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a b s t r a c t

Daily and annual maximum wind speed quantiles can be estimated using extreme value theory for
any metrological site of interest. These estimates are of vast importance for modelling and predicting
maximum wind speed. This paper develops an efficient modelling paradigm of extreme winds by
analysing daily and annual maximum wind speed data via frequentist and Bayesian methodologies.
For this purpose, the generalized extreme value (GEV) model is used for yearly maxima, and the
generalized Pareto distribution (GPD) is used for daily exceedance over a high threshold. In frequentist
inference, the parameters of both models are estimated using the maximum likelihood and linear
moments method. In contrast, the Bayesian Markov Chain Monte Carlo procedure with the Metropolis–
Hasting algorithm is used. In addition, the informative priors for both models are constructed
empirically using historical records of wind speed data from five other weather stations of Pakistan
and one belonging to India. The results show that the Bayesian modelling provides apparent benefits
in terms of improved accuracy in the estimation of the parameters as well as return levels of
both distributions. Furthermore, the Bayesian analysis expresses that posterior inference might be
affected by the choice of priors used to formulate the informative priors. Overall, based on assessment
measures, the GPD fitted through Bayesian informative priors provides an efficient estimation strategy
in terms of precision than other frameworks when uncertainty in parameters and return levels are
taken into account. Our methodology can be implemented easily to other regions by considering the
prior information from the border area stations of other countries (e.g., China, Afghanistan, India,
and Iran). Moreover, the return level estimates of the GPD based on informative Bayesian priors are
very beneficial in policymaking and wind energy generation engineering for the Thatta region of the
country.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In a developing world, energy plays a crucial role in the
rogress of any country. Energy is considered a primary ingre-
ient of the industrial economy (Saulat et al., 2020). People’s
aily life activities are genuinely linked with energy supply in

Abbreviations: GEV, Generalized extreme value distribution; GPD,
Generalized Pareto distribution; EVD, Extreme value distribution; RL, Return
level; MCMC, Markov Chain Monte Carlo; NIP, Noninformative prior; IP,
Informative prior; POT, Peak over threshold; MLE, Maximum likelihood
method; LMM, Linear moments method; SD, standard deviation
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the modern era, such as cooking, heating, lighting, health, pro-
duction, storage, and education. Therefore, a reliable, continuous,
and cheap energy supply is a prerequisite for reducing poverty,
boosting investment, and enhancing economic growth. Currently,
energy systems have been revamped. It is assumed that poverty
will not be diminished in emerging states without the larger
utilization of recent modes of energy. Due to the rising world
population, energy demand and consumption are increasing day
by day, but the resources are decreasing (e.g., water storage in
dams, expensive fuel, chronic natural gas etc.). The growing trend
of energy consumption and demand indicates that energy will be
the most crucial issue of the world (Rafique and Rehman, 2017;
Hulio et al., 2017). Unfortunately, Pakistan is facing severe energy
crises for the last few decades. Even though extensive access
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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o electricity (99% of the population had access to electricity in
016, compared to 59% of the population in 1990), the country
uffers enormous blackouts (load shedding of 6–8 h a day for
ouseholds and 1–2 h a day for the industry). The energy gen-
ration resources are reduced day by day due to the exponential
rowth in demand. These resources are usually divided into two
ajor mechanisms: (i) renewable energy resources (i.e., energy

esources that can be revived in a short period of time are
nown as renewable energy resources such as wind energy and
olar energy) and (ii) non-renewable energy resources (i.e. those
esources that cannot be restored are known as non-renewable
nergy resources like coal and oil) (Raza et al., 2015; Saulat et al.,
020). The most popular and richly obtained renewable energy
orms are solar, wind, hydrothermal energy. Pakistan has been
lessed with many renewable energy resources such as solar,
ind and biomass energy; however, Pakistan’s energy resources
ave been used inefficiently for decades. As a result, the na-
ion confronts a severe energy crisis. According to a survey by
he World Bank, 66.7% of the businesses in Pakistan mention
lectricity shortages as a more significant barrier to business
han other factors. Under the umbrella of these issues, there are
rgent actions needed to modernize the country’s energy sector.
owadays, the country is moving its attention to the wind energy
ector. Many areas of the Sindh and the Baluchistan provinces
eceive extreme windstorms for the whole year. An appropriate
tatistical modelling of extreme winds makes it possible to install
ind turbines in that areas. For instance, in the case of extreme
inds, statistical models of extremes can be helpful to measure
he involved uncertainty and risk. The extreme wind is somehow
onnected with extreme environmental events.
Analysis of extreme environmental events of many natural

isasters is a hot topic throughout the different areas of scientific
esearch. Derivation of extremal features of observed phenomena
nd quantification of the stochastic behaviour of such events
s one of the primary concerns in the statistical modelling of
xtremes (Coles, 2001). However, the fundamental issue is a
ack of data, essentially modelling with few observations is not
dvantageous. Most statistical approaches focus on the central
art of the distributions, whereas the tails are frequently disre-
arded. Procedures used to analyse the observations exist at the
ail of the distribution partaking excellent statistical properties
f a similar or dissimilar process for one or more variables. For
xample, such analysis could aid in estimating the frequency and
agnitude of extreme events. This enables preventative steps

o be implemented in order to avoid catastrophic events, plan
or their influence, and lessen their consequences. Extreme value
heory (EVT) enables us to measure the stochastic behaviour of
n event found in extremes (upper or lower tails). Generally,
xtreme data are scarce by their nature. The development of
nferential methods that exploit the use of available data has been
dominating research issue for the last few decades.
In particular, the EVT modelling framework has been split

nto two categories: block maxima and peak over a threshold
POT). Block maxim procedure models the maximum observa-
ions (yearly, monthly, weekly etc.) of data collected from the
arge sample using generalized extreme value (GEV) distribution
Coles, 2001; Ferreira and De Haan, 2015). On the other side, the
econd approach models the observations (hourly, daily etc.) that
xceed a high threshold via generalized Pareto distribution (GPD)
Davison and Smith, 1990; Coles, 2001; Beirlant et al., 2004;
erreira and De Haan, 2015; Coles and Powell, 1996). Numerous
tudies favouring block maxima and POT have been done in dif-
erent parts of the world. Coles (2001) has extensively discussed
pplications of both schemes in extreme paradigm applying the
aximum likelihood inference method. Ferreira and De Haan
2015) have done a wide survey of literature to compare block
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maxima and POT. They use the probability-weighted moments
procedure to estimate the parameters of both schemes. Several
works, including (Martins and Stedinger, 2001; Madsen et al.,
1997; Wang, 1991) have examined the relative merits of POT
and block maxima. Based on these studies, Ferreira and De Haan
(2015) also identified two significant properties of block maxima
and POT, with mixed views on performance. POT estimates are
more efficient than block maxima in many studies, provided the
number of exceedances is greater than the number of blocks on
average. de Oliveira et al. (2011) found that the GPD fitted more
efficiently than GEV during modelling extreme wind speed in grid
points over the South Atlantic region from north of Argentina to
southeast Brazil. Furthermore, extreme value distributions (EVDs)
were used to describe the extreme behaviour of the wind speed
variable at Port Elizabeth station in South Africa (Diriba and
Debusho, 2020). Ahmad et al. (2019, 2021) used GEV distribution
to model extreme precipitation data at different weather stations
in Pakistan.

