On the contrary, semantic games for
classical propositional logic are 2-players non-collaborative sequential9 perfect-
information games. A run (or play) of a semantic game SBH(φ, M) is a se-
quence of moves from τ which starts with {〈pi, φ〉} and ends with a position
with a propositional variable occurring in φ, e.g., {〈pi, x〉} where x ∈ Var(φ).

Then, we define the notion of dominant winning strategy, that is the key
notion Başkent’s GTS for B and H makes use of to evaluate the truth-value
of a given formula.

Definition 3.3. A winning strategy for SBH(φ, M) is a set of rules that
guides one player throughout the play to win, regardless of how the oppo-
nents play. A winning strategy is called dominant if and only if it determines
the truth-value of φ.

Since some games may allow two players to have both a winning strategy,
Başkent [3] introduces dominant winning strategies which, based on (ρS),
uniquely determine the truth-value of φ.

Let us make an example. Consider the formula ¬((x∧y)∧ (z ∧ t))—let us
call it φ. We want to evaluate φ in a model M such that V (x) = V (z) = f ,
V (t) = t, and V (y) = u. A good way to visualize SBH(φ, M) is by using game
trees, i.e., a step-by-step decomposition of φ into its sub-formulas, down to

9That is, there are not concurrent moves—i.e., τ is a set of singletons.
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its propositional variables. Here, every node correspond to one possible move
of the game—i.e., it represents a point of choice for a player.

¬((x ∧ y) ∧ (z ∧ t))

(x ∧ y) ∧ (z ∧ t)

x ∧ y

x

f

y

u

z ∧ t

z

f

t

t

It should be clear that both the Verifier and the Dominator have a win-
ning strategy for SBH(φ,M). To see that, let us go over the game. It starts
from the top, with ¬((x ∧ y) ∧ (z ∧ t)). Since the main connective of φ is ¬,
the rule to apply is (ρ¬), so that Falsifier and Verifier switch roles, whereas
Dominator keeps his. Then, the game continues as SBH((x∧y)∧ (z ∧ t),M).
Here, the main connective is ∧, so that the second move is concurrently up
to both Falsifier and Dominator, as ruled by (ρ∧). They can choose between
x ∧ y and z ∧ t. Regardless of their choice, Falsifier and Dominator also re-
tain control of the third move, again because of (ρ∧). Now, since they both
have the opportunity to end the game by reaching a propositional variable
with the truth-value they want (f for the Falsifier, and u for the Domi-
nator), they both have a winning strategy for SBH((x ∧ y) ∧ (z ∧ t),M).
Consequently, both the (initial) Verifier and Dominator possess a winning
strategy for SBH(¬((x ∧ y) ∧ (z ∧ t)),M). However, according to (ρS), only
the Dominator has a dominant winning strategy—which determines u as the
truth-value of φ in the model M , based on the theorem proved by Başkent
[3] that we will discuss a little further below. The following is an example
of run for SBH(φ,M), where both the Verifier and the Dominator win the
game:

{{〈Verifier,¬((x ∧ y) ∧ (z ∧ t))〉, 〈Falsifier,¬((x ∧ y) ∧ (z ∧ t))〉, 〈Dominator,
¬((x∧y)∧(z∧t))〉}, {〈Falsifier, (x∧y)∧(z∧t)〉, 〈Dominator, (x∧y)∧(z∧t)〉},
{〈Falsifier, x∧y〉, 〈Dominator, x∧y〉}, {〈Falsifier, x〉, 〈Verifier, x〉, 〈Dominator,
x〉, 〈Falsifier, y〉, 〈Verifier, y〉, 〈Dominator, y〉}}.
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Başkent [3, pp. 72–74, Theorem 3.5] proves an important correctness re-
sult. This shows that for every formula φ, for every model M , and for every
game SBH(φ,M), having a dominant winning strategy for the (initial) Ver-
ifier, the (initial) Falsifier, or the Dominator, matches uniquely with being
φ true (t), false (f), or nonsensical (u), respectively, under the valuation
witnessed by M on WK. In other words, evaluations on the weak tables in
table 1 and Başkent’s semantic games “do exactly the same job”. Then, we
can take the condition of “having one player a dominant winning strategy”
for SBH(φ,M) as defining the truth-value of φ, depending on who the player
is. With this tools at hand, it is shown that the semantic definition of B and
H introduced in Section 2 is fully captured by means of Başkent’s semantic
games, as follows10:

Theorem 3.4. Δ �B ψ if and only if there is no model M such that the
Verifier has a dominant winning strategy for SBH(φ, M) for all φ ∈ Δ, but
he does not have it11 for SBH(ψ,M).

Theorem 3.5. Δ �H ψ if and only if there is no model M such that ei-
ther the Verifier or the Dominator have a dominant winning strategy for
SBH(φ,M) for every φ ∈ Δ, and the Falsifier has a dominant winning strat-
egy for SBH(ψ,M).

