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Sojourn time in a single server queue with threshold service rate

control
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Abstract

We study the sojourn time in a queueing system with a single exponential server, serving a Poisson stream

of customers in order of arrival. Service is provided at low or high rate, which can be adapted at exponential

inspection times. When the number of customers in the system is above a given threshold, the service rate is

upgraded to the high rate, and otherwise, it is downgraded to the low rate. The state dependent changes in

the service rate make the analysis of the sojourn time a challenging problem, since the sojourn time now also

depends on future arrivals. We determine the Laplace transform of the stationary sojourn time and describe

a procedure to compute all moments as well. First we analyze the special case of continuous inspection,

where the service rate immediately changes once the threshold is crossed. Then we extend the analysis to

random inspection times. This extension requires the development of a new methodological tool, that is

matrix generating functions. The power of this tool is that it can also be used to analyze generalizations to

phase-type services and inspection times.

Key words. Sojourn time distribution, Matrix generating function, Adaptable service speed
AMS subject classifications. 60K25,60K37,60D05.

1 Introduction

We consider a single-server queueing system, where customers arrive according to a Poisson stream with rate
λ and receive service in order of arrival. The service requirements are exponential with mean 1. The rate of
the server can be either µ0, or µ1 and this service rate can be adapted at random inspection times that occur
according to a Poisson stream with rate γ. For convenience, we think of µ1 as the fastest rate, i.e. µ1 > µ0, even
if under the stability conditions this assumption may be removed. When the number of customers in the system
is above the threshold K, the service rate is upgraded to the high rate µ1, and otherwise, it is downgraded to
the low rate µ0. An important performance measure is the sojourn time. In this paper we aim to determine
its stationary distribution. This is a challenging problem, since due to adaptable service rate, the sojourn time
does not only depend on the state seen at arrival, but it also depends on future arrivals.

There is a considerable literature on the analysis of single server queueing systems with variable service rates,
see e.g. [1, 2, 6, 7, 11, 12]. Those studies often assume that the service rates can be continuously adapted based
on the queue content, and focus on the calculation of the steady-state workload distribution. An exponential
multi-server system is considered in [15], with the feature that a reserved block of servers can be switched on
(which takes an exponential switch-on time) when the number of customers in the system exceeds a certain
threshold, and this block is immediately switched off when the number drops below another threshold. The
emphasis in [15] is on the trade-off between the mean sojourn time and operating costs of the servers. In [3], the
stationary distribution of the workload is determined for an M/G/1 queue, where the service rate can not be
continuously adapted, but only right after customer arrivals. In the literature, systems with adaptable service
speed at inspection times have already been analyzed, we refer the reader to [4, 5] and the references therein.

The model with inspection rate γ <∞ can be handled by considereing a two-stage birth-death process. This
kind of model usually shows up in the analysis of retrial queues, where the state of the system has to keep track
of the size of the retrial orbit. We refer the reader to the survey [10]. In [9], the number of retrials of a generic
customer is analyzed, which is a quantity directly related to the sojourn time and which depends on future
arrivals to the system. Paper [9] starts the analysis with a matrix equation that is similar to the one appearing
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in Section 3, but it is able to reduce this equation to a scalar one by exploiting the fact that the retrial system
has no buffer and only one server. Multi-channel systems are much more complicated to analyze and very little
results are available about the sojourn time. Generally, what makes retrial systems more complicated than the
one analyzed here, is the property that the rate at which retrial customers arrive to the system is proportional
to the size of the orbit. This phenomenon is not appearing in our system, which is one of the reasons why our
analysis is feasible.

As mentioned above, the focus in the current paper is on the sojourn time, not on the workload or number
of customers in the system. In Section 2, we first consider the special case of continuous inspection (so γ = ∞),
where the service rate immediately changes once the threshold K is crossed. This assumption simplifies the
model, though it still contains the complication that the sojourn time depends on future arrivals. For the case
of continuous inspection, we determine the Laplace transform of the stationary sojourn time and describe a
procedure to compute all moments as well. The computation of the Laplace transform requires a recursive
scheme and for the case γ < ∞ the Laplace transform can be expressed in terms of matrix functions that can
be computed as solutions of a linear matrix system.

Then, in Section 3, we proceed by extending the analysis to random inspection times occurring according a
Poisson stream with rate γ <∞. This extension, however, is not straightforward, but it requires the development
of a new methodological tool, that is matrix generating functions. By employing this tool we are able to find
an expression for the Laplace transform of the stationary sojourn time, involving finitely many terms which can
be recursively calculated. The analytical results are illustrated by numerical examples.

2 Model with continuous inspection

In this section we first consider the special case of continuous inspection, so γ = ∞. This implies that whenever
the number of customers in the system exceeds the threshold K > 0, the rate of the server is immediately
upgraded from the low rate µ0 to the high rate µ1 > µ0. As soon as the number of customers in the system
becomes less or equal to K, the rate of the server is reduced to the low rate µ0 again.

Denoting by Q(t), the number of customers in the system at time t > 0, we have that the process is a
continuous time Markov chain, the transition diagram of which is depicted in Figure 1.

0 1 . . . K K + 1 K + 2 . . .

λ λ

µ0

λ

µ0

λ

µ0

λ

µ1

λ

µ1 µ1

Figure 1: Transition diagram for continuous ispection model

Denoting by Q∗ the stationary number of customers in the system, we have that its distribution is given by

πn = P(Q∗ = n) =

{

(λ/µ0)
n π0 for n ≤ K

(µ1/µ0)
K (λ/µ1)

n π0 for n > K
, (1)

and under the stability assumption µ1 > λ, the value of π0 is given by

π0 =

(

K
∑

n=0

(λ/µ0)
n +

λ

µ1 − λ
(λ/µ0)

K

)−1

. (2)

We aim to compute the distribution of the sojourn time of a typical customer that arrives to the system in
stationary regime. Note that, in order to do this, we can not use Little’s distributional law [13], since future
arrivals may affect the sojourn times of the customers already present in the system by inducing a change in
the service rate.

