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ABSTRACT In visual sensor networks, the analyze-then-compress paradigm, where each camera process
data and extract local features, is proved to be an efficient approach to reduce the amount of transmitted
information. The bitrate can be further reduced by efficiently compressing the extracted features using a
distributed feature coding technique. However, since the rate control is performed at the decoder, an abundant
use of the feedback channel is needed to adjust the coding rate. Moreover, transmitting all extracted features,
including irrelevant ones with no further contribution to the application accuracy, overloads the network.
In this paper, we propose a novel feature selection and distributed coding rate control strategies that cope
with these issues. The proposed strategies are designed to significantly reduce the transmitted bitrate and the
communication burden with the sink, which implicitly reduces the energy consumption and the decoding
delay. We show that, wisely selecting at the camera sensors level only the features effectively contributing to
the application accuracy reduces the amount of transmitted information up to 34%while preserving accuracy.
Furthermore, the cameras can collaborate periodically, by exchanging small amount of information about
their selected features, to estimate the minimum transmission rate required for each feature based on a linear
fittingmodel that takes into consideration the inter-camera correlation and the channel conditions. Significant
average bitrate savings, reaching up to 37.71%, are achieved.

INDEX TERMS Distributed feature coding, rate control, feature selection, multi-view, visual sensor
networks.

I. INTRODUCTION
In the last few years, Visual Sensor Networks (VSNs) have
emerged as a potential enabler for a new class of applica-
tions in which vision is a key component, such as video
surveillance, traffic monitoring, and many others [1], [2], [3].
Most of these applications require the processing and the
transmission of huge amounts of data leading to high band-
width usage and tremendous energy consumption. Satisfy-
ing these requirements is challenging due to VSNs’ limited
computational, communication and energy resources. Thus,
many researchers have focused on finding efficient solutions
for compressing, processing and transmitting the visual data
in order to optimise the use of the network resources [4],
[5], [6], [7], [8], [9], [10]. A widely used solution in this
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sense is the Analyze-Then-Compress (ATC) approach [11],
[12], [13], [14], according to which the camera nodes per-
form some local processing to extract, encode and transmit
only visual features which succinctly represent the most-
informative parts of the image, thus using much less net-
work resources than the pixel-level representation. The ATC
paradigm constitutes a powerful solution for the applications
that depend only on the results of the visual analysis.

Often, many cameras in a VSN capture the same scene
or object from different angles resulting in some over-
lapped fields of view (FoV). Exploiting the high correla-
tion between features extracted from these overlapped views
can help further reducing the bit-stream flow, maximizing
the coding efficiency and improving the analysis accuracy.
In fact, using redundant information from several cameras
can solve practical problems such as occlusions, illumination
and pose variations. Features can be compressed (coded) by
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exploiting the inter-view correlation through Distributed Fea-
ture Coding (DFC) for independent and low-complexity cod-
ing and joint decoding of the extracted features [4], [13].
Under the DFC approach, the inter-view correlation is
exploited at the decoder side by using previously-decoded
descriptors from a generic view (either spatially or temporally
adjacent) as a Side Information (SI) to decode the currently-
received information. An alternative method to exploit inter-
view coding suggests a collaboration between neighboring
cameras by exchanging their set of extracted descriptors as
proposed in [15] and [16]. In this case, only the residual
part between descriptors extracted from a camera chosen as
base view and a neighboring camera is coded and transmit-
ted to the sink node. However, this method can be more
energy demanding compared to the DFC approach since
inter-camera communication consumes energy, especially in
the case of continuous real-time tracking applications and
depending on the number of extracted features per camera.
In order to reduce communication between cameras, authors
of [17] proposed an optimization framework that decides
whether two cameras collaborate, based on a predicted multi-
view feature coding compression efficiency parameter.

Depending on the image content, the number of extracted
features can be huge (reaching thousands of features). In the
multi-view scenario cameras capturing the same object will
extract very similar descriptors. Transmitting all the extracted
features from all cameras will overload the network espe-
cially if some of them represent just redundant information
that consume the network resources without contributing to
the final analysis accuracy [18]. Therefore, it is important to
select which descriptors to encode and to transmit in order
to save energy and reduce the overall bitrate. Meaningful
works focused on the selection and multi-view distributed
coding of local features in the literature [19], [20].