In addition, several studies have been conducted on wind data
at the national level. Kamal and Jafri (1997) used an autoregres-
sive moving average time series model for stochastic simulation
and modelling hourly averaged wind speed in Quetta, Pakistan.
Fawad et al. (2018) developed the regional frequency modelling
of wind speed data using generalized normal, generalized logistic,
Pearson Type-3, GPD, Weibull, log Pearson Type-3 distributions.
They used linear moments method for parameter and quan-
tiles estimations. Khan et al. (2019) developed the modelling
for predictive assessment of wind energy at 10 m height as a
power generation source at seven locations of Pakistan. They
used different parametric probability distributions with classical
inference to complete this task. Shahzad et al. (2020) studied new
Hybrid autoregressive autoregressive and neural network models
in the context of modelling and forecasting wind speed over
the three regions of Pakistan. Haq et al. (2020) investigated the
fitting of five parametric probability distributions on wind speed
data using classical inference procedure. Sumair et al. (2021)
applied three probability distributions (i.e., Weibull, Rayleigh, and
lognormal) to develop the wind modelling at six sites along the
country’s coastal belt. They practiced only classical techniques
such as maximum likelihood estimation method. The present
study develops the Bayesian framework compared with classical
for modelling and forecasting extreme winds. In general, no study
was found in the literature relevant to our proposed work over
the region.

The main motive behind this work is to find the best model
with an efficient estimation procedure. Extreme value models
have a long history in this area; however, traditional methods
are inefficient in maximum data utilization. Given the importance
of evidence in extreme value modelling, it is only reasonable
to investigate incorporating additional sources of information
into the analysis. For instance, the time period for which data
was collected may not be fully representative. There could be
historical evidence, but it will not be in the shape of data and
its behaviour substantially extremes. Therefore, there are various
reasons to believe that an expert who understands the physical
processes involved may have information on extreme behaviour
independent of the available data. That is the reason the Bayesian
Markov Chain Monte Carlo (MCMC) inferential procedure is a
natural choice for conducting extreme value analysis of extreme
wind data over the region. So, the historical records of different
weather stations are considered to elicit prior information.

The rest of the paper is organized as follows. Section 2 is dealt
with information about the study area and some exploratory
analysis of the data. Comprehensive details regarding models
and their inference are given in Section 3. For instance, classical
and Bayesian MCMC techniques for block maxima and POT have
been briefly discussed. The results and fruitful discussions exist
in Section 4. Lastly, the conclusions and some recommendations
for future work are described in Section 5.
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Fig. 1. (a) Geographical location of the Thatta station and blue colour indicates maximum wind speed (see legends) (b) presents the direction of wind speed with
count frequency at Thatta station. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2. Leading areas information and exploratory analysis

The intended research study is the first submission in respect
f frequency analysis of wind speed using both frequentist and
ayesian paradigms in Pakistan. The data considered in this study
onsist of an aggregate of daily maximum wind speed at 50
eters per second at the Thatta district (Latitude 24.5457◦N and

ongitude 67.9524◦E) of the province Sindh, Pakistan. The data
have been taken from the website https://power.larc.nasa.gov/
data-access-viewer/. The data used correspond to 34-years, from
1981 to 2014 series of daily maximum wind speed records. The
windy areas and geographical position with the wind direction on
the observed site are illustrated in Fig. 1. Thus, Fig. 1(a) pointed
out those areas of the country that gained maximum wind at
50 m height. The purple colour rectangle in the map indicates
the observable stations Thatta. Fig. 1(b) shows the direction of
the wind speed in the Thatta region. It is clear in Fig. 1(b) that the
wind speed direction at the selected station is to the southwest.

For the construction of informative priors for the parame-
ters of EVDs in the Bayesian setting, the wind characteristics
of six sites (namely, Badin, Hyderabad, Jamshoro, Nawabshah,
Naushahro Feroze and Lakhpat) at various distances (93 km, 85
km, 85.37 km, 173 km, 233.67 km and 135 km). Thus, due to
the very short distance from the Thatta station, the Lakhpat
station is selected from the Indian region Gujrat. For the elici-
tation of priors, all stations are from the same province except
the Lakhpat station, so it is sufficient to justify the precision
in the construction of informative priors that the primary cri-
terion is geographical closeness or homogeneous environmental
characteristics.

The summary statistics for the Thatta station are given in
Table 1. From the findings, it can be noticed that the distribution
of the series is positively skewed with a high peak. This suggested
the use of EVDs for analysis. For a complete analysis, both annual
and daily data were used. The best suitable distribution of the
wind speed is performed using extreme value theory by applying
to GEV and GP distributions. The fitting and estimation of the
parameters of these models through frequentist and Bayesian
settings are presented next.
 a
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Table 1
Summary statistics of daily maximum wind speed at Thatta station.
Station Mean SD Min Max Skewness Kurtosis CV

Thatta 8.22 1.73 2.68 18.46 0.50 4.10 0.21

3. Methodology

3.1. Modelling of block maxima

In extreme value theory, GEV and GP distributions are widely
used for the modelling and characterizing of extremes. To model
variables with extreme nature using GEV, a data of N independent
values v1, v2, . . . , vN are first blocked into h blocks of size n, with
n quite large, and hence N = hn. Generally, a month, season,
or year could be considered a block size for the data of wind
speed. For example, if n is the number of values in a year, then Mn
indicates the maximum observation corresponds to a year (Coles,
2001). However, the maxima or extreme observation (Mj, j =

1, . . . , h), is taken from each block. This generates the data of h
annual maxima series so-called block maxima to which the family
of GEV models can be fitted. The annual maxima v1, v2, . . . , vn are
independent and identically distributed (i.i.d) with the distribu-
tion function of H(v). Let Mn = max(v1, v2, . . . , vn), n ∈ N and if
there are sequences of normalizing constants {bn > 0} and cn ∈ ℜ

such that

pr
{
(Mn − cn)

bn
≤ v

}
→ Hn(bnv + cn) → F (v) (1)

as n → ∞, where F is a non-degenerate distribution function, the
istribution function H is called to be in the domain of attraction
f the extreme value distribution F {i.e. H ∈ F (v)}. Also, the F
elongs to GEV family

(v, α, β, ξ ) =

⎧⎪⎨⎪⎩
exp

[
−

{
1 + ξ

(
v−α
β

)}−
1
ξ

]
, ξ ̸= 0

exp
[
− exp

(
−
v−α
β

)]
, ξ = 0

(2)

defined on {v : 1 + ξ (v − α)/β}, where −∞ < α < ∞, β > 0
nd −∞ < ξ < ∞ are location, scale, and shape parameters

https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
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f GEV distribution. However, the shape parameter defines the
ehaviour of the upper tail of the distribution. The GEV distribu-
ion has three different limiting forms, i.e., Gumbel distribution,
reshet distribution and Weibull distribution. If ξ → 0 the GEV
istribution in (2) leads to the Gumbel distribution. For ξ > 0

and ξ < 0, the (2) correspond to Frechet and Weibull distribution
families, respectively, (Coles, 2001; Beirlant et al., 2004).

