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a b s t r a c t

In this work we construct an Hermite interpolant starting from basis functions that
satisfy a Lagrange property. In fact, we extend and generalise an iterative approach,
introduced by Cirillo and Hormann (2018) for the Floater–Hormann family of inter-
polants. Secondly, we apply this scheme to produce an effective barycentric rational
trigonometric Hermite interpolant at general ordered nodes using as basis functions
the ones of the trigonometric interpolant introduced by Berrut (1988). For an easy
computational construction, we calculate analytically the differentiation matrix. Finally,
we conclude with various examples and a numerical study of the convergence at
equidistant nodes and conformally mapped nodes.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Hermite interpolation is a classical problem which has been widely explored. It has many applications, and therefore,
t is still vivid and studied.

The problem consists into finding a good function that satisfies the Hermite conditions, i.e.,

r (j)m (xi) = fi,j = f (j)(xi), i = 0, . . . , n; j = 0, . . . ,m, (1)

which means that it has to interpolate not only a function on some nodes xi, i = 0, . . . , n but also the values of its first
m derivatives.

A good proposal for a solution of this problem could be given by interpolants based on rational functions since they
may take advantage of the well-known stability of the latters for the classical problem of interpolation (see e.g. [1]). In
fact, some recent works go in that direction, as the family of Hermite barycentric interpolants introduced in [2], the family
of interpolants in [3] or the combination of rational functions and six-point Shepard basis functions introduced in [4].

A good stable interpolant that achieves a fast and accurate solution is preferable since it may be useful for the many
applications where an Hermite interpolant is used, such as in Treecode algorithm [5] or constructing curves and surfaces
for images [6] or approximating the reliability of a hammock network of arbitrary size [7].

Firstly, let us consider the iterative method, introduced in [3], to construct an Hermite interpolant starting from the
basis of the renowned Floater–Hormann family of interpolants. This consists into considering primarily the basis functions
bi(x) that are constructed, given d ∈ N and x0, . . . , xn interpolation nodes, as

bi(x) =
wi

x − xi

/ n∑
j=0

wj

x − xk
, i = 0, . . . , n,
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wi = (−1)i+d
min(i,n−d)∑

j=max(0,i−d)

j+d∏
k=j,k̸=i

1
|xi − xk|

, i = 0, . . . , n.

Therefore, once are considered the functions

bi,j(x) =
1
j!
(x − xi)jbi(x)j+1,

they can be used to construct an interpolant that satisfies the Hermite conditions.
The effectiveness of such construction for FH-interpolants has been investigated and in particular, in [8], it has been

studied the Lebesgue constant at equidistant nodes and in [9], an estimate of the interpolation error has been given.
More specifically, we are going to firstly generalise this iterative Hermite construction and, later, use this method to

introduce a barycentric rational trigonometric Hermite interpolant.
The paper is construct as follows: in Section 2 is presented the general iterative approach. In Section 3 is analysed the

Hermite interpolant constructed by using as basis function the one of Berrut’s trigonometric interpolant and, moreover,
is computed analytically the differentiation matrix for the Hermite basis for general ordered nodes; this allows a
fast construction and computation of the barycentric rational trigonometric Hermite interpolant. In Section 4 various
numerical examples are presented and analysed. Finally, we conclude in Section 5.

2. A general iterative approach

Let us consider a set Ω ⊂ R and some nodes xi ∈ Ω , i = 0, . . . , n. Then, let us consider some basis functions bi construct
by using the nodes xi’s for an interpolant on Ω satisfying the Lagrange property bi(xj) = δi,j. We define, therefore, the
following functions,

bi,j(x) :=
1
j!
di(x)jbi(x)j+1

for a smooth function di(x) that vanishes in xi and such that di(xj) ̸= 0, for j ̸= i, and d′

i(xi) = 1.
These functions will be the foundation to construct the Hermite interpolants, in fact we get the following.

Lemma 1. Let Xn = {x0, . . . , xn} ⊂ Ω ⊂ R be some ordered nodes and let di(x) be a function that vanishes in xj only if j = i
and such that d′

i(xi) = 1. Let bi(x), i = 0, . . . , n be a basis of some space V that satisfy the Lagrange property at the nodes.
hen, the functions bi,j defined as

bi,j(x) :=
1
j!
di(x)jbi(x)j+1 (2)

satisfy

b(k)i,j (xℓ) =

{
0, if k < j,
δi,ℓ, if k = j. (3)

Proof. For j = 0 the statement follows directly from the Lagrange property of bi(x). Let us now consider j > 0 and prove
the statement by induction on j.