Let us now show the invalidity of some relevant inferences in B and H

by using Başkent’s GTS.

Example 3.1. (ECQ) x ∧ ¬x �|=H y

Proof. Let M be a model such that V (x) = u and V (y) = f . Then, consider
the two following games: SBH(x ∧ ¬x,M) and SBH(y, M). The Dominator
clearly has a dominant winning strategy for SBH(x∧¬x,M), as x takes value
u in M . Therefore, both the Verifier and the Falsifier do not have a dominant
winning strategy—notice that there is no way for them to win. Thus, since
every semantic game is determined in Başkent’s GTS, the Dominator has a
dominant winning strategy. However, the Falsifier has a dominant winning
strategy for SBH(y,M). Thus, by Theorem 3.5, x ∧ ¬x �|=H y.

10Def. 3.4 and 3.5 are somehow redundant since the designated values are specified in
F—i.e., they are part of the definition of semantic game. However, we believe that our
choice makes this introduction easier.

11That is, either the Falsifier or the Dominator have a dominant winning strategy for
SBH(ψ, M). This is so because in Başkent’s GTS, for every semantic game there is always
a dominant winning strategy (semantics games are determined, see Section 4) for exactly
one player (dominant winning strategies are player-exclusive).
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Example 3.2. (DA) x �|=B x ∨ y

Proof. Let M be a model such that V (x) = t and V (y) = u. Then,
consider the two following games: SBH(x,M) and SBH(x ∨ y, M). Since x
is true in M , the Verifier has a dominant winning strategy for SBH(x,M).
Since y obtains u in M , the Dominator has a dominant winning strategy for
SBH(x ∨ y,M). Therefore, x �|=B x ∨ y by Theorem 3.4.

This concludes our presentation of Başkent’s GTS. We are now ready to
develop and discuss our own game theoretic semantics for B and H.

4. GTS-2: A New GTS for B and H

In this section we present a new game theoretical semantics for B and
H which differs from Başkent’s GTS in the following two respects. First,
it resorts to 2-players sequential semantic games instead of 3-players non-
sequential games. Second, because of the previous difference, it just needs
winning strategies—and not dominant winning strategies—to determine the
truth-values of any formula. We will call such a new game theoretic seman-
tics GTS-2.

The idea is simple. Informally, the Verifier and the Falsifier play a game
that consists of two subgames,12 to be played in the following order. The first
game is collaborative: both players cooperate to win. Here, they aim to reach
a nonsensical propositional variable by following some suitable game rules.
If they have a winning strategy, the initial formula obtains u as truth-value,
and the (whole) game ends. If they do not have a winning strategy, they
start playing a second subgame, which is the standard classical semantic
game. Then, if the Verifier has a winning strategy for such second subgame,
the formula is true; if the Falsifier has it, the formula is false.

Let us now be more precise and present our game theoretical semantics
formally. We define a model for semantics games as in Definition 3.1. Before
stating the definition of semantic game, we need to introduce the following
notation, which will be instrumental also for Section 5. Let φ be a classical
formula and M = 〈D,V 〉 be a model for semantic games for B and H. We
define a new valuation V φ : Fm → WK as the unique extension of the
following map V φ

Var, defined for every x ∈ Var as:

V φ
Var(x) =

{
V (x) if x ∈ Var(φ)
f otherwise. (Val-WK)

12The idea of using subgames was inspired to us by Hintikka and Carlson [28].
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Given M = 〈D,V 〉, we set Mφ = 〈D,V φ〉. Notice that V, V φ agree on
Var(φ), so V (φ) = V φ(φ).

Then, we define a semantic game for B and H as follows:

Definition 4.1. A semantic game GBH(φ, M) for a formula φ in a model
M is a triple 〈G1(φ,M), G2(φ,Mφ), R〉, such that:

• G1(φ,M) is the first subgame of GBH(φ, M), that is a triple 〈π, ρ1, σ1〉
where:

� π is the set of players: π = {Falsifier, Verifier}.
� ρ1 is the set of game rules. It is inductively defined as follows,
where pa ∈ π is an arbitrary chosen but fixed player:
(ρ1x) If φ ∈ Var, G1(φ,M) terminates, and both the players win if

and only if V (φ) = u;
(ρ1¬) If φ = ¬ψ, pa chooses ψ. The game continues as G1(ψ, M).
(ρ1◦) If φ = ψ1 ◦ ψ2 for ◦ ∈ {∧,∨}, pa chooses among ψ1, ψ2, say

ψi, and the game continues as G1(ψi,M).
� σ1 is the set of positions (or moves) of the game, i.e., the set of
tuples 〈pi, ϕ〉, where pi ∈ π, ϕ is a sub-formula of φ, and pa ∈ π
refers to the player chosen in ρ1, such that:
(σ1x) If φ ∈ Var, then 〈Verifier, φ〉, 〈Falsifier, φ〉 ∈ σ;
(σ1¬) If φ = ¬ψ, then 〈pa, φ〉 ∈ σ and 〈pa, ψi〉 ∈ σ for some 1 ≤

i ≤ n.
(σ1◦) If φ = ψ1 ◦ ψ2 for ◦ ∈ {∧,∨}, 〈pa, ψi〉 ∈ σ1, for some i ∈

{1, 2}.