In the above context, this paper elaborates upon and sub-
stantially improves the system model for multi-view vehicle
tracking at roundabouts in VSNs described in our previous
work [21], to enhance the obtained results for bitrate savings.
This is achieved by presenting two novel key techniques that
are able to efficiently control the rate demand of the VSN,
and implicitly its energy consumption and processing delay,
while preserving accuracy.We rely on the observation that the
number of extracted features per camera can be huge for some
frames requiring significant communication resources that
might not be afforded by the VSN, as previously mentioned.
For this reason, in the system model described in [21], after
capturing and processing images (i.e., background subtract-
ing and vehicle classifying), an appropriate feature selection
stage is performed to extract only features that represent
moving vehicles. In this paper, we add a second feature
selection stage, aiming at wisely discarding those features
belonging to the detected vehicles that consume the net-
work resources without contributing to the analysis accuracy.
Second, a distributed rate-control strategy for DFC is pro-
posed where cameras collaborate periodically by exchanging
negligible information about their selected features in order to

better estimate the correct minimum required rate without the
intervention of the decoder, thus efficiently shifting some of
the coding rate control to the camera nodes. Note that, one key
aspect of the proposal of this paper relies on the identification
of a distributed algorithm. To this aim, we assume that the
VSN can be divided into small cameras cluster networks
and a relay network that links all the clusters to the sink
node through multi-hop communications. A cluster network
groups a number of smart camera sensor nodes capturing
the same scene from different angles and capable of com-
municating among each other directly when it is needed.
Each cluster network is identified by a central node related
to the relay network, for control purposes, it is able to locally
exchange data, and as such it is the basis of the distributed
approach. Especially in those applications where the sink is
faraway from the camera network (e.g., in swarms of drones),
distributed feature selection and rate-control are of paramount
importance in reducing the amount of data transferred to the
sink node (energy savings), as well as in reducing the number
of exchanges with the sink (processing delay mitigation) as
decisions are taken locally and not centrally.

The main contributions of the present paper can be sum-
marized as follows:

1) This paper aims at reducing the transmission bitrate
by minimizing the total number of features to transmit
over the VSN. To achieve that, we introduce a robust
feature selection framework that aims at selecting the
most relevant features to transmit, through a selection
process that takes into account the contribution to the
perceived quality at the application level (i.e., multi-
view matching and tracking). Unlike the state-of-the-
art solutions [19], [20] that mainly rely on performing
feature selection at the sink node after receiving some
information about the extracted features, in our solu-
tion, the feature selection is performed locally at the
camera nodes without any information exchange.

2) A novel feature compression strategy is also designed
to ensure enhanced bitrate reduction and robust-
ness under severe communication conditions, e.g.,
low bandwidth links, bottlenecks, and limited energy.
In fact, by periodically exchanging negligible informa-
tion about their selected features, cameras in a cluster
network collaborate to estimate the right source rate at
which the features should be transmitted, given their
correlation across cameras and the channel status, guar-
antying a successful descriptor reconstruction at the
sink node. Unlike many of the solutions currently avail-
able in the literature where the sink is the only respon-
sible for rate control by asking for more or less parity
bits from cameras through a feedback channel [13],
[20], [22], [23], [24], our system shifts some of the rate
control to the cameras in order to reduce the abundant
use of the feedback channel which implicitly reduces
the processing delays.

The rest of the paper is organized as follows. An overview
of the proposed system model is available in Section II.
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Section III presents the proposed feature selection framework
while Section IV presents the new coding strategy for DFC.
In Section V, a number of experimental results that validate
the novel techniques proposed in this paper by suitably mea-
suring the system performance, i.e., bitrate reduction capa-
bilities and feature matching accuracy, in a practical traffic
monitoring scenario at roundabouts. Conclusions are finally
drawn in Section VI.

II. SYSTEM MODEL OVERVIEW
We consider a VSN connecting multiple camera cluster net-
works to a sink node through a relay network with low band-
width links, for the purpose of multi-view vehicles tracking.
The overall system model used within each camera cluster
network elaborates upon the one depicted in details in [21]
(to which the interested reader is referred) and briefly summa-
rized in Section II-A, with the addition of a new rate control
strategy detailed in Section II-B.

A. MULTI-VIEW VEHICLE TRACKING SYSTEM MODEL
In this section, we review the system model for multi-view
vehicle tracking at roundabouts using VSNs proposed in [21].
The system employs an ATC paradigm, where each camera
collects visual data, detects and classifies moving vehicles,
and then extracts a set of local features representing these
vehicles to be encoded and transmitted to the sink node.
Features are encoded separately at each camera node using
DFC, and then jointly decoded at the sink node by exploiting
the inter-view correlation based on the approach presented
in [13]. Once features are successfully retrieved at the sink
node, one-view tracking and multi-view matching for switch-
ing the tracking from one view to the other are performed.