Let

ci(x) = di(x)bi(x);

then, it is clear that

bi,j(x) =
1
j
ci(x)bi,j−1(x).

Once we derive, we get by using the Leibniz rule that

b(k)i,j (x) =
1
j

k∑
s=0

(
k
s

)
ci(x)(k−s)(x)b(s)i,j−1(x).

Therefore, since ci(xp) = 0 for p = 0, . . . , n and, since for the induction hypothesis we have that

b(s)i,j−1(xp) = 0 for s < j − 1,

we get

b(k)i,j (xp) =
1
j

k−1∑ (
k
s

)
c(k−s)
i (xp)b

(s)
i,j−1(xp).
s=j−1

2
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Let us observe that the sum is empty in the case when k < j, whereas when k = j we obtain

b(j)i,j (xp) =
1
j

(
j

j − 1

)
c ′

i (xp)b
(j−1)
i,j−1 (xp).

Finally, due to the induction hypothesis on b(j−1)
i,j−1 (xp), we notice that b(j)i,j (xp) = 0 if p ̸= i and when p = i we have that

the product is one since c ′

i (xi) = 1 by construction. □

Remark 1. Given a function hi(x) vanishing only in xi and with a non-zero derivative in xi, we remark that we can always
construct a function that satisfies the assumption of Lemma 1 by setting

di(x) :=
hi(x)
h′

i(xi)
.

Once we have the functions bi,j we can construct the Hermite interpolant starting from

r0(x) =

n∑
i=0

bi,0(x)fi,0,

hich corresponds to the classical interpolant since bi,0 = bi. For j > 0, since we have that normally

r (j)j−1(xℓ) ̸= fℓ,j,

we introduce, at each step, a correction function qj which we add to the previous interpolants, in order to construct a
new one that interpolates correctly the derivatives up to the jth, i.e.,

rj(x) = rj−1(x) + qj(x), j = 1, . . . ,m. (4)

Therefore, we define the correction term as

qj(x) =

n∑
i=0

bi,j(x)
(
fi,j − r (j)j−1(xi)

)
, j = 1, . . . ,m. (5)

The resulting function rm, which we may write shortly as

rm(x) :=

m∑
j=0

n∑
i=0

bi,j(x)gi,j

for proper gi,j, construct via the iterative approach described above, thanks to Lemma 1, will satisfy the Hermite conditions.
In fact, we have the following theorem.

Theorem 1. Let Xn = {x0, . . . , xn} ⊂ Ω ⊂ R be some ordered nodes and let di(x) be a function that vanishes in xj only if
j = i and such that d′

i(xi) = 1. Let bi(x), i = 0, . . . , n be a basis of some space V that satisfy the Lagrange property at the nodes
and let bi,j be defined as (2). Then, the function rm, defined as

rm(x) :=

m∑
j=0

n∑
i=0

bi,j(x)gi,j, (6)

with

gi,j =

{
fi,0 if j = 0
fi,j − r (j)j−1(xi) if j > 0, (7)

satisfies the Hermite conditions (1)

Proof. It is straightforward that,

r (k)m (xℓ) =

n∑
i=0

m∑
j=0

b(k)i,j (x)| x=xℓ
gi,j,

which due to Lemma 1 is

r (k)m (xℓ) =

n∑
i=0

k∑
j=0

b(k)i,j (x)| x=xℓ
gi,j

= gℓ,k +

n∑ k−1∑
b(k)i,j (x)| x=xℓ

gi,j

i=0 j=0

3
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= gℓ,k + r (k)k−1(xℓ)
= fℓ,k. □