• G2(φ,Mφ) is the second subgame of GBH(φ, M), that is a triple 〈π, ρ2, σ2〉
where:

� π is the set of players: π = {Falsifier, Verifier}.
� ρ2 is the set of game rules, that is inductively defined as follows:
(ρ2x) If φ ∈ Var, G2(φ,Mφ) terminates, the Verifier wins if V φ(φ) =

t, and the Falsifier wins if V φ(φ) = f ;
(ρ2¬) If φ = ¬ψ, Falsifier and Verifier switch roles, and the game

continues as G2(ψ,Mφ);
(ρ2∧) If φ = χ ∧ ψ, Falsifier chooses between χ and ψ;
(ρ2∨) If φ = χ ∨ ψ, Verifier chooses between χ and ψ.
� σ2 is the set of positions (or moves) of the game, i.e., the set of
tuples 〈pi, ϕ〉, where pi ∈ π and ϕ is a sub-formula of φ, such that:
(σ2x) If φ ∈ Var, then 〈Verifier, φ〉, 〈Falsifier, φ〉 ∈ σ;
(σ2¬) If φ = ¬ψ, then 〈Verifier, φ〉, 〈Falsifier, φ〉 ∈ σ, and 〈pi, ψ〉 ∈ σ

for some pi ∈ π depending on ψ’s main connective;
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(σ2∧) If φ = χ ∧ ψ, 〈Falsifier, φ〉 ∈ σ, and 〈pj , χ〉, 〈pk, ψ〉 ∈ σ for
some pj , pk ∈ π depending on χ and ψ’s main connectives;

(σ2∨) If φ = χ ∨ ψ, 〈Verifier, φ〉 ∈ σ, and 〈pj , χ〉, 〈pk, ψ〉 ∈ σ for
some pj , pk ∈ π depending on χ and ψ’s main connectives.

• R is the set of rules for GBH(φ,M):

(R) Verifier and Falsifier play G1(φ,M) first. If they have a winning
strategy for G1(φ,M), then GBH(φ, M) ends; otherwise, they move
on and play G2(φ,Mφ).

Note that we do not need the set τ of positions of the game-token in the
case of concurrent play, since both G1(φ,M) and G2(φ, Mφ) are sequential
games. Also, we did not include the set of designated values, since we are
going to define validity separately.

A run (or play) of a semantic game G1(φ, M) is a sequence of moves
from σ1 which starts with 〈pi, φ〉 and ends with a position with a proposi-
tional variable occurring in φ, e.g., 〈pi, x〉, where x ∈ Var(φ). Similarly for
G2(φ,Mφ).

Then, we define the notion of winning strategy for every game involved
in GTS-2:

Definition 4.2. A winning strategy for:

• G1(φ,M) is a set of rules that guides both players throughout the play
of G1(φ,M) to win;

• G2(φ,Mφ) is a set of rules that guides one player throughout the play of
G2(φ,Mφ) to win, regardless of how the opponents play;

• GBH(φ,M) is a winning strategy either for G1(φ, M) or G2(φ, Mφ).

An important remark is needed here. Clearly, in the above definition
of GBH(φ,M), the second subgame G2(φ,Mφ) is nothing but a classical
semantic game. However, if the model M = 〈D,V 〉 and the formula φ are
such that V (x) = u for some x ∈ Var(φ), the resulting Mφ is not a model
for a classical semantic game, as V φ is not a classical valuation. Thus, if
there exists a run of GBH(φ,M) where no player has a winning strategy
for G1(φ,M) and V (x) = u for some x ∈ Var(φ), the game GBH(φ, M) is
not well-defined. The following fact excludes this possibility, thus showing
that GBH(φ,M) is well-defined. Its proof is a specialization of the one for
Fact 5.1, and we omit it.
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Fact 4.1. Let GBH(φ,M) be a semantic game. If no player has a winning
strategy for G1(φ,M), then Mφ is a model of a classical semantic game.

Thus, since G2(φ,Mφ) is a classical semantic game, it is total and de-
termined.13 On the other hand, it should be easy to see that G1(φ, M) is
total but not determined. We will tacitly make use the above Fact 4.1 in the
remaining part of this section.

We are now ready to prove the correctness theorem for GTS-2.

Theorem 4.3. For every semantic game GBH(φ, M):

(u) Both the Verifier and the Falsifier have a winning strategy for GBH(φ, M)
if and only if V (φ) = u in M ;

(t) Only the Verifier has a winning strategy for GBH(φ, M) if and only if
V (φ) = t in M ;

(f) Only the Falsifier has a winning strategy for GBH(φ, M) if and only if
V (φ) = f in M .