More specifically, it encompasses the following steps:
1) Detectingmoving vehicles: First, background subtrac-

tion is applied for each acquired video frame to detect
all moving objects using the Mixture of Gaussians
(MoG) subtractor. Then some morphological transfor-
mations are added to the obtained binary image in order
to refine the detected foreground objects. The first basic
operation is dilation which helps in making the fore-
ground object more visible by increasing the bound-
aries size. This step is essential to group close parts
representing the same object. Then the dilated binary
image is thresholded in such a way that the detected
shadows are removed. Since the target application is
to track vehicles, a classification step is performed to
select from the moving objects only those representing
vehicles. The YOLOv2 detector is used to accomplish
this task after training it on a huge data set, termed
SupCom Roundabout database, collected from camera
sensors placed around a roundabout (for more details
about the constructed dataset, see [25]). YOLOv2 is a
real-time object detector and classifier based on 19 con-
volutional neural network layers.

2) Feature extraction and clustering: After detecting
moving vehicles, each camera node extracts local

features. The latter are a compact representation of
the local content of an image patch that differs from
its immediate surrounding by an image property.
In this proposed system, Speeded-Up Robust Fea-
tures (SURF) features [26] are extracted, which are
robust features that are capable of representing the
most salient characteristics of vehicles even in the
presence of occlusion, illumination and pose change.
Next, the extracted features are assembled into clusters
by exploiting the K-means clustering algorithm that
aims at grouping data points into K clusters by reduc-
ing within-cluster variances [27]. For the initialization
process, the K-means++ approach [28] is selected.
Each cluster is identified by an ID and a centroid,
in such a way that the features belonging to the same
cluster have similar descriptors (i.e., they are correlated
features). The set of clusters’ IDs and centroids are
computed offline and assumed to be a common knowl-
edge between both the cameras and the sink so that the
cluster assignment can be performed at each camera
node without any exchange of information.

3) DFC and transmission: Features are separately
encoded by a Slepian-Wolf (SW) encoder [29], which
is built using a (6,4) regular systematic Low-Density
Parity-Check (LDPC) encoder of rate 1/3, whose parity
information bits as well as the cluster ID to which
the encoded descriptor belongs are forwarded to the
sink node. To construct the parity check matrix H , the
predefined function parity_check_matrix from
the pyldpc library in python is harnessed, which
builds a regular Parity-Check Matrix following Gal-
lager’s algorithm [30].

4) Data reconstruction: The sink exploits the inter-view
correlation to jointly decode the received features. The
centroid is used for generating the Side Information
(SI) needed in the estimate of the descriptor from the
received parity bits; the SI can be the centroid itself,
retrieved from the received cluster ID, or the already
decoded descriptors from previous frames and from all
cameras, belonging to that cluster (stored in a buffer
at the decoder). A statistical Correlation Noise Model
(CNM) is then used to estimate the correlation noise
between the constructed SI and the true descriptor.
From the estimated CNM, the Log-Likelihood Ratios
(LLRs) are computed which are needed to run the
Belief Propagation (BP) algorithm for the SW decod-
ing. In case of decoding failure, the sink requests more
parity bits from the camera node using the feedback
channel.

5) Multi-view vehicle tracking: First, one-view feature-
based tracking is performed using the tracker described
in [25], where inter-frame feature matching is per-
formed and features’ trajectories are constructed by
connecting all matched features over time. In case of
occlusion, i.e., one-view tracking failure, the system
switches and continues tracking the same object from
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FIGURE 1. Pictorial representation of the overall proposed system.

another view with better sight of it. The identification
of the same object in two different views is realized by
applying multi-view features matching.

B. THE NEW PROPOSED SYSTEM MODEL
The described system in Section II-A is here optimized with
two dedicated rate-control components, namely:

1) a robust feature selection strategy, and
2) an enhanced rate-control for the DFC,

both distributedly applied at a node level before encoding
features, unlike state-of-the-art solutions that implement both
actions at the sink side. As a proof-of-concept, the reliabil-
ity and rate savings ensured by these two key components
are tested in the VSN multi-view vehicle tracking scenario
of [21]. Interestingly, although tested in a specific tracking
context, the constituent idea is of general applicability in a
wide range of VSNs applications such as assisting lonely
persons in elderly care [31], tracking pedestrians [32], and
wild fire detection for disaster management [33]. Figure 1
depicts the global system architecture for the proposed multi-
view features coding and tracking as described in [21] with
the addition of the new rate-control components.

The final system model proposed in this paper encom-
passes the steps described in Section. II-A with the extension
of step 2 by the following sub-steps:
2a) Feature selection: The feature selection process is

based on choosing only features with a matching accu-
racy metric greater than a certain threshold. For more
details on the choice of the threshold and feature selec-
tion framework see later Section III.