3.2. Parameter estimation of GEV model through frequentist setting

Initially, the maximum likelihood estimation method (MLEM)
and linear moments method (LMM) were employed to estimate
the parameters of GEV distribution in the frequentist setting.
In MLEM, we differentiate the function given in (2) for vi, for
xample, when ξ ̸= 0 the density of GEV is given

(vi, α, β, ξ ) =
1
β

[
1 + ξ

(vi − α)
β

]−

(
1+ 1

ξ

)

× exp

[
−

{
1 + ξ

(vi − α)
β

}−
1
ξ

]
(3)

The Maximum Likelihood Estimates (MLEs) of the param-
ter vector (α, ξ ), say α̂, β̂ and ξ̂ are obtained by maximiz-
ng the log-likelihood with respect to unknown parameters. The
og-likelihood is given in the following form

(α, β, ξ ; v1, v2, . . . , vn) = −n logβ

−

(
1 +

1
ξ

) n∑
i=1

log
[
1 + ξ

(vi − α)
β

]
−

n∑
i=1

{
1 + ξ

(vi − α)
β

}−
1
ξ

(4)

due to difficulty in the solution of expression (4), the maxi-
mization is obtained by quasi-Newton procedure with numerical
iteration (Ahmad et al., 2019; Diriba et al., 2017; Diriba and
Debusho, 2020).

For the estimation of linear moments via LMM, we apply
the linear combinations of order statistics values (Hosking and
Wallis, 2005). LLM offers simple and more efficient estimators of
the characteristics of extremal data and the parameters of the
distribution. Let a random sample V1, V2, . . . , Vr of size n, with
umulative distribution function F (v) and quantile function v(F ).
uppose V1 : r ≤ V2 : r ≤ · · · ≤ Vr : r be the order statistics of
he sample. For the random variable V , the rth population linear
oments explained by (Ahmad et al., 2019):

r =
1
r

r−1∑
i=0

(−1)k
(

r − 1
i

)
E(Vr−i : r ) r = 1, 2, . . . (5)

enerally, we require the first four linear moments for r =

, 2, 3, 4. Moreover, linear moments can also be considered as
inear combinations of probability-weighted moments as in the
orm

r+1 =

r∑
i=0

βi(−1)r−i
(

r
i

)(
r − 1
i

)
(6)

brief description of the first four linear moments and other
uantities for the GEV model are given in (supplementary ma-
erials file A.1)

.3. Peak-over-threshold and generalized Pareto distribution

In EVT, the method defined as Peak-Over-Threshold (POT)

s commonly used. Let v1, v2, . . . is a sequence of independent d
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nd identically distributed (i.i.d) random variables having a con-
inuous distribution function F which fulfils the condition in
1). Suppose v refer to an arbitrary term in the vi sequence, it
escribes the stochastic behaviour of extreme events. Then, the
onditional distribution function of v a suitably high threshold u
s given in the following form

u(v) = Pr(v − u|v > u) =
F (v + u) − F (u)

1 − F (u)
(7)

The expression (7) implies the probability that the observations
of v exceeding the threshold u by v − u. According to Coles
(2001), for a large sufficient threshold u, the distribution function
of (v − u), conditional on v > u, is approximately

(v) = 1 −

(
1 +

ξv

β̃

)−1/ξ

(8)

defined on {v : v > 0 and (1 + ξv/β̃) > 0}, where ξ is a shape
parameter and β̃ = β+ξ (u−α) is the modified scale parameter of
the distribution. Note that the parameters α, β and ξ are location,
scale and shape parameters as defined prior in (2), respectively.
The distribution specified by expression (8) is called GPD. This
means that, if the approximating distribution of block maxima
is F (v), then the approximate distribution corresponding to the
bservations that exceed the sufficient threshold lie within the
eneralized Pareto family with the shape ξ same as GEV and

modified scale parameter β̃ = β+ξ (u−α) for any given threshold
. The distribution given in (16) is unbounded if ξ = 0 and it can
e interpreted by taking the limit as ξ → 0 in (16), which goes
o

lim
ξ→0

K (v) = 1 − exp
(

−
v

β̃

)
, v > 0 (9)

the exponential distribution with parameter (1/β̃). Generally, the
GPD is developed as a two-parameter in the following form

K (v, β, ξ ) =

⎧⎪⎪⎨⎪⎪⎩
1 −

{
1 + ξ

v

β̃

}−1/ξ

, ξ ̸= 0

1 − exp
(

−
v

β̃

)
, ξ = 0

(10)

here v ∈ [0,∞) for ξ ≤ 0 and v ∈ [0, β̃/ξ ) for ξ > 0 (Jocković,
2012; Diriba and Debusho, 2020). As previously, the shape param-
eter establishes the form of distribution. For instance, the ξ > 0
will produce heavy-tailed Pareto distribution, ξ < 0 will create
a Beta distribution with upper bound, and ξ → 0 will provide
an exponential distribution. Consequently, the asymptotic results
depend on the selection of the threshold.

The selection of appropriate threshold is important; a very
low threshold would lead to extreme bias while a very high
threshold to larger variance (Ranjbar et al., 2020). For practical
uses, an appropriate threshold u is selected using data-analytic
instruments such as the mean residual life plot [for details see
Coles (2001). This is established by the fact that if the excesses
over the threshold u can be explained by a GPD with parameters
ξ < 1 and β , then it is easy to show that for any higher threshold
u0 ≥ u

E(v − u0|v > u0) =
βu0 + ξ (u0 − u)

1 − ξ
(11)

he mean access function is linear in u0 above u. In experimental
pplications, the mean residual life plot (which demonstrates the
mpirical mean excess opposite to the rising threshold values)
s an advantageous path to decide the threshold and to prove
he competence of the GPD as an approximation of the excess
istribution.
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.4. Parameter estimation of GPD model through frequentist setting

Similar to the GEV model, both MLEM and LMM procedures
ere occupied to get the parameters estimates for GPD model in
frequentist setting. The density function of GPD is obtained by
ifferentiating (10) with respect to v and has the following form