Proof. (u) (Left-to-Right) Let us assume that both the Falsifier and the
Verifier have a winning strategy for GBH(φ,M). Since G2(φ, Mφ) is a clas-
sical game, it is not possible they both have a winning strategy for it. This
implies that they both have a winning strategy for G1(φ, M). Then, be-
cause of (ρ1x) there is x ∈ Var(φ) such that V (x) = u in M , and therefore
V (φ) = u in M because of the contamination feature of u.
(Right-to-Left). Let us assume that V (φ) = u in M . Thus, V (x) = u for
some x ∈ Var(φ). Therefore, because of (ρ1x) and (ρ1◦), both the Falsifier
and the Verifier have a winning strategy for G1(φ, M), and then they both
have it for GBH(φ,M).

We only prove (t), as (f) relies on a similar argument.
(Left-to-Right). Suppose the Verifier is the unique player having a win-
ning for GBH(φ,M). Therefore, he has it for G2(φ, Mφ) only, by ρ1. Since
G2(φ,Mφ) is a classical semantic game, V φ(φ) = t. Moreover, since V, V φ

agree on Var(φ), it follows that V (φ) = t.
(Right-to-Left). If V (φ) = t, there is no variable occurring in φ which maps
to u. This entails that no player has a winning strategy for G1(φ, M) so, by
(R), the players move on and play G2(φ,Mφ), which is a classical semantic
game. Since V φ and V agree on Var(φ), we have that V φ(φ) = t. Thus, the
Verifier only has a winning strategy for G2(φ, Mφ), being also the unique
player having a winning strategy for GBH(φ, M).

13A game is total if players always win or lose, so that there are no draws, and it is
determined if one or other, or both of the players, have a winning strategy.
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In light of the above theorem, a characterization of B and H in terms
of semantic games immediately follows. The following results can also be
obtained as particular cases of Theorems 5.5 and 5.4 of Section 5.

Corollary 4.1. Δ �B ψ if and only if there is no model M such that only
the Verifier has a winning strategy for GBH(φ, M) for all φ ∈ Δ, and the
Falsifier has a winning strategy for GBH(ψ,M).

Corollary 4.2. Δ �H ψ if and only if there is no model M such that the
Verifier has a winning strategy for GBH(φ,M) for every φ ∈ Δ, but he has
not it for GBH(ψ,M).

Let us make some examples. Consider the formula (x∨y)∨ (z ∧ t)—let us
call it φ. We want to evaluate φ in a model M such that V (x) = V (z) = f ,
V (t) = t, and V (y) = u. The game tree of φ is as follows:

(x ∨ y) ∨ (z ∧ t)

x ∧ y

x

f

y

u

z ∧ t

z

f

t

t

Then, let us examine GBH(φ,M). According to (R), Verifier and Falsifier
have to play G1(φ,M) first. Here, since there is a propositional variable that
is u in M , y, they have a winning strategy. Thus, GBH(φ, M) ends, and φ
obtains u in M .

As a further example, consider ¬((x ∧ y) ∨ (z ∧ x)) - let us call it ψ. We
want to evaluate ψ in a model M such that V (x) = V (z) = f , and V (y) = t.
ψ’s game tree is as follows:
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¬((x ∧ y) ∨ (z ∧ x))

(x ∧ y) ∨ (z ∧ x)

x ∧ y

x

f

y

t

z ∧ x

z

f

x

f

The players start playing G1(ψ,M). However, since no propositional vari-
ables occurring in ψ obtains u, Verifier and Falsifier do not have a winning
strategy. Therefore, they move to G2(ψ,Mψ) according to (R). Here, the
Verifier has a winning strategy. To see that, let us go over this second sub-
game. In the first step, Verifier and Falsifier switch role. Then, the new
Verifier has to move. Since both z and x are false, there is no victory for
him on the right branch of the tree. Then, he can go to the left. But again,
this is a losing move, since now it is the Falsifier’s move, and he can win
by choosing x. Therefore, the (initial) Verifier has a winning strategy for
G2(ψ,Mψ). Thus, only the Verifier has a winning strategy for GBH(ψ, M).
Consequently, ψ is true in M .

We conclude this section by using GTS-2 to prove the validity of some
inference rules we already discussed in Section 2.

Example 4.1. x ∧ ¬x |=H x ∧ y

Proof. We have to show that there is no model M such that the Verifier has
a winning strategy for GBH(x∧¬x,M), but not for GBH(x∧y, M). Let M be
a model such that the Verifier has a winning strategy for GBH(x ∧ ¬x,M).
Notice that V (x∧¬x) ∈ {f ,u}, so from our assumption and Theorem 4.3 it
follows that V (x) = u. Thus, V (x) = u = V (x∧¬x) = V (x∧y), which entails
that the Verifier has a winning strategy for GBH(x∧y, M). By Corollary 4.2
we conclude x ∧ ¬x |=H x ∧ y.