2b) Source rate estimation: Each camera shares with
neighbouring cameras some information about its
newly extracted features (basically the cluster identifier

and the 3D PCA components of the constructed
descriptors) to estimate the inter-view correlation
among features and exploit it to determine an accurate
approximation of the source rate to attribute for each
feature. The status of the transmission channel is also
considered for the rate estimation. The detailed coding
strategy proposed for the source rate estimation is fur-
ther explained in Section IV.

The same SW decoder described in Section II-A step 4 is
used to reconstruct the received vectors. However, with the
new proposed coding strategy (i.e., source rate estimation),
most of the rate control is performed at the encoder side.
Therefore, a controlled and limited use of the feedback chan-
nel is ensured; if the decoding of the received feature fails, the
sink can selectively requestmore parity bits from the cameras.

III. FEATURES SELECTION
A. RATIONALE
Feature selection consists in reducing the communication
burden between cameras and the sink by choosing to transmit
only relevant features that contribute to the final analysis
accuracy. In this paper, we propose to evaluate the accuracy
of multi-view feature matching through twometrics. The first
metric is measuring the diversity of extracted features and
prioritizing the most different features from what previously
selected. The diversity metric limits the number of features
per cluster each camera transmits while favoring a diverse
selection of descriptors from different clusters (i.e., present-
ing different objects or different parts of the same object). For
each cluster one feature is selected by choosing the feature
with the highest hessian response.

The second metric is the F-score, namely the har-
monic mean of precision and recall values of matching

1014 VOLUME 11, 2023



S. Eleuch et al.: Distributed Rate-Control Approach to Reduce Communication Burdens in VSNs

FIGURE 2. Key accuracy parameters versus Fth for (a) a unique threshold and (b) an object-dependent
threshold.

(see also [21]), which is a crucial quality indicator in multi-
view object recognition or object tracking applications. The
F-score is assumed to belong to the range [0, 1], with 1 denot-
ing perfect accuracy. The feature selection process is simply
based on choosing features with an accuracy metric F-score
greater than a certain threshold, and we envisage that the
threshold value is identified by one of the following methods,
namely:

a) unique threshold, a unique threshold Fth is identified
for all features, or

b) object-dependent threshold, a different threshold is
envisaged for each object, as they might carry different
accuracies (e.g., object in the foreground, and object
in the background partially occluded); the threshold is
set to the minimum between a reference threshold Fth
and the average value of the F-scores of the object’s
features.

Since features are assembled in clusters, the F-score of
each feature is actually the F-score attributed to the cluster to
which it belongs. Specifically, an offlinemulti-viewmatching
of descriptors extracted from two cameras with overlapped
FoVs, through 200 frames from the SupCom roundabout
database described in [25], is performed and then an F-score
is attributed to each cluster based on the results of matching
features belonging to it.

Note that the feature selection is performed locally
inside each cluster network based only on the clusters’
attributed F-scores, which are assumed to be common knowl-
edge between all cameras, thus entailing no information
exchanges.

B. THRESHOLD CHOICE FOR F-SCORE BASED SELECTION
The F-score based feature selection process discards all
features with F-score less than a certain threshold. If the
threshold is sufficiently high, only relevant features will be
transmitted, leading to very few wrong matches. However,
if the threshold gets too high, the number of selected features
decreases significantly. As a result, some important parts of
the image or some objects of interest cannot be recognized

or tracked anymore. Therefore, it is essential to choose the
threshold Fth wisely. To do so, we identify three key accuracy
parameters:
• a quality function Q that expresses the (weighted) aver-
age F-score of the selected features: the higher Q, the
most accurate the selected features;

• a reliability indicator R, denoting the capability of the
selection system in obtaining a minimum number of
matched features per each object close to a certain target
mref , specific to the chosen application: the closer R to 1,
the most accurate the selection;

• a transmission excess measure E , expressing (in the
average) the fraction of selected features in excess of
the mref target: the closer E to 0, the most accurate the
selection.

By denoting with O the set of objects, by Fo the set of
features belonging to object o, by | · | the cardinality of a
set, by Fn the F-score of the nth feature, by Sn the indicator
function which is equal to 1 if the nth feature is selected
(i.e., if its F-score is greater than the threshold) and 0 oth-
erwise, and by mo the number of matching features of object
o, then for an object o ∈ O the above key accuracy parameters
can be expressed as

Qo =

∑|Fo|
n=1 FnSn∑|Fo|
n=1 Sn

, Ro =
min(mo,mref )

mref
, Eo =

∑|Fo|
n=1 Sn
mref

,

(1)

while Q, R, and E are the corresponding averages over all the
objects.