(v, β̃, ξ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
β̃

{
1 + ξ

v

β̃

}−
1
ξ
−1

, ξ ̸= 0

1
β̃

exp
(

−
v

β̃

)
, ξ = 0

(12)

uppose v1,v2, . . . , vn are n exceedances over the threshold u,
hen the log-likelihood associated with (12) is given

(v1,v2, . . . , vn, β̃, ξ )

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−n log β̃ −

(
1
ξ

+ 1
)∑n

i=1 log
(
1 +

vi
β̃

)
, ξ ̸= 0

−n log β̃ −
1
β

n∑
i=1

vi ξ = 0
(13)

The MLEs (say ˆ̃β and ξ̂ ) of β̃ and ξ when ξ ̸= 0 can be obtained
by solving the equations given in (14)⎧⎪⎪⎨⎪⎪⎩

∂ l(v1,v2, . . . , vn, β̃, ξ )
β̃

= 0

∂ l(v1,v2, . . . , vn, β̃, ξ )
ξ

= 0
(14)

imultaneously. Like GEV model, we could not solve the log-
ikelihood functions analytically, that is why the maximization is
one by using a quasi-Newton numerical method. The standard
rrors of MLEs can be obtained asymptotically by inverting the
nformation matrix.

In LMM paradigm, the parameters of GPD model were found
imilar to GEV model. The approximations for the parameters of
PD were also introduced by Hosking and Wallis (2005, p. 194).
inear moment defined for ξ > −1are briefly described in
(supplementary materials file A.2)

3.5. Estimation of return levels for extreme value distributions

The estimates of the parameters of EVDs are not enough to
study extreme environmental events. From the practical point
of view, some other quantities (i.e., return levels) are estimated
with the help of the fitted extreme value models. For instance,
return level (RL) estimates play a dynamic role in the modelling
of extreme winds for assessing hazards (for example destruction
of infrastructures such as buildings and the spread of wildfires)
linked with future periods adapting to EVDs models. On the other
side, the prediction of future extreme wind speed is important to
make a proper plan for the construction of wind energy power
stations, and RLs are used for such prediction

The RLs for the GEV model opposite to the return period T =

1/p, represented by vp where F (vp = 1 − p) and 0 < p < 1, is
chieved by applying the quantile function with the inverse of (2)
iven by Coles (2001) and also discussed by (Ahmad et al., 2019;
iriba and Debusho, 2020).

p =

⎧⎨⎩ α −
β

ξ

[
1 − {− log (1 − p)}−ξ

]
, ξ ̸= 0

α − β log {− log (1 − p)} , ξ = 0
(15)

n the GPD case, let vp be the return level that is exceeded on the
verage once every p value. Thus, the v is acquired as a solution
p
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o 1−H(vp, β̃, ξ ) = 1/p is sufficiently large to ensure that vp > u,
hen vp has the following form

p =

⎧⎨⎩ u −
β̃

ξ

[
1 −

{
p−ξ

− 1
}]
, ξ ̸= 0

u − β̃ log(p), ξ = 0
(16)

As a result, the return level vp given in (15) and (16) is a
quantile of GEV and GPD connected with the upper tail proba-
bility p. MLEs of the return level vp, indicated by v̂p is achieved
by substituting the MLEs of the parameter vectors of GEV (α̂,β̂ ,ξ̂ )
and GPD (β̂ ,ξ̂ ), respectively.

3.6. Bayesian paradigm

As the likelihood approach, let {vi, i = 1, 2, . . . , n} is i.i.d
random variable which follows an EVDs (i.e. GEV or GPD) family.
In the Bayesian modelling framework, the parameters of EVDs are
treated as random variables for which we need to establish the
prior distributions. From a practical point of view, prior knowl-
edge assists the researchers to enhance the information offered
by the observed data. Suppose ψ1 = (α, β, ξ ) and ψ2 = (β, ξ )
are the vectors of parameters of EVDs and let gψ (ψi), i = 1, 2
express probability density function of the prior distribution for
ψi i = 1, 2 with no evidence to the genuine data. Then applying
Bayes theorem argument to discover the posterior distribution for
ψi i = 1, 2 in the following form

f (ψi|v) =
L(ψi|v)gψ (ψi)∫

Θ
L(ψi|v)gψ (ψi)dψ

∝ L(ψi|v)gψ (ψi), (17)

here L(ψi|v), i = 1, 2 show the likelihood function EVDs and
is the parametric space. For computational point of view, NIPs

nd IPs were considered. The NIPs were incorporated by assuming
here is no extra knowledge available regarding parameters, apart
rom the data. On the other side, IPs were formed through the
echnique purposed by Coles and Tawn (2005) also used by Diriba
t al. (2017), Diriba and Debusho (2020), Ahmad et al. (2019).
ccording to this approach, extreme quantiles of the EVDs were
aken into account to generate the prior information. A brief dis-
ussion about the approach proposed by Coles and Tawn (2005)
s presented in the subsequent paragraphs.

Let the quantile function [vpi , i = 1, 2, 3 with p1 > p2 > p3]
f GEV distribution in (15), be used to compute the quantiles
rom historical data nearby weather stations. The quantiles are
ssessed independently for each station by using the MLEs of
EV parameters. Hence, the joint prior distribution for GEV pa-
ameters could be produced via extreme quantiles (vp1 , vp2 , vp3 )
orresponding to p1 > p2 > p3 probabilities. Due to natural or-
ering quantiles vp1 < vp2 < vp3 , the assumption of independent

priors on vpi , i = 1, 2, 3 is violated. That is why Coles and Tawn
(2005) endorsed the quantile differences. In the present setting,
the authors also used the quantile differences

vpi = ṽpi − ṽpi−1 , i = 1, 2, 3 (18)

where vp0 is explained to a lower endpoint of the process variable
(e.g.wind speed) and is usually considered vp0 = 0. After the
differencing of the quantiles, the appearance of quantiles in the
ordering form validates the independence assumption. Hence, the
priors based on the quantile differences are considered to be
independent Gamma distributions with parameters (λi, γi), i =

1, 2, 3. That is,

vpi ∼ Γ (λi, γi), λi > 0, γi > 0; i = 1, 2, 3. (19)

The joint prior for the (λi, γi), i = 1, 2, 3, could be developed from
the Gamma distribution in the following way

v ∼ Γ (λ , γ ) ∝ vλ1−1 exp(−γ v ),
p1 1 1 p1 1 p1



T. Ahmad, I. Ahmad, I.A. Arshad et al. Energy Reports 9 (2023) 2980–2992

˜
˜

w
m
t
a
h

g

w

J

a

J

w
S
b
M
i
a
A
S
w
i
d
0
G
p
l
q
i
1

ṽ
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vp2 ∼ Γ (λ2, γ2) ∝ (vp2 − vp1 )
λ2−1 exp(−γ2(vp2 − vp1 )),

and

vp3 ∼ Γ (λ3, γ3) ∝ (vp3 − vp2 )
λ3−1 exp(−γ3(vp3 − vp2 )).