Example 4.2. x ∨ y |=B x ∨ ¬x

Proof. Let M be a model such that only the Verifier has a winning strategy
for GBH(x∨y). This entails V (x) �= u, so V (x∨¬x) = t. By Theorem 4.3 the
Verifier only has a winning strategy for GBH(x∨¬x). Thus, x∨y |=B x∨¬x
by Corollary 4.1.
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4.1. GTS-2 and Başkent’s GTS: A Brief Comparison

Theorem 4.3 and Başkent [3, pp. 72–74, Theorem 3.5] make our and
Başkent’s GTSs semantically equivalent. However, they differ in some other
respects. To recap the differences, Başkent’s semantic games for B and H are
3-players (the Verifier, the Falsifier, and the Dominator) non-collaborative
concurrent games, and he employs both the notions of winning strategy and
dominant winning strategy. Instead, GTS-2 semantic games are 2-players
(the Verifier and the Falsifier) games consisting of two sequential subgames
(the first of which is collaborative, whereas the second is non-collaborative),
and we just need winning strategies to determine the truth value of any
formula. In light of this, one might ask which of the two game theoretical
semantics is better. In this section, we sketch two reasons why we should
prefer ours over Başkent’s GTS: its theoretical simplicity and philosophical
justification.

First, we claim that GTS-2 is simpler than Başkent’s GTS. Simplicity
can be a rather ambiguous and sometimes elusive concept, which is why
it requires to be better specified. The reason why we think our semantics
is simpler is that it requires both fewer players and fewer notions to be
developed, since, e.g., the concept of dominant winning strategy and simul-
taneous moves (i.e., the set τ as in Definition 3.2) are not needed for GTS-2.
Second, we argue that GTS-2 may have a better philosophical justification
than Başkent’s GTS. No doubt, these two technical mechanisms give exactly
the same results. But this is only part of the matter. Consider, first, logical
games, in general. A convincing philosophical account of logical games is
required, as raised by Wilfrid Hodges in the Dawkins question: “we should
be able to tell a realistic story of a situation in which some agent [...] is try-
ing to do something intelligible, and doing it is the same thing as winning
in the game” (Hodges and Väänänen, [32], §2). In other words, is there a
natural explanation for seeing logic in terms of game theoretical interactions
between players? Why should we prefer playing logical games instead of us-
ing a more standard Tarskian semantics? As for classical game theoretical
semantics, some answers have been put forth. Famously, Hintikka [27] ex-
tended a game-semantic reading of the quantifiers suggested by Henkin [25].
Instead, Lorenzen interprets semantic games as ‘dialogical games’, played
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by two people, a proponent and an opponent, over a given statement.14 Re-
cently, a more robust proposal based on the theory of assertions developed
by Dummett and Brandom has been put forward by Marion [34]. But un-
fortunately, such issue is still an open problem even in the classical case, let
alone in the non-classical ones.15

As for Başkent’s GTS, we find it difficult to make sense of the 3-players
setting. For it is not clear who (or what) the players should be associated
with. The (initial) Verifier and Falsifier might represent the proponent and
the opponent of Lorenzen’s dialogical games; or ‘Myself’ and ‘Nature’ of
Hintikka’s semantic games. But who is the Dominator? Başkent [3, p. 70]
introduces such third player “to force the three truth values” of B and H.
But except for this technical reason, we are given no clue about any possible
philosophical interpretation of the Dominator.

Instead, GTS-2 could be in a better position. For it requires only two
players, who can be associated to two discussant evaluating the truth-value
of a given formula. In the first game, they cooperate to check whether the
formula, say φ, is meaningful. For a necessary condition for φ being true or
false is that it is not nonsensical. Thus, together they first check whether
such a condition is satisfied. If it is—i.e., if there is no winning strategy for
the first subgame—then they move to the second subgame and play against
each other to determine whether φ is true or false. If it is not, they end the
game and ‘agree’ that the formula is nonsensical, for which reason there is
no point in asking whether the proposition is true or false. Of course, this is
just a preliminary first attempt to offer a suitable philosophical justification
of GTS-2, and a more in-depth investigation has to be done to settle this
issue.

Finally, GTS-2 has another important virtue that could put it in a better
position: with a little effort it can be generalized to other non-classical logics
which share some distinctive features with B and H. This is the topic of the
next section.

14The proponent can be thought of as defending the claim “The given statement is
true” against any attempts of the opponent to refute it. Similarly, the opponent defends
the claim “The given statement is false” against any proponent’s attempted refutations.
Thus, the proponent starts the game by asserting a given statement and the game develops
according to some game rules—which are basically those of classical semantic games —,
thought as a regimentation of conversational moves from the life-world.