As shown in Figure 2, we identify a tagged customer in the queue by a pair of numbers (n,m), where n
stands for the position of the tagged customer in the queue, and where m denotes the number of customers
behind him. We denote the sojourn time of this customer (n,m) by S(n,m). The stationary sojourn time is
denoted by S∗.

λ
12. . .n-1n

tagged
customer

. . .n + m

Figure 2: Tagged customer (n,m) at position n in the queue, with m customers behind him.
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For the Laplace transforms ψ(s) = E[e−s S∗

] and ψ(n,m, s) = E[e−sS(n,m)], the following relation holds by
virtue of PASTA [17],

ψ(s) =

∞
∑

n=0

ψ(n+ 1, 0, s)πn . (3)

Hence, to compute the Laplace transform of the stationary sojourn time S∗, we need to compute the transforms
ψ(n, 0, s) for each n ≥ 0.

By using next-event analysis we have, for n > 0,

S(n,m) =























1
λ+µ0

X+

{

S(n− 1,m) w.p. µ0/(µ0 + λ)
S(n,m+ 1) w.p. λ/(µ0 + λ)

, as n+m ≤ K

1
λ+µ1

X+

{

S(n− 1,m) w.p. µ1/(µ1 + λ)
S(n,m+ 1) w.p. λ/(µ1 + λ)

, as n+m > K

(4)

where X denotes an independent exponential random variable with rate 1, and S(0,m) = 0. By Laplace
transforming the relations (4), we get, for n > 0,

ψ(n,m, s) =
µ1{n+m>K} ψ(n− 1,m, s) + λψ(n,m+ 1, s)

λ+ µ1{n+m>K} + s
(5)

with boundary conditions, ψ(0,m, s) = 1, for all m ≥ 0, and where we used the indicator function 1{A} = 1 if
A is true and 0 otherwise.

When m ≥ K, it follows that for any n > 0, the server will work at high speed during the whole sojourn
time of the (n,m)-tagged customer. Hence S(n,m) is Erlang distributed with parameters n and µ1, and thus
its Laplace transform is equal to

ψ(n,m, s) = (µ1/(µ1 + s))n as n > 0 and m ≥ K. (6)

The above equation is also valid for n = 0.
Using expression (6) in (5), the Laplace transforms ψ(n,m, s) for m < K can be recursively computed in n,

as the following lemma shows. The proof of the lemma is deferred to Appendix A.

Lemma 2.1. By defining

as(k) =µ0/(λ+ µ0 + s)1{k ≤ K}+ µ1/(λ+ µ1 + s)1{k > K} ;

bs(k) =λ/(λ + µ0 + s)1{k ≤ K}+ λ/(λ + µ1 + s)1{k > K} ,

and Bs(k, 0) = 1 and Bs(k, h+ 1) = Bs(k, h) bs(k + h) for k, h ≥ 0, we have

ψ(n,m, s) =Bs(n+m,K −m)

(

µ1

µ1 + s

)n

+

K−1
∑

k=m

as(n+ k)Bs(n+m, k −m)ψ(n− 1, k, s) , (7)

for n > 0 and 0 ≤ m < K.

Remark. It can be easily shown that the value of Bs(k, h) can be explicitly computed by the following formula

Bs(k, h) =

(

λ

s+ λ+ µ1

)h(
s+ λ+ µ1

s+ λ+ µ0

)h∧(K−k+1)+

(8)

with a ∧ b = min{a, b} and (a)+ = max{a, 0}.

Relation (6) and Lemma 2.1 allow us to compute ψ(n,m, s) for any m,n ≥ 0. However, to calculate ψ(s) in
(3) we still need to compute an infinite number of terms. To overcome this issue we take advantage of the fact
that, above the threshold K, the transition diagram is invariant towards the right, similarly to the standard
M/M/1 queue. To use this invariant property we introduce the following marginal z-transform

φ(z,m, s) =

∞
∑

h=0

ψ(K + h+ 1,m, s) zh , (9)

valid for |z| < 1. In the following we show how to compute, in finitely many steps, the function φ(z,m, s). We
use it to calculate the infinite sum in (3) and then obtain a formula to compute the Laplace transform of the
sojourn time as given in Proposition 2.2.
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By writing (5) for n = K + h + 1, multiplying by zh and summing over all h ≥ 0, the following recursive
equation holds

φ(z,m, s) =
µ1 ψ(K,m, s)

λ+ µ1(1 − z) + s
+

λφ(z,m+ 1, s)

λ+ µ1(1− z) + s
. (10)

As boundary value we have

φ(z,K, s) =

∞
∑

h=0

(

µ1

µ1 + s

)K+h+1

zh =

(

µ1

µ1 + s

)K+1 ∞
∑

h=0

(

µ1 z

µ1 + s

)h

=

(

µ1

µ1 + s

)K+1
µ1 + s

µ1(1− z) + s
, (11)

from which the values of φ(z,m, s) can be recursively computed for m = K − 1, . . . , 0, yielding

φ(z,m, s) =

K−1−m
∑

h=0

µ1 λ
h

(λ+ µ1(1 − z) + s)h+1
ψ(K,m+ h, s)

+

(

λ

λ+ µ1(1 − z) + s

)K−m

φ(z,K, s) . (12)

In particular we can compute, in finitely many steps, the value of φ(z, 0, s).
Knowing the value of φ(z, 0, s), expression (3) can be finally computed as summarized in the following

proposition.

Proposition 2.2. The Laplace transform of S∗ can be computed in the form

ψ(s) =π0

K−1
∑

h=0

[

(

λ

µ0

)h

ψ(h+ 1, 0, s) +

(

λ

µ0

)K (
λ

µ1

)h(
µ1

µ1 + s

)h+1

ψ(K,h, s)

]

+ π0

(

λ

µ0

)K (
λ

µ1

)K
µ1

µ1 − λ

(

µ1

µ1 + s

)2K
µ1 − λ

µ1 − λ+ s
. (13)

Proof. The result follows from (3) by splitting the sum in a finite, n < K, and infinite part,

ψ(s) =π0

K−1
∑

n=0

(

λ

µ0

)n

ψ(n+ 1, 0, s) + π0

(

λ

µ0

)K

φ(λ/µ1, 0, s) . (14)

For the last term we use (12) and (11) to get

φ(λ/µ1,m, s) =

K−1−m
∑

h=0

(

λ

µ1

)h(
µ1

µ1 + s

)h+1

ψ(K,m+ h, s)

+
µ1

µ1 − λ+ s

(

λ

µ1

)K−m(
µ1

µ1 + s

)2K−m

(15)

and the result follows by rearranging terms.