Thus, the joint prior for (vp1 , vp2 , vp3 ), by considering vp0 = 0, is
stated as

g(vp1 , vp2 , vp3 ) ∝ vλ1−1
p1 exp(−γ1vp1 )

× (vp2 − vp1 )
λ2−1 exp{−γ2(vp2 − vp1 )}

× (vp3 − vp2 )
λ3−1 exp{−γ3(vp3 − vp2 )}

and has composed in a short form

g(vp1 , vp2 , vp1 ) ∝ ṽλ1−1
p1 exp(−γ1̃vp3 ) ×

3∏
i=2

ṽ
λi−1
pi exp(−γĩvpi ) (20)

ith vp1 < vp2 < vp3 given that (Ahmad et al., 2019). By
ixing (15) with (20) and multiplying by the Jacobian of the

ransformation from (vp1 , vp2 , vp3 ) →ψ = (α, β, ξ ) precedes to
prior in terms of the GEV parameter vector ψ . That is, the form
as given

ψ (ψ) ∝

3∏
i=1

ṽ
λi−1
pi exp(−γĩvpi ) × J (21)

ith vp1 < vp2 < vp3 , where the Jacobian has the following form

=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

∂vp1

∂α

∂vp1

∂β

∂vp1

∂ξ

∂vp2

∂α

∂vp2

∂β

∂vp2

∂ξ

∂vp3

∂α

∂vp3

∂β

∂vp3

∂ξ

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
nd the results is by

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

β

ξ 2

⏐⏐⏐⏐⏐⏐
∑
i<j

(−1)i+j(wi × wj) log
(
wj

wi

)⏐⏐⏐⏐⏐⏐ , i, j ∈ (1, 2, 3); ξ ̸= 0

β

2

⏐⏐⏐⏐⏐⏐
∑
i<j

(−1)i+j logwi × logwj log
(
wj

wi

)⏐⏐⏐⏐⏐⏐ , i, j ∈ (1, 2, 3); ξ = 0

(22)

here wi = − log(1 − pi), i = 1, 2, 3.
imilarly, the informative priors for the GPD were also obtained
y using the historical data of different surrounding stations.
ore precisely, these informative priors for GPD were established

n terms of extreme quantiles. The interested readers could find
dditional reading in, for instance (Diriba and Debusho, 2020;
hmad et al., 2019; Beirlant et al., 2004; Coles and Tawn, 2005).
imilar to GEV modelling, the assumption of independence priors
ould not be effective due to the natural ordering of the quantile

n (16) i.e. vp1 < vp2 . Thus, we again considered the quantile
ifference ṽp1 = vpi−vpi−1 ,i = 1,2 of expression (16), where vp0 =

is indicates the physical lower bound of the variable. For the
PD model, only two quantiles are required for scale and shape
arameters. Frankly speaking, the authors are not considering the
ocation parameter to GPD. Like the GEV model setting, again
uantile differences are respected. These differences tend to be
ndependent Gamma distributions with parameters (λi, γi), i =

, 2, and have the following form

pi ∼ Γ (λi, γi), λi > 0, γi > 0; i = 1, 2. (23)

dditionally, using gamma distribution we can also consider

∼ Γ (λ , γ ) ∝ vλ1−1 exp(−γ v )
p1 1 1 p1 1 p1

2985
nd

p2 ∼ Γ (λ2, γ2) ∝ (vp2 − vp1 )
λ2−1 exp(−γ2(vp2 − vp1 )).

ence, the joint prior for (vp1 , vp2 ), by considering vp0 = 0 has
the following form

g(vp1 , vp2 ) ∝ vλ1−1
p1 exp(−γ1vp1 )

× (vp2 − vp1 )
λ2−1 exp{−γ2(vp2 − vp1 )} (24)

given that vp1 < vp2 . Combining (23) with (24) and multiplying by
the Jacobian of the transformation from (vp1 , vp2 ) →ψ = (β, ξ ),
this precedes a prior in terms of the GPD parameter vector ψ and
has been written in the following way

gψ (ψ) ∝

(
α +

β

ξ
(p−ξ

1 − 1)
)λ1−1

exp
(

−γ1

{
α +

β

ξ
(p−ξ

1 − 1)
})

×(
β

ξ
(p−ξ

2 − p−ξ

1 )
)λ2−1

exp
(

−γ2
β

ξ
(p−ξ

2 − p−ξ

1 )
)

× |J| (25)

where Jacobian J is found as

J =

⏐⏐⏐⏐⏐⏐⏐⏐
∂vp1

∂β

∂vp2

∂β

∂vp1

∂ξ

∂vp2

∂ξ

⏐⏐⏐⏐⏐⏐⏐⏐
= −

β

ξ
[(p1p2)−ξ (log p2 − log p1) − p−ξ

2 log p2 + p−ξ

1 log p1]

The direct computation of the posterior densities f (ψi|v), i =

, 2 of EVDs models is a challenging task. Therefore, the charac-
eristics of the posterior distributions were estimated by engag-
ng the MCMC procedure with the Metropolis–Hasting algorithm
Ahmad et al., 2019; Hastings, 1970).

.7. Posterior predictive distributions

As discussed earlier, the core objective of extreme value anal-
sis is often prediction. Generally, Bayesian analysis of extremes
s played a vital role in this task through the posterior predictive
istribution. For instance, if Y represents a future extreme of wind
peed data with the density function f (y|ψ), where ψ ∈ Ψ , and
is a parametric space. As a result, the predictive distribution

or our extremes based on EVDs is given that

r(Y ≤ y|v) =

∫
Ψ

Pr(Y ≤ y|ψi)f (ψi|v)dψ, (26)

here v shows the past observations of the process, ψi, i = 1, 2
e generic parameters vectors of both extreme value models, and
(ψi|v) are posterior densities for ψi, i = 1, 2. In addition, the
r(Y ≤ y|ψi) i = 1,2 are the EVDs evaluated at Y .