15For instance, Hodges [30], Hodges and Väänänen [32], and Hodges [31] have provided
criticisms for both Hintikka and Lorenzen’s interpretations.
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5. A Generalization of GTS-2 for Logics of Variable Inclusion

The underlying idea at the core of GTS-2 is to specify two subgames, G1

and G2, to be played sequentially. The goal was to encode the matrix-based
definitions of B and H, whose underlying algebra WK is built by “adding”
a third element, denoted as u, to the classical two-elements Boolean algebra.
The aim of the first subgame is to determine if the input-formula is inter-
preted classically, namely if its value belongs to the two element Boolean
algebra with universe {f , t}. If this is the case, the classical subgame G2 en-
sures that this value is correctly detected by the players. As we shall prove,
this construction can be significantly generalized, so to be applied to a wide
family of non-classical logics belonging to the so-called logics of variable in-
clusion.16 B and H, indeed, are two of the most paradigmatic examples of
logics in this family. Before proceeding further, we now briefly review the
essential information on the topic.

Given a logic L, it is always possible to single out two specific sublogics
of L, namely its left and right variable inclusion companions, denoted as
L

l and L
r respectively. The syntactic definitions of these logics obtain as

follows, where Γ ∪ {φ} is a set of formulas in the language of L. Notice that
L

l and L
r are logics in the same language as L.

Definition 5.1.

Γ |=L
r φ ⇐⇒

{
Γ |=L φ and Var(φ) ⊆ Var(Γ) or
Γ is inconsistent in L.

Γ |=
L
l φ ⇐⇒ Δ |=L φ for some Δ ⊆ Γ such that Var(Δ) ⊆ Var(φ).

Recall that a set of formulas Γ is inconsistent in L if Γ |=L φ for every
formula φ. Weak Kleene logics are examples of logics of variable inclusion,
as they can be derived from the above definitions by setting L = CL. In
this case, Ll = H and L

r = B.
Several semantic properties of logics of variable inclusion are well-known,

and an extensive discussion can be found in Bonzio et al. [9]. For instance,
if L is complete with respect to a matrix 〈A, F 〉, then L

l is complete with
respect to 〈Au, F ∪{u}〉, while Lr is complete with respect to 〈Au, F 〉. Here,
for simplicity, {u} can be seen as the universe of a trivial algebra, and Au

is the algebra, in the same language as L, defined as follows:

• the universe of Au is A ∪ {u}

16We take the opportunity to thank one of the referees for pointing this out.
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• for each n-ary operation f in the language of L and a1, . . . , an ∈ A∪{u}

fAu

(a1, . . . , an) =
{
u if ai = u for some 1 ≤ i ≤ n
fA(a1, . . . , an) otherwise.

Notice that WK obtains when A is the two element Boolean algebra
in the above display. In light of this, we can ask whether the strategy we
applied to develop GTS-2 may be generalized to a broader family of logics
of variable inclusion.

Our next task is to single out the general features that allowed us to
extract semantic games for B and H from a classical semantic game. In that
context, a key aspect is the availability of an efficient notion of semantic
game for classical logic. Thus, informally, our final goal is to provide a ‘re-
ceipt’ such that, in presence of an efficient notion of semantic game for a
logic L, it provides an efficient notion of semantic game for L

l,Lr. Let us
now translate this intuition formally. From now on, L will denote an arbi-
trary logic which is complete with respect to a single matrix 〈A, F 〉, unless
stated otherwise. We will always assume that GTSL = 〈π, ρ, σ〉 is a game
theoretic semantics for L based on semantic games GL(φ, M), for a formula
φ in the language of L in a model M = 〈D,V 〉, where V is a valuation on
A. Moreover, GL is assumed to be weakly correct for L, namely that there
exist two subsets of players πV , πF ⊆ π such that, for each semantic game
GL(φ,M):

V (φ) ∈ F ⇐⇒ ∃p ∈ πV such that p has a winning strategy for GL(φ, M)

V (φ) /∈ F ⇐⇒ ∃p ∈ πF such that p has a winning strategy for GL(φ, M).

Intuitively, this means that the unary relation F , which denotes the set of
designated values on A, is well-represented by the notion of winning strategy
in the semantic game GL. Notice that for each run of the game, πV , πF are
disjoint sets.

If we restrict our attention to classical logic, where F = {t}, the two
equivalences in the above display specialize as follows:

V (φ) = t ⇐⇒ ∃p ∈ πV such that p has a winning strategy for G2(φ, M)

V (φ) = f ⇐⇒ ∃p ∈ πF such that p has a winning strategy for G2(φ, M)

where G2 is a classical semantic game. Moreover, it is easy to see that
classical semantic games fulfill these two conditions, which realize by letting
πV , πF to be the singletons whose elements are the Verifier and the Falsifier,
respectively. When these reasonable constraints on L and GTSL are met,
a generalization of the idea developed in the previous section allows us to
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build a game theoretic semantics for Ll and L
r. The next definitions specify

how.

Definition 5.2. A model M for semantic games for L
l and L

r is a pair
M = 〈D,V 〉, where D ⊆ Var is a non-empty domain on which the game is
played and V is a valuation on Au.