The behaviour of the three accuracy parameters for our
tracking application is shown in Fig. 2 for (a) a unique thresh-
old and (b) an object-dependent threshold, as a function of
the F-threshold Fth, and formref = 5. Curves were computed
offline in order to identify a reasonable procedure for optimiz-
ing Fth. The chosen value Fth should maximize both the qual-
ity and the reliability functions, Q and R respectively, while
minimizing the transmission excess E . Note from Fig. 2 (a)
that, when Fth increases quality Q increases and the trans-
mission excess E decreases, to the detriment of deteriorated
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reliability values R. This practically sets the working point to
F∗th ' 0.7. Instead, as it can be seen fromFig. 2 (b), the object-
dependent threshold significantly improves and stabilizes the
behaviour of R, at the cost of a slight increase in E , and of a
saturation of the quality parameter Q below one, yet still at
a good accuracy value Q ' 0.9. Thanks to this stabilization
effect, the object-dependent threshold is less dependent on
Fth, and its performance is generally improved with respect
to the working point choice F∗th ' 0.7 in Fig. 2 (a), hence it is
the approach to be preferred for reliability, performance, and
robustness to the choice of Fth.

IV. DISTRIBUTED RATE-CONTROL STRATEGY
A. RATIONALE
As we anticipated in Section II, in the state-of-the-art
approach [13], [21] features are assigned to clusters whose
centroids are offline calculated and known throughout the
entire network. However, due to the offline approach, features
affected to the same cluster are likely to be weakly correlated,
not strongly; as illustrated in Fig. 3, the cluster is usually
a sparse collection of features, typically organized in small
groups. For this reason, estimating the coding rate and con-
structing a SI for DFC decoding based on the centroid might
be inefficient in some cases. In order to improve the encoding
strategy, features in a cluster can be partitioned in subgroups
of highly correlated features, as illustrated in Fig. 3. Features
belonging to a subgroup can be transmitted at a lower rate if
another feature of the same subgroup is used as a SI at the
decoder. We therefore assume that the selected features are
encoded following this strategy:

1) upon the creation of a new subgroup, only one feature
per subgroup is transmitted at the highest rate, and is
considered as the subgroup representative; the remain-
ing features are transmitted at a lower rate so that they
can be decoded by using the subgroup representative
as SI;

2) once a subgroup is formed and some features belonging
to it from the frame of its creation are already transmit-
ted to the sink, then by assuming that at least one of
these features is successfully decoded, all new selected
features attributed to this subgroup are encoded with
lower rate.

The subgrouping classification clearly aims at efficiently
exploiting the correlation among features at both cameras
and sink sides, thus implementing an efficient rate-control
strategy and accurate SI reconstruction.

Operationally this requires that, in each camera cluster,
cameras share periodically with neighbours some informa-
tion about the newly selected features in order to identify,
according to their correlation, subgroups of highly corre-
lated features with distances between each other smaller
than those separating them from the centroid. The number
and identifiers of active subgroups are then updated, and a
subgroup representative is elected. The information which
needs to be exchanged is mainly the cluster identifier plus the
3D principal components of descriptors (using the Principal

FIGURE 3. Subgrouping strategy within each cluster for a better
modelization of the intra- and inter-view correlation.

Component Analysis (PCA) method), which in total consists
of a few bits of information, and which locally occupies a
limited transmission bandwidth at the camera cluster level.

To form subgroups, each camera estimates the inter-camera
correlation using the received information from neighbours
belonging to the same camera cluster network. First, the clus-
ters to be divided into subgroups are identified using the
received clusters’ IDs. Then, for each identified cluster, the
process of forming subgroups is realized by executing the fol-
lowing steps:

1) reordering the features from all cameras belonging
to the cluster in a descending order with respect
to their correlation with the centroid denoted by
corr(PCAf ,PCAc), where PCAf and PCAc are the 3D
PCA vectors representing the feature f and the cen-
troid c, respectively.

2) considering the feature with the maximum correlation
as a new subgroup center (first subgroup).

3) for the rest, comparing the correlation with the
centroid (i.e., corr(PCAf ,PCAc)) to the correla-
tion with the already formed subgroups’ centers
(i.e., corr(PCAf ,PCAg), where g is the subgroup
center). According to the maximum correlation value,
the feature is whether affected to an existing subgroup
or considered as a new subgroup center.

The resulting scheme is summarized in Algorithm 1.