4. Results and discussion

4.1. Testing the basic assumptions of extreme wind speed data

Before applying extreme value modelling to a series of ex-
cessive wind speeds, we tested the assumptions of the data. For
instance, a trend in the series may affect the modelling. Therefore,
we assessed assumptions (i.e., randomness, independence, homo-
geneity, and stationarity) using the following tests (i.e., NERC,
Wald–Wolfowitz, Mann–Whitney, and Spearman test). The null
hypothesis for all assumptions is that the respective assump-
tion related to the data is not valid. For more details about the
procedures [see, e.g., Naghettini (2017) and references therein].
Further, trend analysis was done by Kendall’s tau test and Sen’s
slope estimators (Sen, 1968). The results of Table 2 clearly show
that the data fulfil the above assumptions and can be used for
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Table 2
Results of concerning assumptions of wind speed series using different tests. In brackets (p-value) is reported.
Station NERC WW Mann–Whitney Spearman Kendall’s tau Sen’s

Thatta 1.532
(0.063)

0.00
(0.497)

−1.119
(0.131)

−1.540
(0.062)

−0.175
(0.1503)

−0.186
(0.120)
Table 3
Estimated parameters with (standard errors in parentheses) and [confidence intervals in square brackets] for both GEV and GPD
models via frequentist methods.
Models MLEs L-Moments Estimates

α̂ β̂ ξ̂ α̂ β̂ ξ̂

GEV 14.16 (0.22)
[13.74, 14.59]

1.16 (0.15)
[0.87, 1.45]

−0.15 (0.09)
[−0.33, 0.03]

14.17 (0.22)
[13.72, 14.59]

1.17 (0.16)
[0.85, 1.47]

−0.18 (0.13)
[−0.45, 0.06]

GPD – 1.00 (0.21)
[0.59, 1.421

−0.05 (0.15)
[−0.34, 0.25]

– 0.95(0.14)
[0.67, 1.45]

0.009 (0.17)
[−0.34, 0.29]
˜

further analysis. The probability value of Sen’s slop test suggests
no significant trend exists in wind speed data of Thatta station.
Increased data length might change this argument.

4.2. Estimation of parameters using classical procedures

The Generalized extreme value and the generalized Pareto
odels were fitted to block maxima and daily maximum thresh-
ld exceedances, respectively, using MLE and LMM. For fitting
PD on daily maximum wind data, a suitable threshold u = 14

has been selected via the mean excess plot procedure. A stability
plot for the shape and modified scale parameters can be used
to demonstrate the effectiveness of the chosen threshold (Coles,
2001). Essentially, suppose the GPD is a sensible model for the
exceedances above the threshold u. In that case, estimates of
shape and modified scale parameters should be almost constant
to all thresholds greater than u. Hence, the shape and scale
parameters estimates are constant for thresholds higher than 14
for daily maximum wind speed.

The estimates based on MLE and LMM for the parameters of
GEV (α, β and ξ ) and/or GPD (β and ξ ) with their associated
standard errors (SE) and confidence intervals (CI) are given in
Table 3. The SE and CI for the LMM estimates were estimated
through the bootstrapping procedure. From Table 3, it can be
seen that the estimated shape parameter is, therefore, less than
zero for the GEV model, which specifies an upper tail of the
appropriate extreme value models fitted to extreme wind speed.
This suggests a thicker tail for GEV distribution, which delivers
high quantiles. This is particularly accurate while the quantiles
are estimated for higher return periods for maximum wind speed
(Diriba and Debusho, 2020). Prior to calculating the return levels,
the goodness-of-fit of both EVDs was checked. Thus, the prob-
ability, quantile, and return level plots for fitted GEV and GPD
models to the extreme wind data are shown in Fig. 2 (a, b),
respectively. The plots given in Fig. 2 recommends that the fitting
requirements of EVDs have been contented.

The analysis was further elongated by using the classical pa-
rameter estimation methods to estimate the RLs of annual max-
ima and exceedances over the threshold for 2, 10, 25, 50 75, and
100 years of average recurrence interval. In Table 4, you can find
the estimated RLs of EVD’s based on MLE and LMM parameter
estimation methods for annual maxima and POT. No significant
differences are observed when comparing RLs of annual maxi-
mum over different return periods. On the other hand, the RLs for
exceedances over the threshold slightly higher than the annual
maxima. These results highlight the importance of using the full
range of data available. The variation in RLs could be due to the
skewness in daily yearly maximum wind speed data. Therefore,
the median is a robust measure to define data summary for a
skewed distribution, while the mean is not.
2986
The change between the median and the mean can therefore
signify the magnitude of irregular values in the return levels. This
is further examined in the Bayesian approach.

4.3. Bayesian modelling of extreme wind speed data

This section deals with the findings of Bayesian analysis to
the annual maxima and daily maximum wind speed data. Non-
informative and informative priors were used. We constructed
informative priors based on historical records independently for
each of the surrounding weather stations (namely, Badin, Hy-
derabad, Jamshoro, Nawabshah, Naushahro Feroze). One more
station (named Lakhpat) from the Indian side was also consid-
ered to ensure the accuracy of the study. The above-considered
weather stations are situated at various distances from the Thatta
station. The effects of various distances on parameters and return
level estimates were assessed.

4.3.1. Priors effect on parameters of extreme value distributions
The fundamentals of the Bayesian paradigm require the prior

distributions for GEV and GPD parameters denoted by ψ1 =

(α, β, ξ ) and ψ2 = (β, ξ ). Essentially, the non-informative for
GEV and GPD parameters were fabricated by considering there
is was no extremal information about the process apart from
the data. By following the procedure of Coles and Tawn (2005),
Ahmad et al. (2021), the joint density of ψi, i = 1, 2was supposed
to be

fψ (ψ1) = f (α, η = log(β), ξ ) = fα(α)fη(η)fξ (ξ ) and
fψ (ψ2) = f (η = log(β), ξ ) = fη(η)fξ (ξ )

The following independent NIPs were used by (Coles and Tawn,
2005; Ahmad et al., 2021) as

fα(α) ∼ N(0, 10000), fη(η) ∼ N(0, 10000), fξ (ξ ) ∼ N(0, 100)

where N(0, 10000) represents a Gaussian distribution with mean
0 and variance 10,000. The higher variance guarantees the ab-
sence of external information.

The IPs were constructed by using the historical information
of wind speed from nearby stations. To achieve more precision
about the study, the historical records of one station (namely
Lakhpat) from the Indian territory were also used to develop
IPs for EVDs parameters. The procedure illustrated in Section 3.6
was practiced to build the IPs for GEV and GPD. For instance,
vp1 ∼ Γ (133.462, 0.143), ṽp2 ∼ Γ (0.849, 8.948) and ṽp3 ∼

Γ (0.184, 69.367) quantiles were obtained by the authors for
GEV model using historical records of the Lakhpat station. Same
procedure was repeated to elicit IPs for other stations. Table 5,
illustrates the posteriors means, SEs and confidence intervals of
GEV and GPD parameters from NIPs and IPs. The posterior means
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Fig. 2. The probability, quantile, and return level plots: (a) fitted GEV and (b) fitted GPD model.
Table 4
Estimated return levels and 95% confidence interval for GEV and GPD through frequentist methods.
Models Maximum likelihood L-Moments Estimates

Return period (years) Estimates [Confidence intervals] Estimates [Confidence intervals]

GEV 2 14.58 [14.13, 15.02] 14.59 [14.11, 15.02]
5 15.72 [15.16, 16.27] 15.71 [15.11, 16.21]
10 16.37 [15.71, 17.04] 16.34 [15.62, 16.91]
25 17.10 [16.24, 17.97] 17.01 [16.05, 17.85]
50 17.58 [16.51, 18.65] 17.44 [16.34, 18.74]
75 17.84 [16.63, 19.05] 17.67 [16.44, 19.23]
100 18.01 [16.70, 19.32] 17.82 [16.54, 19.59]