Observe that if M = 〈D,V 〉 is a model for semantic games for L and
M ′ = 〈D,V ′〉 is a model for semantic games for Ll,Lr, they (possibly) differ
for the values given by V , V ′, whose codomains are A and Au respectively.
Moreover, if V ′(x) �= u for all x ∈ Var, then M ′ is a model for semantic games
for L. We now generalize a construction we used in the previous Section 4.
Let φ be an L-formula and M = 〈D,V 〉 be a model for semantic games for
L

l,Lr. We define a new valuation V φ on Au as the unique extension of the
following map V φ

Var : Fm → Au:

V φ(x) =
{

V (x) if x ∈ Var(φ)
a otherwise, (Val)

where a in an arbitrary element of A. Given M = 〈D,V 〉, we set Mφ =
〈D,V φ〉. We can now define our notion of semantic game for L

l and L
r.

Definition 5.3. A semantic game G
L
l
L
r(φ, M) for a formula φ in a model

M is a triple 〈Gu(φ,M), GL(φ,Mφ), R〉, such that:

• Gu(φ,M) is the first subgame of G
L
l
L
r(φ,M), that is a triple 〈π, ρu, σu〉

where π is the same set of players of GL, and:

– ρu is the set of game rules, defined for each n-ary operation f in the
language of L as:

(ρux) if φ ∈ Var, then Gu(φ,M) terminates, and all players win if
and only if V (φ) = u;
(ρuf ) if φ = f(ψ1, . . . , ψn), an arbitrarily chosen player pa ∈ π
chooses among ψ1, . . . , ψn.

– σu is the set of positions of the game, given by:
(σux) if φ ∈ Var, 〈pi, φ〉 ∈ σ, for each pi ∈ π;
(σuf ) if f is an n-ary operation in the language of L and φ =
f(ψ1, . . . , ψn), then 〈pa, φ〉 ∈ σ and 〈pa, ψi〉 ∈ σ for some 1 ≤ i ≤ n.

• GL(φ,Mφ) is the second subgame, which is the game for L.

• R is the set of rules for G
L
l
L
r(φ,M):

(R) All players in π play Gu(φ,M) first. If they have a winning strat-
egy for it, then G

L
l
L
r(φ,M) ends. Otherwise, they move on and play

GL(φ,Mφ).
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Next, we define a run of the game G
L
l
L
r(φ, M) and the notion of winning

strategy as in Section 4. It is easy to see that the following statements are
equivalent for each model M = 〈D,V 〉 and φ ∈ Fm:

(i) a player has a winning strategy for Gu(φ, M);

(ii) all players have a winning strategy for Gu(φ, M);

(iii) V (φ) = u.

Observe moreover that, in general, given a model M = 〈D,V 〉 for a
semantic game for L

l,Lr and a formula φ, the game GL(φ, Mφ) is not well-
defined: this happens whenever V (x) = u for some x ∈ Var(φ). The following
fact shows how to overcome this inconvenience. Notice that Fact 4.1 can be
seen as an instance of Fact 5.1.

Fact 5.1. Let G
L
l
L
r(φ,M) be a semantic game. If no player has a winning

strategy for Gu(φ,M), then Mφ is a model for semantic games for L.

Proof. Suppose no player has a winning strategy for Gu(φ, M). Thus, by
(ρux) in Definition 5.1, for each x ∈ Var(φ) we have that V (x) �= u. Thus,
by (Val), V φ

Var is a map from Var to A, which entails that V φ is a valuation
on A. This ensures that Mφ is a model for semantic games for L.

The above considerations ensure that G
L
l
L
r(φ, M) is well-defined: by (R),

GL(φ,Mφ) has to be played if and only if nobody has a winning strategy for
the first game, Gu(φ,M). This, together with Fact 5.1, entails GL(φ, Mφ) is
well-defined. We will tacitly use this fact throughout this section.

In what follows, we identify two teams: the teams of Verifiers (πV ) and
the team of Falsifiers (πF ), as for GL. Notice that the existence of such sets
of players is guaranteed by our assumption on the weakly correctness of GL.
We say that the team πV of Verifiers has a winning strategy if one of its
members has one. Similarly for the team πF of Falsifiers.

We are now ready to show that the GTSs so defined for L
l and L

r are
correct.

Theorem 5.4. The following are equivalent for any Γ ∪ {φ} ⊆ Fm:

(i) Γ |=
L
l φ

(ii) for every model M , IF, for every γ ∈ Γ, πT has a winning strategy for
G

L
l,Lr(γ,M), THEN πT has a winning strategy for G

L
l,Lr(φ, M).