The terms appearing in equation (13) have the following nice probabilistic interpretation.

• With probability πh = π0(λ/µ0)
h, h < K, the tagged user enters a system with h customers and experi-

ences a sojourn time, the Laplace transform of which is ψ(h+ 1, 0, s).

• With probability πK+h = π0(λ/µ0)
K(λ/µ1)

h, 0 < h < K, he finds K + h customers waiting. We slightly
modify the system and assume that the tagged customer overtakes h+1 customers and occupies position
K instead of the last one in the queue. In addition, the server first serves the last h+ 1 customers. Since
the speed of the server depends on the number of customers waiting and not on their specific order of
service, the first h + 1 services will be at speed µ1 taking an Erlang time with parameters h + 1 and µ1

to complete. What is left is the service time of the tagged customer, the Laplace transform of which is
ψ(K,h, s).

• With probability π≥2K = π0(λ/µ0)
K(λ/µ1)

K(µ1/(µ1−λ)) the tagged customer finds at least 2K customers
waiting. As before, he is going to occupy position K, the sojourn time of which is Erlang distributed with
parameters K and µ1. The number of customers he has overtaken is at least K, and the time it takes to
complete their services is the sum of K exponential random variables with parameter µ1 plus a generic
sojourn time of anM/M/1 queue having µ1 as service speed. This last quantity is exponentially distributed
with parameter µ1 − λ.

4



Remark. From the Laplace transform of the stationary sojourn time given in (3) an explicit expression for the
distribution can be obtained. Indeed, the inverse transformation is straightforward as the Laplace transform is
a rational polynomial, the poles of which are all located on the real axis. To be more precise, the locations of
the poles belong to the set

A = {−(λ+ µ1), −(λ+ µ0), −µ1, −(µ1 − λ)} ,

implying that the density function is given by a linear combination of terms tkea t for a ∈ A and k =
0, 1, . . . ,mult(a)− 1, where mult(a) denotes the multiplicity of pole a.

Remark. If we let K → ∞ in (13), we recover (3). For any n ≥ 0, ψ(n+1, 0, s) becomes the Laplace transform of
an Erlang distribution with parameters n+1 and µ0, and ψ(s) reduces to the Laplace transform of an exponential
distribution with parameter µ0 − λ, that is the distribution of the sojourn time of a classical M/M/1 queue
with service rate µ0.

Remark. If K = 0, only the last term in (13) is different from zero. Substituting π0 = (µ1 − λ)/µ1, given in
(2), we get that ψ(s) is the Laplace transform of an exponential distribution with parameter µ1 −λ, that is the
distribution of the sojourn time of a classical M/M/1 queue with service rate µ1.

2.1 First moment calculation

As mentioned in Remark 2, it is possible to compute the distribution of the sojourn time, but it is easier to
compute the moments by using the relation E[Sk] = (−1)kψ(k)(0+). In this section we show how to compute
the first moment. However, by taking higher order derivatives of the Laplace transform, recursive expressions
can be obtained to compute all moments.

Let ν = E[S] and νn,m = E[S(n,m)]. With n > 0, from (6) we have for m ≥ K, νn,m = n/µ1, and using
(7), for 0 ≤ m < K,

νn,m =
n

µ1
B0+(n+m,K −m)−B′

0+(n+m,K −m)

+

K−1
∑

k=m

(

νn−1,k a0+(n+ k)B0+(n+m, k −m)

− a′0+(n+ k)B0+(n+m, k −m)

− a0+(n+ k)B′
0+(n+m, k −m)

)

, (16)

where

a′0+(k) =− µ0/(λ+ µ0)
21{k ≤ K} − µ1/(λ+ µ1)

21{k > K} ;

b′0+(k) =− λ/(λ+ µ0)
21{k ≤ K} − λ/(λ + µ1)

21{k > K} ,

and B′
0+(k, 0) = 0 and B′

0+(k, h+ 1) = B′
0+(k, h) b0(k + h) +B0(k, h) b

′
0+(k + h).

The following algorithm shows how to recursively compute νn,m for 0 ≤ m < K:

for i=1 to n do

for j=1 to K-m do
compute νi,K−j

end

end

Algorithm 1: Computing νn,m for n > 0 and 0 ≤ m < K

Finally, by applying Proposition 2.2, we get

ν =π0

K−1
∑

h=0

[

(

λ

µ0

)h

νh+1,0 +
λK

µK
0

(

λ

µ1

)h(

νK,h +
h+ 1

µ1

)

]

+ π0

(

λ

µ0

)K (
λ

µ1

)K (
2K

(µ1 − λ)
+

µ1

(λ− µ1)2

)

. (17)

3 Model with inspection times

In this section we analyze the system where inspection times occur according to a Poisson stream with rate
γ < ∞. So, in this case, there is no continuous inspection and adaptation of the service rate is delayed (with
an exponential time) when the number of customers in the system crosses the threshold K. If at an inspection
time the system is found congested with more than K customers, the service rate is immediately set to the fast
rate µ1 and otherwise, if at most K customers are present, the service rate is set to the low rate µ0.

5



Now we need to include the service rate in the state description of the system, resulting in the Markov chain
shown in Figure 3. Note that for any number of customers in the system, the service rate can be high and low.

Low rate:

High rate:

0

0

1 . . . K K + 1 K + 2 . . .

1 . . . K K + 1 K + 2 . . .