GPD 2 15.00 [14.56, 15.44] 14.97 [14.65, 15.30]
5 15.86 [15.26, 16.46] 15.86 [15.30, 16.36]
10 16.49 [15.72, 17.27] 16.54 [15.74, 17.22]
25 17.29 [16.13, 18.46] 17.44 [16.19, 18.65]
50 17.88 [16.28, 19.47] 18.12 [16.43, 20.11]
75 18.21 [16.31, 20.11] 18.52 [16.55, 21.15]
100 18.44 [16.30, 20.58] 18.81 [16.64, 21.94]
of the parameters EVDs parameters based on IP’s are closed to
the posterior means of NIPs. Table 5, show that the IPs produced
from all stations reduced the posterior SD of EVDs except Lakhpat
station. These decay in SD might reflect the diminution in un-
certainty due to the incorporation of supplementary information
from the neighbouring stations. When compared with standard
errors of MLE and LMM, all the SDs of the EVDs parameters for
the IPs and NIPs were smaller except Lakhpat station and scale
parameter obtained through LMM.

To investigate how the information based on the historical
ecords affected the EVDs parameters, the estimated posterior
2987
densities plots of GEV parameters for block maxima and GPD pa-
rameters for POT are given in Fig. 3. The distributions of location
parameter of GEV and scale parameters of both models are look
like symmetric. In addition, the densities of scales parameters
of EVDs for informative priors built from the data of Naushero
Firoz station had high peaks at the centre. On other hand, the
densities of shape parameters of EVDs also had high peaks at
centre for informative priors constructed from the information of
Hyderabad station. This validates the findings of Table 5 that the
IPs elicited have had an influence on EVDs parameters.
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Table 5
Estimated parameters with (standard errors in parentheses) and [confidence intervals in square brackets] for both GEV and GPD
models through Bayesian Paradigm.

Parameter estimates of GEV and GP distributions

GEV GPD

Priors α̂ β̂ ξ̂ β̂ ξ̂

Non-informative
14.12 (0.23) 1.23 (0.17) −0.12 (0.10) 0.98 (0.21) 0.07 (0.18)
[13.68, 14.58] [0.96, 1.63] [−0.29, 0.12] [0.61, 1.44] [−0.22, 0.49]

Informative
Hyderabad 14.23 (0.19) 1.23 (0.14) −0.22 (0.05) 1.28 (0.18) −0.28 (0.06)

[13.83, 14.59] [0.99, 1.54] [−0.32, −0.13] [0.96, 1.66] [−0.33, −0.09]

Nawabshah 14.10 (0.20) 1.16 (0.14) −0.17 (0.06) 1.06 (0.17) −0.11 (0.08)
[13.69, 14.49] [0.93, 1.47] [−0.28, −0.04] [0.78, 1.43] [−0.26, 0.06]

Badin 14.14 (0.21) 1.20 (0.15) −0.16 (0.07) 1.09 (0.18) −0.10 (0.09)
[13.72, 14.54] [0.96, 1.54] [−0.30, −0.017] [0.77, 1.50] [−0.26, 0.09]

Naushahro-Firoz 14.03 (0.19) 1.11 (0.13) −0.16 (0.06) 1.00 (0.15) −0.11 (0.07)
[13.63 ,14.39] [0.89, 1.40] [-0.27 −0.05] [0.72, 1.32] [−0.24, 0.04]

Jamshoro 14.18 (0.21) 1.24 (0.15) −0.16 (0.07) 1.16 (0.20) −0.10 (0.09)
[13.75, 14.60] [0.98, 1.59] [−0.30, −0.01] [0.81, 1.61] [−0.28, 0.08]

Lakhpat 14.16 (0.24) 1.28 (0.17) −0.06 (0.12) 0.99 (0.29) 0.13 (0.19)
[13.706, 14.622] [0.99, 1.67] [−0.27, 0.21] [0.67, 1.47] [-0.20 0.53]
Fig. 3. Estimated Posterior densities of the generalized extreme value and generalized Pareto distribution parameters to annual maximum and daily maximum wind
speed data using non-informative and informative priors.
4.3.2. Influence of priors on return levels
To explore the influence of the NIPs and IPs on the return

evels of EVDs, the posterior density plots were constructed by
2988
putting the vector of observations from marginal posterior dis-
tribution of EVDs parameters into respective quantile functions
define in (15) and (16), respectively, for 0 < p < 1. Similar to
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Fig. 4. Posterior densities for 2-, 5-, 10-, 25-, 50-, 75-, and 100-year return level.
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requentist methods, the posterior distribution of 2-, 5-,10-, 25-
50-, 75-, and 100- years RLs were obtained corresponding the
ifferent value of p = 0.5, 0.5, 0.1, 0.04, 0.02, 0.013, and 0.01.
he graphical evaluation of the densities of return levels based
n the Bayesian parameters estimation method with NIPs and IPs
or block maxima and daily wind speed data are also shown in
his study; subsequently, the plotted densities of the RLs of all
xceedance of wind speed data are shown in Fig. 4. In addition,
he RLs density of block maxima are given in Figure S1 ‘‘see
upplementary materials file’’.
It is evidenced from Fig. 4 that the priors had an influence

n the distribution of RLs. The posterior densities based on IPs
ave more elevated compared with the posterior densities of NIPs
xcept Lakhpat station. This decay in RLs densities for Lakhpat
tation might be due to longer distance from the Thatta station.
t can be observed that the distributions of RLs above 2-years are
2989
lso slightly skewed to right tail. Further, the posterior distribu-
ions of the RLs are also sensitive to IPs from which the prior
nowledge was produced.
In frequentist settings, the different mean RL values were

bserved for both models, which could be due to skewness per-
eived in the data. Hence, optimal selection of summary mea-
ures used for the RLs could be improved the results found from
he posterior distribution. Additionally, the skewed RLs densities
ight imitate the uncertainty within the model for forming upper

imits of the RLs comparative to lower limits for longer return
eriods (Coles and Tawn, 2005). The posterior median of RLs
or EVDs based on IPs and NIPs are presented in Table 6. When
omparing the results of Table 6 with Table 4, the posterior
edians of RLs of the GEV model are close to the mean RLs
f MLE and LMM, except for minor variation detected for some
eturn level values. On the other hand, the median of RLs GPD
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Fig. 5. Comparison of the return levels (a) block maxima of wind speed data using different GEV parameters estimation techniques (b) exceedances over threshold
f daily wind speed data using different GPD parameters estimation techniques.
Table 6
Estimated return levels corresponding 2-, 5-, 10-, 25-, 50-, 75-, and 100- years
of GEV and GPD based on NIPs and IPs methods.
Models Return levels