. A barycentric rational trigonometric interpolant

Barycentric rational trigonometric interpolants are suitable for approximating periodic functions and many of them
ave been introduced in the last years.
The barycentric form of the classical interpolant at equidistant nodes has been introduced by Henrici [10], and, later,

errut [11] proposed to use the same function as the Henrici’s interpolant but for other ordered nodes.
More recently, Bandiziol and De Marchi [12] proposed a barycentric rational trigonometric interpolant constructed

imilarly as the well-known Floater–Hormann interpolant. Moreover, Baddoo [13] introduced a trigonometric equivalent
f the renowned algorithm AAA (see [14]), the AAAtrig, which construct a barycentric trigonometric rational approximant
electing the nodes progressively via a greedy algorithm.
In this section, we focus into Berrut’s trigonometric interpolant [11]. Let us consider n ordered nodes 0 ≤ θ0 < · · · <

θn−1 < 2π , then, we define the interpolant as

Tn(θ ) =

∑n−1
i=0 (−1)i cst

(
θ−θi
2

)
f (θi)∑n−1

i=0 (−1)i cst
(

θ−θi
2

) , (8)

where the function cst is

cst(θ ) =

{
csc(θ ), if n is odd,
ctg(θ ), if n is even.

(9)

t has no poles in [0, 2π ) and enjoys a logarithmic growth of its Lebesgue constant for a wide family of interpolation
odes [15]. This class of nodes includes also the images of equidistant nodes via a conformal map, such as those in [16,17].
s said earlier, it corresponds to the classical trigonometric interpolant when the nodes are equidistant [10] and, therefore,
t enjoys its properties, such as the exponential convergence. In addition, the interpolant converges exponentially also
hen the nodes are images of equidistant nodes via a conformal map [18] and it has been used effectively in [19] to

nterpolate functions on two-dimensional starlike domains.
In order to construct the Hermite interpolant and to retain the periodic behaviour, we may choose

di(θ ) = 2 sin
(

θ − θi

2

)
, (10)

hich clearly satisfies the conditions we need to define the functions bi,j.
In particular, we get

bi,j(θ ) :=
2j

j!
sinj

(
θ − θi

2

)
(−1)ij+i

cstj+1
(

θ−θi
2

)
(∑n−1

k=0(−1)k cst
(

θ−θk
2

))j+1

=
2j

j!
(−1)ij+i

cst
(

θ−θi
2

)
(∑n−1

k=0(−1)k cst
(

θ−θk
2

))j+1 ·

{
1, if n is odd,
cosj

(
θ−θi
2

)
, if n is even,

=
2j(−1)i(j+1)

j!
cst

(
θ − θi

2

)
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1(∑
k

(−1)k

sin((θ−θk)/2)

)j+1 if n is odd,

cosj
(

θ−θi
2

)
(∑

k
(−1)k

sin((θ−θk)/2)

)j+1 if n is even,

=

2j(−1)i(j+1)

j! cst
(

θ−θi
2

)
η
(n)
i,j (θ ),(∑n−1

k=0
(−1)k

sin((θ−θk)/2)

)j+1 (11)

with

η
(n)
i,j (θ ) =

{
1 if n is odd,

j
(

θ−θi
)

cos 2 if n is even.
4
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This formulation will allow us to calculate analytically the differential matrix of the Hermite interpolant

tm(θ ) =

n−1∑
i=0

m∑
j=0

bi,j(θ )gi,j, (12)

hich will be useful for a fast computation of the interpolant.

heorem 2. Let us consider the basis functions (11), then when s > j the differential matrix, whose elements are (Ds
j )ik =

(s)
k,j(θi), is defined as

(Ds
j )ik =

1

sin
(

θi−θk
2

)(
(−1)(k−i)(j+1)

⌊
s−j−1

2 ⌋∑
q=0

(
s

2q + 1

)
(−1)q

22q+1 (D
s−2q−1
j )ii

−

s−1∑
q=j

(
s

s − q

)(
sin

(
θ − θk

2

))(s−q)

|θ=θi

(Dq
j )ik

)
(13)

hen n is odd and

(Ds
j )ik =

1

tan
(

θi−θk
2

) (
(−1)(k−i)(j+1)

⌊
s−j
2 ⌋∑

q=0

(
s

2q + 1

)
2−2q−1

·

·

( q∑
j=0

a(2q + 1, 2j + 1)
)
(Ds−2q−1

j )ii

−

s−1∑
q=j

(
s

s − q

)(
tan

(
θ − θk

2

))(s−q)

|θ=θi

(Dq
j )ik

)
. (14)

hen n is even, with

a(p, q) = (−1)
1
2 (p−

3+(−1)p
2 ) 2

p−q−1
2∑

j=0

(−1)
p−q−1

2 −j
(
p + 1

j

)(
p − q − 1

2
− j + 1

)p

.