λ λ

µ0

λ

µ0

λ

µ0

λ

µ0

λ

µ0 µ0

λ λ

µ1

λ

µ1

λ

µ1

λ

µ1

λ

µ1 µ1

γ γγ γ γ

Figure 3: Transition diagram for exponential inspection times

Denoting by M the stationary random service rate, let π0n = P(M = µ0, Q
∗ = n) and π1n = P(M =

µ1, Q
∗ = n) be the stationary probabilities to find n customers in the system with the server working at rate µ0

and µ1, respectively. In what follows, the quantity πn denotes the column vector with components (π0n, π1n)
⊤,

where (·)⊤ is the transposition operator. The stationary distribution satisfies the balance equations

− H1 π0 +M π1 = 0
Λ πn−1 − H2 πn +M πn+1 = 0 1 ≤ n ≤ K ;
Λ πn−1 − H3 πn +M πn+1 = 0 n > K ,

(18)

where the transition matrices are defined by

M =

(

µ0 0
0 µ1

)

, Λ =

(

λ 0
0 λ

)

,

and H1 = Λ+ Γ2, H2 =M + Λ+ Γ2 and H3 =M + Λ+ Γ3, where

Γ2 =

(

0 −γ
0 γ

)

, Γ3 =

(

γ 0
−γ 0

)

From the theory on quasi-birth-death processes [16, 14], we conclude that for n > K, the stationary proba-
bility vector πn can be written in the form

πK+h = Rh πK , h ≥ 0 , (19)

where the matrix R is the minimal non-negative solution of the matrix equation

Λ −H3R+M R2 = 0 . (20)

Using the probabilistic interpretation of R, or by solving the matrix equation (20), it follows that R is of
triangular form and in particular, it is equal to

R =

(

R00 0
γ
µ1

R00

1−R00

λ
µ1

)

, (21)

with R00 = µ0+γ+λ
2µ0

−

√

(

µ0+γ+λ
2µ0

)2

− λ
µ0
.

The value of πK can be computed by the normalizing equation

K−1
∑

k=0

e πk + e (I −R)−1πK = 1 , (22)

with e the all-one (row) vector.
By PASTA, as in (3), the Laplace transform of the stationary sojourn time is given by

ψ(s) =

∞
∑

n=0

ψ(n+ 1, 0, s)πn , (23)

where ψ(n,m, s) denotes the row vector (ψ0(n,m, s), ψ1(n,m, s)), with ψi(n,m, s) being the Laplace transform
of the sojourn time Si(n,m) of a tagged customer who is at position (n,m) and the service rate is µi, i = 0, 1.

6



By using next-event analysis, we get the following recursive equations for the sojourn times, Si(n,m), i = 0, 1,
n > 0

Si(n,m) =
X

λ+ µi + γ
+







Si(n− 1,m) w.p. µi/(λ+ µi + γ)
Si(n,m+ 1) w.p. λ/(λ+ µi + γ)
S1{n+m>K}(n,m) w.p. γ/(λ+ µi + γ)

(24)

where X denotes an independent exponential random variable with rate 1, and Si(0,m) = 0. Taking the Laplace
transform of (24) yields the equation

ψ(n,m, s) (H(s)− Γ1{n+m>K}) = ψ(n− 1,m, s)M + ψ(n,m+ 1, s) Λ (25)

for n > 0, where

H(s) = (γ + s) I + Λ+M , Γ0 =

(

γ γ
0 0

)

, Γ1 =

(

0 0
γ γ

)

,

and ψ(0,m, s) = e, with e the all-one (row) vector and I the identity matrix.
Similarly to (6), when m ≥ K and for any n > 0, we have that whenever an inspection occurs, the service

rate is set and kept at the value µ1 till the end of the sojourn time of the tagged customer. This implies that
ψ(n,m+ 1, s) = ψ(n,m, s) for m ≥ K and n > 0, and substitution in (25) yields

ψ(n,m, s) = e T n(s) as n > 0 and m ≥ K , (26)

with T (s) =M (H(s)− Γ1 − Λ)−1.
Equations (26) and (25) allow us to get the values of ψ(n,m, s) for any n,m ≥ 0. However to compute

expression (23) in finitely many steps, we still need to find a way to handle the infinite sum. So far, the analysis
proceeds as in Section 2, and thus the next step would be to introduce the marginal z-transforms corresponding
to (9), that is, φi(z,m, s) =

∑

h ψi(K + h + 1,m, s) zh. However, this approach immediately fails, since the
stationary probability distribution (19) calls for a matrix generalization. The main contribution of this work is
to provide this generalization by the introduction of the following matrix generating function,

φ(Z,m, s) =

∞
∑

h=0

ψ(K + h+ 1,m, s)Zh , (27)

where Z is any matrix with eigenvalues contained in the open unit disk of the complex plane.

Remark. Since the absolute value of the Laplace transform ψi(n,m, s) is less or equal to one, the assumption
on the eigenvalues of Z implies that the matrix generating function φ(Z,m, s) is well defined.

Let us rewrite expression (25) for n > K in the alternative form,

ψ(n,m, s) = ψ(n− 1,m, s)TM(s) + ψ(n,m+ 1, s)TΛ(s) (28)

with TA(s) = A (H(s)−Γ1)
−1, A ∈ {Λ,M}. Multiplying expression (28) on the right by Zh, for n = K+h+1,

and then summing over h ≥ 0 and using that T Zh T−1 = (T Z T−1)h , we get a recursive equation for φ(Z,m, s),

φ(Z,m, s) =ψ(K,m, s)TM (s) + φ(TM (s)Z T−1
M (s),m, s)TM (s)Z

+ φ(TΛ(s)Z T
−1
Λ (s),m+ 1, s)TΛ(s) . (29)

The main difference between equations (10) and (29) is that in the latter we loose the commutative property
of the product and the functions φ need to be evaluated for different values of their arguments. The boundary
condition is obtained from (26),

φ(Z,K, s) =e TK+1(s)

(

∞
∑

h=0

T h(s)Zh

)

= e TK+1(s)S(Z, I, T (s)) , (30)

with I being the identity matrix and where we employed the definition,

S(Z,A,B) :=

∞
∑

h=0

BhAZh . (31)

The matrix S(Z,A,B) is well defined for any matrix Z,A,B with Z and B having all eigenvalues inside the
closed and open disk, respectively (so that the series converges). Note that T (s) in (30) has all eigenvalues
inside the open unit disk. The matrix S(Z,A,B) can be computed as the solution of a matrix equation as
shown in the following lemma. The proof is deferred to the appendix.
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Lemma 3.1. Let Z, A and B be three matrices with Z and B having all eigenvalues in the closed and open

disk, respectively, then the matrix function S = S(Z,A,B) is the unique solution of the following matrix system,

S −B S Z = A . (32)

The next proposition shows that, in order to compute the Laplace transform of the stationary sojourn time
S∗ in terms of a finite number of addends, only the value of φ(R, 0, s) is needed.