B. PUNCTURING MODEL
The approach used to generate higher or lower rates is a
puncturing approach where bits representing the entire parity
part of features after SW encoding are, respectively, lightly or
strongly punctured. For each feature fi,n selected by camera i
at frame n, we denote by ρi,n the fraction of punctured bits.
The estimation of ρi,n depends on the required reconstruction
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Algorithm 1 Forming Subgroups Within a Cluster
1: Reorder the set of features F belonging to the cluster

identified by the centroid c in a descending order.
2: Consider the first feature f1 (i.e., most correlated with

centroid c) as the first subgroup header.

Sg← {f1}

FSg is the set of the constructed subgroups’ headers
3: for f in F − {f1} do
4: Find maximum correlation between feature f and

elements of the set {c,Sg} denoted byMaxCorr
5: if MaxCorr = corr(PCAf ,PCAc) then
6: Feature f is the header of a new subgroup

Sg← {Sg, f }

7: else
8: Feature f is affected to the subgroup identified by
g∗ = argmax

g∈Sg

(corr(PCAf ,PCAg))

9: end if
10: end for

precision; the smaller the tolerable precision is, the bigger
ρi,n is and thus the lower is the transmission cost since less
information is transmitted through the network. However,
choosing a very high ρi,n value (i.e., a very low tolerable pre-
cision) entails many decoding errors and a bad reconstruction
accuracy. Therefore, ρi,n must be wisely identified.
The fraction of punctured bits ρi,n for the feature fi,n is

chosen via

ρi,n =

{
ρ̄high(SNR, corr(fi,n, ci,n)) , high rate

ρ̄low(SNR, corr(fi,n, gi,n)) , low rate

where ρ̄high/low is a mapping function that generally depends
on the Signal to Noise Ratio (SNR) value, as well as on the
correlation (corr) with a reference feature, i.e., the centroid
ci,n for high rate coding and the subgroup’s identifier gi,n
(in its 3D PCA components form) for low rate coding.

Taking into consideration the aforementioned and assum-
ing a transmission channel with an Additive White Gaussian
Noise (AWGN), ρ̄high/low is offline constructed by a linear
surface fitting model. The fitting models were both computed
offline for more than 15000 features extracted from vehicles
detected in 200 frames and decoded successfully using the
SWdecoder as described in [21]. The fitted curves of ρ̄high/low
are illustrated in Fig. 4 for a fixed SNR= 10dB, while
Fig. 5 depicts the bilinear fitting taking into account both
correlation and SNR. The Root Mean Square Error (RMSE)
values measuring the goodness of the linear fitting models
when SNR = 10dB for ρ̄high and ρ̄low are RMSEhigh =
0.019 and RMSElow = 0.072 respectively. For the bilinear
surface fitting, the RMSE values for high and low coding
rates are respectively 0.059 and 0.119. Note that the RMSE
values are slightly higher for low rate coding due to the fact
that the estimated correlation in this case is determined on

FIGURE 4. Linear fitting of ρi,n (expressed in percentage) when SNR =

10dB and for: (a) high rate coding ρ̄high (RMSE = 0.019), and (b) low rate
coding ρ̄low (RMSE = 0.072).

the 3D PCA components rather than the full 64 components
descriptors.

A linear fitting model was chosen to estimate the punc-
turing fractions ρ̄high and ρ̄low mainly for two reasons. First
of all, the linear model is simple yet efficient in fitting the
data with 95% confidence bounds and small RMSE values
(<0.1). Moreover, considering the average ρ values for each
correlation level, the corresponding curves for both high and
low coding cases (green curves in Fig. 4) are very close
to the fitted curves (red curves). The second reason is that,
considering more complex fitting models such as quadratic,
exponential and power models, same behavior as the linear
model is observed for fitting the majority of data points as it
can be seen from Fig. 6

V. EXPERIMENTAL RESULTS
A. IMPACT OF FEATURE SELECTION AT THE
APPLICATION LAYER
To evaluate the performance of the feature selection methods
described in Section III-A, we investigate their ability to
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FIGURE 5. Bilinear surface fitting of ρi,n for: (a) high rate coding ρ̄high
(RMSE = 0.059), and (b) low rate coding ρ̄low (RMSE = 0.119).

reduce the amount of transmitted information as well as their
impact on the multi-view matching accuracy. All the simula-
tion results are obtained in the context of multi-view vehicle
tracking application. The multi-view matching accuracy is
evaluated according to the Receiver Operating Characteris-
tic (ROC) curves of true versus false positive rates and the
F-score metric. The results are computed in the case of ideal
channel conditions and no bits puncturing at transmission to
highlight the impact of feature selection on matching accu-
racy independently on the new coding strategy.