roof. Therefore, we can write the basis as

bk,j(θ ) := uk,jα(θ ) cst
(θ − θk

2

)
(15)

here

uk,j :=
2j(−1)k(j+1)

j!
(16)

nd, if n is odd,

α(θ ) :=
1(∑n−1

i=0 (−1)i cst((θ − θi)/2)
)j+1

nd, if n is even,

α(θ ) :=
cosj( θ−θk

2 )(∑n−1
i=0 (−1)i cst ((θ − θi)/2)

)j+1 .

In this way we can compute the differentiation matrices as done for the classical barycentric trigonometric interpolant
n [18], which will be useful to compute the values of the derivatives of the interpolant rm at the nodes in the previous
terations.

If n is odd, considering Eq. (15), differentiating both side and evaluating at the points xi, we get that(
α(θ )

)(s)
|θ=θk

=
1
uk,j

s∑
q=0

(
s
q

)(
sin

(
θ − θk

2

))(q)⏐⏐
θ=θk

(
bk,j(θ )

)(s−q)⏐⏐
θ=θk

=
1
uk,j

s∑(
s
q

)(
sin

(
θ − θk

2

))(q)⏐⏐
θ=θk (D

s−q
j )kk
q=0

5
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H

=
1
uk,j

s∑
q=1

(
s
q

)(
sin

(
θ − θk

2

))(q)⏐⏐
θ=θk (D

s−q
j )kk, (17)

where we defined (Ds
j )ik = b(s)k,j(θi).

Moreover, by evaluating the derivative in different nodes we have

(
α(θ )

)(s)⏐⏐
θ=θi =

1
uk,j

s∑
q=0

(
s
q

)(
sin

(
θ − θk

2

))(q)⏐⏐
θ=θi

(
bk,j(θ )

)(s−q)⏐⏐
θ=θi

=
1
uk,j

s∑
q=0

(
s
q

)(
sin

(
θ − θk

2

))(q)⏐⏐
θ=θi (D

s−q
j )ik. (18)

In (18) we can isolate the term q = 0 of the sum, that gives,

(
α(θ )

)(s)⏐⏐
θ=θi =

1
uk,j

s∑
q=1

(
s
q

)(
sin

(
θ − θk

2

))(q)⏐⏐
θ=θi (D

s−q
j )ik

+
1
uk,j

(
sin

(
θi − θk

2

))
(Ds

j )ik, (19)

hich together with (17) gives us the following recursive formula for the differentiation matrix

(Ds
j )ik =

1

sin
(

θi−θk
2

) (
uk,j

(
α(θ )

)(s)⏐⏐
θ=θi

−

s∑
q=1

(
s
q

)(
sin

(
θ − θk

2

))(q)⏐⏐
θ=θi (D

s−q
j )ik

)
(20)

=
1

sin
(

θi−θk
2

) (
uk,j

ui,j

s∑
q=1

(
s
q

)(
sin

(
θ − θi

2

))(q)⏐⏐
θ=θi (D

s−q
j )ii

−

s∑
q=1

(
s
q

)(
sin

(
θ − θk

2

))(q)⏐⏐
θ=θi (D

s−q
j )ik

)
. (21)

otice that since the terms bi,j satisfy (3), Dj
j corresponds to the identity matrix and Ds

j = 0 when s < j. Then, the formula
becomes

(Ds
j )ik =

1

sin
(

θi−θk
2

) (
uk,j

ui,j

s−1∑
q=j

(
s

s − q

)(
sin

(
θ − θi

2

))(s−q)⏐⏐
θ=θi (D

q
j )ii

−

s−1∑
q=j

(
s

s − q

)(
sin

(
θ − θk

2

))(s−q)⏐⏐
θ=θi (D

q
j )ik

)
. (22)

Similarly, when n is even, we have that

(
α(θ )

)(s)⏐⏐
θ=θk =

1
uk,j

s∑
q=1

(
s
q

)(
tan

(
θ − θk

2

))(q)⏐⏐
θ=θk (D

s−q
j )kk (23)