Proposition 3.2. The Laplace transform of S∗ can be computed in the form

ψ(s) =
K−1
∑

n=0

ψ(n+ 1, 0, s)πn + φ(R, 0, s)πK . (33)

Proof. The result follows from (23) by splitting the sum in a finite, n < K, and infinite part. For the latter
part, we express πK+h as in (19) for h ≥ 0, and apply definition (27).

The computation of φ(R, 0, s) requires some additional machinery with respect to the one developed in
Section 2 for the scalar case. Before giving the statement of the main result we need the following technical
lemma, the proof of which is deferred to the appendix. The lemma states that the infinite sum of matrices
appearing at the left-hand side of (34) can be recognized as a matrix function S, which can be computed from
the matrix system (32).

Lemma 3.3. Let Z, A and B be three matrices with Z and B having all eigenvalues in the closed and open

disk, respectively, and let T1 and T2 be invertible matrices with T1 having all eigenvalues in the open disk, then

the following relation holds,

∞
∑

h=0

S(T2 T
h
1 Z T

−h
1 T−1

2 , A,B)T2 T
h
1 Z

h = S(Z,AT2 S(Z, I, T1), B) . (34)

The following result allows us to compute the value of φ(R,m, s) in finitely many steps.

Theorem 3.4. The values of φ(Z,m, s) for 0 ≤ m ≤ K can be computed by the following equation

φ(Z,m, s) =

K−1
∑

k=m

ψ(K, k, s)TM (s)UM (Z, k −m, s)

+ ψ(K,K + 1, s)T (s)U(Z,K −m, s) , (35)

where the matrices UM (Z, k, s) and U(Z, k, s) are defined as

UM (Z, k, s) = S(Z, (TΛ(s)S(Z, I, TM (s)))k, TM (s)) ,

U(Z, k, s) = S(Z, (TΛ(s)S(Z, I, TM (s)))k, T (s)) .

Proof. Using (30) and (26), it follows that equation (35) holds for m = K, where it is assumed that the value
of the sum is zero. We prove by induction that it also holds for all m < K. We first derive a recursive equation
satisfied by φ(·,m, s) in terms of φ(·,m+ 1, s).

By substituting TM (s)Z T−1
M (s) for Z in (29) we get an expression for φ(TM (s)Z T−1

M (s),m, s), and subse-
quently substituting this expression in the right-hand side of (29), yields

φ(Z,m, s) =ψ(K,m, s)TM (s) + ψ(K,m, s)T 2
M (s)Z

+ φ(T 2
M (s)Z T−2

M (s),m, s)T 2
M (s)Z2

+ φ(TΛ(s)TM (s)Z T−1
M (s)T−1

Λ (s),m+ 1, s)TΛ(s)TM (s)Z

+ φ(TΛ(s)Z T
−1
Λ (s),m+ 1, s)TΛ(s) (36)

and iterating this equation leads to

φ(Z,m, s) =ψ(K,m, s)TM (s)

(

∞
∑

h=0

T h
M (s)Zh

)

+

∞
∑

h=0

φ(TΛ(s)T
h
M (s)Z T−h

M (s)T−1
Λ (s),m+ 1, s)TΛ(s)T

h
M (s)Zh ,
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which can be rewritten as

φ(Z,m, s) =ψ(K,m, s)TM (s)S(Z, I, TM ) (37)

+
∞
∑

h=0

φ(TΛ(s)T
h
M (s)Z T−h

M (s)T−1
Λ (s),m+ 1, s)TΛ(s)T

h
M (s)Zh .

The recursive equation (37) is valid for m = 0, 1, . . . ,K − 1.
We conjecture that for all m = 0, 1, . . . ,K, the generating function φ(Z,m, s) has the form

φ(Z,m, s) =

K−1
∑

k=m

ψ(K, k, s)TM (s)S(Z, Y k−m(s), TM (s)) (38)

+ ψ(K,K + 1, s)T (s)S(Z, Y K−m(s), T (s)) ,

so that (35) follows by showing that the right expression for Y (s) is given by

Y (s) = TΛ(s)S(Z, I, TM (s)) . (39)

This conjecture will be proved by induction. We have already shown that it holds for m = K. Now assume
that it is valid for m+ 1. To establish (38) for m, it suffices to prove, by virtue of (37), that

∞
∑

h=0

φ(TΛ(s)T
h
M (s)Z T−h

M (s)T−1
Λ (s),m+ 1, s)TΛ(s)T

h
M (s)Zh

=

K−1
∑

k=m+1

ψ(K, k, s)TM (s)S(Z, Y k−m(s), TM (s)) (40)

+ ψ(K,K + 1, s)T (s)S(Z, Y K−m(s), T (s)) .

It follows from Lemma 3.3 that

ψ(K,K + 1)T

∞
∑

h=0

S(TΛ T
h
M Z T−h

M T−1
Λ , Y K−m−1, T )TΛ T

h
M Zh

= ψ(K,K + 1)TS(Z, Y K−m−1 TΛ S(Z, I, TM ), T ) , (41)

where we suppressed the dependence on s. Application of Lemma 3.3 is justified, since it is readily verified
that the matrices in the above infinite sum satisfy the conditions mentioned in this lemma. Accordingly, for
k = m+ 1, . . . ,K − 1, and again suppressing the dependence on s,

ψ(K, k)TM

∞
∑

h=0

S(TΛ T
h
M Z T−h

M T−1
Λ , Y k−m−1, TM )TΛ T

h
M Zh

= ψ(K, k)TM S(Z, Y k−m−1 TΛ S(Z, I, TM ), TM ) . (42)

Combining (41) and (42) we conclude, by virtue of the induction hypothesis, that (40) holds whenever Y (s)
satisfies (39), which completes the proof.