Proof. (i) ⇒ (ii). Suppose Γ |=
L
l φ and let M = 〈D,V 〉 be a model such

that, for each γ ∈ Γ, πT has a winning strategy for G
L
l,Lr(γ,M). We claim

V (γ) ∈ F ∪{u} for each γ ∈ Γ. To this end, suppose towards a contradiction
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that there exists γ ∈ Γ such that V (γ) ∈ A � F . Thus, the game does not
end with Gu(γ,M) and its outcome relies on the fact that πV has a winning
strategy for GL(γ,Mγ). Since V, V γ agree on γ, the weakly correctness of
GL for L entails that V γ(γ) = V (γ) ∈ F . This is a contradiction and it
establishes our claim. By (i), we obtain V (φ) ∈ F ∪ {u}. If V (φ) = u, then
πV has a winning strategy for Gu(φ,M). Otherwise, since GL is weakly
correct for L, πV has a winning strategy for GL(φ, Mφ). In both cases, πV

has a winning strategy for G
L
l,Lr(φ,M), as desired.

(ii) ⇒ (i). By contraposition, assume Γ ⊭
L
l φ. So, for some valuation V

on Au and each γ ∈ Γ it holds V (γ) ∈ F ∪ {u} and V (φ) ∈ A � F . Let
M be a model for G

L
l,Lr built over V . For each γ ∈ Γ either V (γ) = u or

V (γ) ∈ F . In the first case, πV clearly has a winning strategy for Gu(γ,M).
Otherwise, πV has a winning strategy for GL(γ,Mγ). This is true because
V, V γ agree on γ and GL is weakly correct for L. This proves that πV has a
winning strategy for G

L
l,Lr(γ,M), for every γ ∈ Γ. Moreover, V (φ) ∈ A�F

entails that no player has a winning strategy for Gu(φ, M). However, upon
noticing that V (φ) = V φ(φ), the weakly correctness of GL entails that only
πF has a winning strategy for G

L
l,Lr(φ,M).

Theorem 5.5. The following are equivalent for any Γ ∪ {φ} ⊆ Fm:

(i) Γ |=L
r φ

(ii) for every model M , IF for every γ ∈ Γ, πT only has a winning strategy
for G

L
l,Lr(γ,M),THEN πT only has a winning strategy for G

L
l,Lr(φ, M).

Proof. (i) ⇒ (ii). Assume Γ |=L
r φ and let M = 〈D,V 〉 such that, for each

γ ∈ Γ, πV only has a winning strategy for G
L
l,Lr(γ,M). For any such γ,

this entails V (γ) �= u, thus no player has a winning strategy for Gu(γ,M).
So, πV is the only team with a winning strategy for GL(γ,Mγ). Since GL

is weakly correct for L, V γ(γ) = V (γ) ∈ F . By (i), V (φ) ∈ F , so V (φ) �= u
and no player has a winning strategy for Gu(φ, M). However, since GL is
weakly correct for L, πV has a winning strategy for GL(φ, Mφ), while this is
not true for πF . We conclude πV is the only team with a winning strategy
for G

L
l,Lr(φ,M).

(ii) ⇒ (i). We reason by contraposition, so assume Γ ⊭L φ. This entails
that for a valuation V on Au, V (γ) ∈ F for each γ ∈ Γ, but V (φ) /∈ F .
Let M be a model for G

L
l,Lr having V as underlying valuation. For each

γ ∈ Γ, no player has a winning strategy for Gu(γ,M), thus the outcome
of G

L
l,Lr(γ,M) relies on the outcome of GL(γ,Mγ). Since V and V γ agree

on the value of γ, V γ(γ) ∈ F and, by the weakly correctness of the game
for L, this shows that πV only has a winning strategy for it. So, πV is the
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unique team having a winning strategy for G
L
l,Lr(γ,M), for each γ ∈ Γ.

On the other hand, since V (φ) /∈ F , either V (φ) = u or V (φ) ∈ A � F . In
the first case, πF has a winning strategy for Gu(φ, M). Otherwise, a similar
argument as above shows that πF has a winning strategy for GL(φ, Mφ).
Therefore, πF has a winning strategy for G

L
l,Lr(φ, M). This concludes the

proof.

6. Concluding Remarks

In this paper we have developed a new GTS for B and H, i.e. GTS-2, that
is simpler and possibly more welcoming toward a satisfactory philosophical
interpretation than Başkent’s GTS. Moreover, GTS-2 provides a general
strategy to develop a suitable GTS for logics of variable inclusion, Ll and
L

r, once a suitable GTS for L is available.
Until now, relatively little effort has been made in developing game the-

oretic semantics for non-classical logics. We hope that this work will help to
draw attention to this topic. Given the large number of existing non-classical
logics, there is much to be done. As for future developments, we intend to
pursue two directions. On the one hand, an in-depth investigation on the
philosophical interpretation of GTS-2 is necessary, as the discussion outline
in Section 4.1 shows. On the other hand, we aim to explore whether the
approach we employed in developing GTS-2 can be applied to get suitable
GTSs also for different non-classical logics, such as Strong Kleene logics. In
this case, the contaminating feature of the non-classical value is lost. There-
fore, some adjustments are necessary—at best—to develop a semantic game
which includes a classical sub-game. In this respect, Başkent [2, §3] already
made an important contribution, showing that his strategy can be imple-
mented to develop a suitable GTS for LP. Whether ours can be also applied
in that case is then an interesting matter for future investigations.
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