(
α(θ )

)(s)⏐⏐
θ=θi =

1
uk,j

s∑
q=0

(
s
q

)(
tan

(
θ − θk

2

))(q)⏐⏐
θ=θi (D

s−q
j )ik. (24)

ence,

(Ds
j )ik =

1

tan
(

θi−θk
2

) (
uk,j

ui,j

s−1∑
q=j

(
s

s − q

)(
tan

(
θ − θi

2

))(s−q)⏐⏐
θ=θi (D

q
j )ii

−

s−1∑
q=j

(
s

s − q

)(
tan

(
θ − θk

2

))(s−q)⏐⏐
θ=θi (D

q
j )ik

)
. (25)
6
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Moreover, since(
sin

(
θ − θk

2

))(q)

=

⎧⎨⎩ (−1)
q
2

2q sin
(

θ−θk
2

)
, if q even

(−1)
q−1
2

2q cos
(

θ−θk
2

)
, if q odd

and since the jth derivative of tan((θ − θi)/2) computed in θi is a given by (see [20])(
tan

(
θ − θi

2

))(n)⏐⏐
θ=θi =

{
0, if n = 2k,
2−n ∑k−1

j=0 a(2k − 1, 2j + 1), if n = 2k − 1,

for some k ∈ N and with

a(p, q) = (−1)
1
2 (p−

3+(−1)p
2 ) 2

p−q−1
2∑

j=0

(−1)
p−q−1

2 −j
(
p + 1

j

)(
p − q − 1

2
− j + 1

)p

e can simplify Eq. (22) to

(Ds
j )ik =

1

sin
(

θi−θk
2

) (
(−1)(k−i)(j+1)

⌊
s−j−1

2 ⌋∑
q=0

(
s

2q + 1

)
(−1)q

22q+1 (D
s−2q−1
j )ii

−

s−1∑
q=j

(
s

s − q

)(
sin

(
θ − θk

2

))(s−q)

|θ=θi

(Dq
j )ik

)
(26)

nd Eq. (25) to

(Ds
j )ik =

1

tan
(

θi−θk
2

) (
(−1)(k−i)(j+1)

⌊
s−j
2 ⌋∑

q=0

(
s

2q + 1

)
2−2q−1

·

·

( q∑
j=0

a(2q + 1, 2j + 1)
)
(Ds−2q−1

j )ii

−

s−1∑
q=j

(
s

s − q

)(
tan

(
θ − θk

2

))(s−q)

|θ=θi

(Dq
j )ik

)
. □ (27)

The interpolant (12) then can be written in the following extended form

tm(θ ) =

n−1∑
i=0

m∑
j=0

bi,j(θ )
(
fi,j −

j−1∑
s=0

n−1∑
k=0

(Dj
s)ikfk,s

)
(28)

r the following form linear on the data

tm(θ ) =

n−1∑
i=0

m∑
j=0

(
bi,j(θ ) −

m∑
s=j+1

n−1∑
k=0

bk,s(θ )(Ds
j )ki

)
fi,j, (29)

which is specifically

tm(θ ) =

( n−1∑
i=0

m∑
j=0

(
ui,j cst

(θ − θi

2

)
η
(n)
i,j (θ )

⎛⎝n−1∑
i=0

(−1)i

sin
(

θ−θi
2

)
⎞⎠m−j

−

m∑
s=j+1

n−1∑
k=0

uk,s cst
(θ − θk

2

)
η
(n)
i,j (θ )

⎛⎝n−1∑
i=0

(−1)i

sin
(

θ−θi
2

)
⎞⎠m−s

(Ds
j )ki

)
fi,j

)
/⎛⎝n−1∑

i=0

(−1)i

sin
(

θ−θi
2

)
⎞⎠m+1

, (30)

ith u defined as in (16).
i,j

7
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Once we consider the interpolant of the function f ≡ 1, the interpolant resolves to

tm(θ ) =

(n−1∑
i=0

m∑
j=0

(n−1∑
k=0

uk,j(D
j
0)ki

)
cst

(θ − θi

2

)⎛⎝n−1∑
i=0

(−1)i

sin
(

θ−θi
2

)
⎞⎠m−j)

/⎛⎝n−1∑
i=0

(−1)i

sin
(

θ−θi
2

)
⎞⎠m+1

, (31)

ince the derivatives of f are zeros, and D0
0 is the identity matrix.