Remark. Also in this case, as was already mentioned in Remark 2, the Laplace transform of the sojourn time is
rational. This admits application of classical inversion techniques, yielding an explicit expression for the sojourn
time distribution. In Section 3.2 we give an example of how to compute the density function of the sojourn
time for a system with K = 2.

3.1 Erlang inspection times

In section 3 we assumed exponential inter-inspection times. In principle this can be extended to the case of
phase-type distributed inter-inspection times [1], paying a cost in terms of model complexity. Indeed, in this
case one should keep track, not only of the value of the service rate, but also of the phase of the inspection-clock.
This translates into more complicated matrix expressions, but the basic logic of the computation of the sojourn
time distribution remains the same. In fact, this is exactly the power of the proposed matrix generating function
technique. For the sake of clarity and conciseness we are not going to treat here this extension in detail, but
give a quick view of how it can be handled.

We assume that the inspection times are Erlang(2,γ) distributed. To keep trace of this we consider four
states in the description of the system, {00, 01, 10, 11}, where the first number specifies the speed of the system
and the second the phase of the inspection clock.
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Figure 4: Transition diagram for Erlang-2 inspection times

The column vector πn = (π00n, . . . , π11n)
⊤ satisfies (18) with the following matrices

M =

(

µ0 0
0 µ1

)

⊗

(

1 0
0 1

)

, Λ =

(

λ 0
0 λ

)

⊗

(

1 0
0 1

)

,

and H1 = Λ+ Γ2, H2 =M + Λ+ Γ2 and H3 =M + Λ+ Γ3, where

Γ2 =









γ −γ 0 −γ
−γ γ 0 0
0 0 γ 0
0 0 −γ γ









, Γ3 =









γ 0 0 0
−γ γ 0 0
0 −γ γ −γ
0 0 −γ γ









.

The conditional sojourn times satisfy the following equation, see the corresponding formula (24),

Sij(n,m) =
X

λ+ µi + γ
+







Si,j(n− 1,m) w.p. µi/(λ+ µi + γ)
Si,j(n,m+ 1) w.p. λ/(λ + µi + γ)
Sh(i,j)(n,m) w.p. γ/(λ+ µi + γ)

(43)

with h(i, j) = h(i, j;n,m) = ((1 − j) · i + j · 1{n + m > K}, (1 − j)). It follows that the row vector
(ψ00(n,m, s), ψ01(n,m, s), ψ10(n,m, s), ψ11(n,m, s)) satisfies equation (25) with the matrices H(s) = (s+γ) I+
Λ +M and

Γ0 =









0 γ 0 γ
γ 0 0 0
0 0 0 0
0 0 γ 0









, Γ1 =









0 0 0 0
γ 0 0 0
0 γ 0 γ
0 0 γ 0









.

Since the matrix equations for the Erlang inspection times are similar to the exponential inspection times,
all the subsequent matrix analysis in Proposition 3.2 and Theorem 3.4 are still valid. The value of the matrix
R is now given by

R =









R11 0 0 0
R21 R11 0 0
R31 R32 R33 R34

R41 R42 R34 R33








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with

R11 =
γ + λ+ µ0 −

√

−4λµ0 + (γ + λ+ µ0)2

2µ0
, R21 =

γR11

γ + λ+ µ0 − 2µ0R11
;

R33 =
µ1(2γ + 3λ+ µ1)−

√

µ2
1 (4γ

2 + (λ − µ1)2 + 4γ(λ+ µ1))

4µ2
1

;

R34 =
λ

µ1
−R33 , R31 =

γ(R41 +R21) + µ1(R32R21 +R41R34)

γ + λ− µ1(−1 +R11 +R33)
;

R32 =
γR11(−γ − λ+ µ1(−1 +R11 +R33))

−(γ + λ− µ1(−1 +R11 +R33))2 + (γ + µ1R34)2
;

R41 =
γR21(γ + µ1R34)

(

λ2 − 2λµ1(−1 +R33)− µ2
1

(

R2
11 − (−1 +R33)

2 +R2
34

))

(2γ + λ− µ1(−1 +R11 +R33 −R34))2(λ− µ1(−1 +R11 +R33 +R34))2

γR21(γ + µ1R34) (2γ(λ− µ1(−1 +R33 +R34)))

(2γ + λ− µ1(−1 +R11 +R33 −R34))2(λ− µ1(−1 +R11 +R33 +R34))2
;

R42 =
γR11(γ + µ1R34)

(2γ + λ− µ1(−1 +R11 +R33 −R34))(λ − µ1(−1 +R11 +R33 +R34))
.

3.2 Analitical example

In this section we briefly show that by using Theorem 3.4, we can get explicit expressions for the density function
of the sojourn time in the system with inspection times, as highlighted in Remark 3.

The computations are simple, but tedious as they require extensive use of matrix calculus, and usually it is
easy to be assisted by symbolic computational software as we do for this example.

To make computations easy, we wisely select the values of the parameters of the system such that all
coefficients turn out to be rational.

The parameters of the queue are

µ0 = 1; µ1 = 3/2; γ = 1/8; λ = 9/8 .

For the moment we do not fix the threshold, later we consider explicitly the case K = 2. The above choice of
the parameters gives R00 = 3/4 in (21). The matrix R and the matrix function T (s) = M (H(s)− Γ1 − Λ)−1,
are given by

R =

(

3
4 0
1
4

3
4

)

; T (s) =

( 8
9+8s 0
3

(3+2s)(9+8s)
3

3+2s

)

and the matrix functions TΛ(s) = Λ (H(s)− Γ1)
−1 and TM (s) =M (H(s)− Γ1)

−1 are equal to

TΛ(s) =

(

9
2(9+4s) 0

9
2(9+4s)(21+8s)

9
21+8s

)

; TM (s) =

( 4
9+4s 0
6

(9+4s)(21+8s)
12

21+8s

)

.

Solving the matrix system (32) we get the following expression for S(R, I, TM (s)),

S(R, I, TM (s)) =

(

9+4s
2(3+2s) 0
3(3+s)

2(3+2s)2
21+8s
4(3+2s)

)

that allows the computation of the values of U(R, k, s) and UM (R, k, s) for any k ≥ 0. As example we show
such matrix functions for k = 2,

U(R, 2, s) =

(

81(9+8s)
16(3+2s)2(3+8s) 0

81(69+88s)
16(3+2s)2(3+8s)2

81
4(3+2s)(3+8s)

)

; UM (R, 2, s) =

(

81(9+4s)
32(3+2s)3 0
81(30+11s)
32(3+2s)4

81(21+8s)
64(3+2s)3

)

.