The total number of features to transmit after diversity-
based selection is reduced by an average percentage of
5.41%. With the diversity-based approach, a diverse selec-
tion is guaranteed; each camera selects features belonging
to different clusters. However, the achieved saving rate is
considered very low. A much more significant saving is
achieved with the chosen object-dependent F-score threshold
described in Section III-B reaching 34%. In other words,

FIGURE 6. Comparison between different fitting models for: (a) high rate
coding and (b) low rate coding.

34% of the extracted features were considered irrelevant and
discarded by the selection algorithm to save bitrate and trans-
mission energy. Another possible approach is to combine
the two metrics (i.e., F-score and diversity applied together)
to select features. In this case, the number of transmitted
features after selection is reduced by 45.53%. Even though
the latter feature selection approach enables the highest sav-
ing rate, it restricts the reliability of the proposed coding
strategy. In fact, the new distributed rate control coding strat-
egy described in Section IV is mainly based on estimating
the inter-camera correlation at camera side by forming sub-
groups. The formation of subgroups, and hence the accuracy
of the correlation estimation, depend directly on the number
of features extracted from different cameras belonging to the
same cluster. By applying the diversity-based selection, the
number of features belonging to the same cluster from all
cameras is reduced.

To investigate further the efficiency of the proposed feature
selection methods, their impact at the application layer is
provided in Fig. 7 and Fig. 8. For the F-score based method,
the chosen object-dependent threshold is used with a max-
imum limit of Fth = 0.85. The only purpose of setting
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a constraint (Fth = 0.85) is to limit the maximum value
the average F-score per object can take, so that a sufficient
number of features per object transmitted and later matched
is ensured. Note that this threshold value may change from
one application to another depending on the analysis results.
However, given the fact that the proposed feature selection
method based on the average F-score per object stabilizes all
key accuracy functions defined in Section III-B (see Fig. 2),
not considering any threshold Fth will lead to almost the same
results as those presented in Fig. 7 and Fig. 8.
Fig. 7 illustrates ROC curves of true versus false posi-

tive rates in the considered vehicle tracking scenario for the
cases of no selection, F-score based selection, diversity-based
selection, and hybrid selection combining the F-score and
diversity metrics. The curves were obtained by varying a
discrimination threshold d for classifying matches into true
positive TP or false positive FP; the threshold d is the distance
between two matched descriptors under which the match is
considered correct.We consider a true positive TP as a correct
matching of features belonging to the same vehicle, and a
false positive FP as a matching between features belong-
ing to different vehicles. On the other hand, the multi-view
matching accuracy, measured by the F-score metric, for all
aforementioned cases are shown in Fig. 8. The multi-view
matching F-scores of the decoded descriptors are computed
for each discrimination threshold d .
From Fig. 7 we can observe that the diversity-based selec-

tion method (yellow curve) has the best ROC curve, even
better than the curve obtainedwhere no selection is performed
(blue curve). This can be explained by the fact that distinc-
tiveness of features is a very important property for having
accurate matching results. With the diversity-based selec-
tion, only distinctive features with high hessian response are
selected. The matching F-scores achieved with the diversity
method are very similar to those obtained when no selection
is performed (see Fig. 8), especially at high discrimination
thresholds (d ≥ 0.06). The almost overall superposition of
the two curves for F-score based selection and no selection
cases in Fig. 7 and Fig. 8 confirms that, even though the num-
ber of transmitted features is reduced (bit-rate reduction), the
matching accuracy is preserved and the proposed approach
meets its target. Moreover, for high discrimination thresholds
(d ≥ 0.06), higher F-score values (around 0.9) are achieved
with the proposed feature selection method compared to the
cases of no selection performed and diversity-based selection,
as it can be inferred from Fig. 8. With the final feature
selection approach, i.e., hybrid selection, similar matching
F-scores to those obtained in the case of F-score based selec-
tion are achieved. However, the performance of the ROC
curve in the case of hybrid selection is slightly deteriorated
compared to the other selection methods (see Fig. 7). This
deterioration is due to the fact that a very high number of
features are discarded by the hybrid selectionmethod, leading
to an insufficient number of features per object to bematched.
This in return results, in some cases, in more wrong matches
(either false positives or false negatives).

FIGURE 7. ROC curves with and without features selection.

FIGURE 8. Matching accuracy metric F-score with and without features
selection as a function of the discrimination threshold d .

Taking into consideration all the aforementioned, we chose
to work with F-score based selection approach since a sig-
nificant bitrate saving can be achieved while preserving a
good matching accuracy compared to the case of no selection
performed.