Therefore we get the barycentric form of the interpolant, that is

tm(θ ) =

( n−1∑
i=0

m∑
j=0

(
ui,j cst

(θ − θi

2

)
η
(n)
i,j (θ )

⎛⎝n−1∑
i=0

(−1)i

sin
(

θ−θi
2

)
⎞⎠m−j

−

m∑
s=j+1

n−1∑
k=0

uk,s cst
(θ − θk

2

)
η
(n)
i,j (θ )

⎛⎝n−1∑
i=0

(−1)i

sin
(

θ−θi
2

)
⎞⎠m−s

(Ds
j )ki

)
fi,j

)
/(n−1∑

i=0

m∑
j=0

(n−1∑
k=0

uk,j(D
j
0)ki

)
cst

(θ − θi

2

)⎛⎝n−1∑
i=0

(−1)i

sin
(

θ−θi
2

)
⎞⎠m−j)

(32)

In addition, we remark that, when we compute the matrix for s = j + 1, the elements simplify to the following

(Dj+1
j )

ik
=

(−1)(j+1)(k−i) (j + 1)
2

cst
(

θi − θk

2

)
, k ̸= i, (33)

hich for j = 0 corresponds to the values in [18]; for the diagonal elements, we use the relation
∑n−1

i=0 b(j)i,j (θ ) = 1, since
e want to reproduce the constants for the jth derivate. This implies that

n−1∑
i=0

b(j+1)
i,j (θ ) = 0,

o that we obtain

(Dj+1
j )ii = −

n−1∑
k=0
k̸=i

(Dj+1
j )ik.

Moreover, since for the construction of the Hermite interpolant (12), we need to compute r (s)j−1(xi) and therefore Ds
j , in

the next section, we decided to proceed by computing the differentiation matrices of higher order as

Ds
j = (Dj+1

j )s−j s ≥ j + 1. (34)

s done for the polynomial case in [21].

. Numerical experiments

Here we present some numerical tests, some Matlab demos to reproduce the experiments are available at
https://github.com/gelefant/TrigonometricHermite
We considered the following periodic test functions in [0, 2π ),

f1(θ ) = e2 sin(θ )+cos(θ ),

f2(θ ) = cos(3θ ) + log(cos(θ ) + 1.5),

and we interpolated them by means of the interpolant (12) with the basis presented in Section 3 with N equidistant
odes.
We tested the interpolants which satisfy the Hermite conditions from one to four derivatives. In Fig. 1 we display both

est functions together with two interpolants, one satisfying the Hermite conditions up to the second derivative and one
atisfying the conditions up to the third derivative.
For a fixed m, we compute, the absolute error between the function and the interpolant with N nodes errN =

ax |f (x) − t (x)| and we can notice that the interpolant, in the case of conditions up to the second derivative
x∈[0,2π ) m

8
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r
h
5

Fig. 1. The functions f1 (left) and f2 (right) in red dashed and in blue line the interpolant t3 at 7 equidistant nodes (left) and the interpolant t2 at
6 equidistant nodes (right). Interpolation nodes are labelled in green.

Table 1
Computation of the values − log2(

err2n
errn

) for t3 and t4 with both test functions.

n 5 10 20 40 80 160

t3
f1 3.70 2.59 3.03 2.97 3.00 3.00
f2 4.18 2.96 2.89 2.97 3.01 2.99

t4
f1 4.37 2.93 2.93 2.95 2.87 2.96
f2 5.50 2.84 2.94 2.99 2.92 2.89

Fig. 2. Convergence of t1 for f1 (left) and f2 (right) and N = 5, 10, 20, 40.

etains the exponential convergence of the classical interpolant (8) at equidistant nodes (see Figs. 2 and 3), on the other
and, when we have conditions on the third or the fourth derivatives, the convergence slows down (see Figs. 4 and
). We can numerically estimate the convergence of the interpolant with N nodes as O(N−3). In fact, once we compute

− log2(
err2n
errn

) with various n, we have a numerical estimate of the rate of convergence and it appears, as we can see in
Table 1 where we computed it for n = 5, 10, 20, 40, 80, 160, that this ratio is almost 3.