Remark. The expressions of S(R, I, TM (s))), U(R, k, s) and UM (R, k, s) do not depend on K, so they can be
used for any value of the threshold. The values of ψ(s), ψ(n, 0, s), πn and φ(R, 0, s) in (33) do depend on K via
the respective formulas (33), (25), (22) and (35).

From here on we fix K = 2. We have πK = (3807/60644, 1701/30322)⊤ and after recursively computing
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ψ(k, 0, s), for k = 1, 2, we finally get ψ(s),

ψ(s) =−
308367

379025(3+ 2s)4
−

13923657

9475625(3+ 2s)3
−

44764461

47378125(3+ 2s)2
−

130808703

236890625(3+ 2s)

−
14013

15161(9 + 4s)
+

1587762

9475625(11+ 4s)3
−

4755267

24636625(11+ 4s)2
−

28797784929

40034515625(11+ 4s)

+
81216

15161(3 + 8s)2
+

18144

15161(3 + 8s)
+

102060

15161(9 + 8s)2
+

55081053

20497672(9+ 8s)

−
24064452

9475625(17+ 8s)3
−

199526994

47378125(17+ 8s)2
+

2950774277

1895125000(17+ 8s)
+

90111

60644(21+ 8s)

the inverse-transform of which results into the following density function

f(t) = −
90111e−21t/8

485152
−

14013e−9t/4

60644
+

27e−3t/8(84 + 47t)

15161
+

729e−9t/8(75557 + 23660t)

163981376

+ 243e−11t/4
(

−1896150448− 127198500t+ 13803075t2
)

/2562209000000

− e−17t/8
(

−11803097108+ 3990539880t+ 150402825t2
)

/60644000000

− 3e−3t/2
(

697646416+ 596859480t+ 232060950t2 + 21414375t3
)

/7580500000 .

Figure 5 plots the density functions of the sojourn time for K = 0, 1, 2, 3 using their exact expressions, instead
of using numeric inverse transform as done later on in Section 4.
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0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 5: µ0 = 1; µ1 = 3/2; γ = 1/8; λ = 9/8; and K ∈ {0, 1, 2, 3}

3.3 First moment calculation

Like in the previous section, we define ν = E[S] and νn,m = E[S(n,m)]. By taking derivatives in (25) and then
computing the limit for s→ 0 we get

νn,m (H(0)− Γ1{n+m>K}) = νn−1,mM + νn,m+1Λ + e , (44)

where we used that H ′(0) is the identity matrix. The vector e is the all-one vector. From (26) and after taking
derivatives, we obtain

νn,m = e

n
∑

k=1

(T (0))kM−1 (T (0))n−k+1 as n > 0 and m ≥ K , (45)

with T (0) = M (H(0) − Γ1 − Λ)−1, (T−1)′(0) = M−1 and T ′(0) = −T (0)M−1T (0). Here we used that the
derivative of a matrix A−n is given by

(A−n)′ =

n
∑

k=1

A−k A′Ak−n−1 .
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By Proposition 3.2 we can conclude that

ν =

K−1
∑

n=0

νn+1,0 πn − φ′(Z, 0, 0+)πK . (46)

From equation (35) we can compute

−φ′(Z, 0, 0+) =
K−1
∑

k=0

νK,k TM (0)UM (Z, k, 0) + νK,K+1 T (0)U(Z,K, 0)

− e

K−1
∑

k=0

TM (0)U ′
M (Z, k, 0)− e T (0)U ′(Z,K, 0)

− e

K−1
∑

k=0

T ′
M (0)UM (Z, k, 0)− e T ′(0)U(Z,K, 0) , (47)

with TM (0) = M (H(0) − Γ1)
−1 and T ′

M (0) = TM (0)M−1 TM (0). The values U ′
M (Z, k, 0) and U ′(Z, k, 0)

appearing in (35) can be computed by solving the following linear systems, see Lemma A.1 in the appendix,

U ′
M (Z, k, 0)− TM (0)U ′

M (Z, k, 0)Z − T ′
M (0)UM (Z, k, 0)Z = A′(Z, k, 0)

U ′(Z, k, 0)− T (0)U ′(Z, k, 0)Z − T ′(0)U(Z, k, 0)Z = A′(Z, k, 0)

with A(Z, k, s) = (TΛ(s)S(Z, I, TM (s)))k.

4 Numerical experiments

In this section we show some numerical examples, where we compute the stationary sojourn time distribution
for a system with slow rate µ0 = 1 and high rate µ1 = 3/2.

In Figures 6 and 7, it is shown how the sojourn time distribution depends on the threshold K for the case
of immediate switching times. In the first example, λ < µ0 < µ1, which implies that the system is stable for
both service rates. Therefore, when K → ∞, one can appreciate that the sojourn time distribution approaches
the one of an M/M/1 system with fixed service rate µ0 (shown as dashed black line in Figure 6). In the second
example, we have λ ∈ [µ0, µ1). In particular, we have chosen λ = µ0 = 1, implying that the system approaches
instability as K → ∞.

0 5 10 15 20

0.2

0.4

0.6

0.8

1.0

Figure 6: λ = 1/2
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0.3

0.4

0.5

Figure 7: λ = 1

Sojourn time distribution for: µ0 = 1, µ1 = 3/2 and K ∈ {0, 1, 2, 3, 4, 8,∞}

Figures 8 – 11, depict the sojourn time distribution for the case of exponential distributed inspection times.
These figures refer to the case when λ ∈ [µ0, µ1), and again, one can notice that as K → ∞, the system becomes
unstable. It is worth to notice that, when K = 0, the curve does not coincide with the M/M/1 with constant
service rate µ1 (shown as dashed blue line), since in the system with exponential switching, when inspection
finds the system empty, the server switches to the slow rate and does not switch back till another inspection
occurs. When γ = 1000, the system switches almost immediately and therefore the sojourn time distribution is
very close to the one of the pure M/M/1 system.