B. IMPACT OF THE NEW CODING STRATEGY
ON THE BITRATE SAVINGS
To evaluate the efficiency of the proposed coding strategy,
we provide in Fig. 9 the Frame Error Rate (FER) perfor-
mance of the SW decoder with the new coding strategy
(dashed line) against the standard strategy (straight lines), for
different SNR values. In the subgroup coding strategy, for
each feature fi,n, a puncturing fraction ρi,n is estimated using
the fitting model described in Section IV-B. In the case of
standard SW decoder, however, a constant puncturing value
ρi,n = ρ is applied to all features. Different ρ values ranging
in percentage from 0 to 50% were used to compute the
FER in the case of standard SW decoder, which are illustrated
in Fig. 9.
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FIGURE 9. FER performance evaluation versus the SNR.

As it can be seen from Fig. 9, the proposed coding strategy
performs similarly to the standard coding strategy with 10%
bitrate saving, but guarantees much higher (average) punctur-
ing percentages ranging from 16.15% at low SNRs (≤2dB) to
37.71% at slightly higher SNRs (≥4dB). The average saving
achieved using the new coding strategy through all SNRs is
30.65%. Moreover, by comparing the FER results obtained
when the new coding strategy is applied to those obtained for
constant puncturing percentage ρ = 30%, we can observe
that much lower FER values are achieved even though the
bitrate saving is almost the same in both cases. In other
words, the proposed coding strategy in this paper entails
less decoding failure of received descriptors, which implicitly
results in less use of the feedback channel and less decoding
delays.

The main idea of the new coding strategy proposed in
Section. IV is to estimate the inter-view correlation at the
camera side and exploit it to estimate the necessary punctur-
ing fraction value for each selected feature. The inter-view
correlation is estimated based on the subgroup formation
after exchanging negligible amount of information among
cameras. Therefore, to further analyze the accuracy of the
proposed coding strategy, we evaluate the effect of the loss
of some messages, due to the transmission channel noise,
on the bitrate savings and application analysis performance.
We denote by Ploss the probability of losing some messages
during the information exchange process between cameras
belonging to the same camera cluster network. We varied the
value of Ploss for each SNR, and computed the average saving
rate (i.e., average estimated puncturing fraction) as well as the
achieved FER for 100 consecutive frames. Since perfect FER
values (FER = 0) are achieved for high SNRs (SNR ≥ 6dB)
when Ploss = 0 (see Fig. 9), we present the obtained results
at SNR = 6dB in Table. 1.

From Table. 1 we can observe that when Ploss = 0.05, the
average saving rate has increased. This is expected consid-
ering that the lost messages were not taken into account for
forming subgroups. Therefore, inexact inter-view correlation

TABLE 1. Evaluation of the bitrate savings and the FER for different Ploss
values when SNR = 6dB.

is estimated which impacts the estimation of the puncturing
fraction. For some features, the estimated puncturing fraction
is too high with respect to the maximum acceptable fraction
(estimated when Ploss = 0), leading to some decoding errors.
This also explains the slightly raised value of the FER. As the
loss probability Ploss increases, the FER and the average
saving rate slowly increase as well. In fact, even though more
messages are lost, the number of features per cluster con-
sidered during the subgroups formation process is sufficient
thanks to the redundant information extracted by cameras
belonging to the same camera cluster network. In addition,
the features that were not considered for forming subgroups
because of the messages loss are automatically coded with
respect to the cluster’s centroid, which is still correlated
enough for estimating the puncturing fraction. Interestingly,
the tiny increase in the FER has a inconsiderable effect on
the multi-view matching accuracy; same ROC curve perfor-
mance obtained when Ploss = 0 (red curve in Fig. 7) is
achieved.

VI. CONCLUSION
In this paper, we propose an improved distributed feature
coding solution aiming at shifting the feature selection and
some of the rate control to camera side in order to reduce the
transmission bitrate and the decoding delay. Cameras select
most relevant features based on feature matching accuracy
computed offline cluster wise. Moreover, cameras collabo-
rate periodically to estimate the exact source rate needed
for each selected feature based on the inter-view correla-
tion and the transmission channel conditions. The experi-
mental results demonstrate that the amount of information
to be transmitted to the sink can be reduced by 34% using
the proposed feature selection algorithm. Furthermore, sig-
nificant additional bitrate savings reaching 37.71% can be
achieved by applying the proposed new SW decoding strat-
egy, while preserving good analysis accuracy (Fscore ≈ 0.9)
and frame error rate performance (FER ≤ 2× 10−4 for high
SNRs ≥ 4dB). In future work, the proposed feature selection
and coding strategy will be implemented and tested in real-
time settings, using embedded camera sensors and Raspberry
Pi boards, to prove its efficiency in terms of network lifetime
maximization and decoding delay minimization for real-time
applications.
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