In order to test the interpolant with conformally shifted nodes and explore the convergence to functions with fronts,
we tested the interpolant moreover with the function

f3(θ ) = tanh(50 cos(θ + π/3));

which has two fronts located in θ1 = π/6 and θ2 = 7π/6. For this reason we compared the performances of the
interpolant with equidistant nodes and conformally shifted nodes, via the conformal map introduced in [17], i.e.,

gα,β (θ ) = −ι log
(

eιθ
+ αeιβ

1 + αeι(θ−β)

)
,

and using the generalisation for two fronts, where we set the same density parameter for both fronts as α = 0.85.
9
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Fig. 3. Convergence of t2 for f1 (left) and f2 (right) and N = 5, 10, 20, 40.

Fig. 4. Convergence of t3 for f1 (left) and f2 (right) and N = 5, 10, 20, 40, 80, 160, 320.

Fig. 5. Convergence of t4 for f1 (left) and f2 (right) and N = 5, 10, 20, 40, 80, 160, 320.

As we can see in Figs. 6, the advantage of clustering the nodes in the locations of the fronts becomes less important as
e consider more derivatives. In fact, it speeds up a lot the convergence in the case of one derivative but, then, once we
dd the conditions on more derivatives, clustering the nodes decreases the speed up until it even slows the convergence
hen we have conditions up to the fourth derivative.
We present another numerical experiment which is the reconstruction of a closed simple curve, given some points,

s might be a figure or a sketch. The two dimensions are reconstructed separately and each coordinates is consider as
periodic function. Therefore, in order to enjoy the fast exponential convergence, the data are considered as the values
f a function at equidistant nodes. Then, we approximate the first derivatives by using the coordinates of the difference
uotients of the points.
10
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Fig. 6. Error of function f3 with equidistant nodes (blue line) and conformally shifted nodes (red line) by using (a) t1 , (b) t2 , (c) t3 , (d) t4 , with
= 5, 10, 20, . . . , 160 in (a) and (b) and N = 5, 10, 20, . . . , 1280 in (c) and (d).

We did therefore, the reconstruction of the sketch in Fig. 7a and starting by extracting 362 points (which are the
ed dots in 7b), we used the values of the abscissae and ordinates as datae of two periodic function with those values
t equidistant nodes and which we intend to approximate by the Hermite interpolant t1, which is the interpolant with
onditions on one derivative. Moreover, since the datae of the real tangent vectors are unknown, we approximate them
ith the difference quotient vector between the extracted points ordered in anticlockwise sense. The result is in Fig. 7b.
In Fig. 7(c)–(e) we used a subset of the initial set of nodes: half points, a third and a fifth, respectively.
As we can see by the results in Figs. 7, the interpolant performs quite well even by using an approximation of the

erivative and by decreasing the number of nodes.
In particular, even by using a fifth of the points initially extracted the reconstruction is still resembling quite a lot the

ketch.

. Conclusion

The present work introduced an iterative scheme to construct an Hermite interpolant starting from a general
nterpolation basis and in particular, we focused on Berrut’s trigonometric interpolant. In order to construct the values of
he derivative of the precedent iterative step, we compute analytically the differentiation matrix which allows to obtain
hese values easily as a matrix product.

Our numerical experiments suggest that the produced interpolant retains the exponential convergence of the classical
nterpolant at equidistant nodes and conformally shifted nodes, once we interpolate the first two derivatives and slows
own to a rate of O(N−3), where N is the number of nodes used, when we interpolate also the third or the fourth
erivatives.
Moreover, the tests suggest that clustering nodes in the locations of fronts via a conformal map speeds up the

onvergence in case of one derivative but, instead, could be of negative impact when we need to satisfy conditions also
or higher derivatives.

Future work will be aimed into analysing the convergence more deeply, also for other class of nodes, as the one
ntroduced in [17], which includes conformally shifted nodes, and also into analysing the Lebesgue constant of the

nterpolant.

11
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Fig. 7. Reconstruction of the sketch (a), by using 362 nodes (b), 181 nodes (c), 121 nodes (d) and 73 nodes (e).
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