In Figures 12 and 13, we plot again the results for λ = 1, µ0 = 1 and µ1 = 3/2, but compare different
values of γ’s. One can see that for γ approaching λ, the system behaves very close to a system with immediate
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Figure 8: γ = 1/100
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Figure 9: γ = 1/10
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Figure 10: γ = 1
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Figure 11: γ = 1000

Sojourn time distribution for: λ = 1, µ0 = 1, µ1 = 3/2 and K ∈ {∗, 0, 1, 2, 3}

switching (shown as dashed black line). Indeed, for values of γ > 1, one cannot distinguish the curve from the
limiting one. This suggests that, checking the state of the system at a rate comparable to the arrival rate, can
be considered from the point of view of the sojourn time as an immediate switching. This could be used in
the design phase of the system, when balancing between costs (by reducing service rate) and performance (by
increasing the service and inspection rate).
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Figure 12: K = 1
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Figure 13: K = 3

Sojourn time distribution for: λ = 1, µ0 = 1, µ1 = 3/2 and γ ∈ {1/100, 1/10, 1, 10, 100, 1000,∞}

5 Conclusions

In this paper we studied the sojourn time distribution in an exponential single-server queueing system. Service is
in order of arrival, and it is provided at low or high rate, which can be adapted at exponential inspection times,
depending on the number of customers in the system. To determine the Laplace transform of the stationary
sojourn time distribution, we proposed a new methodological tool, that is matrix generating functions. We used
this tool to compute the Laplace transform of the sojourn time distribution in the system with inspection times.
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Its expression is obtained recursively and shows a rational form that allows an immediate inverse-transformation.
Numerical computations have shown, as expected, that if the inspection rate is large, the sojourn time of the
system with inspections converges to the one of the system with immediate switching.

We believe that the power of the matrix generating functions lies in its flexibility to analyze generalizations
to phase-type services and inspection times. An interesting and promising direction for future research is to
explore the applicability of this tool to analyze the more general class of quasi-birth-and-death processes [14].
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A Technical proofs

of Lemma 2.1. We can rewrite the expression (5) in the following form

ψ(n,m, s) = as(n+m)ψ(n− 1,m, s) + bs(n+m)ψ(n,m+ 1, s) . (48)

With m = K − 1, equation (7) becomes

ψ(n,K − 1, s) = Bs(n+K − 1, 1)ψ(n,K, s)

+
K−1
∑

k=K−1

as(n+ k)Bs(n+K − 1, k −K + 1)ψ(n− 1, k, s)

= bs(n+K − 1)ψ(n,K, s) + as(n+K − 1)ψ(n− 1,K − 1, s)
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and therefore it holds true. Now assume that equation (7) is valid for m+ 1. Then by (48),

ψ(n,m, s) =as(n+m)ψ(n− 1,m, s) + bs(n+m)Bs(n+m+ 1,K − 1−m)ψ(n,K, s)

+ bs(n+m)

K−1
∑

k=m+1

as(n+ k)Bs(n+m+ 1, k −m− 1)ψ(n− 1, k, s)

=as(n+m)Bs(n+m, 0)ψ(n− 1,m, s) +Bs(n+m,K −m)ψ(n,K, s)

+

K−1
∑

k=m+1

as(n+ k)Bs(n+m, k −m)ψ(n− 1, k, s)

=Bs(n+m,K −m)ψ(n,K, s) +

K−1
∑

k=m

as(n+ k)Bs(n+m, k −m)ψ(n− 1, k, s) .

where we have used the fact that the definition of Bs(k, h) implies that

bs(k)Bs(k + 1, h) = Bs(k, h+ 1) .

of Lemma 3.1. By substituting in (32) the expression for S given in (31) we get

B S Z =

∞
∑

h=0

Bh+1AZh+1 =

∞
∑

h=0

BhAZh −A = S −A

which implies that the matrix S is a solution of the matrix equation.
By assuming that S and S′ are two solutions of this matrix equation, we would have that Y = S − S′ is the

solution of the following system
Y = Z Y B.

Iterating the last equation we get that
Y = Zn Y Bn n ≥ 0 .

This term converges to 0 as n→ ∞ by the assumptions on the eigenvalues of the matrices Z and B. It follows
that Y = 0 and hence S is unique.

of Lemma 3.3. The result follows from the following algebraic manipulations
∞
∑

h=0

S(T2 T
h
1 Z T

−h
1 T−1

2 , A,B)T2 T
h
1 Z

h

=

∞
∑

h=0

∞
∑

k=0

Bk A (T2 T
h
1 Z T

−h
1 T−1

2 )k T2 T
h
1 Z

h

=

∞
∑

h=0

∞
∑

k=0

Bk AT2 T
h
1 Z

k T−h
1 T−1

2 T2 T
h
1 Z

h

=
∞
∑

h=0

∞
∑

k=0

Bk AT2 T
h
1 Z

k+h =
∞
∑

k=0

Bk AT2

(

∞
∑

h=0

T h
1 Z

h

)

Zk

=

∞
∑

k=0

Bk AT2 S(Z, I, T1)Z
k = S(Z,AT2 S(Z, I, T1), B)

Lemma A.1. Let S(s) = S(Z,A(s), B(s)), then its derivative in s can be computed as the solution of the

following linear system.

S′(s)−B(s)S′(s)Z −B′(s)S(s)Z = A′(s) (49)

Proof. By (32) we have that

S(Z,A(s+ h), B(s+ h))−B(s+ h)S(Z,A(s+ h), B(s+ h))Z = A(s+ h) (50)

S(Z,A(s), B(s)) −B(s)S(Z,A(s), B(s))Z = A(s) . (51)

Subtracting the expressions above, adding and removing B(s+ h)S(Z,A(s), B(s))Z we have

∆S(s)−B(s+ h)∆S(s)Z −∆B(s)S(Z,A(s), B(s))Z = ∆A(s)

with ∆S(s) = S(Z,A(s+h), B(s+h))−S(Z,A(s), B(s)) and similar notations for ∆A(s) and ∆B(s). Dividing
for h and letting h→ 0 the result follows.
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