2 5 10 25 50 75 100

GEV

Non-informative 14.57 15.64 16.18 16.71 17.02 17.18 17.2
Informative
Hyderabad 14.66 15.78 16.39 17.02 17.41 17.615 17.73
Nawabshah 14.51 15.64 16.28 16.98 17.43 17.67 17.83
Badin 14.56 15.77 16.40 17.14 17.62 17.87 18.04
NausheroFiroz 14.42 15.50 16.11 16.78 17.22 17.45 17.60
Jamshoro 14.63 15.84 16.53 17.30 17.80 18.06 18.24
Lakhpat 14.63 16.00 16.85 17.87 18.59 18.99 19.27

GPD

Non-informative 14.69 15.64 16.40 17.45 18.27 18.77 19.13
Informative
Hyderabad 14.82 15.74 16.32 16.97 17.37 17.59 17.73
Nawabshah 14.71 15.57 16.16 16.88 17.38 17.65 17.84
Badin 14.74 15.64 16.27 17.04 17.58 17.88 18.09
NausheroFiroz 14.66 15.47 16.03 16.71 17.17 17.43 17.61
Jamshoro 14.77 15.72 16.38 17.18 17.74 18.05 18.26
Lakhpat 14.72 15.78 16.67 17.97 19.06 19.75 20.26

establishes with IPs looking higher than mean return levels of
MLEs and LMM. In addition, the RLs linked with Lakhpat station
IPs are quite larger for the higher return period (for example,
100- years). The visual assessment of the estimated RLs of block
maxima and POT corresponding to 2-, 5-, 10-, 25-, 50-, 75-, and
100- years return periods based on adopted different parameters
estimation methods are shown in Fig. 5 (a, b), respectively. It is
verified from Fig. 5 that the Bayesian paradigm with Lakhpat IPs
for all exceedances show a substantial variability in RL of extreme
wind speed data while examining for higher return period; in
contrast, RLs for lower return periods displays slight difference
for all methods. For verification point of view, posterior predictive
distributions of EVDs with NIPs and IPs (with historical records of
2990
Hyderabad station) were constructed corresponding to 1, 2 and
5-years return periods. Figure S2 (a, b) correctly verified the RLs’
findings based on Bayesian settings.

Generally, the Bayesian approach results showed a significant
improvement in the inference for the extreme wind speed data
compared with frequentist methods. Frankly speaking, the IPs for
the Bayesian paradigm constructed from neighbouring weather
stations improve the precision of the parameter estimates com-
pared with the frequentist techniques. Hence, it can be claimed
that the uncertainties added in the Bayesian framework in term
of IPs has significantly enhanced the estimates for wind speed
data of Thatta station. The precision could be increased by us-
ing the historical information of more suitable stations for prior
construction (Ahmad et al., 2021).

4.4. Models assessment

Boxplots in Fig. 5 evaluate the efficiency of EVDs and the
estimation procedures as well. Moreover, the boxplots are con-
structed corresponding to Root Mean Square Error (RMSE), Rela-
tive Root Mean Square Error (RRMSE). It can be acknowledged
from Fig. 5 that the GPD based on Bayesian MCMC with IPs
except the Lakhpat station is more appropriate to the wind speed
modelling at Thatta station. In addition, the boxplots of GEV
corresponding RMSE are also showing accurate fitting for all
methods. In contrast, GEV boxplots based on RRMSE display
the best fit for frequentist methods and Bayesian MCMC with
Hyderabad, Badin and Lakhpat IPs. On the other hand, the RMSE
and RRMSE boxplots construction for GPD are mainly proposing
a good fit with smaller values of RMSE and RRMSE except for
Bayesian MCMC with NIF and Lakhpat IPs. Hence, due to the
lowest values of assessment measures, the GPD with Bayesian
MCMC technique based on IPs is considered the most suitable and
efficient choice for modelling wind speed data at Thatta station
(see Fig. 6).
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Fig. 6. Comparison of estimation methods and models (a) and (b) the root mean square error and relative root mean square error for GEV model corresponding
to different estimation methods; (c) and (d) the root mean square error and relative root mean square error for GP model corresponding to different estimation
methods.
5. Conclusions and recommendations

To conclude, this paper dealt with modelling of extreme wind
speed at the Thatta location using the EVDs. Classical (MLE and
LMM) and the Bayesian MCMC (with NIPs and IPs) techniques
were employed to meet the inferential requirements of the EVDs
models. Primarily, the inherent trend and the basic assumptions
of the data were verified using different statistical tests, and no
specific movement was found. On the other hand, this study
offers artificial aids in terms of greater accuracy in estimating
the considered models parameters. In addition, the parameters
of EVDs, inferences for return levels, have also been enriched in
precision. The present study’s findings differed from the literature
regarding applications on the topic.

Modelling with the Bayesian paradigm advances this paper
to model the extreme behaviour of an extreme event at a given
weather station. This approach is convenient when climatic evi-
dence is scarce and assumes that extreme wind speed behaviour
is homogeneous over the data’s regions. Consequently, the au-
thors would like to put a ball in the court of the Bayesian tech-
nique over the frequentists methods. The Bayesian framework
needs a genuine construction of IPs, which delivers an augmented
estimation accuracy. The parameter and RLs estimates for the ex-
treme value models were sensitive to those weather stations used
to develop IPs. Therefore, the present study also discusses the
proper selection of the surrounding weather stations. Because the
elicitation of IPs is essential as the estimates and their precision
are linked to these priors.

In practice, the standard approach and the best estimation
method were decided through assessment measures (see Sec-
tion 4.4). Frankly speaking, wind speed modelling link with a
peak over threshold approach show an enhancement over block
maxima in that standard errors for GP model parameters are
smaller. Overall, the RMSEs and RRMSEs of the GP model with
2991
IP-based Bayesian framework were lower than all others. The
stability of the GP distribution in both Bayesian and frequentist
settings authorizes as the predominant distribution to model
extreme wind speed data at the Thatta station. Interestingly, GP
distribution with Bayesian IPs produces RLs more accurately than
others. The RLs values would be considered a future prediction of
extreme wind. Based on the findings of this study, the authors
recommend using GP distribution for modelling daily extreme
wind speed data. More importantly, the future prediction of ex-
treme winds given in this study could be helpful for engineers
during the installation of wind energy turbines in the region.
Furthermore, wind risk management, wind prediction, might be
useful to install wind turbines at ungauged stations and those
stations which are more likely to receive heavy wind and for
better policy implications at vulnerable areas to wind disasters.
Also, these predictions are essential to assist the government de-
partments in protection preparedness to upcoming windstorms
due to climate change. This study allows practitioners to consider
variability and seasonality under climatic fluctuations. To some
extent, it would be helpful in the production of wind energy at
ungauged stations and also those areas where wind disasters have
been seen but no turbines are installed there. We can opt for
optimum structure engineering in these places plus can install
some turbines to produce energy. Furthermore, this study can be
improved by considering spatial settings or multivariate extreme
value modelling or using extended versions of GP distribution.
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